A Novel Imputation Model for Missing Concrete Dam Monitoring Data
To ensure the safety of concrete dams, a large number of monitoring instruments are embedded in the bodies and foundations of the dams. However, monitoring data are often missing due to failure of monitoring equipment, human error and other factors that cause difficulties in diagnosis of dam safety...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 9; p. 2178 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To ensure the safety of concrete dams, a large number of monitoring instruments are embedded in the bodies and foundations of the dams. However, monitoring data are often missing due to failure of monitoring equipment, human error and other factors that cause difficulties in diagnosis of dam safety and failure to precisely predict their deformation. In this paper, a new method for imputing missing deformation data is proposed. First, since the traditional deformation increment speed distance index of the deformation similarity index does not take into account the fact that there is little change in deformations occurring in two consecutive days, the denominator of the index tends to be equal to zero. In this paper, an improved index for solving this problem is proposed. A combined weighting method for calculating the deformation similarity comprehensive index and the k-means clustering method is then proposed and used to classify deformation monitoring points. Subsequently, a panel data model that imputes different types of missing data is established. The method proposed in this paper can impute missing concrete dam deformation data more accurately; therefore, it can effectively solve the missing deformation monitoring data problem. |
---|---|
AbstractList | To ensure the safety of concrete dams, a large number of monitoring instruments are embedded in the bodies and foundations of the dams. However, monitoring data are often missing due to failure of monitoring equipment, human error and other factors that cause difficulties in diagnosis of dam safety and failure to precisely predict their deformation. In this paper, a new method for imputing missing deformation data is proposed. First, since the traditional deformation increment speed distance index of the deformation similarity index does not take into account the fact that there is little change in deformations occurring in two consecutive days, the denominator of the index tends to be equal to zero. In this paper, an improved index for solving this problem is proposed. A combined weighting method for calculating the deformation similarity comprehensive index and the k-means clustering method is then proposed and used to classify deformation monitoring points. Subsequently, a panel data model that imputes different types of missing data is established. The method proposed in this paper can impute missing concrete dam deformation data more accurately; therefore, it can effectively solve the missing deformation monitoring data problem. |
Audience | Academic |
Author | Cui, Xinran Gu, Hao Gu, Chongshi Cao, Wenhan Wang, Jiayi |
Author_xml | – sequence: 1 givenname: Xinran orcidid: 0000-0001-8898-1824 surname: Cui fullname: Cui, Xinran – sequence: 2 givenname: Hao surname: Gu fullname: Gu, Hao – sequence: 3 givenname: Chongshi surname: Gu fullname: Gu, Chongshi – sequence: 4 givenname: Wenhan surname: Cao fullname: Cao, Wenhan – sequence: 5 givenname: Jiayi surname: Wang fullname: Wang, Jiayi |
BookMark | eNpNkU1LAzEQhoMoWGtv_oAFr1bztU1yLK0fBasXPYfZfNSU7qZmU8F_b2pFmjlkeGfm4WXmAp12sXMIXRF8y5jCdy3kD0KwokTIEzSglIqxKIXTo_wcjfp-jctThEmuBmg6rV7il9tUi3a7y5BD7KpltEXwMVXL0PehW1Wz2Jnksqvm0JZyF3JMe30OGS7RmYdN70Z__xC9P9y_zZ7Gz6-Pi9n0eWw4nuQx4ViYCbEOQyM50EbxmtC6rqm1xirLGoUFV4I2jnLPsQGrwDMvRcMxuJoN0eLAtRHWeptCC-lbRwj6V4hppSHlYDZOE-fBcCUJbgTnhCkrZeOaCXBX8M4W1vWBtU3xc-f6rNdxl7piX1NJ6KQWnLHSdXvoWkGBhs7HnMCUsK4Npmzfh6JPi2usJK_3AzeHAZNi3yfn_20SrPdH0sdHYj9cgYSb |
CitedBy_id | crossref_primary_10_3390_w16091287 crossref_primary_10_1016_j_aei_2024_102642 crossref_primary_10_1109_ACCESS_2024_3383016 crossref_primary_10_3390_w16101388 crossref_primary_10_1016_j_engappai_2024_108586 crossref_primary_10_1038_s41598_024_60944_4 |
Cites_doi | 10.1016/j.measurement.2021.109377 10.1016/j.eswa.2022.119439 10.1155/2021/9950874 10.1002/9781119482260 10.1002/stc.2037 10.3390/w11071499 10.1016/0305-0548(94)00059-H 10.1109/ACCESS.2021.3106817 10.1360/SSM-2019-0280 10.1061/(ASCE)WR.1943-5452.0001311 10.1111/j.1751-5823.2010.00103.x 10.1145/2699722 10.1109/WSC.2011.6147984 10.1177/1475921718794953 10.2306/scienceasia1513-1874.2008.34.341 10.1007/978-3-030-03991-2_33 10.1186/s40064-016-2600-z 10.1007/s10489-019-01560-y 10.3390/app11010463 10.1109/IFSA-NAFIPS.2013.6608516 10.3390/electronics11071032 10.3390/e22020259 10.1177/1475921718797949 10.3390/app12010481 10.1117/12.2606850 10.3390/s19132895 10.1016/j.ijleo.2016.10.118 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math11092178 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_1efac49810b744139d88beb6a4e2beed A749098453 10_3390_math11092178 |
GroupedDBID | -~X 3V. 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABJNI ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M0N M7S MODMG M~E OK1 PIMPY PQQKQ PROAC PTHSS RNS 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D P62 PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c406t-1407c61de0ab84a2b945125552ddcd9d3b9074972be24f40cad9af3f87b40ae53 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Tue Oct 22 15:16:05 EDT 2024 Thu Oct 10 18:37:01 EDT 2024 Fri Feb 02 04:28:32 EST 2024 Thu Sep 26 18:13:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-1407c61de0ab84a2b945125552ddcd9d3b9074972be24f40cad9af3f87b40ae53 |
ORCID | 0000-0001-8898-1824 |
OpenAccessLink | https://doaj.org/article/1efac49810b744139d88beb6a4e2beed |
PQID | 2812657433 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1efac49810b744139d88beb6a4e2beed proquest_journals_2812657433 gale_infotracacademiconefile_A749098453 crossref_primary_10_3390_math11092178 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wan (ref_17) 2019; 18 Fu (ref_2) 2017; 130 Gore (ref_22) 2015; 25 ref_36 ref_12 ref_33 Kantar (ref_39) 2015; 13 Ge (ref_7) 2021; 147 Chen (ref_19) 2019; 18 ref_16 ref_38 Shi (ref_32) 2020; 45 Diakoulaki (ref_34) 1995; 22 Zhang (ref_13) 2016; 4 Wang (ref_20) 2021; 9 Hou (ref_35) 2022; 43 Norazian (ref_10) 2008; 34 Shao (ref_21) 2018; 25 Lin (ref_18) 2020; 50 Bertsimas (ref_15) 2018; 18 ref_25 ref_24 ref_23 Dai (ref_14) 2013; 43 Wang (ref_29) 2016; 33 Wei (ref_3) 2021; 2021 Li (ref_8) 2021; 178 Shi (ref_28) 2016; 5 Huang (ref_1) 2022; 42 ref_40 Cao (ref_26) 2023; 216 ref_27 Andridge (ref_11) 2010; 78 ref_9 Jian (ref_30) 2007; 29 ref_5 ref_4 Zhu (ref_31) 2021; 43 Zhang (ref_37) 2020; 50 ref_6 |
References_xml | – volume: 178 start-page: 14 year: 2021 ident: ref_8 article-title: A large-scale sensor missing data imputation framework for dams using deep learning and transfer learning strategy publication-title: Measurement doi: 10.1016/j.measurement.2021.109377 contributor: fullname: Li – volume: 13 start-page: 263 year: 2015 ident: ref_39 article-title: Generalized least squares and weighted least squares estimation methods for distributional parameters publication-title: Revstat-Stat. J. contributor: fullname: Kantar – volume: 216 start-page: 119439 year: 2023 ident: ref_26 article-title: Spatiotemporal clustering analysis and zonal prediction model for deformation behavior of super-high arch dams publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119439 contributor: fullname: Cao – volume: 2021 start-page: 12 year: 2021 ident: ref_3 article-title: Processing Method of Missing Data in Dam Safety Monitoring publication-title: Math. Probl. Eng. doi: 10.1155/2021/9950874 contributor: fullname: Wei – ident: ref_9 doi: 10.1002/9781119482260 – volume: 25 start-page: 2037 year: 2018 ident: ref_21 article-title: A novel model of dam displacement based on panel data publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2037 contributor: fullname: Shao – ident: ref_27 doi: 10.3390/w11071499 – volume: 45 start-page: 170 year: 2020 ident: ref_32 article-title: An Improved Weighting Method of AHM-RS Radar Equipment Supportability Evaluation Index publication-title: Fire Control Command Control contributor: fullname: Shi – volume: 22 start-page: 763 year: 1995 ident: ref_34 article-title: Determining objective weights in multiple criteria problems: The critic method publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(94)00059-H contributor: fullname: Diakoulaki – volume: 9 start-page: 117615 year: 2021 ident: ref_20 article-title: A Spatio-Temporal Dam Deformation Zoning Method Considering Non-Uniform Distribution of Monitoring Information publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3106817 contributor: fullname: Wang – ident: ref_40 – volume: 50 start-page: 1387 year: 2020 ident: ref_37 article-title: A survey on theory and algorithms for k-means problems publication-title: Sci. Sin. Math. doi: 10.1360/SSM-2019-0280 contributor: fullname: Zhang – volume: 147 start-page: 7 year: 2021 ident: ref_7 article-title: Interval Analysis of the Loss of Life Caused by Dam Failure publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0001311 contributor: fullname: Ge – volume: 78 start-page: 40 year: 2010 ident: ref_11 article-title: A Review of Hot Deck Imputation for Survey Non-response publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2010.00103.x contributor: fullname: Andridge – volume: 25 start-page: 2699722 year: 2015 ident: ref_22 article-title: Statistical Debugging for Simulations publication-title: ACM Trans. Model. Comput. Simul. doi: 10.1145/2699722 contributor: fullname: Gore – volume: 4 start-page: 5 year: 2016 ident: ref_13 article-title: Multiple imputation with multivariate imputation by chained equation (MICE) package publication-title: Ann. Transl. Med. contributor: fullname: Zhang – ident: ref_23 doi: 10.1109/WSC.2011.6147984 – volume: 18 start-page: 1282 year: 2019 ident: ref_17 article-title: Bayesian multi-task learning methodology for reconstruction of structural health monitoring data publication-title: Struct. Health Monit. doi: 10.1177/1475921718794953 contributor: fullname: Wan – volume: 43 start-page: 162 year: 2013 ident: ref_14 article-title: Binary Logistic Regression Imputation and Application publication-title: Math. Pract. Theory contributor: fullname: Dai – volume: 42 start-page: 89 year: 2022 ident: ref_1 article-title: A novel method for processing missing data of concrete dam deformation publication-title: Adv. Sci. Technol. Water Resour. contributor: fullname: Huang – volume: 43 start-page: 697 year: 2021 ident: ref_31 article-title: Evaluation of Brake Pedal Feeling Based on Subjective and Objective Comprehensive Weighting Method publication-title: Automot. Eng. contributor: fullname: Zhu – volume: 34 start-page: 341 year: 2008 ident: ref_10 article-title: Estimation of missing values in air pollution data using single imputation techniques publication-title: Scienceasia doi: 10.2306/scienceasia1513-1874.2008.34.341 contributor: fullname: Norazian – ident: ref_12 doi: 10.1007/978-3-030-03991-2_33 – volume: 5 start-page: 898 year: 2016 ident: ref_28 article-title: Variable-intercept panel model for deformation zoning of a super-high arch dam publication-title: SpringerPlus doi: 10.1186/s40064-016-2600-z contributor: fullname: Shi – volume: 50 start-page: 860 year: 2020 ident: ref_18 article-title: Data-driven missing data imputation in cluster monitoring system based on deep neural network publication-title: Appl. Intell. doi: 10.1007/s10489-019-01560-y contributor: fullname: Lin – ident: ref_6 doi: 10.3390/app11010463 – ident: ref_24 doi: 10.1109/IFSA-NAFIPS.2013.6608516 – ident: ref_25 doi: 10.3390/electronics11071032 – ident: ref_33 doi: 10.3390/e22020259 – volume: 18 start-page: 1355 year: 2019 ident: ref_19 article-title: A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data publication-title: Struct. Health Monit. doi: 10.1177/1475921718797949 contributor: fullname: Chen – ident: ref_5 doi: 10.3390/app12010481 – ident: ref_4 doi: 10.1117/12.2606850 – volume: 29 start-page: 383 year: 2007 ident: ref_30 article-title: Method to determine attribute weights based on subjective and objective integrated publication-title: Syst. Eng. Electron. contributor: fullname: Jian – ident: ref_38 – ident: ref_36 – volume: 18 start-page: 39 year: 2018 ident: ref_15 article-title: From Predictive Methods to Missing Data Imputation: An Optimization Approach publication-title: J. Mach. Learn. Res. contributor: fullname: Bertsimas – ident: ref_16 doi: 10.3390/s19132895 – volume: 43 start-page: 50 year: 2022 ident: ref_35 article-title: Hybrid Load-Following Operation Strategy for Building Triple-Feed System Considering Energy Storage Characteristics publication-title: Electr. Power Constr. contributor: fullname: Hou – volume: 33 start-page: 2933 year: 2016 ident: ref_29 article-title: Node importance ranking of multi-attribute social networks based on objective weight determining method publication-title: Appl. Res. Comput. contributor: fullname: Wang – volume: 130 start-page: 681 year: 2017 ident: ref_2 article-title: Deformation features of a super-high arch dam structural system publication-title: Optik doi: 10.1016/j.ijleo.2016.10.118 contributor: fullname: Fu |
SSID | ssj0000913849 |
Score | 2.3123384 |
Snippet | To ensure the safety of concrete dams, a large number of monitoring instruments are embedded in the bodies and foundations of the dams. However, monitoring... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2178 |
SubjectTerms | Analysis Cluster analysis Clustering Concrete concrete dam Concrete dams Dam failure Dam foundations Dam safety Dams Data models Deformation effects distance similarity index Human error Longitudinal studies Machine learning Mathematics measurement point clustering Methods Missing data missing data imputation Monitoring Monitoring systems Neural networks panel data model Similarity Vector quantization Weighting methods |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swED60ztIOQfpCnUfBoUUnIZJISuQUOGkMt4CNIGiAbARfaobUSm0lvz93Eu00QztKIiDy4-O7O5LfAXwuna-EDnkmYhEy4WufKcebzIZCKWmjF5ouJ88X1exK_LiW1yngtk7HKjdrYr9Qh9ZTjPy4RCaqJPIdP7n7k1HWKNpdTSk0XsJOiZ5CPoKd0_PFxeU2ykKql0ro4cQ7R__-GO3AG1LZRFNcPeOiXrL_XwtzzzbTPdhNZiKbDP36Bl7E5Vt4Pd9qrK7fwWTCFu1DvGXfKS9DDzCjzGa3DO1QNkdAkZXYWbtEu7CL7Jv9zYYJTJE8fOzse7ianv88m2UpIULmkXe7DJtY-6oIMbdOCVs6LZCvpZRlCD7owB25urouXSxFI3Jvg7YNb1TtRG6j5B9gtGyX8SMwEhJE24EH52osWGhfaeWE41bqJqg4hi8baMzdoHth0F8gCM3fEI7hlHDbliG16v5Fu_pl0uA3RWwsdroqcvwZsqYOSrnoKisiVjWGMXwl1A3NqW5lvU1XA7CqpE5lJtioXCsh-RgONx1j0mRbm6ehsf__zwfwirLFD-cVD2HUre7jEdoUnfuUBs4jMIjMBA priority: 102 providerName: ProQuest |
Title | A Novel Imputation Model for Missing Concrete Dam Monitoring Data |
URI | https://www.proquest.com/docview/2812657433 https://doaj.org/article/1efac49810b744139d88beb6a4e2beed |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BWWBAPEV5VB5ATFGT2E7ssQXKQ2qFEJW6WX5FDJAiCPx-zkmKyoBYGBMlkvOd7-676PwdwGlqbMakiyPmExcxm9tIGFpE2iVCcO0tk-Fw8niS3UzZ3YzPlkZ9hZ6wRh64Aa6f-ELjCyKJTY6pm0onhPEm08ynBgN8HX1juVRM1TFYJlQw2XS6U6zr-8j_noK6JlJw8SMH1VL9vwXkOsuMtmCzpYdk0CxrG1Z8uQMb429t1fddGAzIZP7pn8ltmMdQA0vCRLNngvyTjBFIzEbkYl4iH6w8udQvpHHc8AcPLyu9B9PR1ePFTdQOQogs5tsqwiIot1nifKyNYDo1kmGe5pynzlknHTWhxJU5ApKygsVWO6kLWojcsFh7TvehU85LfwAkCAgiZ6DOIJyxTaTNpDDMUM1l4YTvwtkCGvXa6F0orBMChGoZwi4MA27fzwSV6voG2k61tlN_2a4L5wF1FXypetNWt0cCcKlBlUoN8KNiKRinXTheGEa1TvauUiQnGUcKRA__YzVHsB5myTfdjMfQqd4-_Akyjsr0YFWMrnuwNrya3D_06q32BScH1ug |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5ROLQcEC2t2PKoD616ikhiO7FPaHksS8vuCSRull-BA2zobtrfz0ySXeihPSaxFGf8-L6ZeL4B-Jo7Xwgd0kTELCTClz5RjleJDZlS0kYvNCUnT6bF-Eb8uJW3fcBt0R-rXO6J7UYdak8x8qMckaiQiHf8-OlXQlWj6O9qX0LjDWwIjlhNmeKji1WMhTQvldDdeXeO3v0RssB70thEIq7-QqJWsP9f23KLNaNt2OpJIht2o_oe1uLsA2xOVgqrix0YDtm0_hMf2CVVZWjNy6iu2QNDFsomaE7EJHZaz5AVNpGd2UfWLV-K4-FlYz_Czej8-nSc9OUQEo-o2yToCpW-yEJMrVPC5k4LRGspZR6CDzpwR46uLnMXc1GJ1NugbcUrVTqR2ij5J1if1bO4C4xkBJE58OBciQ0z7QutnHDcSl0FFQfwbWka89SpXhj0FsiE5rUJB3BCdlu1Ia3q9kY9vzP91DdZrCwOucpSfBlipg5KuegKKyJ2NYYBfCerG1pRzdx62ycGYFdJm8oM8aNSrYTkA9hfDozpl9rCvEyMz_9__AXejq8nV-bqcvpzD95R3fju5OI-rDfz3_EA2UXjDtsp9Ax0ic2P |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB71ISE4VLSAWCjUhyJO0SaxndinatuytMCuOFCpN8uvlEPZlN3A72cm8W7hQI9JLMUZz_ibmYy_ATguna-EDnkmYhEy4WufKcebzIZCKWmjF5oOJ8_m1cWV-HQtr1P90yqVVa73xH6jDq2nHPm4RCSqJOIdHzepLOLr-fTk7mdGHaToT2tqp7ENuziqIg1X04-bfAvxXyqhh9p3jpH-GD3C78S3iU65-geVevL-_23RPe5Mn8JechjZZFjhfdiKiwN4Mtuwra6ewWTC5u3veMsuqUNDL2pGPc5uGXqkbIaiRXxiZ-0CPcQusnP7gw2mTDk9vOzsc7iafvh2dpGl1giZRwTuMgyLal8VIebWKWFLpwUit5SyDMEHHbijoFfXpYulaETubdC24Y2qnchtlPwF7CzaRXwJjCgF0YvgwbkaBxbaV1o54biVugkqjuDdWjTmbmDAMBg5kAjN3yIcwSnJbTOGeKv7G-3yxiQzMEVsLC6_KnJ8GeKnDkq56CorIk41hhG8J6kbsq5uab1NhwRwqsRTZSb4UblWQvIRHK4XxiSzW5l7JXn18OMjeITaY75czj-_hsfUQn4oYjyEnW75K75BR6Nzb3sN-gML-9HN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Imputation+Model+for+Missing+Concrete+Dam+Monitoring+Data&rft.jtitle=Mathematics+%28Basel%29&rft.au=Cui%2C+Xinran&rft.au=Gu%2C+Hao&rft.au=Gu%2C+Chongshi&rft.au=Cao%2C+Wenhan&rft.date=2023-05-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=9&rft.spage=2178&rft_id=info:doi/10.3390%2Fmath11092178&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math11092178 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |