Tracking human motion in structured environments using a distributed-camera system

This paper presents a comprehensive framework for tracking coarse human models from sequences of synchronized monocular grayscale images in multiple camera coordinates. It demonstrates the feasibility of an end-to-end person tracking system using a unique combination of motion analysis on 3D geometr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 21; no. 11; pp. 1241 - 1247
Main Authors Cai, Q., Aggarwal, J.K.
Format Journal Article
LanguageEnglish
Published IEEE 01.11.1999
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a comprehensive framework for tracking coarse human models from sequences of synchronized monocular grayscale images in multiple camera coordinates. It demonstrates the feasibility of an end-to-end person tracking system using a unique combination of motion analysis on 3D geometry in different camera coordinates and other existing techniques in motion detection, segmentation, and pattern recognition. The system starts with tracking from a single camera view. When the system predicts that the active camera will no longer have a good view of the subject of interest, tracking will be switched to another camera which provides a better view and requires the least switching to continue tracking. The nonrigidity of the human body is addressed by matching points of the middle line of the human image, spatially and temporally, using Bayesian classification schemes. Multivariate normal distributions are employed to model class-conditional densities of the features for tracking, such as location, intensity, and geometric features. Limited degrees of occlusion are tolerated within the system. Experimental results using a prototype system are presented and the performance of the algorithm is evaluated to demonstrate its feasibility for real time applications.
AbstractList This paper presents a comprehensive framework for tracking coarse human models from sequences of synchronized monocular grayscale images in multiple camera coordinates. It demonstrates the feasibility of an end-to-end person tracking system using a unique combination of motion analysis on 3D geometry in different camera coordinates and other existing techniques in motion detection, segmentation, and pattern recognition. The system starts with tracking from a single camera view. When the system predicts that the active camera will no longer have a good view of the subject of interest, tracking will be switched to another camera which provides a better view and requires the least switching to continue tracking. The nonrigidity of the human body is addressed by matching points of the middle line of the human image, spatially and temporally, using Bayesian classification schemes. Multivariate normal distributions are employed to model class-conditional densities of the features for tracking, such as location, intensity, and geometric features. Limited degrees of occlusion are tolerated within the system. Experimental results using a prototype system are presented and the performance of the algorithm is evaluated to demonstrate its feasibility for real time applications.
This paper presents a comprehensive framework for tracking coarse human models from sequences of synchronized monocular grayscale images in multiple camera coordinates. It demonstrates the feasibility of an end-to-end person tracking system using a unique combination of motion analysis on 3D geometry in different camera coordinates and other existing techniques in motion detection, segmentation, and pattern recognition. The system starts with tracking from a single camera view. When the system predicts that the active camera will no longer have a good view of the subject of interest, tracking will be switched to another camera which provides a better view and requires the least switching to continue tracking. The nonrigidity of the human body is addressed by matching points of the middle line of the human image, spatially and temporally, using Bayesian classification schemes. Multivariate normal distributions are employed to model class-conditional densities of the features for tracking, such as location, intensity, and geometric features. Limited degrees of occlusion are tolerated within the system. Experimental results using a prototype system are presented and the performance of the algorithm is evaluated to demonstrate its feasibility for real time applications
Author Aggarwal, J.K.
Cai, Q.
Author_xml – sequence: 1
  givenname: Q.
  surname: Cai
  fullname: Cai, Q.
  organization: Realnetworks Inc., Seattle, WA, USA
– sequence: 2
  givenname: J.K.
  surname: Aggarwal
  fullname: Aggarwal, J.K.
BookMark eNqF0DtPwzAUBWAPRaItDKxMnkAMaf1KYo-o4iVVQkJljhznBgyJU2wHqf-eRqkYEILpDvc7ZzgzNHGdA4TOKFlQStSSi4UkilI1QVNCM5ZIyeQxmoXwRggVKeFT9LTx2rxb94Jf-1Y73HbRdg5bh0P0vYm9hwqD-7S-cy24GHAfBq1xZffCln2EKjG6Ba9x2IUI7Qk6qnUT4PRw5-j59mazuk_Wj3cPq-t1YgTJYsKyKieyhro0acZ5Damoc851mpUUKjBSCAIpAGdllmeVIoJLUbKSSdC54ITP0eXYu_XdRw8hFq0NBppGO-j6UCiqFOVUDfLiT8lkTnJG6P8wFTQTnO3h1QiN70LwUBdbb1vtdwUlxTB-wUUxjr-3yx_W2KiHmaPXtvk1cT4mLAB8Nx-eX1-yktU
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1002_adma_201302453
crossref_primary_10_3390_s22093601
crossref_primary_10_1016_j_robot_2008_06_004
crossref_primary_10_1016_j_sna_2012_06_023
crossref_primary_10_1016_j_patrec_2008_07_008
crossref_primary_10_1142_S0219878910002208
crossref_primary_10_1109_JSEN_2019_2895156
crossref_primary_10_1109_TPAMI_2003_1233912
crossref_primary_10_1016_j_rti_2003_08_001
crossref_primary_10_1007_s11042_014_2364_9
crossref_primary_10_1016_j_cviu_2009_04_004
crossref_primary_10_1007_s00138_007_0091_1
crossref_primary_10_1007_s11227_014_1164_3
crossref_primary_10_3233_AIS_180510
crossref_primary_10_1002_ecjc_20132
crossref_primary_10_1109_TITS_2004_838222
crossref_primary_10_1006_cviu_2000_0835
crossref_primary_10_1088_1742_6596_887_1_012091
crossref_primary_10_1109_TSMCB_2009_2017507
crossref_primary_10_1109_TPAMI_2015_2484339
crossref_primary_10_1109_JSEN_2016_2566679
crossref_primary_10_1145_1177352_1177355
crossref_primary_10_1007_s10765_012_1303_0
crossref_primary_10_1007_s11263_007_0057_9
crossref_primary_10_1049_ip_vis_20041215
crossref_primary_10_1109_TCSVT_2012_2210670
crossref_primary_10_1155_2007_38373
crossref_primary_10_1016_j_cviu_2004_02_003
crossref_primary_10_1016_j_cviu_2006_02_006
crossref_primary_10_1007_s12555_010_0503_2
crossref_primary_10_1109_JSTSP_2011_2164779
crossref_primary_10_1115_1_3002910
crossref_primary_10_1109_TII_2011_2173945
crossref_primary_10_1142_S0218001405004423
crossref_primary_10_1364_AO_44_004306
crossref_primary_10_1145_2710128
crossref_primary_10_1109_TSMCC_2004_829274
crossref_primary_10_3390_s90301499
crossref_primary_10_1016_j_neucom_2016_11_038
crossref_primary_10_1007_s11263_014_0747_z
crossref_primary_10_1109_TMM_2011_2131639
crossref_primary_10_1109_TPAMI_2006_80
crossref_primary_10_1109_JSEN_2010_2051148
crossref_primary_10_1109_TCSVT_2013_2242592
crossref_primary_10_1007_s00138_006_0045_z
crossref_primary_10_1080_15599610701580467
crossref_primary_10_1016_j_jnca_2011_12_007
crossref_primary_10_1016_S0167_8655_02_00210_6
crossref_primary_10_1109_TIP_2011_2142002
crossref_primary_10_1142_S0219467815500163
crossref_primary_10_1007_s00502_008_0574_4
crossref_primary_10_1016_j_imavis_2010_08_001
crossref_primary_10_1016_j_cviu_2011_06_001
crossref_primary_10_1155_2013_636052
crossref_primary_10_1109_5_959340
crossref_primary_10_1109_ACCESS_2020_3012342
crossref_primary_10_1109_JPROC_2008_928742
crossref_primary_10_1016_j_aei_2011_01_003
crossref_primary_10_3390_pr13030748
crossref_primary_10_1016_j_imavis_2005_06_008
crossref_primary_10_1016_j_neucom_2023_126558
crossref_primary_10_1109_ACCESS_2020_3024568
crossref_primary_10_1109_JSEN_2019_2914365
crossref_primary_10_1109_TSMCB_2009_2013196
crossref_primary_10_1016_j_patrec_2008_04_001
crossref_primary_10_1145_2543581_2543596
crossref_primary_10_1007_s10044_005_0243_8
crossref_primary_10_1007_s11042_010_0489_z
crossref_primary_10_1145_2530373
crossref_primary_10_1007_s11771_014_2416_3
crossref_primary_10_1080_09720529_2009_10698214
crossref_primary_10_1007_s13177_009_0001_1
crossref_primary_10_3389_fpsyg_2018_00927
crossref_primary_10_1007_s00138_006_0063_x
crossref_primary_10_1007_s10115_006_0025_7
crossref_primary_10_3724_SP_J_1016_2008_00650
crossref_primary_10_1016_j_ijdrr_2017_02_021
crossref_primary_10_1109_LSENS_2019_2947625
crossref_primary_10_1016_j_jvcir_2018_09_014
crossref_primary_10_1016_j_cviu_2014_12_001
crossref_primary_10_1155_2008_738158
crossref_primary_10_3390_s100908215
crossref_primary_10_1016_j_patrec_2012_07_005
crossref_primary_10_1109_TPAMI_2008_241
crossref_primary_10_1111_j_1468_0394_2007_00438_x
crossref_primary_10_1016_j_image_2008_12_010
crossref_primary_10_1109_JIOT_2022_3188270
crossref_primary_10_1155_2014_895971
crossref_primary_10_1049_iet_cvi_2014_0021
crossref_primary_10_1007_s00530_004_0145_4
crossref_primary_10_1080_03772063_2006_11416437
crossref_primary_10_1109_JSEN_2017_2722105
crossref_primary_10_1109_TIFS_2011_2159972
crossref_primary_10_1155_2008_542808
crossref_primary_10_1109_JPROC_2011_2158377
crossref_primary_10_1587_transcom_E92_B_585
crossref_primary_10_1007_s11042_017_5298_1
crossref_primary_10_1007_s13042_018_0801_1
crossref_primary_10_1007_s11265_007_0090_5
crossref_primary_10_1155_2008_187413
crossref_primary_10_1016_j_cviu_2004_07_004
crossref_primary_10_1109_34_809119
crossref_primary_10_1109_TPAMI_2007_70750
crossref_primary_10_1186_s42490_020_0038_4
crossref_primary_10_1016_j_cviu_2007_01_003
crossref_primary_10_1016_j_patcog_2011_10_003
crossref_primary_10_1109_JOE_2004_839933
crossref_primary_10_1007_s11263_009_0307_0
crossref_primary_10_1016_j_cviu_2006_06_005
crossref_primary_10_1016_j_jvcir_2005_07_004
crossref_primary_10_1177_106480460701500303
Cites_doi 10.1145/217279.215267
10.1016/0031-3203(93)90089-F
10.1109/CADVIS.1994.284490
10.1109/ICIP.1995.529584
10.1109/ACV.1996.571994
10.1109/ICPR.1996.546796
10.1109/34.809119
10.1109/ICCV.1998.710743
10.1016/0734-189X(88)90115-6
10.1109/MNRAO.1994.346251
ContentType Journal Article
DBID RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
DOI 10.1109/34.809119
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 1247
ExternalDocumentID 10_1109_34_809119
809119
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
ID FETCH-LOGICAL-c406t-26d708fefbc5633fe54f733a56b1edec8440e5ee32b676d904384b2b28ea74303
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Thu Jul 10 17:21:25 EDT 2025
Thu Jul 10 20:56:10 EDT 2025
Mon Jul 21 11:33:38 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Tue Jul 01 03:18:12 EDT 2025
Wed Aug 27 02:47:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-26d708fefbc5633fe54f733a56b1edec8440e5ee32b676d904384b2b28ea74303
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 25416432
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_28707201
proquest_miscellaneous_919913190
crossref_primary_10_1109_34_809119
proquest_miscellaneous_25416432
crossref_citationtrail_10_1109_34_809119
ieee_primary_809119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-11-01
PublicationDateYYYYMMDD 1999-11-01
PublicationDate_xml – month: 11
  year: 1999
  text: 1999-11-01
  day: 01
PublicationDecade 1990
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 1999
Publisher IEEE
Publisher_xml – name: IEEE
References bibI12418
bibI12419
bibI124110
bibI12414
bibI12415
bibI12416
bibI12417
bibI12411
bibI12412
bibI12413
References_xml – ident: bibI12412
  doi: 10.1145/217279.215267
– ident: bibI12417
  doi: 10.1016/0031-3203(93)90089-F
– ident: bibI12411
  doi: 10.1109/CADVIS.1994.284490
– ident: bibI12414
  doi: 10.1109/ICIP.1995.529584
– ident: bibI124110
  doi: 10.1109/ACV.1996.571994
– ident: bibI12413
  doi: 10.1109/ICPR.1996.546796
– ident: bibI12415
  doi: 10.1109/34.809119
– ident: bibI12419
  doi: 10.1109/ICCV.1998.710743
– ident: bibI12418
  doi: 10.1016/0734-189X(88)90115-6
– ident: bibI12416
  doi: 10.1109/MNRAO.1994.346251
SSID ssj0014503
Score 2.132122
Snippet This paper presents a comprehensive framework for tracking coarse human models from sequences of synchronized monocular grayscale images in multiple camera...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1241
SubjectTerms Bayesian methods
Cameras
Density
Feasibility
Geometry
Gray-scale
Human
Humans
Image segmentation
Mathematical models
Motion analysis
Motion detection
Pattern recognition
Three dimensional
Tracking
Title Tracking human motion in structured environments using a distributed-camera system
URI https://ieeexplore.ieee.org/document/809119
https://www.proquest.com/docview/25416432
https://www.proquest.com/docview/28707201
https://www.proquest.com/docview/919913190
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx6cTsX5M4gHL92yJs26o4hjCHoQB7uVJH0VUTpx28W_3veSbkyd4q2UV1r6krz3Je99H2MXBoM0pDaOnMlNpAjuWA0uSgBHkEkcBmnqd76714Ohuh0lo4pn2_fCAIAvPoMWXfqz_HzsZrRV1k4xuBHF5zrittCqtTgwUIkXQcYEBic4ooiKRKgjem2pWuHBL6HHa6n8WIB9VOnXQ7v2xJMRUjHJS2s2tS338Y2q8Z8fvM22quySX4XhsMPWoGyw-ly5gVcTucE2l2gId9kDBixHW-bcK_bxoOzDn0se2GVn75Dz5Y44TtXyT9zwnGh3STELcnQD7W_xQA29x4b9m8frQVRpLUQOQ_o0inXeFWkBhXWJlrKARBVdKU2ibQdycKlSAhIAGVvd1XmPDhCVjW2cgsEkRMh9VivHJRwwbiQAgpZCa4XoEQojrBGpk0oUJOthmuxy7obMVUTkpIfxmnlAInqZVFn4c012vjB9C-wbq4wa9OcXBvO7Z3PXZjhj6BjElDCeTTKExIgRZfyHBS5iXcyMmoz_YtGjijFcvcThypcfsQ1P7-B7Fo9ZDZ0FJ5i8TO2pH7af37Tu8w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHIADSwFRVgtx4JLixkvTI0Kgsh4QSNwi25kgBEoRbS98PTN2WrGLWxRNlChj-83YM-8xtm8RpCFzaeJtYRNF6Y4z4BMNOIKs9gjS1O98dW16d-r8Xt_XPNuhFwYAQvEZtOgynOUXfT-irbLDDMGNKD5nEPZ1OzZrTY4MlA4yyBjC4BTHPKKmEWqL7qFUrfjoJ_AJairfluCAK6eLsWF7EOgIqZzkqTUaupZ_-0LW-M9PXmILdXzJj-KAWGZTUDXY4li7gddTucHmPxARrrAbhCxPm-Y8aPbxqO3DHyse-WVHr1Dwjz1xnOrlH7jlBRHvkmYWFOgI2uHikRx6ld2dntwe95JabSHxCOrDJDVFR2QllM5rI2UJWpUdKa02rg0F-EwpARpAps50TNGlI0TlUpdmYDEMEXKNTVf9CtYZtxIA05bSGIX5I5RWOCsyL5UoSdjDNtnB2A25r6nISRHjOQ8piejmUuXxzzXZ3sT0JfJv_GTUoD8_MRjf3R27Nsc5QwchtoL-aJBjUoxZokz_sMBlrIOxUZPxXyy6VDOG65fY-PHlu2y2d3t1mV-eXV9ssrlA9hA6GLfYNDoOtjGUGbqdMITfAXZw8jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+human+motion+in+structured+environments+using+a+distributed-camera+system&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Cai%2C+Q.&rft.au=Aggarwal%2C+J.K.&rft.date=1999-11-01&rft.issn=0162-8828&rft.volume=21&rft.issue=11&rft.spage=1241&rft.epage=1247&rft_id=info:doi/10.1109%2F34.809119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_34_809119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon