Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction
Precise streamflow estimation plays a key role in optimal water resource use, reservoirs operations, and designing and planning future hydropower projects. Machine learning models were successfully utilized to estimate streamflow in recent years In this study, a new approach, covariance matrix adapt...
Saved in:
Published in | Mathematics (Basel) Vol. 10; no. 16; p. 2971 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Precise streamflow estimation plays a key role in optimal water resource use, reservoirs operations, and designing and planning future hydropower projects. Machine learning models were successfully utilized to estimate streamflow in recent years In this study, a new approach, covariance matrix adaptation evolution strategy (CMAES), was utilized to improve the accuracy of seven machine learning models, namely extreme learning machine (ELM), elastic net (EN), Gaussian processes regression (GPR), support vector regression (SVR), least square SVR (LSSVR), extreme gradient boosting (XGB), and radial basis function neural network (RBFNN), in predicting streamflow. The CMAES was used for proper tuning of control parameters of these selected machine learning models. Seven input combinations were decided to estimate streamflow based on previous lagged temperature and streamflow data values. For numerical prediction accuracy comparison of these machine learning models, six statistical indexes are used, i.e., relative root mean squared error (RRMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Nash–Sutcliffe efficiency (NSE), and the Kling–Gupta efficiency agreement index (KGE). In contrast, this study uses scatter plots, radar charts, and Taylor diagrams for graphically predicted accuracy comparison. Results show that SVR provided more accurate results than the other methods, especially for the temperature input cases. In contrast, in some streamflow input cases, the LSSVR and GPR were better than the SVR. The SVR tuned by CMAES with temperature and streamflow inputs produced the least RRMSE (0.266), MAE (263.44), and MAPE (12.44) in streamflow estimation. The EN method was found to be the worst model in streamflow prediction. Uncertainty analysis also endorsed the superiority of the SVR over other machine learning methods by having low uncertainty values. Overall, the SVR model based on either temperature or streamflow as inputs, tuned by CMAES, is highly recommended for streamflow estimation. |
---|---|
AbstractList | Precise streamflow estimation plays a key role in optimal water resource use, reservoirs operations, and designing and planning future hydropower projects. Machine learning models were successfully utilized to estimate streamflow in recent years In this study, a new approach, covariance matrix adaptation evolution strategy (CMAES), was utilized to improve the accuracy of seven machine learning models, namely extreme learning machine (ELM), elastic net (EN), Gaussian processes regression (GPR), support vector regression (SVR), least square SVR (LSSVR), extreme gradient boosting (XGB), and radial basis function neural network (RBFNN), in predicting streamflow. The CMAES was used for proper tuning of control parameters of these selected machine learning models. Seven input combinations were decided to estimate streamflow based on previous lagged temperature and streamflow data values. For numerical prediction accuracy comparison of these machine learning models, six statistical indexes are used, i.e., relative root mean squared error (RRMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Nash–Sutcliffe efficiency (NSE), and the Kling–Gupta efficiency agreement index (KGE). In contrast, this study uses scatter plots, radar charts, and Taylor diagrams for graphically predicted accuracy comparison. Results show that SVR provided more accurate results than the other methods, especially for the temperature input cases. In contrast, in some streamflow input cases, the LSSVR and GPR were better than the SVR. The SVR tuned by CMAES with temperature and streamflow inputs produced the least RRMSE (0.266), MAE (263.44), and MAPE (12.44) in streamflow estimation. The EN method was found to be the worst model in streamflow prediction. Uncertainty analysis also endorsed the superiority of the SVR over other machine learning methods by having low uncertainty values. Overall, the SVR model based on either temperature or streamflow as inputs, tuned by CMAES, is highly recommended for streamflow estimation. |
Audience | Academic |
Author | Kisi, Ozgur Trajkovic, Slavisa Ikram, Rana Muhammad Adnan Shahid, Shamsuddin Goliatt, Leonardo |
Author_xml | – sequence: 1 givenname: Rana Muhammad Adnan surname: Ikram fullname: Ikram, Rana Muhammad Adnan – sequence: 2 givenname: Leonardo orcidid: 0000-0002-2844-9470 surname: Goliatt fullname: Goliatt, Leonardo – sequence: 3 givenname: Ozgur orcidid: 0000-0001-7847-5872 surname: Kisi fullname: Kisi, Ozgur – sequence: 4 givenname: Slavisa orcidid: 0000-0001-8294-1047 surname: Trajkovic fullname: Trajkovic, Slavisa – sequence: 5 givenname: Shamsuddin orcidid: 0000-0001-9621-6452 surname: Shahid fullname: Shahid, Shamsuddin |
BookMark | eNpNUdtKAzEQDaLgrW9-wIKvVnNrsvtYipdCRUF9DrPZbE3pJjWbVv17p62ISWCGM-ecTDKn5DDE4Ai5YPRaiIredJDfGWWKV5odkBPOuR5qLBz-y4_JoO8XFFfFRCmrE5ImcQPJQ7CueISc_FcxbmCVIfsYittNXK532UtOkN38u2hjKqbdKsWND3OU2HcfXDFzkMIWGK-whKDrC79TOejaZfwsnpNrvN16nZOjFpa9G_zGM_J2d_s6eRjOnu6nk_FsaCVVeYgNKmUbK1rOKROy1KLG47iVgkpZCqU4Y1VVl7VtdGnrFjlCylpwYE0D4oxM975NhIVZJd9B-jYRvNkBMc0NpOzt0hlRK7xGOy6qWpaMw0hJLm3NlB5JAI1el3svfN3H2vXZLOI6BWzfcE0V11xoiqzrPWsOaOpDG_HXLO7Gdd7iuFqP-FhzqTTTO8HVXmBT7Pvk2r82GTXbqZr_UxU_VIaWIg |
CitedBy_id | crossref_primary_10_1080_15715124_2023_2196635 crossref_primary_10_3390_f14020177 crossref_primary_10_1007_s00521_023_08865_7 crossref_primary_10_3390_math11081814 crossref_primary_10_1007_s00500_023_07985_5 crossref_primary_10_1080_13682199_2023_2182557 crossref_primary_10_1016_j_envdev_2022_100766 crossref_primary_10_1038_s41598_023_41113_5 crossref_primary_10_3390_app13031345 crossref_primary_10_1016_j_petlm_2023_05_005 crossref_primary_10_3390_w14213549 crossref_primary_10_1016_j_engappai_2023_107559 crossref_primary_10_1007_s10845_022_02047_3 crossref_primary_10_1109_ACCESS_2024_3415381 crossref_primary_10_3390_math11102358 crossref_primary_10_3390_math11143141 crossref_primary_10_1016_j_fuel_2023_128623 crossref_primary_10_1016_j_asej_2024_102916 crossref_primary_10_3390_su15086883 crossref_primary_10_3390_w15061179 crossref_primary_10_1016_j_heliyon_2023_e18506 crossref_primary_10_2166_hydro_2023_101 crossref_primary_10_1007_s00477_023_02557_3 crossref_primary_10_1016_j_heliyon_2023_e19426 |
Cites_doi | 10.1007/s11269-017-1807-2 10.1109/ACCESS.2019.2943515 10.3390/math10142399 10.1111/j.1467-9868.2005.00503.x 10.1016/j.neunet.2014.10.001 10.1007/s13762-014-0613-0 10.22456/2175-2745.80702 10.1007/s00521-013-1341-y 10.1016/j.jhydrol.2015.10.038 10.1016/j.jhydrol.2011.10.039 10.1007/s11269-009-9436-z 10.1023/A:1018628609742 10.1016/j.eswa.2016.11.025 10.1016/j.asoc.2014.02.002 10.1016/S1474-6670(17)31910-9 10.1016/j.asoc.2019.105680 10.1016/j.jmp.2018.03.001 10.1016/j.engappai.2012.05.023 10.1002/hyp.554 10.1016/j.jhydrol.2019.123981 10.1023/A:1015059928466 10.1007/s12517-019-4697-1 10.3390/math10142366 10.1007/s00477-018-1560-y 10.1007/s11269-015-1107-7 10.1007/s11269-020-02631-3 10.1080/02626669809492102 10.3390/math10132245 10.1364/OE.410032 10.1016/j.jhydrol.2019.124371 10.1016/0022-1694(70)90255-6 10.1007/s11269-020-02659-5 10.1016/j.matcom.2007.10.005 10.1162/106365603321828970 10.1016/j.jhydrol.2014.03.057 10.1016/j.aam.2019.101986 10.1016/j.pce.2010.07.021 10.3390/w12061734 10.1145/1961189.1961199 10.3390/math10142446 10.1007/s00521-020-05164-3 10.1016/j.jhydrol.2015.03.016 10.1016/j.aej.2021.04.100 10.20944/preprints201905.0320.v1 10.1007/978-0-387-84858-7 10.1007/978-81-322-1780-0 10.1162/106365601750190398 10.1007/s11600-020-00446-9 10.1016/j.advengsoft.2008.08.002 10.1175/JHM-D-14-0210.1 10.1016/j.jhydrol.2014.01.023 10.1016/j.jhydrol.2020.124901 10.2166/hydro.2019.066 10.28991/HIJ-SP2022-03-02 10.1080/02723646.1981.10642213 10.1109/TCYB.2018.2877641 10.1016/j.jhydrol.2012.11.015 10.3390/w14091449 10.1016/j.envsoft.2017.12.021 10.1145/2939672.2939785 10.1016/j.scs.2020.102562 10.1016/j.chemolab.2015.01.016 10.1016/j.jhydrol.2009.08.003 10.1007/978-981-10-8476-8_15 10.1080/19401493.2014.996608 10.1007/s11269-016-1408-5 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math10162971 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_3b63f27e239b4812a56424cb16754aa7 A724671770 10_3390_math10162971 |
GeographicLocations | Brazil Turkey Pakistan United States--US China |
GeographicLocations_xml | – name: Brazil – name: China – name: United States--US – name: Pakistan – name: Turkey |
GroupedDBID | -~X 3V. 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABJNI ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M0N M7S MODMG M~E OK1 PIMPY PQQKQ PROAC PTHSS RNS 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D P62 PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c406t-13866cdc3f220134873b73be2c43044836621199b8bcd78cbf348344b32a1dda3 |
IEDL.DBID | 8FG |
ISSN | 2227-7390 |
IngestDate | Tue Oct 22 15:11:35 EDT 2024 Thu Oct 10 18:42:22 EDT 2024 Tue Nov 12 23:48:06 EST 2024 Thu Sep 26 21:18:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-13866cdc3f220134873b73be2c43044836621199b8bcd78cbf348344b32a1dda3 |
ORCID | 0000-0001-7847-5872 0000-0001-9621-6452 0000-0001-8294-1047 0000-0002-2844-9470 |
OpenAccessLink | https://www.proquest.com/docview/2706272370?pq-origsite=%requestingapplication% |
PQID | 2706272370 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3b63f27e239b4812a56424cb16754aa7 proquest_journals_2706272370 gale_infotracacademiconefile_A724671770 crossref_primary_10_3390_math10162971 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chen (ref_40) 2020; 28 Schulz (ref_57) 2018; 85 Mehr (ref_17) 2015; 12 Kisi (ref_70) 2008; 79 Hansen (ref_59) 2001; 9 Hadi (ref_22) 2019; 7 Tikhamarine (ref_36) 2019; 12 ref_54 Hansen (ref_37) 2003; 11 ref_53 Adnan (ref_72) 2021; 33 Modaresi (ref_20) 2018; 32 ref_52 Ou (ref_55) 2004; 37 Malik (ref_28) 2020; 34 Li (ref_61) 2018; 50 Wang (ref_56) 2015; 142 Kumar (ref_58) 2020; 114 Raghavendra (ref_12) 2014; 19 Kaveh (ref_41) 2020; 64 Guo (ref_44) 2017; 71 Adnan (ref_25) 2020; 586 Niu (ref_30) 2021; 64 Yuan (ref_67) 2018; 32 Yaseen (ref_19) 2016; 30 ref_65 Rasouli (ref_3) 2012; 414–415 Liu (ref_4) 2015; 16 Chang (ref_48) 2011; 2 Nourani (ref_13) 2014; 514 Dawson (ref_8) 1998; 43 Gupta (ref_64) 2009; 377 ref_26 Gunn (ref_50) 1998; 14 Yaseen (ref_2) 2015; 530 Willmott (ref_62) 1981; 2 Ibrahim (ref_14) 2021; 61 ref_35 ref_34 ref_33 Sudheer (ref_69) 2002; 16 Sun (ref_16) 2014; 511 ref_32 Demirel (ref_9) 2009; 40 ref_31 Kargar (ref_51) 2020; 14 Worland (ref_21) 2018; 101 Saporetti (ref_45) 2018; 25 Kagoda (ref_15) 2010; 35 Wu (ref_71) 2013; 26 Ni (ref_24) 2020; 586 Sattar (ref_68) 2015; 524 Kisi (ref_18) 2015; 29 Suykens (ref_47) 1999; 9 Adnan (ref_5) 2019; 577 Sudheer (ref_11) 2014; 24 Bhadra (ref_10) 2010; 24 Erdal (ref_1) 2013; 477 Li (ref_23) 2020; 22 Rouchier (ref_38) 2016; 9 Jiang (ref_27) 2020; 34 Huang (ref_46) 2015; 61 Nash (ref_63) 1970; 10 ref_42 Alizamir (ref_66) 2020; 68 Zou (ref_43) 2005; 67 ref_49 Parisouj (ref_29) 2020; 34 Liang (ref_39) 2019; 83 Beyer (ref_60) 2002; 1 ref_7 ref_6 |
References_xml | – volume: 32 start-page: 243 year: 2018 ident: ref_20 article-title: A Comparative Assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K-Nearest Neighbor Regression for Monthly Streamflow Forecasting in Linear and Nonlinear Conditions publication-title: Water Resour. Manag. doi: 10.1007/s11269-017-1807-2 contributor: fullname: Modaresi – volume: 7 start-page: 141533 year: 2019 ident: ref_22 article-title: Non-Linear Input Variable Selection Approach Integrated With Non-Tuned Data Intelligence Model for Streamflow Pattern Simulation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2943515 contributor: fullname: Hadi – ident: ref_32 doi: 10.3390/math10142399 – volume: 67 start-page: 301 year: 2005 ident: ref_43 article-title: Regularization and Variable Selection via the Elastic Net publication-title: J. R. Stat. Soc. doi: 10.1111/j.1467-9868.2005.00503.x contributor: fullname: Zou – volume: 61 start-page: 32 year: 2015 ident: ref_46 article-title: Trends in extreme learning machines: A review publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.10.001 contributor: fullname: Huang – volume: 12 start-page: 2191 year: 2015 ident: ref_17 article-title: Successive-station monthly streamflow prediction using different artificial neural network algorithms publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-014-0613-0 contributor: fullname: Mehr – volume: 25 start-page: 43 year: 2018 ident: ref_45 article-title: Extreme Learning Machine combined with a Differential Evolution algorithm for lithology identification publication-title: RITA doi: 10.22456/2175-2745.80702 contributor: fullname: Saporetti – volume: 24 start-page: 1381 year: 2014 ident: ref_11 article-title: A hybrid SVM-PSO model for forecasting monthly streamflow publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1341-y contributor: fullname: Sudheer – volume: 530 start-page: 829 year: 2015 ident: ref_2 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.10.038 contributor: fullname: Yaseen – volume: 414–415 start-page: 284 year: 2012 ident: ref_3 article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.10.039 contributor: fullname: Rasouli – volume: 24 start-page: 37 year: 2010 ident: ref_10 article-title: Rainfall-Runoff Modeling: Comparison of Two Approaches with Different Data Requirements publication-title: Water Resour. Manag. doi: 10.1007/s11269-009-9436-z contributor: fullname: Bhadra – volume: 9 start-page: 293 year: 1999 ident: ref_47 article-title: Least Squares Support Vector Machine Classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 contributor: fullname: Suykens – volume: 71 start-page: 57 year: 2017 ident: ref_44 article-title: Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for two-stage capacitated facility location problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.11.025 contributor: fullname: Guo – volume: 19 start-page: 372 year: 2014 ident: ref_12 article-title: Support vector machine applications in the field of hydrology: A review publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.002 contributor: fullname: Raghavendra – volume: 34 start-page: 1755 year: 2020 ident: ref_28 article-title: Support vector regression optimized by meta-heuristic algorithms for daily streamflow prediction publication-title: Stoch. Hydrol. Hydraul. contributor: fullname: Malik – volume: 37 start-page: 817 year: 2004 ident: ref_55 article-title: Gaussian Process Regression for Batch Process Modelling publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)31910-9 contributor: fullname: Ou – volume: 83 start-page: 105680 year: 2019 ident: ref_39 article-title: A covariance matrix adaptation evolution strategy variant and its engineering application publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105680 contributor: fullname: Liang – volume: 85 start-page: 1 year: 2018 ident: ref_57 article-title: A Tutorial on Gaussian Process Regression: Modelling, Exploring, and Exploiting Functions publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2018.03.001 contributor: fullname: Schulz – volume: 26 start-page: 997 year: 2013 ident: ref_71 article-title: Prediction of rainfall time series using modular soft computingmethods publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.05.023 contributor: fullname: Wu – volume: 14 start-page: 311 year: 2020 ident: ref_51 article-title: Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms publication-title: Eng. Appl. Comput. Fluid Mech. contributor: fullname: Kargar – ident: ref_52 – volume: 16 start-page: 1325 year: 2002 ident: ref_69 article-title: A data-driven algorithm for constructing artificial neural network rainfall-runoff models publication-title: Hydrol. Process. doi: 10.1002/hyp.554 contributor: fullname: Sudheer – volume: 577 start-page: 123981 year: 2019 ident: ref_5 article-title: Daily streamflow prediction using optimally pruned extreme learning machine publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.123981 contributor: fullname: Adnan – volume: 1 start-page: 3 year: 2002 ident: ref_60 article-title: Evolution Strategies–a Comprehensive Introduction publication-title: Nat. Comput. doi: 10.1023/A:1015059928466 contributor: fullname: Beyer – volume: 12 start-page: 540 year: 2019 ident: ref_36 article-title: A new intelligent method for monthly streamflow prediction: Hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO) publication-title: Arab. J. Geosci. doi: 10.1007/s12517-019-4697-1 contributor: fullname: Tikhamarine – ident: ref_33 doi: 10.3390/math10142366 – volume: 32 start-page: 2199 year: 2018 ident: ref_67 article-title: Monthly runoff forecasting based on LSTM–ALO model publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-018-1560-y contributor: fullname: Yuan – volume: 29 start-page: 5109 year: 2015 ident: ref_18 article-title: Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-1107-7 contributor: fullname: Kisi – volume: 34 start-page: 3515 year: 2020 ident: ref_27 article-title: Monthly Streamflow Forecasting Using ELM-IPSO Based on Phase Space Reconstruction publication-title: Water Resour. Manag. doi: 10.1007/s11269-020-02631-3 contributor: fullname: Jiang – volume: 43 start-page: 47 year: 1998 ident: ref_8 article-title: An artificial neural network approach to rainfall-runoff modelling publication-title: Hydrol. Sci. J. doi: 10.1080/02626669809492102 contributor: fullname: Dawson – ident: ref_34 doi: 10.3390/math10132245 – volume: 28 start-page: 33371 year: 2020 ident: ref_40 article-title: Source mask optimization using the covariance matrix adaptation evolution strategy publication-title: Opt. Express doi: 10.1364/OE.410032 contributor: fullname: Chen – volume: 586 start-page: 124371 year: 2020 ident: ref_25 article-title: Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124371 contributor: fullname: Adnan – volume: 10 start-page: 282 year: 1970 ident: ref_63 article-title: River flow forecasting through conceptual models part I—A discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 contributor: fullname: Nash – volume: 14 start-page: 5 year: 1998 ident: ref_50 article-title: Support Vector Machines for Classification and Regression publication-title: ISIS Tech. Rep. contributor: fullname: Gunn – volume: 34 start-page: 4113 year: 2020 ident: ref_29 article-title: Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States publication-title: Water Resour. Manag. doi: 10.1007/s11269-020-02659-5 contributor: fullname: Parisouj – volume: 79 start-page: 94 year: 2008 ident: ref_70 article-title: Constructing neural network sediment estimation models using a data-driven algorithm publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2007.10.005 contributor: fullname: Kisi – volume: 11 start-page: 1 year: 2003 ident: ref_37 article-title: Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) publication-title: Evol. Comput. doi: 10.1162/106365603321828970 contributor: fullname: Hansen – volume: 514 start-page: 358 year: 2014 ident: ref_13 article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.057 contributor: fullname: Nourani – volume: 114 start-page: 101986 year: 2020 ident: ref_58 article-title: The generalized modified Bessel function and its connection with Voigt line profile and Humbert functions publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2019.101986 contributor: fullname: Kumar – volume: 35 start-page: 571 year: 2010 ident: ref_15 article-title: Application of radial basis function neural networks to short-term streamflow forecasting publication-title: Phys. Chem. Earth Parts A/B/C doi: 10.1016/j.pce.2010.07.021 contributor: fullname: Kagoda – ident: ref_26 doi: 10.3390/w12061734 – volume: 2 start-page: 1 year: 2011 ident: ref_48 article-title: LIBSVM: A Library for Support Vector Machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 contributor: fullname: Chang – ident: ref_31 doi: 10.3390/math10142446 – volume: 33 start-page: 2853 year: 2021 ident: ref_72 article-title: Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05164-3 contributor: fullname: Adnan – volume: 524 start-page: 587 year: 2015 ident: ref_68 article-title: Gene expression models for prediction of longitudinal dispersion coefficient in streams publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.03.016 contributor: fullname: Sattar – volume: 61 start-page: 279 year: 2021 ident: ref_14 article-title: A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.04.100 contributor: fullname: Ibrahim – ident: ref_35 doi: 10.20944/preprints201905.0320.v1 – ident: ref_42 doi: 10.1007/978-0-387-84858-7 – ident: ref_49 doi: 10.1007/978-81-322-1780-0 – volume: 9 start-page: 159 year: 2001 ident: ref_59 article-title: Completely Derandomized Self-Adaptation in Evolution Strategies publication-title: Evol. Comput. doi: 10.1162/106365601750190398 contributor: fullname: Hansen – volume: 68 start-page: 1113 year: 2020 ident: ref_66 article-title: Modelling reference evapotranspiration by combining neuro-fuzzy and evolutionary strategies publication-title: Acta Geophys. doi: 10.1007/s11600-020-00446-9 contributor: fullname: Alizamir – volume: 40 start-page: 467 year: 2009 ident: ref_9 article-title: Flow forecast by SWAT model and ANN in Pracana basin, Portugal publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2008.08.002 contributor: fullname: Demirel – volume: 16 start-page: 2209 year: 2015 ident: ref_4 article-title: A Probabilistic Wavelet–Support Vector Regression Model for Streamflow Forecasting with Rainfall and Climate Information Input publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-14-0210.1 contributor: fullname: Liu – volume: 511 start-page: 72 year: 2014 ident: ref_16 article-title: Monthly streamflow forecasting using Gaussian Process Regression publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.01.023 contributor: fullname: Sun – volume: 586 start-page: 124901 year: 2020 ident: ref_24 article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124901 contributor: fullname: Ni – volume: 22 start-page: 310 year: 2020 ident: ref_23 article-title: A multi-model integration method for monthly streamflow prediction: Modified stacking ensemble strategy publication-title: J. Hydroinform. doi: 10.2166/hydro.2019.066 contributor: fullname: Li – ident: ref_54 – ident: ref_7 doi: 10.28991/HIJ-SP2022-03-02 – volume: 64 start-page: 579 year: 2020 ident: ref_41 article-title: Reliability Analysis via an Optimal Covariance Matrix Adaptation Evolution Strategy: Emphasis on Applications in Civil Engineering publication-title: Period. Polytech. Civ. Eng. contributor: fullname: Kaveh – volume: 2 start-page: 184 year: 1981 ident: ref_62 article-title: ON the Validation of Models publication-title: Phys. Geogr. doi: 10.1080/02723646.1981.10642213 contributor: fullname: Willmott – volume: 50 start-page: 2073 year: 2018 ident: ref_61 article-title: Fast Covariance Matrix Adaptation for Large-Scale Black-Box Optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2877641 contributor: fullname: Li – volume: 477 start-page: 119 year: 2013 ident: ref_1 article-title: Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.11.015 contributor: fullname: Erdal – ident: ref_6 doi: 10.3390/w14091449 – volume: 101 start-page: 169 year: 2018 ident: ref_21 article-title: Improving predictions of hydrological low-flow indices in ungaged basins using machine learning publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.12.021 contributor: fullname: Worland – ident: ref_53 doi: 10.1145/2939672.2939785 – volume: 64 start-page: 102562 year: 2021 ident: ref_30 article-title: Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102562 contributor: fullname: Niu – volume: 142 start-page: 159 year: 2015 ident: ref_56 article-title: Gaussian process regression with multiple response variables publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.01.016 contributor: fullname: Wang – volume: 377 start-page: 80 year: 2009 ident: ref_64 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.08.003 contributor: fullname: Gupta – ident: ref_65 doi: 10.1007/978-981-10-8476-8_15 – volume: 9 start-page: 101 year: 2016 ident: ref_38 article-title: Identification of the hygrothermal properties of a building envelope material by the covariance matrix adaptation evolution strategy publication-title: J. Build. Perform. Simul. doi: 10.1080/19401493.2014.996608 contributor: fullname: Rouchier – volume: 30 start-page: 4125 year: 2016 ident: ref_19 article-title: Enhancing Long-Term Streamflow Forecasting and Predicting using Periodicity Data Component: Application of Artificial Intelligence publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1408-5 contributor: fullname: Yaseen |
SSID | ssj0000913849 |
Score | 2.367315 |
Snippet | Precise streamflow estimation plays a key role in optimal water resource use, reservoirs operations, and designing and planning future hydropower projects.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2971 |
SubjectTerms | Adaptation Algorithms Analysis Analysis of covariance Artificial neural networks Covariance matrix covariance matrix adaptation evolution strategy elastic net Errors Evolution extreme learning machine Food science Gaussian process Heuristic Hydroelectric power Hydrology Innovations Machine learning Matrices Neural networks Numerical prediction Optimization Precipitation Prediction theory Radial basis function Statistical analysis Strategy Stream flow Streamflow streamflow prediction Support vector machines support vector regression Uncertainty analysis Water resources Water shortages |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7EnzidkoPiqaxN0qQ5zuEYwsSDgreQpKkKusk2p_73vtfGMQ_iReipNCW8l-R9X_LeF0JOtSpl0NYnFYTrRIjUJa5KbeJ5rkLFS5VZ3NAfXcvhnbi6z-9XrvrCnLBGHrgxXJc7ySumAuPaCYhGNgfELLzLAOkKa5s68lSvkKl6DdYZL4RuMt058Pou4L9HZKpMq-xHDKql-n9bkOsoM9gimxEe0l7TrW2yFsY7ZGO01Fad7ZJpf7IAgoveoiMU2P-gvdK-Nkfq9HIRxxKNurOfFGApXe4dQBPMngw0Cqs-0F5UFQ8z-lS3Cvalep6805spHuLgv_bI3eDytj9M4s0JiYcAjffLF1L60oPlIMBzICXcwROYFzwFQsalRGU37QrnS1V4V3HcVBSOM5uVpeX7pDWejMMBoQB3AJRULlfWiTxIXQRZVhJ16qx0qWyTs29bmtdGIMMAsUCbm1Wbt8kFGnr5Dcpa1y_A2SY62_zl7DY5RzcZnHxgRG9jDQF0FWWsTE8xWPgzpdI26Xx70sRZOTNMoSgz4yo9_I_eHJF1hsUQdTpgh7Tm07dwDBBl7k7q0fgFF6DjRw priority: 102 providerName: Directory of Open Access Journals |
Title | Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction |
URI | https://www.proquest.com/docview/2706272370 https://doaj.org/article/3b63f27e239b4812a56424cb16754aa7 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5Bc4FDxVMESuQDiNMqu7bX3j2hJEqIkFJVVSv1Zvm1oRJkQ9IW-PfMbJxADyDtad-asWfmG4-_AXhX66BibX3WoLvOpMxd5prcZl6UOjYi6MJSQn9xquaX8vNVeZUSbttUVrm3iZ2hDq2nHPmQayLU5ULnH9ffM-oaRaurqYXGQ-gVXGsCX9Xs0yHHQpyXlax39e4C0f0Qo8AvhFd5rYt7nqgj7P-XWe58zewJHKcgkY12Wn0KD-LqGTxeHBhWt89hM2nvEOaSztiCaPZ_slGw693COpvepRHFEvvsL4bBKTtkEPARqqGMLNGrLtkocYvHLbvunor2W_O1_cHONrSUQ-96AZez6cVknqX-CZlHN01d5iulfPCi4ejmBUIT4fCI3EuRIywTShG_W-0q54OuvGsEpRalE9wWIVjxEo5W7Sq-AoZBD4YmjSu1dbKMqq6iCo0itjqrXK768H4vS7Pe0WQYhBckc_O3zPswJkEf7iFy6-5Eu1maNFeMcPgpriMXtZMYgNgSQZL0rkBwI63VffhAajI0BVGI3qadBPirRGZlRpqj-S-0zvtwstekSXNza_6MpNf_v_wGHnHa7NCV-53A0c3mNr7FEOTGDbpxNoDeeHp6dj7ogPxvAIXeXw |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61cGh7qOhLbAvUh1Y9RSS2YyenakGLlpZdIQQSN8uvAFK72e5S2v57ZrLehR5AyimJE2vG9sw3Hn8D8KnWQcXa-qxBc51JmbvMNbnNvCh1bETQhaWA_mishmfy23l5ngJu85RWuVwTu4U6tJ5i5LtcE6EuFzr_Ov2VUdUo2l1NJTSewjpRVSH4Wt8bjI9PVlEWYr2sZL3IeBeI73fRD7wkxMprXfxnizrK_ocW5s7aHGzAy-Qmsv5Cr6_gSZy8hhejFcfq_A3M9tsbBLqkNTYiov2_rB_sdLG1zgY3aUyxxD_7j6F7ylYxBGxCWZSRJYLVC9ZP7OJxzq66VtH-bH60f9jxjDZz6Ftv4exgcLo_zFIFhcyjoaY685VSPnjRcDT0AsGJcHhF7qXIEZgJpYjhrXaV80FX3jWCgovSCW6LEKx4B2uTdhI3gaHbg85J40ptnSyjqquoQqOIr84ql6sefF7K0kwXRBkGAQbJ3NyXeQ_2SNCrd4jeurvRzi5Mmi1GOPwV15GL2kl0QWyJMEl6VyC8kdbqHnwhNRmahChEb9NZAuwq0VmZvuZoAAqt8x5sLTVp0uycm7ux9P7xxx_h2fB0dGSODsffP8BzTkcfuuS_LVi7nv2O2-iQXLudNOpuARxY4CE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LjxMxDLagKyE4IJ6isEAOIE6jziSZZOaEukur5dGqQqy0tyjPBQk6pV0W-PfY07TAAaQ5zVu2E_tznM8Az1odVGytLxK660LK0hUulbbwotYxiaArSwn92VydnMo3Z_VZrn_a5LLK3ZzYT9Sh85QjH3FNhLpc6HKUclnE4tX05eprQR2kaKU1t9O4CgdaKlEO4OBoMl-832dciAGzke22-l0g1h9hTPiR0CtvdfWXX-rp-_81SfeeZ3oLbuaQkY23Or4NV-LyDtyY7flWN3dhfdxdIuglDbIZke7_YONgV9tldja5zPbFMhftT4ahKtvnE_ARqqiMLJOtnrNxZhqPG_apfyraL-lz950t1rSwQ--6B6fTyYfjkyJ3Uyg8Om3qOd8o5YMXiaPTFwhUhMMjci9FiSBNKEVsb61rnA-68S4JSjRKJ7itQrDiPgyW3TI-AIYhEAYqydXaOllH1TZRhaSIu84qV6ohPN_J0qy2pBkGwQbJ3Pwp8yEckaD39xDVdX-iW5-bPHKMcPgpriMXrZMYjtgaIZP0rkKoI63VQ3hBajI0IFGI3uZ9BfirRG1lxpqjM6i0LodwuNOkySN1Y37b1cP_X34K19DgzLvX87eP4DqnXRB9HeAhDC7W3-JjjE0u3JNsdL8Aak_kTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariance+Matrix+Adaptation+Evolution+Strategy+for+Improving+Machine+Learning+Approaches+in+Streamflow+Prediction&rft.jtitle=Mathematics+%28Basel%29&rft.au=Rana+Muhammad+Adnan+Ikram&rft.au=Goliatt%2C+Leonardo&rft.au=Kisi%2C+Ozgur&rft.au=Trajkovic%2C+Slavisa&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=16&rft.spage=2971&rft_id=info:doi/10.3390%2Fmath10162971&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |