model for computing date palm water requirements as affected by salinity
Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly app...
Saved in:
Published in | Irrigation science Vol. 32; no. 5; pp. 341 - 350 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.09.2014
Springer Berlin Heidelberg Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0342-7188 1432-1319 |
DOI | 10.1007/s00271-014-0433-5 |
Cover
Abstract | Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the PenmanâMonteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ETcwas developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ETcwas affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS mâ»Â¹and by 50 % in the trees irrigated with 8 dS mâ»Â¹. Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified âJarvisâPMâ canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS mâ»Â¹) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations. |
---|---|
AbstractList | Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman-Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ET sub(c) was developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ET sub(c) was affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m super(-1) and by 50 % in the trees irrigated with 8 dS m super(-1). Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified 'Jarvis-PM' canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m super(-1)) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations. Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman–Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ET c was developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ET c was affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m −1 and by 50 % in the trees irrigated with 8 dS m −1 . Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified ‘Jarvis–PM’ canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m −1 ) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations. Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman-Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ET^sub c^ was developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ET^sub c^ was affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m^sup -1^ and by 50 % in the trees irrigated with 8 dS m^sup -1^. Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified 'Jarvis-PM' canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m^sup -1^) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations.[PUBLICATION ABSTRACT] Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman–Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ETcwas developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ETcwas affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m⁻¹and by 50 % in the trees irrigated with 8 dS m⁻¹. Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified ‘Jarvis–PM’ canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m⁻¹) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations. Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the PenmanâMonteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ETcwas developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ETcwas affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS mâ»Â¹and by 50 % in the trees irrigated with 8 dS mâ»Â¹. Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified âJarvisâPMâ canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS mâ»Â¹) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations. |
Author | Effi Tripler Sperling, Or Naftali Lazarovitch Or Shapira Amnon Schwartz |
Author_xml | – sequence: 1 fullname: Sperling, Or – sequence: 2 fullname: Or Shapira – sequence: 3 fullname: Effi Tripler – sequence: 4 fullname: Amnon Schwartz – sequence: 5 fullname: Naftali Lazarovitch |
BookMark | eNqFkU1rFTEUhoNU8Lb6A1wZcONmas7kc5ZS1AqFLrTrkDtzckmZSW6TDHL_vbmMC-miQuBk8TzJOee9JBcxRSTkPbBrYEx_Loz1GjoGomOC806-IjsQvO-Aw3BBdoyLvtNgzBtyWcojY6CVETtyu6QJZ-pTpmNajmsN8UAnV5Ee3bzQ3-2WacanNWRcMNZCXTve41hxovsTLW4OMdTTW_Lau7ngu7_1ijx8-_rr5ra7u__-4-bLXTcKpmoHAxohYM-MVw41yAm18v2EXk97mLzEYXKceT8og8r7XnCvRnBy8BwlH_kV-bS9e8zpacVS7RLKiPPsIqa1WDCgTd-2MfwflYoBH5Q6ox-foY9pzbEN0ijJmZDGsEbBRo05lZLR22MOi8snC8yeY7BbDLbFYM8xWNkc_cwZQ3U1pFizC_OLZr-Zpf0SD5j_6ekF6cMmeZesO-RQ7MPPnoFqibcRQPE_MLamZg |
CitedBy_id | crossref_primary_10_1016_j_agrformet_2021_108778 crossref_primary_10_1007_s00709_022_01783_w crossref_primary_10_1007_s12665_017_6935_8 crossref_primary_10_1007_s00271_024_00925_7 crossref_primary_10_1007_s42729_023_01176_9 crossref_primary_10_1002_ldr_4619 crossref_primary_10_1016_j_agwat_2016_06_028 crossref_primary_10_1016_j_agwat_2024_108833 crossref_primary_10_1016_j_agwat_2019_105702 crossref_primary_10_1007_s41207_018_0064_y crossref_primary_10_1007_s00271_015_0467_3 crossref_primary_10_1016_j_scitotenv_2022_159751 crossref_primary_10_1016_j_agwat_2019_105949 crossref_primary_10_1007_s12517_017_3374_5 crossref_primary_10_1016_j_agwat_2020_106645 crossref_primary_10_1016_j_agwat_2019_05_022 crossref_primary_10_1016_j_agwat_2022_107683 crossref_primary_10_1016_j_agwat_2025_109387 |
Cites_doi | 10.1016/S0168-1923(97)00066-X 10.1016/j.envexpbot.2013.10.014 10.1029/93WR00333 10.1016/j.agwat.2007.05.005 10.1016/S0378-3774(02)00010-0 10.1016/j.agrformet.2006.07.006 10.1007/s007040050039 10.1016/0168-1923(91)90002-8 10.1007/BF00056093 10.2136/sssaj1985.03615995004900040043x 10.1111/j.1469-8137.1990.tb00535.x 10.1051/forest:2000158 10.1098/rstb.1976.0035 10.1016/0168-1923(90)90040-D 10.1016/j.scienta.2009.05.026 10.1093/treephys/tps070 10.1016/S0378-3774(00)00101-3 10.1016/0168-1923(85)90051-6 10.1016/j.agwat.2007.12.008 10.1016/S1161-0301(00)00070-8 10.1016/j.agwat.2009.12.016 10.1002/qj.49711146910 10.2307/2389410 10.1016/S0168-1923(99)00082-9 10.1093/jxb/40.6.647 10.1111/j.1399-3054.1995.tb00828.x 10.1023/A:1014942024573 10.2134/agronj1977.00021962006900050011x 10.2136/sssaj2001.6551522x 10.1016/j.agwat.2011.06.010 10.1016/0168-1923(88)90003-2 10.1061/JRCEA4.0001137 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 |
DBID | FBQ AAYXX CITATION 3V. 7QH 7ST 7UA 7X2 7XB 88I 8FD 8FE 8FG 8FH 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H97 HCIFZ KR7 L.G L6V M0K M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s00271-014-0433-5 |
DatabaseName | AGRIS CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Agricultural Science Database Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection (ProQuest) ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Technology Collection ProQuest SciTech Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1432-1319 |
EndPage | 350 |
ExternalDocumentID | 3401927091 10_1007_s00271_014_0433_5 US201600188016 |
Genre | Feature |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5QI 5VS 67N 67Z 6NX 78A 7X2 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANXM AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABELW ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOAH ADOXG ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOSHJ APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESTFP ESX FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V LAS LK5 LLZTM M0K M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7U Z7Y Z8O Z8S ZMTXR ZOVNA ~02 ~8M ~A9 ~EX ~KM AACDK AAHBH AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACUHS ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU BSONS H13 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QH 7ST 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H97 KR7 L.G PKEHL PQEST PQGLB PQUKI Q9U SOI PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c406t-19e8441b08f6ae715de76f2def7db1df5e9da30ff968e6ff243f6c1a59f3e53c3 |
IEDL.DBID | U2A |
ISSN | 0342-7188 |
IngestDate | Thu Sep 04 18:38:19 EDT 2025 Mon Sep 08 03:55:32 EDT 2025 Fri Jul 25 19:16:59 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Tue Jul 01 03:33:17 EDT 2025 Fri Feb 21 02:34:37 EST 2025 Wed Dec 27 18:46:02 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Stomatal Conductance Date Palm Water Demand Leaf Area Index Irrigation Water |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-19e8441b08f6ae715de76f2def7db1df5e9da30ff968e6ff243f6c1a59f3e53c3 |
Notes | http://dx.doi.org/10.1007/s00271-014-0433-5 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1553045880 |
PQPubID | 54025 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1817820029 proquest_miscellaneous_1560139669 proquest_journals_1553045880 crossref_primary_10_1007_s00271_014_0433_5 crossref_citationtrail_10_1007_s00271_014_0433_5 springer_journals_10_1007_s00271_014_0433_5 fao_agris_US201600188016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Irrigation science |
PublicationTitleAbbrev | Irrig Sci |
PublicationYear | 2014 |
Publisher | Springer-Verlag Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Monteith (CR25) 1965; 19 Sperling, Shapira, Cohen, Tripler, Schwartz, Lazarovitch (CR32) 2012; 32 Tripler, Shani, Mualem, Ben-Gal (CR38) 2011; 99 Li Yang, Yano, Aydin, Kitamura, Takeuchi (CR20) 2002; 56 Rana, Katerji (CR26) 1998; 149 Sperling, Lazarovitch, Schwartz, Shapira (CR33) 2014; 99 Allen, Pereira, Raes, Smith (CR2) 1998 Collatz, Ball, Grivet, Berry, Meteorology (CR8) 1991; 54 Gowing, Ejieji (CR13) 2001; 47 Granier, Loustau, Bréda (CR14) 2000; 57 Tattini, Gucci, Coradeschi, Ponzio, Everard (CR37) 1995; 95 Maas, Hoffman (CR23) 1977; 103 Ben-Gal, Ityel, Dudley, Cohen, Yermiyahu, Presnov, Zigmond, Shani (CR5) 2008; 95 Meiri, Kamburov, Shalhevet (CR24) 1977; 69 Smith (CR31) 1989; 40 Corley, Hardon, Tan (CR9) 1971; 20 Letey, Dinar, Knapp (CR18) 1985; 49 Bhantana, Lazarovitch (CR6) 2010; 97 Wilks, Wolfe (CR40) 1998; 89 Boulard, Wang (CR7) 2000; 100 Shuttleworth, Wallace (CR30) 1985; 111 Ben-Gal, Shani (CR4) 2002; 239 Gerosa, Mereu, Finco, Marzuoli, Cuore, Irmak (CR12) 2012 Shani, Dudley (CR29) 2001; 65 Damour, Simonneau, Cochard, Urban (CR10) 2010; 33 Hogan (CR16) 1988; 2 Lovelli, Perniola, Ferrara, Di Tommaso (CR22) 2007; 92 Stanghellini, Bosma, Gabriels, Werhoven (CR34) 1989; 278 Alhammadi, Kurup, Sharma, Arbol (CR1) 2012 Avissar, Avissar, Mahrer, Bravdo (CR3) 1985; 34 Downton, Loveys, Grant (CR11) 1990; 116 Rana, Katerji (CR27) 2000; 13 Liu, Andersen, Jensen (CR21) 2009; 122 Wallace, Roberts, Sivakumar (CR39) 1990; 51 Gutschick, Simonneau (CR15) 2002; 25 Roupsard, Bonnefond, Irvine, Berbigier, Nouvellon, Dauzat, Taga, Hamel, Jourdan, Saint-Andre, Mialet-Serra, Labouisse, Epron, Joffre, Braconnier, Rouziere, Navarro, Bouillet (CR28) 2006; 139 Stannard (CR35) 1993; 29 Stewart (CR36) 1988; 43 Jarvis (CR17) 1976; 273 BG Smith (433_CR31) 1989; 40 R Avissar (433_CR3) 1985; 34 J Gowing (433_CR13) 2001; 47 W Shuttleworth (433_CR30) 1985; 111 G Gerosa (433_CR12) 2012 O Sperling (433_CR33) 2014; 99 M Tattini (433_CR37) 1995; 95 P Bhantana (433_CR6) 2010; 97 DS Wilks (433_CR40) 1998; 89 S Li Yang (433_CR20) 2002; 56 GJ Collatz (433_CR8) 1991; 54 F Liu (433_CR21) 2009; 122 JL Monteith (433_CR25) 1965; 19 T Boulard (433_CR7) 2000; 100 A Ben-Gal (433_CR4) 2002; 239 O Sperling (433_CR32) 2012; 32 K Hogan (433_CR16) 1988; 2 D Stannard (433_CR35) 1993; 29 G Damour (433_CR10) 2010; 33 A Meiri (433_CR24) 1977; 69 C Stanghellini (433_CR34) 1989; 278 R Corley (433_CR9) 1971; 20 A Granier (433_CR14) 2000; 57 G Rana (433_CR26) 1998; 149 U Shani (433_CR29) 2001; 65 A Ben-Gal (433_CR5) 2008; 95 JB Stewart (433_CR36) 1988; 43 M Alhammadi (433_CR1) 2012 RG Allen (433_CR2) 1998 WJS Downton (433_CR11) 1990; 116 E Tripler (433_CR38) 2011; 99 JS Wallace (433_CR39) 1990; 51 PG Jarvis (433_CR17) 1976; 273 G Rana (433_CR27) 2000; 13 VP Gutschick (433_CR15) 2002; 25 O Roupsard (433_CR28) 2006; 139 J Letey (433_CR18) 1985; 49 EV Maas (433_CR23) 1977; 103 S Lovelli (433_CR22) 2007; 92 |
References_xml | – volume: 89 start-page: 115 year: 1998 end-page: 129 ident: CR40 article-title: Optimal use and economic value of weather forecasts for lettuce irrigation in a humid climate publication-title: Agric For Meteorol doi: 10.1016/S0168-1923(97)00066-X – volume: 99 start-page: 100 year: 2014 end-page: 109 ident: CR33 article-title: Effects of high salinity irrigation on growth, gas-exchange, and photoprotection in date palms ( L., cv. Medjool) publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2013.10.014 – volume: 29 start-page: 1379 year: 1993 end-page: 1392 ident: CR35 article-title: Comparison of Penman–Monteith, Shuttleworth–Wallace, and modified Priestley–Taylor evapotranspiration models for wildland vegetation in semiarid range land publication-title: Water Resour Res doi: 10.1029/93WR00333 – volume: 92 start-page: 73 year: 2007 end-page: 80 ident: CR22 article-title: Yield response factor to water (Ky) and water use efficiency of L. and L publication-title: Agric Water Manag doi: 10.1016/j.agwat.2007.05.005 – volume: 56 start-page: 131 year: 2002 end-page: 141 ident: CR20 article-title: Short term effects of saline irrigation on evapotranspiration from lysimeter-grown citrus trees publication-title: Agric Water Manag doi: 10.1016/S0378-3774(02)00010-0 – volume: 139 start-page: 252 year: 2006 end-page: 268 ident: CR28 article-title: Partitioning energy and evapo-transpiration above and below a tropical palm canopy publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2006.07.006 – volume: 19 start-page: 205 year: 1965 end-page: 234 ident: CR25 article-title: Evaporation and environment publication-title: Symp Soc Exp Biol – volume: 149 start-page: 141 year: 1998 end-page: 149 ident: CR26 article-title: A measurement based sensitivity analysis of the Penman–Monteith actual evapotranspiration model for crops of different height and in contrasting water status publication-title: Theor Appl Climatol doi: 10.1007/s007040050039 – volume: 54 start-page: 107 year: 1991 end-page: 136 ident: CR8 article-title: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer publication-title: Agric For Meteorol doi: 10.1016/0168-1923(91)90002-8 – volume: 20 start-page: 307 year: 1971 end-page: 315 ident: CR9 article-title: Analysis of growth of the oil palm ( Jacq.) I. Estimation of growth parameters and application in breeding publication-title: Euphytica doi: 10.1007/BF00056093 – volume: 49 start-page: 1005 year: 1985 end-page: 1009 ident: CR18 article-title: Crop-water production function model for saline irrigation waters publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1985.03615995004900040043x – volume: 116 start-page: 499 year: 1990 end-page: 503 ident: CR11 article-title: Salinity effects on the stomatal behaviour of grapevine publication-title: New Phytol doi: 10.1111/j.1469-8137.1990.tb00535.x – volume: 57 start-page: 755 year: 2000 end-page: 765 ident: CR14 article-title: A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index publication-title: Ann For Sci doi: 10.1051/forest:2000158 – volume: 273 start-page: 593 year: 1976 end-page: 610 ident: CR17 article-title: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field publication-title: Philos Trans R Soc London B Biol Sci doi: 10.1098/rstb.1976.0035 – volume: 103 start-page: 115 year: 1977 end-page: 134 ident: CR23 article-title: Crop salt tolerance—current assessment publication-title: J Irrig Drain Div – volume: 51 start-page: 35 year: 1990 end-page: 49 ident: CR39 article-title: The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices publication-title: Agric For Meteorol doi: 10.1016/0168-1923(90)90040-D – volume: 122 start-page: 346 year: 2009 end-page: 354 ident: CR21 article-title: Capability of the “Ball–Berry” model for predicting stomatal conductance and water use efficiency of potato leaves under different irrigation regimes publication-title: Sci Hortic (Amst) doi: 10.1016/j.scienta.2009.05.026 – year: 1998 ident: CR2 publication-title: Crop evapotranspiration—Guidelines for computing crop water requirements – volume: 32 start-page: 1171 year: 2012 end-page: 1178 ident: CR32 article-title: Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters publication-title: Tree Physiol doi: 10.1093/treephys/tps070 – volume: 47 start-page: 137 year: 2001 end-page: 153 ident: CR13 article-title: Real-time scheduling of supplemental irrigation for potatoes using a decision model and short-term weather forecasts publication-title: Agric Water Manag doi: 10.1016/S0378-3774(00)00101-3 – volume: 34 start-page: 21 year: 1985 end-page: 29 ident: CR3 article-title: A model to simulate response of plant stomata to environmental conditions publication-title: Agric For Meteorol doi: 10.1016/0168-1923(85)90051-6 – volume: 95 start-page: 587 year: 2008 end-page: 597 ident: CR5 article-title: Effect of irrigation water salinity on transpiration and on leaching requirements: a case study for bell peppers publication-title: Agric Water Manag doi: 10.1016/j.agwat.2007.12.008 – volume: 13 start-page: 125 year: 2000 end-page: 153 ident: CR27 article-title: Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review publication-title: Eur J Agron doi: 10.1016/S1161-0301(00)00070-8 – volume: 97 start-page: 715 year: 2010 end-page: 722 ident: CR6 article-title: Evapotranspiration, crop coefficient and growth of two young pomegranate ( L.) varieties under salt stress publication-title: Agric Water Manag doi: 10.1016/j.agwat.2009.12.016 – start-page: 403 year: 2012 end-page: 420 ident: CR12 article-title: Stomatal conductance modeling to estimate the evapotranspiration of natural and agricultural ecosystems publication-title: Evapotranspiration—remote sensing model – volume: 278 start-page: 509 year: 1989 end-page: 516 ident: CR34 article-title: The water consumption of agricultural crops: how crop coefficients are affected by crop geometry and microclimate publication-title: Symp Sched Irrig Veg Crop Field Cond – volume: 111 start-page: 839 year: 1985 end-page: 855 ident: CR30 article-title: Evaporation from sparse crops—an energy combination theory publication-title: Q J R Meteorol Soc doi: 10.1002/qj.49711146910 – volume: 2 start-page: 371 year: 1988 end-page: 377 ident: CR16 article-title: Photosynthesis in two neotropical palm species publication-title: Funct Ecol doi: 10.2307/2389410 – volume: 100 start-page: 25 year: 2000 end-page: 34 ident: CR7 article-title: Greenhouse crop transpiration simulation from external climate conditions publication-title: Agric For Meteorol doi: 10.1016/S0168-1923(99)00082-9 – volume: 40 start-page: 647 year: 1989 end-page: 651 ident: CR31 article-title: The effects of soil water and atmospheric vapour pressure deficit on stomatal behaviour and photosynthesis in the oil palm publication-title: J Exp Bot doi: 10.1093/jxb/40.6.647 – volume: 25 start-page: 1423 year: 2002 end-page: 1434 ident: CR15 article-title: Modelling stomatal conductance of field-grown sunflower under varying soil water content and leaf environment: comparison of three models of stomatal response to leaf environment and coupling with an abscisic acid-based model of stomatal response to soil drying publication-title: Plant, Cell Environ – volume: 95 start-page: 203 year: 1995 end-page: 210 ident: CR37 article-title: Growth, gas exchange and ion content in plants during salinity stress and subsequent relief publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1995.tb00828.x – start-page: 169 year: 2012 end-page: 178 ident: CR1 article-title: Impact of salinity stress on date palm ( L.)—a review publication-title: Crop production technologies – volume: 239 start-page: 9 year: 2002 end-page: 17 ident: CR4 article-title: A highly conductive drainage extension to control the lower boundary condition of lysimeters publication-title: Plant Soil doi: 10.1023/A:1014942024573 – volume: 69 start-page: 779 year: 1977 end-page: 782 ident: CR24 article-title: Transpiration effects on leaching fractions publication-title: Agron J doi: 10.2134/agronj1977.00021962006900050011x – volume: 65 start-page: 1522 year: 2001 end-page: 1528 ident: CR29 article-title: Field studies of crop response to water and salt stress publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2001.6551522x – volume: 33 start-page: 1419 year: 2010 end-page: 1438 ident: CR10 article-title: An overview of models of stomatal conductance at the leaf level publication-title: Plant, Cell Environ – volume: 99 start-page: 128 year: 2011 end-page: 134 ident: CR38 article-title: Long-term growth, water consumption and yield of date palm as a function of salinity publication-title: Agric Water Manag doi: 10.1016/j.agwat.2011.06.010 – volume: 43 start-page: 19 year: 1988 end-page: 35 ident: CR36 article-title: Modelling surface conductance of pine forest publication-title: Agric For Meteorol doi: 10.1016/0168-1923(88)90003-2 – volume: 239 start-page: 9 year: 2002 ident: 433_CR4 publication-title: Plant Soil doi: 10.1023/A:1014942024573 – volume: 95 start-page: 203 year: 1995 ident: 433_CR37 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1995.tb00828.x – volume: 111 start-page: 839 year: 1985 ident: 433_CR30 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.49711146910 – volume: 33 start-page: 1419 year: 2010 ident: 433_CR10 publication-title: Plant, Cell Environ – volume: 92 start-page: 73 year: 2007 ident: 433_CR22 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2007.05.005 – volume: 56 start-page: 131 year: 2002 ident: 433_CR20 publication-title: Agric Water Manag doi: 10.1016/S0378-3774(02)00010-0 – volume: 65 start-page: 1522 year: 2001 ident: 433_CR29 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2001.6551522x – volume: 51 start-page: 35 year: 1990 ident: 433_CR39 publication-title: Agric For Meteorol doi: 10.1016/0168-1923(90)90040-D – volume: 29 start-page: 1379 year: 1993 ident: 433_CR35 publication-title: Water Resour Res doi: 10.1029/93WR00333 – volume: 89 start-page: 115 year: 1998 ident: 433_CR40 publication-title: Agric For Meteorol doi: 10.1016/S0168-1923(97)00066-X – volume: 49 start-page: 1005 year: 1985 ident: 433_CR18 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1985.03615995004900040043x – volume: 34 start-page: 21 year: 1985 ident: 433_CR3 publication-title: Agric For Meteorol doi: 10.1016/0168-1923(85)90051-6 – start-page: 403 volume-title: Evapotranspiration—remote sensing model year: 2012 ident: 433_CR12 – volume: 2 start-page: 371 year: 1988 ident: 433_CR16 publication-title: Funct Ecol doi: 10.2307/2389410 – volume: 122 start-page: 346 year: 2009 ident: 433_CR21 publication-title: Sci Hortic (Amst) doi: 10.1016/j.scienta.2009.05.026 – volume: 103 start-page: 115 year: 1977 ident: 433_CR23 publication-title: J Irrig Drain Div doi: 10.1061/JRCEA4.0001137 – volume: 116 start-page: 499 year: 1990 ident: 433_CR11 publication-title: New Phytol doi: 10.1111/j.1469-8137.1990.tb00535.x – volume: 43 start-page: 19 year: 1988 ident: 433_CR36 publication-title: Agric For Meteorol doi: 10.1016/0168-1923(88)90003-2 – volume: 57 start-page: 755 year: 2000 ident: 433_CR14 publication-title: Ann For Sci doi: 10.1051/forest:2000158 – volume: 20 start-page: 307 year: 1971 ident: 433_CR9 publication-title: Euphytica doi: 10.1007/BF00056093 – start-page: 169 volume-title: Crop production technologies year: 2012 ident: 433_CR1 – volume: 278 start-page: 509 year: 1989 ident: 433_CR34 publication-title: Symp Sched Irrig Veg Crop Field Cond – volume: 273 start-page: 593 year: 1976 ident: 433_CR17 publication-title: Philos Trans R Soc London B Biol Sci doi: 10.1098/rstb.1976.0035 – volume: 149 start-page: 141 year: 1998 ident: 433_CR26 publication-title: Theor Appl Climatol doi: 10.1007/s007040050039 – volume: 32 start-page: 1171 year: 2012 ident: 433_CR32 publication-title: Tree Physiol doi: 10.1093/treephys/tps070 – volume-title: Crop evapotranspiration—Guidelines for computing crop water requirements year: 1998 ident: 433_CR2 – volume: 97 start-page: 715 year: 2010 ident: 433_CR6 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2009.12.016 – volume: 54 start-page: 107 year: 1991 ident: 433_CR8 publication-title: Agric For Meteorol doi: 10.1016/0168-1923(91)90002-8 – volume: 100 start-page: 25 year: 2000 ident: 433_CR7 publication-title: Agric For Meteorol doi: 10.1016/S0168-1923(99)00082-9 – volume: 95 start-page: 587 year: 2008 ident: 433_CR5 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2007.12.008 – volume: 40 start-page: 647 year: 1989 ident: 433_CR31 publication-title: J Exp Bot doi: 10.1093/jxb/40.6.647 – volume: 13 start-page: 125 year: 2000 ident: 433_CR27 publication-title: Eur J Agron doi: 10.1016/S1161-0301(00)00070-8 – volume: 99 start-page: 100 year: 2014 ident: 433_CR33 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2013.10.014 – volume: 99 start-page: 128 year: 2011 ident: 433_CR38 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2011.06.010 – volume: 69 start-page: 779 year: 1977 ident: 433_CR24 publication-title: Agron J doi: 10.2134/agronj1977.00021962006900050011x – volume: 47 start-page: 137 year: 2001 ident: 433_CR13 publication-title: Agric Water Manag doi: 10.1016/S0378-3774(00)00101-3 – volume: 19 start-page: 205 year: 1965 ident: 433_CR25 publication-title: Symp Soc Exp Biol – volume: 25 start-page: 1423 year: 2002 ident: 433_CR15 publication-title: Plant, Cell Environ – volume: 139 start-page: 252 year: 2006 ident: 433_CR28 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2006.07.006 |
SSID | ssj0017684 |
Score | 2.1566956 |
Snippet | Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water,... |
SourceID | proquest crossref springer fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 341 |
SubjectTerms | Agriculture Aquatic Pollution Arid zones Biomedical and Life Sciences Canopies canopy Climate Change Computers Conductance crops Data analysis Environment Environmental conditions Environmental effects environmental factors equations Evapotranspiration irrigation scheduling Irrigation water Life Sciences light intensity Original Paper Phoenix dactylifera Salinity Stomata Stomatal conductance Sustainable Development Transpiration trees Vapor pressure Waste Water Technology Water Industry/Water Technologies Water loss Water Management Water Pollution Control Water quality Water requirements water salinity Water use |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgPrFaZQVPSjDJJpvkIFJFEcEiasHbstmHl9rWtiL-e2e2SX2AhRwCmSTLPHZnd2a-ATiaVjcmAk1ciyBxcRIUrkgCXqqYZ06V2lJx8l1H3HST2-f0eQE6dS0MpVXWc6KfqM1A0xn5qe9vQ2WV4fnwLaCuURRdrVtoqKq1gjnzEGOLsIRTco56v3Rx1bl_mMUVKOzk4woJ-pVRntdxztDDisYZba0pMYPzIP21Ui06NfjlhP6Jm_rl6HoNVis_krWngl-HBdvfgJX2y6jC0rCbcNtmvs8NQ7-Uad-9AT_FaIvPhqr3yj7wbsRGlpKB_SnhmCm8fIaHNaz8ZGNFhZOTzy3oXl89Xd4EVeuEQOMKPQmiwubo6JRh7oSyWZQamwkXG-syU0bGpbYwiofOFSK3wqGIuBM6UmnhuE255tvQ6A_6dgeYc2ilWagLLrIEb5RJhXaiNFxn5Dw0IazZJHWFK07tLXpyhojsOSuRs5I4K9MmHM9eGU5BNeYR7yDvpUIGjmX3MSZIvJBQ5CLRhFYtEFmZ3lh-K0oTDmeP0WgoEqL6dvBONIJcXyGKOTR5RFiCYYw0J7Wwf_zmv_Huzh_UHizHXscoTa0Fjcno3e6jXzMpDypl_QJ0ZvCd priority: 102 providerName: ProQuest |
Title | model for computing date palm water requirements as affected by salinity |
URI | https://link.springer.com/article/10.1007/s00271-014-0433-5 https://www.proquest.com/docview/1553045880 https://www.proquest.com/docview/1560139669 https://www.proquest.com/docview/1817820029 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_R8sIeJmCb6OgqI-1pU6Qkjp3kMWUtCDQ0DSrBk-U4Ni-sRU3RxH_PnZtEgAAJKZIt5eJYZ1_8u9wXwPd1dGMiUcSNDBIXJ0Hu8iTgpY556nRpLAUn_z6Tx7Pk5FJcNnHcdevt3pok_Ze6C3YjDYpUX3Kc4DwQPdgUqLqTNM7iojMdkGXJmw4ShI5RlrWmzJeGeHIY9ZxePMGZz0yj_sSZbsPHBiqyYr22O7Bh57vwobheNuky7Cc4KZgvZcMQejLjCzTgUIy0eHarb_6x_9hbsqUlf1__I7BmGi_vxGErVt6zWlNs5Or-M8ymk4vD46CpjhAYPIRXQZTbDLFMGWZOaptGorKpdHFlXVqVUeWEzSvNQ-dymVnpcBW4kybSInfcCm74F-jPF3O7B8w5FMQ0NDmXaYIdXQlpnCwrblLCBwMIWzYp06QOpwoWN6pLeuw5q5CzijirxAB-dI_crvNmvEW8h7xXGhlYq9l5TFnvQkoUF8kBDNsFUY101crXOqIQW5zZQXcb5YKMHXpuF3dEIwndSpm_QZNFlC4wjJHmZ7vYj17z2ny_vot6H7Ziv-XIMW0I_dXyzn5DJLMqR9DLpkcj2CzGv8ZTao-uTifYjidnf_6O_L5-AKfp6_s |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9t3QPsAfGpdYxhJHgBRSR24iQPEypjU_dVIVilvRnHH7xsbdd0mvrP8bdx5yaFIdG3SXmwlEvinO_ss-_udwBvF9mNqUQVNzJKPU-j0pdpJCrNRe51ZRwlJ58NZH-YHl9kF2vwq82FobDKdk4ME7UdGzoj_xjq21BaZfxpch1R1SjyrrYlNHRTWsHuBYixJrHjxM1vcQtX7x19wfF-x_nhwfl-P2qqDEQGF7NZlJSuQJugigsvtcuTzLpcem6dz22VWJ-50moRe1_KwkmPfyO8NInOSi9cJozA967DRkoZrh3Y-Hww-Ppt6ccgN1fwY6RoxyZF0fpV4wBjynPaylMgiBBRdmdlXPd6fMfo_cdPG5a_w8fwqLFbWW8haE9gzY2ewmbv57TB7nDP4LjHQl0dhnYwM6FaBL6K0ZECm-jLK3aLrSmbOgo-DqeSNdN4hYgSZ1k1Z7WmRM3Z_DkM74WJL6AzGo_cFjDvcVbIY1MKmafY0DaTxsvKCpOTsdKFuGWTMg2OOZXTuFRLBObAWYWcVcRZlXXh_fKRyQLEYxXxFvJeaWRgrYbfOUHwxYRal8gu7LQDohpVr9UfwezCm-VtVFLyvOiRG98QjSRTW8pyBU2REHZhzJHmQzvYf33mf_3dXt2p1_Cgf352qk6PBicv4SEP8kYhcjvQmU1v3Cu0qWbVbiO4DH7ct678BiUEL3k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnYTYA-JT6xjDSPACipbYiZM8TKiwVfuAagIq7c04_uBla7um09R_kb-KOzfpGBJ9m5SHSLk4zvnOPvvufgfwdpHdmEpUcSOj1PM0Kn2ZRqLSXOReV8ZRcvLXgTwapifn2fka_G5zYSissp0Tw0Rtx4bOyPdCfRtKq4z3fBMWcXbQ_zi5iqiCFHla23IauimzYPcD3FiT5HHq5je4nav3jw9w7N9x3j_88fkoaioORAYXtlmUlK5A-6CKCy-1y5PMulx6bp3PbZVYn7nSahF7X8rCSY9_Jrw0ic5KL1wmjMB212Ejx8bSDmx8OhycfVv6NMjlFXwaKdq0SVG0PtY4QJrynLb1FBQiRJTdWSXXvR7fMYD_8dmGpbD_GB41NizrLYTuCay50VPY7P2aNjge7hmc9FioscPQJmYmVI7AphgdL7CJvrhkN3g3ZVNHgcjhhLJmGq8QXeIsq-as1pS0OZs_h-G9MPEFdEbjkdsC5j3OEHlsSiHzFG-0zaTxsrLC5GS4dCFu2aRMg2lOpTUu1BKNOXBWIWcVcVZlXXi_fGWyAPRYRbyFvFcaGVir4XdOcHwxIdglsgs77YCoRu1rdSukXXizfIwKS14YPXLja6KRZHZLWa6gKRLCMYw50nxoB_uvz_yvv9urO_UaHqDOqC_Hg9OX8JAHcaNouR3ozKbX7hWaV7Nqt5FbBj_vW1X-AE04M6U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+for+computing+date+palm+water+requirements+as+affected+by+salinity&rft.jtitle=Irrigation+science&rft.au=Sperling%2C+Or&rft.au=Shapira%2C+Or&rft.au=Tripler%2C+Effi&rft.au=Schwartz%2C+Amnon&rft.date=2014-09-01&rft.issn=0342-7188&rft.volume=32&rft.issue=5+p.341-350&rft.spage=341&rft.epage=350&rft_id=info:doi/10.1007%2Fs00271-014-0433-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0342-7188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0342-7188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0342-7188&client=summon |