model for computing date palm water requirements as affected by salinity

Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly app...

Full description

Saved in:
Bibliographic Details
Published inIrrigation science Vol. 32; no. 5; pp. 341 - 350
Main Authors Sperling, Or, Or Shapira, Effi Tripler, Amnon Schwartz, Naftali Lazarovitch
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.09.2014
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0342-7188
1432-1319
DOI10.1007/s00271-014-0433-5

Cover

Abstract Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman–Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ETcwas developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ETcwas affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m⁻¹and by 50 % in the trees irrigated with 8 dS m⁻¹. Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified ‘Jarvis–PM’ canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m⁻¹) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations.
AbstractList Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman-Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ET sub(c) was developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ET sub(c) was affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m super(-1) and by 50 % in the trees irrigated with 8 dS m super(-1). Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified 'Jarvis-PM' canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m super(-1)) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations.
Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman–Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ET c was developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ET c was affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m −1 and by 50 % in the trees irrigated with 8 dS m −1 . Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified ‘Jarvis–PM’ canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m −1 ) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations.
Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman-Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ET^sub c^ was developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ET^sub c^ was affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m^sup -1^ and by 50 % in the trees irrigated with 8 dS m^sup -1^. Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified 'Jarvis-PM' canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m^sup -1^) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations.[PUBLICATION ABSTRACT]
Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman–Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ETcwas developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ETcwas affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m⁻¹and by 50 % in the trees irrigated with 8 dS m⁻¹. Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified ‘Jarvis–PM’ canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m⁻¹) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations.
Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman–Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ETcwas developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ETcwas affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m⁻¹and by 50 % in the trees irrigated with 8 dS m⁻¹. Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified ‘Jarvis–PM’ canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m⁻¹) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations.
Author Effi Tripler
Sperling, Or
Naftali Lazarovitch
Or Shapira
Amnon Schwartz
Author_xml – sequence: 1
  fullname: Sperling, Or
– sequence: 2
  fullname: Or Shapira
– sequence: 3
  fullname: Effi Tripler
– sequence: 4
  fullname: Amnon Schwartz
– sequence: 5
  fullname: Naftali Lazarovitch
BookMark eNqFkU1rFTEUhoNU8Lb6A1wZcONmas7kc5ZS1AqFLrTrkDtzckmZSW6TDHL_vbmMC-miQuBk8TzJOee9JBcxRSTkPbBrYEx_Loz1GjoGomOC806-IjsQvO-Aw3BBdoyLvtNgzBtyWcojY6CVETtyu6QJZ-pTpmNajmsN8UAnV5Ee3bzQ3-2WacanNWRcMNZCXTve41hxovsTLW4OMdTTW_Lau7ngu7_1ijx8-_rr5ra7u__-4-bLXTcKpmoHAxohYM-MVw41yAm18v2EXk97mLzEYXKceT8og8r7XnCvRnBy8BwlH_kV-bS9e8zpacVS7RLKiPPsIqa1WDCgTd-2MfwflYoBH5Q6ox-foY9pzbEN0ijJmZDGsEbBRo05lZLR22MOi8snC8yeY7BbDLbFYM8xWNkc_cwZQ3U1pFizC_OLZr-Zpf0SD5j_6ekF6cMmeZesO-RQ7MPPnoFqibcRQPE_MLamZg
CitedBy_id crossref_primary_10_1016_j_agrformet_2021_108778
crossref_primary_10_1007_s00709_022_01783_w
crossref_primary_10_1007_s12665_017_6935_8
crossref_primary_10_1007_s00271_024_00925_7
crossref_primary_10_1007_s42729_023_01176_9
crossref_primary_10_1002_ldr_4619
crossref_primary_10_1016_j_agwat_2016_06_028
crossref_primary_10_1016_j_agwat_2024_108833
crossref_primary_10_1016_j_agwat_2019_105702
crossref_primary_10_1007_s41207_018_0064_y
crossref_primary_10_1007_s00271_015_0467_3
crossref_primary_10_1016_j_scitotenv_2022_159751
crossref_primary_10_1016_j_agwat_2019_105949
crossref_primary_10_1007_s12517_017_3374_5
crossref_primary_10_1016_j_agwat_2020_106645
crossref_primary_10_1016_j_agwat_2019_05_022
crossref_primary_10_1016_j_agwat_2022_107683
crossref_primary_10_1016_j_agwat_2025_109387
Cites_doi 10.1016/S0168-1923(97)00066-X
10.1016/j.envexpbot.2013.10.014
10.1029/93WR00333
10.1016/j.agwat.2007.05.005
10.1016/S0378-3774(02)00010-0
10.1016/j.agrformet.2006.07.006
10.1007/s007040050039
10.1016/0168-1923(91)90002-8
10.1007/BF00056093
10.2136/sssaj1985.03615995004900040043x
10.1111/j.1469-8137.1990.tb00535.x
10.1051/forest:2000158
10.1098/rstb.1976.0035
10.1016/0168-1923(90)90040-D
10.1016/j.scienta.2009.05.026
10.1093/treephys/tps070
10.1016/S0378-3774(00)00101-3
10.1016/0168-1923(85)90051-6
10.1016/j.agwat.2007.12.008
10.1016/S1161-0301(00)00070-8
10.1016/j.agwat.2009.12.016
10.1002/qj.49711146910
10.2307/2389410
10.1016/S0168-1923(99)00082-9
10.1093/jxb/40.6.647
10.1111/j.1399-3054.1995.tb00828.x
10.1023/A:1014942024573
10.2134/agronj1977.00021962006900050011x
10.2136/sssaj2001.6551522x
10.1016/j.agwat.2011.06.010
10.1016/0168-1923(88)90003-2
10.1061/JRCEA4.0001137
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
DBID FBQ
AAYXX
CITATION
3V.
7QH
7ST
7UA
7X2
7XB
88I
8FD
8FE
8FG
8FH
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H97
HCIFZ
KR7
L.G
L6V
M0K
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s00271-014-0433-5
DatabaseName AGRIS
CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Agricultural Science Database
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection (ProQuest)
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Agricultural Science Database
AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1432-1319
EndPage 350
ExternalDocumentID 3401927091
10_1007_s00271_014_0433_5
US201600188016
Genre Feature
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5QI
5VS
67N
67Z
6NX
78A
7X2
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESTFP
ESX
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
LAS
LK5
LLZTM
M0K
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7Y
Z8O
Z8S
ZMTXR
ZOVNA
~02
~8M
~A9
~EX
~KM
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACUHS
ACZOJ
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
H13
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QH
7ST
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H97
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
Q9U
SOI
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c406t-19e8441b08f6ae715de76f2def7db1df5e9da30ff968e6ff243f6c1a59f3e53c3
IEDL.DBID U2A
ISSN 0342-7188
IngestDate Thu Sep 04 18:38:19 EDT 2025
Mon Sep 08 03:55:32 EDT 2025
Fri Jul 25 19:16:59 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Tue Jul 01 03:33:17 EDT 2025
Fri Feb 21 02:34:37 EST 2025
Wed Dec 27 18:46:02 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Stomatal Conductance
Date Palm
Water Demand
Leaf Area Index
Irrigation Water
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-19e8441b08f6ae715de76f2def7db1df5e9da30ff968e6ff243f6c1a59f3e53c3
Notes http://dx.doi.org/10.1007/s00271-014-0433-5
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1553045880
PQPubID 54025
PageCount 10
ParticipantIDs proquest_miscellaneous_1817820029
proquest_miscellaneous_1560139669
proquest_journals_1553045880
crossref_primary_10_1007_s00271_014_0433_5
crossref_citationtrail_10_1007_s00271_014_0433_5
springer_journals_10_1007_s00271_014_0433_5
fao_agris_US201600188016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Irrigation science
PublicationTitleAbbrev Irrig Sci
PublicationYear 2014
Publisher Springer-Verlag
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Monteith (CR25) 1965; 19
Sperling, Shapira, Cohen, Tripler, Schwartz, Lazarovitch (CR32) 2012; 32
Tripler, Shani, Mualem, Ben-Gal (CR38) 2011; 99
Li Yang, Yano, Aydin, Kitamura, Takeuchi (CR20) 2002; 56
Rana, Katerji (CR26) 1998; 149
Sperling, Lazarovitch, Schwartz, Shapira (CR33) 2014; 99
Allen, Pereira, Raes, Smith (CR2) 1998
Collatz, Ball, Grivet, Berry, Meteorology (CR8) 1991; 54
Gowing, Ejieji (CR13) 2001; 47
Granier, Loustau, Bréda (CR14) 2000; 57
Tattini, Gucci, Coradeschi, Ponzio, Everard (CR37) 1995; 95
Maas, Hoffman (CR23) 1977; 103
Ben-Gal, Ityel, Dudley, Cohen, Yermiyahu, Presnov, Zigmond, Shani (CR5) 2008; 95
Meiri, Kamburov, Shalhevet (CR24) 1977; 69
Smith (CR31) 1989; 40
Corley, Hardon, Tan (CR9) 1971; 20
Letey, Dinar, Knapp (CR18) 1985; 49
Bhantana, Lazarovitch (CR6) 2010; 97
Wilks, Wolfe (CR40) 1998; 89
Boulard, Wang (CR7) 2000; 100
Shuttleworth, Wallace (CR30) 1985; 111
Ben-Gal, Shani (CR4) 2002; 239
Gerosa, Mereu, Finco, Marzuoli, Cuore, Irmak (CR12) 2012
Shani, Dudley (CR29) 2001; 65
Damour, Simonneau, Cochard, Urban (CR10) 2010; 33
Hogan (CR16) 1988; 2
Lovelli, Perniola, Ferrara, Di Tommaso (CR22) 2007; 92
Stanghellini, Bosma, Gabriels, Werhoven (CR34) 1989; 278
Alhammadi, Kurup, Sharma, Arbol (CR1) 2012
Avissar, Avissar, Mahrer, Bravdo (CR3) 1985; 34
Downton, Loveys, Grant (CR11) 1990; 116
Rana, Katerji (CR27) 2000; 13
Liu, Andersen, Jensen (CR21) 2009; 122
Wallace, Roberts, Sivakumar (CR39) 1990; 51
Gutschick, Simonneau (CR15) 2002; 25
Roupsard, Bonnefond, Irvine, Berbigier, Nouvellon, Dauzat, Taga, Hamel, Jourdan, Saint-Andre, Mialet-Serra, Labouisse, Epron, Joffre, Braconnier, Rouziere, Navarro, Bouillet (CR28) 2006; 139
Stannard (CR35) 1993; 29
Stewart (CR36) 1988; 43
Jarvis (CR17) 1976; 273
BG Smith (433_CR31) 1989; 40
R Avissar (433_CR3) 1985; 34
J Gowing (433_CR13) 2001; 47
W Shuttleworth (433_CR30) 1985; 111
G Gerosa (433_CR12) 2012
O Sperling (433_CR33) 2014; 99
M Tattini (433_CR37) 1995; 95
P Bhantana (433_CR6) 2010; 97
DS Wilks (433_CR40) 1998; 89
S Li Yang (433_CR20) 2002; 56
GJ Collatz (433_CR8) 1991; 54
F Liu (433_CR21) 2009; 122
JL Monteith (433_CR25) 1965; 19
T Boulard (433_CR7) 2000; 100
A Ben-Gal (433_CR4) 2002; 239
O Sperling (433_CR32) 2012; 32
K Hogan (433_CR16) 1988; 2
D Stannard (433_CR35) 1993; 29
G Damour (433_CR10) 2010; 33
A Meiri (433_CR24) 1977; 69
C Stanghellini (433_CR34) 1989; 278
R Corley (433_CR9) 1971; 20
A Granier (433_CR14) 2000; 57
G Rana (433_CR26) 1998; 149
U Shani (433_CR29) 2001; 65
A Ben-Gal (433_CR5) 2008; 95
JB Stewart (433_CR36) 1988; 43
M Alhammadi (433_CR1) 2012
RG Allen (433_CR2) 1998
WJS Downton (433_CR11) 1990; 116
E Tripler (433_CR38) 2011; 99
JS Wallace (433_CR39) 1990; 51
PG Jarvis (433_CR17) 1976; 273
G Rana (433_CR27) 2000; 13
VP Gutschick (433_CR15) 2002; 25
O Roupsard (433_CR28) 2006; 139
J Letey (433_CR18) 1985; 49
EV Maas (433_CR23) 1977; 103
S Lovelli (433_CR22) 2007; 92
References_xml – volume: 89
  start-page: 115
  year: 1998
  end-page: 129
  ident: CR40
  article-title: Optimal use and economic value of weather forecasts for lettuce irrigation in a humid climate
  publication-title: Agric For Meteorol
  doi: 10.1016/S0168-1923(97)00066-X
– volume: 99
  start-page: 100
  year: 2014
  end-page: 109
  ident: CR33
  article-title: Effects of high salinity irrigation on growth, gas-exchange, and photoprotection in date palms ( L., cv. Medjool)
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2013.10.014
– volume: 29
  start-page: 1379
  year: 1993
  end-page: 1392
  ident: CR35
  article-title: Comparison of Penman–Monteith, Shuttleworth–Wallace, and modified Priestley–Taylor evapotranspiration models for wildland vegetation in semiarid range land
  publication-title: Water Resour Res
  doi: 10.1029/93WR00333
– volume: 92
  start-page: 73
  year: 2007
  end-page: 80
  ident: CR22
  article-title: Yield response factor to water (Ky) and water use efficiency of L. and L
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2007.05.005
– volume: 56
  start-page: 131
  year: 2002
  end-page: 141
  ident: CR20
  article-title: Short term effects of saline irrigation on evapotranspiration from lysimeter-grown citrus trees
  publication-title: Agric Water Manag
  doi: 10.1016/S0378-3774(02)00010-0
– volume: 139
  start-page: 252
  year: 2006
  end-page: 268
  ident: CR28
  article-title: Partitioning energy and evapo-transpiration above and below a tropical palm canopy
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2006.07.006
– volume: 19
  start-page: 205
  year: 1965
  end-page: 234
  ident: CR25
  article-title: Evaporation and environment
  publication-title: Symp Soc Exp Biol
– volume: 149
  start-page: 141
  year: 1998
  end-page: 149
  ident: CR26
  article-title: A measurement based sensitivity analysis of the Penman–Monteith actual evapotranspiration model for crops of different height and in contrasting water status
  publication-title: Theor Appl Climatol
  doi: 10.1007/s007040050039
– volume: 54
  start-page: 107
  year: 1991
  end-page: 136
  ident: CR8
  article-title: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(91)90002-8
– volume: 20
  start-page: 307
  year: 1971
  end-page: 315
  ident: CR9
  article-title: Analysis of growth of the oil palm ( Jacq.) I. Estimation of growth parameters and application in breeding
  publication-title: Euphytica
  doi: 10.1007/BF00056093
– volume: 49
  start-page: 1005
  year: 1985
  end-page: 1009
  ident: CR18
  article-title: Crop-water production function model for saline irrigation waters
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1985.03615995004900040043x
– volume: 116
  start-page: 499
  year: 1990
  end-page: 503
  ident: CR11
  article-title: Salinity effects on the stomatal behaviour of grapevine
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1990.tb00535.x
– volume: 57
  start-page: 755
  year: 2000
  end-page: 765
  ident: CR14
  article-title: A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index
  publication-title: Ann For Sci
  doi: 10.1051/forest:2000158
– volume: 273
  start-page: 593
  year: 1976
  end-page: 610
  ident: CR17
  article-title: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field
  publication-title: Philos Trans R Soc London B Biol Sci
  doi: 10.1098/rstb.1976.0035
– volume: 103
  start-page: 115
  year: 1977
  end-page: 134
  ident: CR23
  article-title: Crop salt tolerance—current assessment
  publication-title: J Irrig Drain Div
– volume: 51
  start-page: 35
  year: 1990
  end-page: 49
  ident: CR39
  article-title: The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(90)90040-D
– volume: 122
  start-page: 346
  year: 2009
  end-page: 354
  ident: CR21
  article-title: Capability of the “Ball–Berry” model for predicting stomatal conductance and water use efficiency of potato leaves under different irrigation regimes
  publication-title: Sci Hortic (Amst)
  doi: 10.1016/j.scienta.2009.05.026
– year: 1998
  ident: CR2
  publication-title: Crop evapotranspiration—Guidelines for computing crop water requirements
– volume: 32
  start-page: 1171
  year: 2012
  end-page: 1178
  ident: CR32
  article-title: Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tps070
– volume: 47
  start-page: 137
  year: 2001
  end-page: 153
  ident: CR13
  article-title: Real-time scheduling of supplemental irrigation for potatoes using a decision model and short-term weather forecasts
  publication-title: Agric Water Manag
  doi: 10.1016/S0378-3774(00)00101-3
– volume: 34
  start-page: 21
  year: 1985
  end-page: 29
  ident: CR3
  article-title: A model to simulate response of plant stomata to environmental conditions
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(85)90051-6
– volume: 95
  start-page: 587
  year: 2008
  end-page: 597
  ident: CR5
  article-title: Effect of irrigation water salinity on transpiration and on leaching requirements: a case study for bell peppers
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2007.12.008
– volume: 13
  start-page: 125
  year: 2000
  end-page: 153
  ident: CR27
  article-title: Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review
  publication-title: Eur J Agron
  doi: 10.1016/S1161-0301(00)00070-8
– volume: 97
  start-page: 715
  year: 2010
  end-page: 722
  ident: CR6
  article-title: Evapotranspiration, crop coefficient and growth of two young pomegranate ( L.) varieties under salt stress
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2009.12.016
– start-page: 403
  year: 2012
  end-page: 420
  ident: CR12
  article-title: Stomatal conductance modeling to estimate the evapotranspiration of natural and agricultural ecosystems
  publication-title: Evapotranspiration—remote sensing model
– volume: 278
  start-page: 509
  year: 1989
  end-page: 516
  ident: CR34
  article-title: The water consumption of agricultural crops: how crop coefficients are affected by crop geometry and microclimate
  publication-title: Symp Sched Irrig Veg Crop Field Cond
– volume: 111
  start-page: 839
  year: 1985
  end-page: 855
  ident: CR30
  article-title: Evaporation from sparse crops—an energy combination theory
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49711146910
– volume: 2
  start-page: 371
  year: 1988
  end-page: 377
  ident: CR16
  article-title: Photosynthesis in two neotropical palm species
  publication-title: Funct Ecol
  doi: 10.2307/2389410
– volume: 100
  start-page: 25
  year: 2000
  end-page: 34
  ident: CR7
  article-title: Greenhouse crop transpiration simulation from external climate conditions
  publication-title: Agric For Meteorol
  doi: 10.1016/S0168-1923(99)00082-9
– volume: 40
  start-page: 647
  year: 1989
  end-page: 651
  ident: CR31
  article-title: The effects of soil water and atmospheric vapour pressure deficit on stomatal behaviour and photosynthesis in the oil palm
  publication-title: J Exp Bot
  doi: 10.1093/jxb/40.6.647
– volume: 25
  start-page: 1423
  year: 2002
  end-page: 1434
  ident: CR15
  article-title: Modelling stomatal conductance of field-grown sunflower under varying soil water content and leaf environment: comparison of three models of stomatal response to leaf environment and coupling with an abscisic acid-based model of stomatal response to soil drying
  publication-title: Plant, Cell Environ
– volume: 95
  start-page: 203
  year: 1995
  end-page: 210
  ident: CR37
  article-title: Growth, gas exchange and ion content in plants during salinity stress and subsequent relief
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1995.tb00828.x
– start-page: 169
  year: 2012
  end-page: 178
  ident: CR1
  article-title: Impact of salinity stress on date palm ( L.)—a review
  publication-title: Crop production technologies
– volume: 239
  start-page: 9
  year: 2002
  end-page: 17
  ident: CR4
  article-title: A highly conductive drainage extension to control the lower boundary condition of lysimeters
  publication-title: Plant Soil
  doi: 10.1023/A:1014942024573
– volume: 69
  start-page: 779
  year: 1977
  end-page: 782
  ident: CR24
  article-title: Transpiration effects on leaching fractions
  publication-title: Agron J
  doi: 10.2134/agronj1977.00021962006900050011x
– volume: 65
  start-page: 1522
  year: 2001
  end-page: 1528
  ident: CR29
  article-title: Field studies of crop response to water and salt stress
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2001.6551522x
– volume: 33
  start-page: 1419
  year: 2010
  end-page: 1438
  ident: CR10
  article-title: An overview of models of stomatal conductance at the leaf level
  publication-title: Plant, Cell Environ
– volume: 99
  start-page: 128
  year: 2011
  end-page: 134
  ident: CR38
  article-title: Long-term growth, water consumption and yield of date palm as a function of salinity
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2011.06.010
– volume: 43
  start-page: 19
  year: 1988
  end-page: 35
  ident: CR36
  article-title: Modelling surface conductance of pine forest
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(88)90003-2
– volume: 239
  start-page: 9
  year: 2002
  ident: 433_CR4
  publication-title: Plant Soil
  doi: 10.1023/A:1014942024573
– volume: 95
  start-page: 203
  year: 1995
  ident: 433_CR37
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1995.tb00828.x
– volume: 111
  start-page: 839
  year: 1985
  ident: 433_CR30
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49711146910
– volume: 33
  start-page: 1419
  year: 2010
  ident: 433_CR10
  publication-title: Plant, Cell Environ
– volume: 92
  start-page: 73
  year: 2007
  ident: 433_CR22
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2007.05.005
– volume: 56
  start-page: 131
  year: 2002
  ident: 433_CR20
  publication-title: Agric Water Manag
  doi: 10.1016/S0378-3774(02)00010-0
– volume: 65
  start-page: 1522
  year: 2001
  ident: 433_CR29
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2001.6551522x
– volume: 51
  start-page: 35
  year: 1990
  ident: 433_CR39
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(90)90040-D
– volume: 29
  start-page: 1379
  year: 1993
  ident: 433_CR35
  publication-title: Water Resour Res
  doi: 10.1029/93WR00333
– volume: 89
  start-page: 115
  year: 1998
  ident: 433_CR40
  publication-title: Agric For Meteorol
  doi: 10.1016/S0168-1923(97)00066-X
– volume: 49
  start-page: 1005
  year: 1985
  ident: 433_CR18
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1985.03615995004900040043x
– volume: 34
  start-page: 21
  year: 1985
  ident: 433_CR3
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(85)90051-6
– start-page: 403
  volume-title: Evapotranspiration—remote sensing model
  year: 2012
  ident: 433_CR12
– volume: 2
  start-page: 371
  year: 1988
  ident: 433_CR16
  publication-title: Funct Ecol
  doi: 10.2307/2389410
– volume: 122
  start-page: 346
  year: 2009
  ident: 433_CR21
  publication-title: Sci Hortic (Amst)
  doi: 10.1016/j.scienta.2009.05.026
– volume: 103
  start-page: 115
  year: 1977
  ident: 433_CR23
  publication-title: J Irrig Drain Div
  doi: 10.1061/JRCEA4.0001137
– volume: 116
  start-page: 499
  year: 1990
  ident: 433_CR11
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1990.tb00535.x
– volume: 43
  start-page: 19
  year: 1988
  ident: 433_CR36
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(88)90003-2
– volume: 57
  start-page: 755
  year: 2000
  ident: 433_CR14
  publication-title: Ann For Sci
  doi: 10.1051/forest:2000158
– volume: 20
  start-page: 307
  year: 1971
  ident: 433_CR9
  publication-title: Euphytica
  doi: 10.1007/BF00056093
– start-page: 169
  volume-title: Crop production technologies
  year: 2012
  ident: 433_CR1
– volume: 278
  start-page: 509
  year: 1989
  ident: 433_CR34
  publication-title: Symp Sched Irrig Veg Crop Field Cond
– volume: 273
  start-page: 593
  year: 1976
  ident: 433_CR17
  publication-title: Philos Trans R Soc London B Biol Sci
  doi: 10.1098/rstb.1976.0035
– volume: 149
  start-page: 141
  year: 1998
  ident: 433_CR26
  publication-title: Theor Appl Climatol
  doi: 10.1007/s007040050039
– volume: 32
  start-page: 1171
  year: 2012
  ident: 433_CR32
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tps070
– volume-title: Crop evapotranspiration—Guidelines for computing crop water requirements
  year: 1998
  ident: 433_CR2
– volume: 97
  start-page: 715
  year: 2010
  ident: 433_CR6
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2009.12.016
– volume: 54
  start-page: 107
  year: 1991
  ident: 433_CR8
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(91)90002-8
– volume: 100
  start-page: 25
  year: 2000
  ident: 433_CR7
  publication-title: Agric For Meteorol
  doi: 10.1016/S0168-1923(99)00082-9
– volume: 95
  start-page: 587
  year: 2008
  ident: 433_CR5
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2007.12.008
– volume: 40
  start-page: 647
  year: 1989
  ident: 433_CR31
  publication-title: J Exp Bot
  doi: 10.1093/jxb/40.6.647
– volume: 13
  start-page: 125
  year: 2000
  ident: 433_CR27
  publication-title: Eur J Agron
  doi: 10.1016/S1161-0301(00)00070-8
– volume: 99
  start-page: 100
  year: 2014
  ident: 433_CR33
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2013.10.014
– volume: 99
  start-page: 128
  year: 2011
  ident: 433_CR38
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2011.06.010
– volume: 69
  start-page: 779
  year: 1977
  ident: 433_CR24
  publication-title: Agron J
  doi: 10.2134/agronj1977.00021962006900050011x
– volume: 47
  start-page: 137
  year: 2001
  ident: 433_CR13
  publication-title: Agric Water Manag
  doi: 10.1016/S0378-3774(00)00101-3
– volume: 19
  start-page: 205
  year: 1965
  ident: 433_CR25
  publication-title: Symp Soc Exp Biol
– volume: 25
  start-page: 1423
  year: 2002
  ident: 433_CR15
  publication-title: Plant, Cell Environ
– volume: 139
  start-page: 252
  year: 2006
  ident: 433_CR28
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2006.07.006
SSID ssj0017684
Score 2.1566956
Snippet Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water,...
SourceID proquest
crossref
springer
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 341
SubjectTerms Agriculture
Aquatic Pollution
Arid zones
Biomedical and Life Sciences
Canopies
canopy
Climate Change
Computers
Conductance
crops
Data analysis
Environment
Environmental conditions
Environmental effects
environmental factors
equations
Evapotranspiration
irrigation scheduling
Irrigation water
Life Sciences
light intensity
Original Paper
Phoenix dactylifera
Salinity
Stomata
Stomatal conductance
Sustainable Development
Transpiration
trees
Vapor pressure
Waste Water Technology
Water Industry/Water Technologies
Water loss
Water Management
Water Pollution Control
Water quality
Water requirements
water salinity
Water use
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgPrFaZQVPSjDJJpvkIFJFEcEiasHbstmHl9rWtiL-e2e2SX2AhRwCmSTLPHZnd2a-ATiaVjcmAk1ciyBxcRIUrkgCXqqYZ06V2lJx8l1H3HST2-f0eQE6dS0MpVXWc6KfqM1A0xn5qe9vQ2WV4fnwLaCuURRdrVtoqKq1gjnzEGOLsIRTco56v3Rx1bl_mMUVKOzk4woJ-pVRntdxztDDisYZba0pMYPzIP21Ui06NfjlhP6Jm_rl6HoNVis_krWngl-HBdvfgJX2y6jC0rCbcNtmvs8NQ7-Uad-9AT_FaIvPhqr3yj7wbsRGlpKB_SnhmCm8fIaHNaz8ZGNFhZOTzy3oXl89Xd4EVeuEQOMKPQmiwubo6JRh7oSyWZQamwkXG-syU0bGpbYwiofOFSK3wqGIuBM6UmnhuE255tvQ6A_6dgeYc2ilWagLLrIEb5RJhXaiNFxn5Dw0IazZJHWFK07tLXpyhojsOSuRs5I4K9MmHM9eGU5BNeYR7yDvpUIGjmX3MSZIvJBQ5CLRhFYtEFmZ3lh-K0oTDmeP0WgoEqL6dvBONIJcXyGKOTR5RFiCYYw0J7Wwf_zmv_Huzh_UHizHXscoTa0Fjcno3e6jXzMpDypl_QJ0ZvCd
  priority: 102
  providerName: ProQuest
Title model for computing date palm water requirements as affected by salinity
URI https://link.springer.com/article/10.1007/s00271-014-0433-5
https://www.proquest.com/docview/1553045880
https://www.proquest.com/docview/1560139669
https://www.proquest.com/docview/1817820029
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_R8sIeJmCb6OgqI-1pU6Qkjp3kMWUtCDQ0DSrBk-U4Ni-sRU3RxH_PnZtEgAAJKZIt5eJYZ1_8u9wXwPd1dGMiUcSNDBIXJ0Hu8iTgpY556nRpLAUn_z6Tx7Pk5FJcNnHcdevt3pok_Ze6C3YjDYpUX3Kc4DwQPdgUqLqTNM7iojMdkGXJmw4ShI5RlrWmzJeGeHIY9ZxePMGZz0yj_sSZbsPHBiqyYr22O7Bh57vwobheNuky7Cc4KZgvZcMQejLjCzTgUIy0eHarb_6x_9hbsqUlf1__I7BmGi_vxGErVt6zWlNs5Or-M8ymk4vD46CpjhAYPIRXQZTbDLFMGWZOaptGorKpdHFlXVqVUeWEzSvNQ-dymVnpcBW4kybSInfcCm74F-jPF3O7B8w5FMQ0NDmXaYIdXQlpnCwrblLCBwMIWzYp06QOpwoWN6pLeuw5q5CzijirxAB-dI_crvNmvEW8h7xXGhlYq9l5TFnvQkoUF8kBDNsFUY101crXOqIQW5zZQXcb5YKMHXpuF3dEIwndSpm_QZNFlC4wjJHmZ7vYj17z2ny_vot6H7Ziv-XIMW0I_dXyzn5DJLMqR9DLpkcj2CzGv8ZTao-uTifYjidnf_6O_L5-AKfp6_s
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9t3QPsAfGpdYxhJHgBRSR24iQPEypjU_dVIVilvRnHH7xsbdd0mvrP8bdx5yaFIdG3SXmwlEvinO_ss-_udwBvF9mNqUQVNzJKPU-j0pdpJCrNRe51ZRwlJ58NZH-YHl9kF2vwq82FobDKdk4ME7UdGzoj_xjq21BaZfxpch1R1SjyrrYlNHRTWsHuBYixJrHjxM1vcQtX7x19wfF-x_nhwfl-P2qqDEQGF7NZlJSuQJugigsvtcuTzLpcem6dz22VWJ-50moRe1_KwkmPfyO8NInOSi9cJozA967DRkoZrh3Y-Hww-Ppt6ccgN1fwY6RoxyZF0fpV4wBjynPaylMgiBBRdmdlXPd6fMfo_cdPG5a_w8fwqLFbWW8haE9gzY2ewmbv57TB7nDP4LjHQl0dhnYwM6FaBL6K0ZECm-jLK3aLrSmbOgo-DqeSNdN4hYgSZ1k1Z7WmRM3Z_DkM74WJL6AzGo_cFjDvcVbIY1MKmafY0DaTxsvKCpOTsdKFuGWTMg2OOZXTuFRLBObAWYWcVcRZlXXh_fKRyQLEYxXxFvJeaWRgrYbfOUHwxYRal8gu7LQDohpVr9UfwezCm-VtVFLyvOiRG98QjSRTW8pyBU2REHZhzJHmQzvYf33mf_3dXt2p1_Cgf352qk6PBicv4SEP8kYhcjvQmU1v3Cu0qWbVbiO4DH7ct678BiUEL3k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnYTYA-JT6xjDSPACipbYiZM8TKiwVfuAagIq7c04_uBla7um09R_kb-KOzfpGBJ9m5SHSLk4zvnOPvvufgfwdpHdmEpUcSOj1PM0Kn2ZRqLSXOReV8ZRcvLXgTwapifn2fka_G5zYSissp0Tw0Rtx4bOyPdCfRtKq4z3fBMWcXbQ_zi5iqiCFHla23IauimzYPcD3FiT5HHq5je4nav3jw9w7N9x3j_88fkoaioORAYXtlmUlK5A-6CKCy-1y5PMulx6bp3PbZVYn7nSahF7X8rCSY9_Jrw0ic5KL1wmjMB212Ejx8bSDmx8OhycfVv6NMjlFXwaKdq0SVG0PtY4QJrynLb1FBQiRJTdWSXXvR7fMYD_8dmGpbD_GB41NizrLYTuCay50VPY7P2aNjge7hmc9FioscPQJmYmVI7AphgdL7CJvrhkN3g3ZVNHgcjhhLJmGq8QXeIsq-as1pS0OZs_h-G9MPEFdEbjkdsC5j3OEHlsSiHzFG-0zaTxsrLC5GS4dCFu2aRMg2lOpTUu1BKNOXBWIWcVcVZlXXi_fGWyAPRYRbyFvFcaGVir4XdOcHwxIdglsgs77YCoRu1rdSukXXizfIwKS14YPXLja6KRZHZLWa6gKRLCMYw50nxoB_uvz_yvv9urO_UaHqDOqC_Hg9OX8JAHcaNouR3ozKbX7hWaV7Nqt5FbBj_vW1X-AE04M6U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+for+computing+date+palm+water+requirements+as+affected+by+salinity&rft.jtitle=Irrigation+science&rft.au=Sperling%2C+Or&rft.au=Shapira%2C+Or&rft.au=Tripler%2C+Effi&rft.au=Schwartz%2C+Amnon&rft.date=2014-09-01&rft.issn=0342-7188&rft.volume=32&rft.issue=5+p.341-350&rft.spage=341&rft.epage=350&rft_id=info:doi/10.1007%2Fs00271-014-0433-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0342-7188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0342-7188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0342-7188&client=summon