Tracking human motion in structured environments using a distributed-camera system
This paper presents a comprehensive framework for tracking coarse human models from sequences of synchronized monocular grayscale images in multiple camera coordinates. It demonstrates the feasibility of an end-to-end person tracking system using a unique combination of motion analysis on 3D geometr...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 21; no. 11; pp. 1241 - 1247 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.11.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a comprehensive framework for tracking coarse human models from sequences of synchronized monocular grayscale images in multiple camera coordinates. It demonstrates the feasibility of an end-to-end person tracking system using a unique combination of motion analysis on 3D geometry in different camera coordinates and other existing techniques in motion detection, segmentation, and pattern recognition. The system starts with tracking from a single camera view. When the system predicts that the active camera will no longer have a good view of the subject of interest, tracking will be switched to another camera which provides a better view and requires the least switching to continue tracking. The nonrigidity of the human body is addressed by matching points of the middle line of the human image, spatially and temporally, using Bayesian classification schemes. Multivariate normal distributions are employed to model class-conditional densities of the features for tracking, such as location, intensity, and geometric features. Limited degrees of occlusion are tolerated within the system. Experimental results using a prototype system are presented and the performance of the algorithm is evaluated to demonstrate its feasibility for real time applications. |
---|---|
AbstractList | This paper presents a comprehensive framework for tracking coarse human models from sequences of synchronized monocular grayscale images in multiple camera coordinates. It demonstrates the feasibility of an end-to-end person tracking system using a unique combination of motion analysis on 3D geometry in different camera coordinates and other existing techniques in motion detection, segmentation, and pattern recognition. The system starts with tracking from a single camera view. When the system predicts that the active camera will no longer have a good view of the subject of interest, tracking will be switched to another camera which provides a better view and requires the least switching to continue tracking. The nonrigidity of the human body is addressed by matching points of the middle line of the human image, spatially and temporally, using Bayesian classification schemes. Multivariate normal distributions are employed to model class-conditional densities of the features for tracking, such as location, intensity, and geometric features. Limited degrees of occlusion are tolerated within the system. Experimental results using a prototype system are presented and the performance of the algorithm is evaluated to demonstrate its feasibility for real time applications. This paper presents a comprehensive framework for tracking coarse human models from sequences of synchronized monocular grayscale images in multiple camera coordinates. It demonstrates the feasibility of an end-to-end person tracking system using a unique combination of motion analysis on 3D geometry in different camera coordinates and other existing techniques in motion detection, segmentation, and pattern recognition. The system starts with tracking from a single camera view. When the system predicts that the active camera will no longer have a good view of the subject of interest, tracking will be switched to another camera which provides a better view and requires the least switching to continue tracking. The nonrigidity of the human body is addressed by matching points of the middle line of the human image, spatially and temporally, using Bayesian classification schemes. Multivariate normal distributions are employed to model class-conditional densities of the features for tracking, such as location, intensity, and geometric features. Limited degrees of occlusion are tolerated within the system. Experimental results using a prototype system are presented and the performance of the algorithm is evaluated to demonstrate its feasibility for real time applications |
Author | Aggarwal, J.K. Cai, Q. |
Author_xml | – sequence: 1 givenname: Q. surname: Cai fullname: Cai, Q. organization: Realnetworks Inc., Seattle, WA, USA – sequence: 2 givenname: J.K. surname: Aggarwal fullname: Aggarwal, J.K. |
BookMark | eNqF0DtPwzAUBWAPRaItDKxMnkAMaf1KYo-o4iVVQkJljhznBgyJU2wHqf-eRqkYEILpDvc7ZzgzNHGdA4TOKFlQStSSi4UkilI1QVNCM5ZIyeQxmoXwRggVKeFT9LTx2rxb94Jf-1Y73HbRdg5bh0P0vYm9hwqD-7S-cy24GHAfBq1xZffCln2EKjG6Ba9x2IUI7Qk6qnUT4PRw5-j59mazuk_Wj3cPq-t1YgTJYsKyKieyhro0acZ5Damoc851mpUUKjBSCAIpAGdllmeVIoJLUbKSSdC54ITP0eXYu_XdRw8hFq0NBppGO-j6UCiqFOVUDfLiT8lkTnJG6P8wFTQTnO3h1QiN70LwUBdbb1vtdwUlxTB-wUUxjr-3yx_W2KiHmaPXtvk1cT4mLAB8Nx-eX1-yktU |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1002_adma_201302453 crossref_primary_10_3390_s22093601 crossref_primary_10_1016_j_robot_2008_06_004 crossref_primary_10_1016_j_sna_2012_06_023 crossref_primary_10_1016_j_patrec_2008_07_008 crossref_primary_10_1142_S0219878910002208 crossref_primary_10_1109_JSEN_2019_2895156 crossref_primary_10_1109_TPAMI_2003_1233912 crossref_primary_10_1016_j_rti_2003_08_001 crossref_primary_10_1007_s11042_014_2364_9 crossref_primary_10_1016_j_cviu_2009_04_004 crossref_primary_10_1007_s00138_007_0091_1 crossref_primary_10_1007_s11227_014_1164_3 crossref_primary_10_3233_AIS_180510 crossref_primary_10_1002_ecjc_20132 crossref_primary_10_1109_TITS_2004_838222 crossref_primary_10_1006_cviu_2000_0835 crossref_primary_10_1088_1742_6596_887_1_012091 crossref_primary_10_1109_TSMCB_2009_2017507 crossref_primary_10_1109_TPAMI_2015_2484339 crossref_primary_10_1109_JSEN_2016_2566679 crossref_primary_10_1145_1177352_1177355 crossref_primary_10_1007_s10765_012_1303_0 crossref_primary_10_1007_s11263_007_0057_9 crossref_primary_10_1049_ip_vis_20041215 crossref_primary_10_1109_TCSVT_2012_2210670 crossref_primary_10_1155_2007_38373 crossref_primary_10_1016_j_cviu_2004_02_003 crossref_primary_10_1016_j_cviu_2006_02_006 crossref_primary_10_1007_s12555_010_0503_2 crossref_primary_10_1109_JSTSP_2011_2164779 crossref_primary_10_1115_1_3002910 crossref_primary_10_1109_TII_2011_2173945 crossref_primary_10_1142_S0218001405004423 crossref_primary_10_1364_AO_44_004306 crossref_primary_10_1145_2710128 crossref_primary_10_1109_TSMCC_2004_829274 crossref_primary_10_3390_s90301499 crossref_primary_10_1016_j_neucom_2016_11_038 crossref_primary_10_1007_s11263_014_0747_z crossref_primary_10_1109_TMM_2011_2131639 crossref_primary_10_1109_TPAMI_2006_80 crossref_primary_10_1109_JSEN_2010_2051148 crossref_primary_10_1109_TCSVT_2013_2242592 crossref_primary_10_1007_s00138_006_0045_z crossref_primary_10_1080_15599610701580467 crossref_primary_10_1016_j_jnca_2011_12_007 crossref_primary_10_1016_S0167_8655_02_00210_6 crossref_primary_10_1109_TIP_2011_2142002 crossref_primary_10_1142_S0219467815500163 crossref_primary_10_1007_s00502_008_0574_4 crossref_primary_10_1016_j_imavis_2010_08_001 crossref_primary_10_1016_j_cviu_2011_06_001 crossref_primary_10_1155_2013_636052 crossref_primary_10_1109_5_959340 crossref_primary_10_1109_ACCESS_2020_3012342 crossref_primary_10_1109_JPROC_2008_928742 crossref_primary_10_1016_j_aei_2011_01_003 crossref_primary_10_3390_pr13030748 crossref_primary_10_1016_j_imavis_2005_06_008 crossref_primary_10_1016_j_neucom_2023_126558 crossref_primary_10_1109_ACCESS_2020_3024568 crossref_primary_10_1109_JSEN_2019_2914365 crossref_primary_10_1109_TSMCB_2009_2013196 crossref_primary_10_1016_j_patrec_2008_04_001 crossref_primary_10_1145_2543581_2543596 crossref_primary_10_1007_s10044_005_0243_8 crossref_primary_10_1007_s11042_010_0489_z crossref_primary_10_1145_2530373 crossref_primary_10_1007_s11771_014_2416_3 crossref_primary_10_1080_09720529_2009_10698214 crossref_primary_10_1007_s13177_009_0001_1 crossref_primary_10_3389_fpsyg_2018_00927 crossref_primary_10_1007_s00138_006_0063_x crossref_primary_10_1007_s10115_006_0025_7 crossref_primary_10_3724_SP_J_1016_2008_00650 crossref_primary_10_1016_j_ijdrr_2017_02_021 crossref_primary_10_1109_LSENS_2019_2947625 crossref_primary_10_1016_j_jvcir_2018_09_014 crossref_primary_10_1016_j_cviu_2014_12_001 crossref_primary_10_1155_2008_738158 crossref_primary_10_3390_s100908215 crossref_primary_10_1016_j_patrec_2012_07_005 crossref_primary_10_1109_TPAMI_2008_241 crossref_primary_10_1111_j_1468_0394_2007_00438_x crossref_primary_10_1016_j_image_2008_12_010 crossref_primary_10_1109_JIOT_2022_3188270 crossref_primary_10_1155_2014_895971 crossref_primary_10_1049_iet_cvi_2014_0021 crossref_primary_10_1007_s00530_004_0145_4 crossref_primary_10_1080_03772063_2006_11416437 crossref_primary_10_1109_JSEN_2017_2722105 crossref_primary_10_1109_TIFS_2011_2159972 crossref_primary_10_1155_2008_542808 crossref_primary_10_1109_JPROC_2011_2158377 crossref_primary_10_1587_transcom_E92_B_585 crossref_primary_10_1007_s11042_017_5298_1 crossref_primary_10_1007_s13042_018_0801_1 crossref_primary_10_1007_s11265_007_0090_5 crossref_primary_10_1155_2008_187413 crossref_primary_10_1016_j_cviu_2004_07_004 crossref_primary_10_1109_34_809119 crossref_primary_10_1109_TPAMI_2007_70750 crossref_primary_10_1186_s42490_020_0038_4 crossref_primary_10_1016_j_cviu_2007_01_003 crossref_primary_10_1016_j_patcog_2011_10_003 crossref_primary_10_1109_JOE_2004_839933 crossref_primary_10_1007_s11263_009_0307_0 crossref_primary_10_1016_j_cviu_2006_06_005 crossref_primary_10_1016_j_jvcir_2005_07_004 crossref_primary_10_1177_106480460701500303 |
Cites_doi | 10.1145/217279.215267 10.1016/0031-3203(93)90089-F 10.1109/CADVIS.1994.284490 10.1109/ICIP.1995.529584 10.1109/ACV.1996.571994 10.1109/ICPR.1996.546796 10.1109/34.809119 10.1109/ICCV.1998.710743 10.1016/0734-189X(88)90115-6 10.1109/MNRAO.1994.346251 |
ContentType | Journal Article |
DBID | RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7SP F28 FR3 |
DOI | 10.1109/34.809119 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EndPage | 1247 |
ExternalDocumentID | 10_1109_34_809119 809119 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYOK AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D 7SP F28 FR3 |
ID | FETCH-LOGICAL-c406t-26d708fefbc5633fe54f733a56b1edec8440e5ee32b676d904384b2b28ea74303 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Thu Jul 10 17:21:25 EDT 2025 Thu Jul 10 20:56:10 EDT 2025 Mon Jul 21 11:33:38 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Tue Jul 01 03:18:12 EDT 2025 Wed Aug 27 02:47:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-26d708fefbc5633fe54f733a56b1edec8440e5ee32b676d904384b2b28ea74303 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 25416432 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_28707201 proquest_miscellaneous_919913190 crossref_primary_10_1109_34_809119 proquest_miscellaneous_25416432 crossref_citationtrail_10_1109_34_809119 ieee_primary_809119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1999-11-01 |
PublicationDateYYYYMMDD | 1999-11-01 |
PublicationDate_xml | – month: 11 year: 1999 text: 1999-11-01 day: 01 |
PublicationDecade | 1990 |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationYear | 1999 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | bibI12418 bibI12419 bibI124110 bibI12414 bibI12415 bibI12416 bibI12417 bibI12411 bibI12412 bibI12413 |
References_xml | – ident: bibI12412 doi: 10.1145/217279.215267 – ident: bibI12417 doi: 10.1016/0031-3203(93)90089-F – ident: bibI12411 doi: 10.1109/CADVIS.1994.284490 – ident: bibI12414 doi: 10.1109/ICIP.1995.529584 – ident: bibI124110 doi: 10.1109/ACV.1996.571994 – ident: bibI12413 doi: 10.1109/ICPR.1996.546796 – ident: bibI12415 doi: 10.1109/34.809119 – ident: bibI12419 doi: 10.1109/ICCV.1998.710743 – ident: bibI12418 doi: 10.1016/0734-189X(88)90115-6 – ident: bibI12416 doi: 10.1109/MNRAO.1994.346251 |
SSID | ssj0014503 |
Score | 2.132122 |
Snippet | This paper presents a comprehensive framework for tracking coarse human models from sequences of synchronized monocular grayscale images in multiple camera... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1241 |
SubjectTerms | Bayesian methods Cameras Density Feasibility Geometry Gray-scale Human Humans Image segmentation Mathematical models Motion analysis Motion detection Pattern recognition Three dimensional Tracking |
Title | Tracking human motion in structured environments using a distributed-camera system |
URI | https://ieeexplore.ieee.org/document/809119 https://www.proquest.com/docview/25416432 https://www.proquest.com/docview/28707201 https://www.proquest.com/docview/919913190 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx6cTsX5M4gHL92yJs26o4hjCHoQB7uVJH0VUTpx28W_3veSbkyd4q2UV1r6krz3Je99H2MXBoM0pDaOnMlNpAjuWA0uSgBHkEkcBmnqd76714Ohuh0lo4pn2_fCAIAvPoMWXfqz_HzsZrRV1k4xuBHF5zrittCqtTgwUIkXQcYEBic4ooiKRKgjem2pWuHBL6HHa6n8WIB9VOnXQ7v2xJMRUjHJS2s2tS338Y2q8Z8fvM22quySX4XhsMPWoGyw-ly5gVcTucE2l2gId9kDBixHW-bcK_bxoOzDn0se2GVn75Dz5Y44TtXyT9zwnGh3STELcnQD7W_xQA29x4b9m8frQVRpLUQOQ_o0inXeFWkBhXWJlrKARBVdKU2ibQdycKlSAhIAGVvd1XmPDhCVjW2cgsEkRMh9VivHJRwwbiQAgpZCa4XoEQojrBGpk0oUJOthmuxy7obMVUTkpIfxmnlAInqZVFn4c012vjB9C-wbq4wa9OcXBvO7Z3PXZjhj6BjElDCeTTKExIgRZfyHBS5iXcyMmoz_YtGjijFcvcThypcfsQ1P7-B7Fo9ZDZ0FJ5i8TO2pH7af37Tu8w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHIADSwFRVgtx4JLixkvTI0Kgsh4QSNwi25kgBEoRbS98PTN2WrGLWxRNlChj-83YM-8xtm8RpCFzaeJtYRNF6Y4z4BMNOIKs9gjS1O98dW16d-r8Xt_XPNuhFwYAQvEZtOgynOUXfT-irbLDDMGNKD5nEPZ1OzZrTY4MlA4yyBjC4BTHPKKmEWqL7qFUrfjoJ_AJairfluCAK6eLsWF7EOgIqZzkqTUaupZ_-0LW-M9PXmILdXzJj-KAWGZTUDXY4li7gddTucHmPxARrrAbhCxPm-Y8aPbxqO3DHyse-WVHr1Dwjz1xnOrlH7jlBRHvkmYWFOgI2uHikRx6ld2dntwe95JabSHxCOrDJDVFR2QllM5rI2UJWpUdKa02rg0F-EwpARpAps50TNGlI0TlUpdmYDEMEXKNTVf9CtYZtxIA05bSGIX5I5RWOCsyL5UoSdjDNtnB2A25r6nISRHjOQ8piejmUuXxzzXZ3sT0JfJv_GTUoD8_MRjf3R27Nsc5QwchtoL-aJBjUoxZokz_sMBlrIOxUZPxXyy6VDOG65fY-PHlu2y2d3t1mV-eXV9ssrlA9hA6GLfYNDoOtjGUGbqdMITfAXZw8jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+human+motion+in+structured+environments+using+a+distributed-camera+system&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Cai%2C+Q.&rft.au=Aggarwal%2C+J.K.&rft.date=1999-11-01&rft.issn=0162-8828&rft.volume=21&rft.issue=11&rft.spage=1241&rft.epage=1247&rft_id=info:doi/10.1109%2F34.809119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_34_809119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |