Robust and Sparse Portfolio: Optimization Models and Algorithms
The robust and sparse portfolio selection problem is one of the most-popular and -frequently studied problems in the optimization and financial literature. By considering the uncertainty of the parameters, the goal is to construct a sparse portfolio with low volatility and decent returns, subject to...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 24; p. 4925 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The robust and sparse portfolio selection problem is one of the most-popular and -frequently studied problems in the optimization and financial literature. By considering the uncertainty of the parameters, the goal is to construct a sparse portfolio with low volatility and decent returns, subject to other investment constraints. In this paper, we propose a new portfolio selection model, which considers the perturbation in the asset return matrix and the parameter uncertainty in the expected asset return. We define three types of stationary points of the penalty problem: the Karush–Kuhn–Tucker point, the strong Karush–Kuhn–Tucker point, and the partial minimizer. We analyze the relationship between these stationary points and the local/global minimizer of the penalty model under mild conditions. We design a penalty alternating-direction method to obtain the solutions. Compared with several existing portfolio models on seven real-world datasets, extensive numerical experiments demonstrate the robustness and effectiveness of our model in generating lower volatility. |
---|---|
AbstractList | The robust and sparse portfolio selection problem is one of the most-popular and -frequently studied problems in the optimization and financial literature. By considering the uncertainty of the parameters, the goal is to construct a sparse portfolio with low volatility and decent returns, subject to other investment constraints. In this paper, we propose a new portfolio selection model, which considers the perturbation in the asset return matrix and the parameter uncertainty in the expected asset return. We define three types of stationary points of the penalty problem: the Karush–Kuhn–Tucker point, the strong Karush–Kuhn–Tucker point, and the partial minimizer. We analyze the relationship between these stationary points and the local/global minimizer of the penalty model under mild conditions. We design a penalty alternating-direction method to obtain the solutions. Compared with several existing portfolio models on seven real-world datasets, extensive numerical experiments demonstrate the robustness and effectiveness of our model in generating lower volatility. |
Audience | Academic |
Author | Zhao, Hongxin Yang, Yizhou Jiang, Yilun |
Author_xml | – sequence: 1 givenname: Hongxin surname: Zhao fullname: Zhao, Hongxin – sequence: 2 givenname: Yilun surname: Jiang fullname: Jiang, Yilun – sequence: 3 givenname: Yizhou surname: Yang fullname: Yang, Yizhou |
BookMark | eNptkUtLAzEUhYMoqLU7f8CAW1vzmsnEjRTxBYriYx3yrCkzk5qkC_31xlZExGSRcPOdk8O9-2B7CIMF4BDBKSEcnvQyvyKEKeW43gJ7GGM2YeVh-9d9F4xTWsCyOCIt5Xvg7DGoVcqVHEz1tJQx2eohxOxC58Npdb_MvvcfMvswVHfB2C6tyVk3D9Hn1z4dgB0nu2TH3-cIvFxePJ9fT27vr27OZ7cTTWGTJxhTZFWrNLcOKWVULRU1FFGkWqIcg4Q1hGBKoKOI1Y2qlYGIM0obpS2nZARuNr4myIVYRt_L-C6C9GJdCHEuZMxed1Y41mqLTQPrmlHZEAnbtoYEmpLEKieL19HGaxnD28qmLBZhFYcSX2AOKasJhKxQ0w01l8XUDy7kKHXZxvZel947X-ozxjhGhDZtERxvBDqGlKJ1PzERFF8jEr9HVHD8B9c-rztd_vHd_6JPvAqUZQ |
CitedBy_id | crossref_primary_10_3390_math12060819 |
Cites_doi | 10.1080/14697688.2020.1849780 10.1609/aaai.v28i1.8906 10.1016/j.knosys.2021.106877 10.1137/16M1069687 10.1080/10556788.2016.1204299 10.1023/B:ANOR.0000045281.41041.ed 10.3905/jpm.2007.684751 10.1016/j.cor.2017.09.002 10.1080/02331934.2015.1132216 10.1073/pnas.0904287106 10.1007/s10479-009-0515-6 10.1007/978-3-031-02406-1 10.1016/j.physa.2020.124429 10.1287/ijoc.2022.1211 10.1287/mnsc.2021.3989 10.1287/moor.28.1.1.14260 10.1007/s11081-020-09485-z 10.1111/1540-6261.00580 10.1007/s11425-016-9010-x 10.1007/s10479-012-1266-3 10.1137/S1052623496305717 10.1137/1.9781611974997 10.1093/rfs/hhx052 10.1080/01605682.2019.1581408 10.1080/14697688.2021.1879392 10.1016/j.asoc.2021.107948 10.1007/978-3-642-02431-3 10.1007/s10589-021-00312-4 10.1016/j.jeconom.2019.04.028 10.1016/S0927-5398(03)00007-0 10.1002/fut.20189 10.1007/s10479-020-03630-8 10.1093/rfs/hhm075 10.1016/j.csda.2013.07.010 10.1016/j.jbankfin.2012.11.020 10.1287/mnsc.2019.3524 10.1016/j.iref.2019.11.002 10.1080/01621459.2012.682825 10.1137/S1052623401392354 10.1016/S0047-259X(03)00096-4 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math11244925 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_f78ce2d605574a63a0885030d406ebfa A779213468 10_3390_math11244925 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c406t-2241eb8bc9ef1bbdb5ab4d4141b83bf70376332430f41756b5bd0197446bce943 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:30:50 EDT 2025 Fri Jul 25 10:47:04 EDT 2025 Tue Jun 10 21:16:47 EDT 2025 Thu Apr 24 22:57:50 EDT 2025 Tue Jul 01 01:53:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-2241eb8bc9ef1bbdb5ab4d4141b83bf70376332430f41756b5bd0197446bce943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2904753007?pq-origsite=%requestingapplication% |
PQID | 2904753007 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f78ce2d605574a63a0885030d406ebfa proquest_journals_2904753007 gale_infotracacademiconefile_A779213468 crossref_primary_10_3390_math11244925 crossref_citationtrail_10_3390_math11244925 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yu (ref_27) 2020; 66 Wang (ref_48) 2021; 218 Zhao (ref_20) 2021; 21 (ref_24) 2016; 65 Yen (ref_38) 2014; 76 ref_12 ref_10 Chou (ref_43) 2006; 26 Ledoit (ref_3) 2003; 10 Kan (ref_44) 2022; 68 Koenig (ref_21) 2004; 132 Lai (ref_42) 2018; 19 Nemirovski (ref_7) 2002; 13 DeMiguel (ref_6) 2009; 55 Ledoit (ref_41) 2004; 88 Busse (ref_25) 2021; 67 ref_28 Scutella (ref_16) 2013; 204 Geissler (ref_36) 2017; 27 Goldfarb (ref_11) 2003; 28 Xidonas (ref_17) 2020; 292 Won (ref_14) 2020; 21 Ledoit (ref_4) 2017; 30 Pan (ref_29) 2017; 60 Hautsch (ref_26) 2019; 212 ref_32 Fabozzi (ref_23) 2007; 33 ref_31 ref_30 Yin (ref_35) 2021; 21 Min (ref_13) 2021; 113 Heckel (ref_34) 2016; 6 Mutunge (ref_45) 2018; 90 Oustry (ref_8) 1998; 9 Fan (ref_46) 2012; 107 Khodamoradi (ref_22) 2020; 547 Costa (ref_33) 2022; 34 Leyffer (ref_19) 2020; 58 Fabozzi (ref_15) 2010; 176 Jagannathan (ref_5) 2003; 58 Zhao (ref_37) 2021; 80 Brodie (ref_2) 2009; 106 Teng (ref_47) 2017; 32 Markowitz (ref_1) 1952; 7 Behr (ref_39) 2013; 37 DeMiguel (ref_40) 2009; 22 Lee (ref_9) 2020; 71 Ghahtarani (ref_18) 2022; 22 ref_49 |
References_xml | – volume: 21 start-page: 911 year: 2021 ident: ref_35 article-title: A practical guide to robust portfolio optimization publication-title: Quant. Financ. doi: 10.1080/14697688.2020.1849780 – ident: ref_49 doi: 10.1609/aaai.v28i1.8906 – volume: 218 start-page: 106877 year: 2021 ident: ref_48 article-title: A gravitational search algorithm with hierarchy and distributed framework publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106877 – volume: 27 start-page: 1611 year: 2017 ident: ref_36 article-title: Penalty alternating direction methods for mixed-integer optimization: A new view on feasibility pumps publication-title: SIAM J. Optim. doi: 10.1137/16M1069687 – volume: 7 start-page: 142 year: 1952 ident: ref_1 article-title: Portfolio selection publication-title: J. Financ. – volume: 32 start-page: 126 year: 2017 ident: ref_47 article-title: A penalty PALM method for sparse portfolio selection problems publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2016.1204299 – volume: 132 start-page: 157 year: 2004 ident: ref_21 article-title: Robust asset allocation publication-title: Ann. Oper. Res. doi: 10.1023/B:ANOR.0000045281.41041.ed – volume: 33 start-page: 40 year: 2007 ident: ref_23 article-title: Robust portfolio optimization publication-title: J. Portf. Manag. doi: 10.3905/jpm.2007.684751 – volume: 90 start-page: 33 year: 2018 ident: ref_45 article-title: Minimizing the tracking error of cardinality constrained portfolios publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2017.09.002 – volume: 65 start-page: 1039 year: 2016 ident: ref_24 article-title: On robust mean-variance portfolios publication-title: Optimization doi: 10.1080/02331934.2015.1132216 – volume: 106 start-page: 12267 year: 2009 ident: ref_2 article-title: Sparse and stable markowitz portfolios publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904287106 – volume: 176 start-page: 191 year: 2010 ident: ref_15 article-title: Robust portfolios: Contributions from operations research and finance publication-title: Ann. Oper. Res. doi: 10.1007/s10479-009-0515-6 – ident: ref_28 doi: 10.1007/978-3-031-02406-1 – ident: ref_31 – volume: 55 start-page: 798C812 year: 2009 ident: ref_6 article-title: A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms publication-title: Manag. Sci. – ident: ref_10 – volume: 547 start-page: 124429 year: 2020 ident: ref_22 article-title: Robust CCMV model with short selling and risk-neutral interest rate publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2020.124429 – volume: 34 start-page: 2968 year: 2022 ident: ref_33 article-title: An alternating method for cardinality-constrained optimization: A computational study for the best subset selection and sparse portfolio problems publication-title: Informs J. Comput. doi: 10.1287/ijoc.2022.1211 – volume: 68 start-page: 2047 year: 2022 ident: ref_44 article-title: Optimal portfolio choice with estimation risk: No risk-free asset case publication-title: Manag. Sci. doi: 10.1287/mnsc.2021.3989 – volume: 28 start-page: 1 year: 2003 ident: ref_11 article-title: Robust portfolio selection problems publication-title: Math. Oper. Res. doi: 10.1287/moor.28.1.1.14260 – volume: 21 start-page: 867 year: 2020 ident: ref_14 article-title: Robust trade-off portfolio selection publication-title: Optim. Eng. doi: 10.1007/s11081-020-09485-z – volume: 58 start-page: 1651 year: 2003 ident: ref_5 article-title: Risk reduction in large portfolios: Why imposing the wrong constraints helps publication-title: J. Financ. doi: 10.1111/1540-6261.00580 – volume: 60 start-page: 759 year: 2017 ident: ref_29 article-title: Optimality conditions for sparsity nonlinear programming publication-title: Sci. China Math. doi: 10.1007/s11425-016-9010-x – volume: 6 start-page: 1 year: 2016 ident: ref_34 article-title: Insights into robust optimization: Decomposing into mean-variance and risk-based portfolios publication-title: J. Invest. Strateg. – volume: 204 start-page: 145 year: 2013 ident: ref_16 article-title: Robust portfolio asset allocation and risk measures publication-title: Ann. Oper. Res. doi: 10.1007/s10479-012-1266-3 – volume: 9 start-page: 33 year: 1998 ident: ref_8 article-title: Robust solutions to uncertain semidefinite programs publication-title: SIAM J. Optim. doi: 10.1137/S1052623496305717 – ident: ref_32 doi: 10.1137/1.9781611974997 – volume: 30 start-page: 4349 year: 2017 ident: ref_4 article-title: Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets goldilocks publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/hhx052 – volume: 71 start-page: 687 year: 2020 ident: ref_9 article-title: Sparse and robust portfolio selection via semi-definite relaxation publication-title: J. Oper. Res. doi: 10.1080/01605682.2019.1581408 – volume: 21 start-page: 1707 year: 2021 ident: ref_20 article-title: Robust portfolio rebalancing with cardinality and diversification constraints publication-title: Quant. Financ. doi: 10.1080/14697688.2021.1879392 – volume: 113 start-page: 107948 year: 2021 ident: ref_13 article-title: Robust mean-risk portfolio optimization using machine learning-based trade-off parameter publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107948 – ident: ref_30 doi: 10.1007/978-3-642-02431-3 – volume: 80 start-page: 853 year: 2021 ident: ref_37 article-title: Optimal portfolio selections via ℓ12-norm regularization publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-021-00312-4 – volume: 22 start-page: 3203 year: 2022 ident: ref_18 article-title: Robust portfolio selection problems: A comprehensive review publication-title: Oper. Res. – volume: 212 start-page: 221 year: 2019 ident: ref_26 article-title: Large-scale portfolio allocation under transaction costs and model uncertainty publication-title: J. Econom. doi: 10.1016/j.jeconom.2019.04.028 – volume: 58 start-page: 342 year: 2020 ident: ref_19 article-title: A survey of nonlinear robust optimization publication-title: INFOR: Inf. Syst. Oper. Res. – volume: 10 start-page: 603 year: 2003 ident: ref_3 article-title: Improved estimation of the covariance matrix of stock returns with an application to portfolio selection publication-title: J. Empir. Financ. doi: 10.1016/S0927-5398(03)00007-0 – volume: 26 start-page: 131 year: 2006 ident: ref_43 article-title: Decimalization, trading costs, and information transmission between etfs and index futures publication-title: J. Futur. Mark. doi: 10.1002/fut.20189 – volume: 292 start-page: 533 year: 2020 ident: ref_17 article-title: Robust portfolio optimization: A categorized bibliographic review publication-title: Ann. Oper. Res. doi: 10.1007/s10479-020-03630-8 – volume: 22 start-page: 1915 year: 2009 ident: ref_40 article-title: Optimal versus naive diversification: How in-efficient is the 1/n portfolio strategy? publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/hhm075 – ident: ref_12 – volume: 76 start-page: 737 year: 2014 ident: ref_38 article-title: Solving norm constrained portfolio optimization via coordinate-wise descent algorithms publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.07.010 – volume: 37 start-page: 1232 year: 2013 ident: ref_39 article-title: On portfolio optimization: Imposing the right constraints publication-title: J. Bank. Financ. doi: 10.1016/j.jbankfin.2012.11.020 – volume: 67 start-page: 1227 year: 2021 ident: ref_25 article-title: Transaction costs, portfolio characteristics, and mutual fund performance publication-title: Manag. Sci. doi: 10.1287/mnsc.2019.3524 – volume: 66 start-page: 118 year: 2020 ident: ref_27 article-title: Portfolio models with return forecasting and transaction costs publication-title: Int. Rev. Econ. Financ. doi: 10.1016/j.iref.2019.11.002 – volume: 19 start-page: 2547 year: 2018 ident: ref_42 article-title: Short-term sparse portfolio optimization based on alternating direction method of multipliers publication-title: J. Mach. Learn. Res. – volume: 107 start-page: 592 year: 2012 ident: ref_46 article-title: Vast portfolio selection with gross-exposure constraints publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2012.682825 – volume: 13 start-page: 535 year: 2002 ident: ref_7 article-title: Robust solutions of uncertain quadratic and conic-quadratic problems publication-title: SIAM J. Optim. doi: 10.1137/S1052623401392354 – volume: 88 start-page: 365 year: 2004 ident: ref_41 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: J. Multivar. Anal. doi: 10.1016/S0047-259X(03)00096-4 |
SSID | ssj0000913849 |
Score | 2.2468565 |
Snippet | The robust and sparse portfolio selection problem is one of the most-popular and -frequently studied problems in the optimization and financial literature. By... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4925 |
SubjectTerms | Administrative expenses Algorithms Euclidean space Investment analysis Optimization Optimization models Parameter uncertainty penalty-alternating-direction method portfolio optimization robustness Robustness (mathematics) Short sales Sparsity uncertainty set Volatility |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXPSgepGhN-ogXWcVlEVRQF_YWMmniLnTbxXb_vzNtd-lFvHgt05LMZGa-oZNvGDuXElwCQeTHRoe-cAZ8Tb8QtYsTDMkmspzuO7-8RsOReB6H486oL-oJa-iBG8Vd4zvG3qYRcUUJHXGNbhHiyUwxE1lwNTTCnNcppuoYLAOeCNl0unOs668R_00CSmaSpmJ3clBN1f9bQK6zzGCbbbXw0Os3y9phazbfZZsvK27Vco_dvxewKCtP56n3Mce61HrUDuqKbFrceW8YAmbt3UqPBp1lZS3Zz76K72k1mZX7bDR4-nwc-u0YBN_gHiufkqyFBIy0LgBIIdQgUhGIABIODl0WYwTiIn7jBIKBCEJIEbjFWOiBsVLwA7aeF7k9ZJ52HBGHC7hwiUgcYqOUO2ksfgkrvTjpsaulYpRpOcJpVEWmsFYgNaquGnvsYiU9b7gxfpF7IB2vZIjRun6AdlatndVfdu6xS7KQIr_DJRndXh_AjRGDlerHsSR2ugg3cbI0omodslS38kZgZYaI6Og_VnPMNmjufNPXcsLWq--FPUV0UsFZfRB_ACV-4Sw priority: 102 providerName: Directory of Open Access Journals |
Title | Robust and Sparse Portfolio: Optimization Models and Algorithms |
URI | https://www.proquest.com/docview/2904753007 https://doaj.org/article/f78ce2d605574a63a0885030d406ebfa |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYLnBArKJQqhxAHFAEwU5ic0EFURASi1gkbpbHsQGpNIWk_89M6hYucE2sKB573rzx8oaxXaXAS0iyOLcmjYW3EBvaQjQ-lwjJNnOc7jvf3GZXz-L6JX0JC25VOFY5wcQGqIvS0hr54bE6EkitMaSdDj9jqhpFu6uhhMYsm0cIlph8zZ9d3N4_TFdZSPVSCjU-8c4xvz9EHviWUFBTVB37VyxqJPv_AuYm2vSW2VKgiVF3PK4rbMYNVtnizVRjtVpjpw8ljKo6MoMiehxifuoiOhbqy_57eRLdIRR8hDuWERU861dNy27_FXtVv31U6-y5d_F0fhWHcgixxahbxxRsHUiwyvkEoIDUgChEIhKQHDy6LmIF8iN-5AWSggxSKJDA5ZjwgXVK8A02NygHbpNFxnNkHj7hwkshPXKkgntlHX4JM75cttjBxDDaBq1wKlnR15gzkBn1bzO22N609XCskfFHuzOy8bQNKVs3D8qvVx0cReMcse64yEgbTJiMG4TBFJGoQBs48KbF9mmENPkf_pI14RoBdoyUrHQ3zxWp1GXYifZkEHVwzEr_TKOt_19vswWqLD8-udJmc_XXyO0g_6ihw2Zl77ITplqnyeK_ASj63DQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKJADFQcUdbN2EhsJVctj2dJukaCVenM9jt0ibTdLkwrxp_iNzOSx9FJuvcaWFY_nac_MB_BKawwKkyzOnU1jGRzGlp8QbcgVqWSXecH1zrP9bHoovxylR2vwp6-F4bTKXic2irooHd-Rb430UJJrTSZte_kzZtQofl3tITRattj1v39RyFa92_lI57s5Gk0-HXyYxh2qQOzIeNUx2yyPCp32IUEsMLUoC5nIBJXAQBJAIkduhhgGSbY1wxQL8oNyipvQeS0FrXsDbkohNEuUmnxe3elwj00ldZtfT-PDLfI6TxM2oZqxuC9ZvgYg4Coz0Ni2yT242zml0bjlovuw5hcP4M5s1dG1egjb30q8qOrILoro-5KiYR9xEmoo5z_Kt9FXUjxnXUVnxPBq86qZOZ6fEA3r07PqERxeC5kew_qiXPgnENkgyM8JiZBBSRXIIytE0M7TShRf5moAb3rCGNd1JmeAjLmhCIXJaC6TcQCbq9nLtiPHFfPeM41Xc7iPdvOhPD8xnVga4kjnR0XGncikzYQlpZuS3iuIBh6DHcBrPiHD0k6_5GxXtEAb475ZZpznmnviZbSJjf4QTacGKvOPaZ_-f_gl3JoezPbM3s7-7jO4zZj2bc7MBqzX5xf-OXk-Nb5o2C2C4-vm77_6HBUi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaraQwW0VbcFmkMRhypis3YerlShpbDiuUW0SNyM7dhQadlsSVDFX-PXMZM4Cxd645qMrHg8j2_ieQB8EUK7TEdJmBoVh9wZHSq6QlQuzdAkm8Qyqnc-GiW7p3z_LD6bg7u2FobSKlubWBvqvDD0j3yjL3ocoTWVvTmfFnG8Pdyc_g1pghTdtLbjNBoRObC3_zB8K7_vbeNZr_X7w53fP3ZDP2EgNOjIqpD8l9WZNsK6SOtcx0rznEc80hnTDrUB1Q8hB-s5jn420bHOEROlGENpYwVnuO4LmE8xKup1YH5rZ3R8MvvDQx03My6abHvGRG8DMehlRA5V0GTuR36wHhfwlFOoPd1wAd54iBoMGplahDk7WYLXR7P-ruVb2Dwp9E1ZBWqSB7-mGBvbgFJSXTH-U3wLfqIZuvL1nQENWxuXNeVgfIFcrC6vyndw-iyMeg-dSTGxHyBQjiHqcRHjLuOZQ3yWMyeMxZUw2kyzLnxtGSON71NO4zLGEuMVYqN8zMYurM2op01_jifotojHMxrqql0_KK4vpFdSifJpbD9PqC8ZVwlTaIJjtII58sBqp7qwTickSffxk4zyJQy4MeqiJQdpKqhDXoKbWG4PUXqjUMoHEf74_9ef4SXKtjzcGx18glc04L5JoFmGTnV9Y1cQBlV61ctbAOfPLeL3eQMatA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+Sparse+Portfolio%3A+Optimization+Models+and+Algorithms&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhao%2C+Hongxin&rft.au=Jiang%2C+Yilun&rft.au=Yang%2C+Yizhou&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=24&rft.spage=4925&rft_id=info:doi/10.3390%2Fmath11244925&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |