A Novel Imputation Model for Missing Concrete Dam Monitoring Data

To ensure the safety of concrete dams, a large number of monitoring instruments are embedded in the bodies and foundations of the dams. However, monitoring data are often missing due to failure of monitoring equipment, human error and other factors that cause difficulties in diagnosis of dam safety...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 11; no. 9; p. 2178
Main Authors Cui, Xinran, Gu, Hao, Gu, Chongshi, Cao, Wenhan, Wang, Jiayi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To ensure the safety of concrete dams, a large number of monitoring instruments are embedded in the bodies and foundations of the dams. However, monitoring data are often missing due to failure of monitoring equipment, human error and other factors that cause difficulties in diagnosis of dam safety and failure to precisely predict their deformation. In this paper, a new method for imputing missing deformation data is proposed. First, since the traditional deformation increment speed distance index of the deformation similarity index does not take into account the fact that there is little change in deformations occurring in two consecutive days, the denominator of the index tends to be equal to zero. In this paper, an improved index for solving this problem is proposed. A combined weighting method for calculating the deformation similarity comprehensive index and the k-means clustering method is then proposed and used to classify deformation monitoring points. Subsequently, a panel data model that imputes different types of missing data is established. The method proposed in this paper can impute missing concrete dam deformation data more accurately; therefore, it can effectively solve the missing deformation monitoring data problem.
AbstractList To ensure the safety of concrete dams, a large number of monitoring instruments are embedded in the bodies and foundations of the dams. However, monitoring data are often missing due to failure of monitoring equipment, human error and other factors that cause difficulties in diagnosis of dam safety and failure to precisely predict their deformation. In this paper, a new method for imputing missing deformation data is proposed. First, since the traditional deformation increment speed distance index of the deformation similarity index does not take into account the fact that there is little change in deformations occurring in two consecutive days, the denominator of the index tends to be equal to zero. In this paper, an improved index for solving this problem is proposed. A combined weighting method for calculating the deformation similarity comprehensive index and the k-means clustering method is then proposed and used to classify deformation monitoring points. Subsequently, a panel data model that imputes different types of missing data is established. The method proposed in this paper can impute missing concrete dam deformation data more accurately; therefore, it can effectively solve the missing deformation monitoring data problem.
Audience Academic
Author Cui, Xinran
Gu, Hao
Gu, Chongshi
Cao, Wenhan
Wang, Jiayi
Author_xml – sequence: 1
  givenname: Xinran
  orcidid: 0000-0001-8898-1824
  surname: Cui
  fullname: Cui, Xinran
– sequence: 2
  givenname: Hao
  surname: Gu
  fullname: Gu, Hao
– sequence: 3
  givenname: Chongshi
  surname: Gu
  fullname: Gu, Chongshi
– sequence: 4
  givenname: Wenhan
  surname: Cao
  fullname: Cao, Wenhan
– sequence: 5
  givenname: Jiayi
  surname: Wang
  fullname: Wang, Jiayi
BookMark eNpNkU1LAzEQhoMoWGtv_oAFr1bztU1yLK0fBasXPYfZfNSU7qZmU8F_b2pFmjlkeGfm4WXmAp12sXMIXRF8y5jCdy3kD0KwokTIEzSglIqxKIXTo_wcjfp-jctThEmuBmg6rV7il9tUi3a7y5BD7KpltEXwMVXL0PehW1Wz2Jnksqvm0JZyF3JMe30OGS7RmYdN70Z__xC9P9y_zZ7Gz6-Pi9n0eWw4nuQx4ViYCbEOQyM50EbxmtC6rqm1xirLGoUFV4I2jnLPsQGrwDMvRcMxuJoN0eLAtRHWeptCC-lbRwj6V4hppSHlYDZOE-fBcCUJbgTnhCkrZeOaCXBX8M4W1vWBtU3xc-f6rNdxl7piX1NJ6KQWnLHSdXvoWkGBhs7HnMCUsK4Npmzfh6JPi2usJK_3AzeHAZNi3yfn_20SrPdH0sdHYj9cgYSb
CitedBy_id crossref_primary_10_3390_w16091287
crossref_primary_10_1016_j_aei_2024_102642
crossref_primary_10_1109_ACCESS_2024_3383016
crossref_primary_10_3390_w16101388
crossref_primary_10_1016_j_engappai_2024_108586
crossref_primary_10_1038_s41598_024_60944_4
Cites_doi 10.1016/j.measurement.2021.109377
10.1016/j.eswa.2022.119439
10.1155/2021/9950874
10.1002/9781119482260
10.1002/stc.2037
10.3390/w11071499
10.1016/0305-0548(94)00059-H
10.1109/ACCESS.2021.3106817
10.1360/SSM-2019-0280
10.1061/(ASCE)WR.1943-5452.0001311
10.1111/j.1751-5823.2010.00103.x
10.1145/2699722
10.1109/WSC.2011.6147984
10.1177/1475921718794953
10.2306/scienceasia1513-1874.2008.34.341
10.1007/978-3-030-03991-2_33
10.1186/s40064-016-2600-z
10.1007/s10489-019-01560-y
10.3390/app11010463
10.1109/IFSA-NAFIPS.2013.6608516
10.3390/electronics11071032
10.3390/e22020259
10.1177/1475921718797949
10.3390/app12010481
10.1117/12.2606850
10.3390/s19132895
10.1016/j.ijleo.2016.10.118
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11092178
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_1efac49810b744139d88beb6a4e2beed
A749098453
10_3390_math11092178
GroupedDBID -~X
3V.
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABJNI
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M0N
M7S
MODMG
M~E
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNS
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
P62
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-1407c61de0ab84a2b945125552ddcd9d3b9074972be24f40cad9af3f87b40ae53
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Tue Oct 22 15:16:05 EDT 2024
Thu Oct 10 18:37:01 EDT 2024
Fri Feb 02 04:28:32 EST 2024
Thu Sep 26 18:13:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-1407c61de0ab84a2b945125552ddcd9d3b9074972be24f40cad9af3f87b40ae53
ORCID 0000-0001-8898-1824
OpenAccessLink https://doaj.org/article/1efac49810b744139d88beb6a4e2beed
PQID 2812657433
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_1efac49810b744139d88beb6a4e2beed
proquest_journals_2812657433
gale_infotracacademiconefile_A749098453
crossref_primary_10_3390_math11092178
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wan (ref_17) 2019; 18
Fu (ref_2) 2017; 130
Gore (ref_22) 2015; 25
ref_36
ref_12
ref_33
Kantar (ref_39) 2015; 13
Ge (ref_7) 2021; 147
Chen (ref_19) 2019; 18
ref_16
ref_38
Shi (ref_32) 2020; 45
Diakoulaki (ref_34) 1995; 22
Zhang (ref_13) 2016; 4
Wang (ref_20) 2021; 9
Hou (ref_35) 2022; 43
Norazian (ref_10) 2008; 34
Shao (ref_21) 2018; 25
Lin (ref_18) 2020; 50
Bertsimas (ref_15) 2018; 18
ref_25
ref_24
ref_23
Dai (ref_14) 2013; 43
Wang (ref_29) 2016; 33
Wei (ref_3) 2021; 2021
Li (ref_8) 2021; 178
Shi (ref_28) 2016; 5
Huang (ref_1) 2022; 42
ref_40
Cao (ref_26) 2023; 216
ref_27
Andridge (ref_11) 2010; 78
ref_9
Jian (ref_30) 2007; 29
ref_5
ref_4
Zhu (ref_31) 2021; 43
Zhang (ref_37) 2020; 50
ref_6
References_xml – volume: 178
  start-page: 14
  year: 2021
  ident: ref_8
  article-title: A large-scale sensor missing data imputation framework for dams using deep learning and transfer learning strategy
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109377
  contributor:
    fullname: Li
– volume: 13
  start-page: 263
  year: 2015
  ident: ref_39
  article-title: Generalized least squares and weighted least squares estimation methods for distributional parameters
  publication-title: Revstat-Stat. J.
  contributor:
    fullname: Kantar
– volume: 216
  start-page: 119439
  year: 2023
  ident: ref_26
  article-title: Spatiotemporal clustering analysis and zonal prediction model for deformation behavior of super-high arch dams
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119439
  contributor:
    fullname: Cao
– volume: 2021
  start-page: 12
  year: 2021
  ident: ref_3
  article-title: Processing Method of Missing Data in Dam Safety Monitoring
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/9950874
  contributor:
    fullname: Wei
– ident: ref_9
  doi: 10.1002/9781119482260
– volume: 25
  start-page: 2037
  year: 2018
  ident: ref_21
  article-title: A novel model of dam displacement based on panel data
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2037
  contributor:
    fullname: Shao
– ident: ref_27
  doi: 10.3390/w11071499
– volume: 45
  start-page: 170
  year: 2020
  ident: ref_32
  article-title: An Improved Weighting Method of AHM-RS Radar Equipment Supportability Evaluation Index
  publication-title: Fire Control Command Control
  contributor:
    fullname: Shi
– volume: 22
  start-page: 763
  year: 1995
  ident: ref_34
  article-title: Determining objective weights in multiple criteria problems: The critic method
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(94)00059-H
  contributor:
    fullname: Diakoulaki
– volume: 9
  start-page: 117615
  year: 2021
  ident: ref_20
  article-title: A Spatio-Temporal Dam Deformation Zoning Method Considering Non-Uniform Distribution of Monitoring Information
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3106817
  contributor:
    fullname: Wang
– ident: ref_40
– volume: 50
  start-page: 1387
  year: 2020
  ident: ref_37
  article-title: A survey on theory and algorithms for k-means problems
  publication-title: Sci. Sin. Math.
  doi: 10.1360/SSM-2019-0280
  contributor:
    fullname: Zhang
– volume: 147
  start-page: 7
  year: 2021
  ident: ref_7
  article-title: Interval Analysis of the Loss of Life Caused by Dam Failure
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0001311
  contributor:
    fullname: Ge
– volume: 78
  start-page: 40
  year: 2010
  ident: ref_11
  article-title: A Review of Hot Deck Imputation for Survey Non-response
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2010.00103.x
  contributor:
    fullname: Andridge
– volume: 25
  start-page: 2699722
  year: 2015
  ident: ref_22
  article-title: Statistical Debugging for Simulations
  publication-title: ACM Trans. Model. Comput. Simul.
  doi: 10.1145/2699722
  contributor:
    fullname: Gore
– volume: 4
  start-page: 5
  year: 2016
  ident: ref_13
  article-title: Multiple imputation with multivariate imputation by chained equation (MICE) package
  publication-title: Ann. Transl. Med.
  contributor:
    fullname: Zhang
– ident: ref_23
  doi: 10.1109/WSC.2011.6147984
– volume: 18
  start-page: 1282
  year: 2019
  ident: ref_17
  article-title: Bayesian multi-task learning methodology for reconstruction of structural health monitoring data
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718794953
  contributor:
    fullname: Wan
– volume: 43
  start-page: 162
  year: 2013
  ident: ref_14
  article-title: Binary Logistic Regression Imputation and Application
  publication-title: Math. Pract. Theory
  contributor:
    fullname: Dai
– volume: 42
  start-page: 89
  year: 2022
  ident: ref_1
  article-title: A novel method for processing missing data of concrete dam deformation
  publication-title: Adv. Sci. Technol. Water Resour.
  contributor:
    fullname: Huang
– volume: 43
  start-page: 697
  year: 2021
  ident: ref_31
  article-title: Evaluation of Brake Pedal Feeling Based on Subjective and Objective Comprehensive Weighting Method
  publication-title: Automot. Eng.
  contributor:
    fullname: Zhu
– volume: 34
  start-page: 341
  year: 2008
  ident: ref_10
  article-title: Estimation of missing values in air pollution data using single imputation techniques
  publication-title: Scienceasia
  doi: 10.2306/scienceasia1513-1874.2008.34.341
  contributor:
    fullname: Norazian
– ident: ref_12
  doi: 10.1007/978-3-030-03991-2_33
– volume: 5
  start-page: 898
  year: 2016
  ident: ref_28
  article-title: Variable-intercept panel model for deformation zoning of a super-high arch dam
  publication-title: SpringerPlus
  doi: 10.1186/s40064-016-2600-z
  contributor:
    fullname: Shi
– volume: 50
  start-page: 860
  year: 2020
  ident: ref_18
  article-title: Data-driven missing data imputation in cluster monitoring system based on deep neural network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01560-y
  contributor:
    fullname: Lin
– ident: ref_6
  doi: 10.3390/app11010463
– ident: ref_24
  doi: 10.1109/IFSA-NAFIPS.2013.6608516
– ident: ref_25
  doi: 10.3390/electronics11071032
– ident: ref_33
  doi: 10.3390/e22020259
– volume: 18
  start-page: 1355
  year: 2019
  ident: ref_19
  article-title: A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718797949
  contributor:
    fullname: Chen
– ident: ref_5
  doi: 10.3390/app12010481
– ident: ref_4
  doi: 10.1117/12.2606850
– volume: 29
  start-page: 383
  year: 2007
  ident: ref_30
  article-title: Method to determine attribute weights based on subjective and objective integrated
  publication-title: Syst. Eng. Electron.
  contributor:
    fullname: Jian
– ident: ref_38
– ident: ref_36
– volume: 18
  start-page: 39
  year: 2018
  ident: ref_15
  article-title: From Predictive Methods to Missing Data Imputation: An Optimization Approach
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Bertsimas
– ident: ref_16
  doi: 10.3390/s19132895
– volume: 43
  start-page: 50
  year: 2022
  ident: ref_35
  article-title: Hybrid Load-Following Operation Strategy for Building Triple-Feed System Considering Energy Storage Characteristics
  publication-title: Electr. Power Constr.
  contributor:
    fullname: Hou
– volume: 33
  start-page: 2933
  year: 2016
  ident: ref_29
  article-title: Node importance ranking of multi-attribute social networks based on objective weight determining method
  publication-title: Appl. Res. Comput.
  contributor:
    fullname: Wang
– volume: 130
  start-page: 681
  year: 2017
  ident: ref_2
  article-title: Deformation features of a super-high arch dam structural system
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.10.118
  contributor:
    fullname: Fu
SSID ssj0000913849
Score 2.3123384
Snippet To ensure the safety of concrete dams, a large number of monitoring instruments are embedded in the bodies and foundations of the dams. However, monitoring...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 2178
SubjectTerms Analysis
Cluster analysis
Clustering
Concrete
concrete dam
Concrete dams
Dam failure
Dam foundations
Dam safety
Dams
Data models
Deformation effects
distance similarity index
Human error
Longitudinal studies
Machine learning
Mathematics
measurement point clustering
Methods
Missing data
missing data imputation
Monitoring
Monitoring systems
Neural networks
panel data model
Similarity
Vector quantization
Weighting methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swED60ztIOQfpCnUfBoUUnIZJISuQUOGkMt4CNIGiAbARfaobUSm0lvz93Eu00QztKIiDy4-O7O5LfAXwuna-EDnkmYhEy4WufKcebzIZCKWmjF5ouJ88X1exK_LiW1yngtk7HKjdrYr9Qh9ZTjPy4RCaqJPIdP7n7k1HWKNpdTSk0XsJOiZ5CPoKd0_PFxeU2ykKql0ro4cQ7R__-GO3AG1LZRFNcPeOiXrL_XwtzzzbTPdhNZiKbDP36Bl7E5Vt4Pd9qrK7fwWTCFu1DvGXfKS9DDzCjzGa3DO1QNkdAkZXYWbtEu7CL7Jv9zYYJTJE8fOzse7ianv88m2UpIULmkXe7DJtY-6oIMbdOCVs6LZCvpZRlCD7owB25urouXSxFI3Jvg7YNb1TtRG6j5B9gtGyX8SMwEhJE24EH52osWGhfaeWE41bqJqg4hi8baMzdoHth0F8gCM3fEI7hlHDbliG16v5Fu_pl0uA3RWwsdroqcvwZsqYOSrnoKisiVjWGMXwl1A3NqW5lvU1XA7CqpE5lJtioXCsh-RgONx1j0mRbm6ehsf__zwfwirLFD-cVD2HUre7jEdoUnfuUBs4jMIjMBA
  priority: 102
  providerName: ProQuest
Title A Novel Imputation Model for Missing Concrete Dam Monitoring Data
URI https://www.proquest.com/docview/2812657433
https://doaj.org/article/1efac49810b744139d88beb6a4e2beed
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BWWBAPEV5VB5ATFGT2E7ssQXKQ2qFEJW6WX5FDJAiCPx-zkmKyoBYGBMlkvOd7-676PwdwGlqbMakiyPmExcxm9tIGFpE2iVCcO0tk-Fw8niS3UzZ3YzPlkZ9hZ6wRh64Aa6f-ELjCyKJTY6pm0onhPEm08ynBgN8HX1juVRM1TFYJlQw2XS6U6zr-8j_noK6JlJw8SMH1VL9vwXkOsuMtmCzpYdk0CxrG1Z8uQMb429t1fddGAzIZP7pn8ltmMdQA0vCRLNngvyTjBFIzEbkYl4iH6w8udQvpHHc8AcPLyu9B9PR1ePFTdQOQogs5tsqwiIot1nifKyNYDo1kmGe5pynzlknHTWhxJU5ApKygsVWO6kLWojcsFh7TvehU85LfwAkCAgiZ6DOIJyxTaTNpDDMUM1l4YTvwtkCGvXa6F0orBMChGoZwi4MA27fzwSV6voG2k61tlN_2a4L5wF1FXypetNWt0cCcKlBlUoN8KNiKRinXTheGEa1TvauUiQnGUcKRA__YzVHsB5myTfdjMfQqd4-_Akyjsr0YFWMrnuwNrya3D_06q32BScH1ug
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5ROLQcEC2t2PKoD616ikhiO7FPaHksS8vuCSRull-BA2zobtrfz0ySXeihPSaxFGf8-L6ZeL4B-Jo7Xwgd0kTELCTClz5RjleJDZlS0kYvNCUnT6bF-Eb8uJW3fcBt0R-rXO6J7UYdak8x8qMckaiQiHf8-OlXQlWj6O9qX0LjDWwIjlhNmeKji1WMhTQvldDdeXeO3v0RssB70thEIq7-QqJWsP9f23KLNaNt2OpJIht2o_oe1uLsA2xOVgqrix0YDtm0_hMf2CVVZWjNy6iu2QNDFsomaE7EJHZaz5AVNpGd2UfWLV-K4-FlYz_Czej8-nSc9OUQEo-o2yToCpW-yEJMrVPC5k4LRGspZR6CDzpwR46uLnMXc1GJ1NugbcUrVTqR2ij5J1if1bO4C4xkBJE58OBciQ0z7QutnHDcSl0FFQfwbWka89SpXhj0FsiE5rUJB3BCdlu1Ia3q9kY9vzP91DdZrCwOucpSfBlipg5KuegKKyJ2NYYBfCerG1pRzdx62ycGYFdJm8oM8aNSrYTkA9hfDozpl9rCvEyMz_9__AXejq8nV-bqcvpzD95R3fju5OI-rDfz3_EA2UXjDtsp9Ax0ic2P
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB71ISE4VLSAWCjUhyJO0SaxndinatuytMCuOFCpN8uvlEPZlN3A72cm8W7hQI9JLMUZz_ibmYy_ATguna-EDnkmYhEy4WufKcebzIZCKWmjF5oOJ8_m1cWV-HQtr1P90yqVVa73xH6jDq2nHPm4RCSqJOIdHzepLOLr-fTk7mdGHaToT2tqp7ENuziqIg1X04-bfAvxXyqhh9p3jpH-GD3C78S3iU65-geVevL-_23RPe5Mn8JechjZZFjhfdiKiwN4Mtuwra6ewWTC5u3veMsuqUNDL2pGPc5uGXqkbIaiRXxiZ-0CPcQusnP7gw2mTDk9vOzsc7iafvh2dpGl1giZRwTuMgyLal8VIebWKWFLpwUit5SyDMEHHbijoFfXpYulaETubdC24Y2qnchtlPwF7CzaRXwJjCgF0YvgwbkaBxbaV1o54biVugkqjuDdWjTmbmDAMBg5kAjN3yIcwSnJbTOGeKv7G-3yxiQzMEVsLC6_KnJ8GeKnDkq56CorIk41hhG8J6kbsq5uab1NhwRwqsRTZSb4UblWQvIRHK4XxiSzW5l7JXn18OMjeITaY75czj-_hsfUQn4oYjyEnW75K75BR6Nzb3sN-gML-9HN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Imputation+Model+for+Missing+Concrete+Dam+Monitoring+Data&rft.jtitle=Mathematics+%28Basel%29&rft.au=Cui%2C+Xinran&rft.au=Gu%2C+Hao&rft.au=Gu%2C+Chongshi&rft.au=Cao%2C+Wenhan&rft.date=2023-05-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=9&rft.spage=2178&rft_id=info:doi/10.3390%2Fmath11092178&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math11092178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon