Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction

Precise streamflow estimation plays a key role in optimal water resource use, reservoirs operations, and designing and planning future hydropower projects. Machine learning models were successfully utilized to estimate streamflow in recent years In this study, a new approach, covariance matrix adapt...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 10; no. 16; p. 2971
Main Authors Ikram, Rana Muhammad Adnan, Goliatt, Leonardo, Kisi, Ozgur, Trajkovic, Slavisa, Shahid, Shamsuddin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precise streamflow estimation plays a key role in optimal water resource use, reservoirs operations, and designing and planning future hydropower projects. Machine learning models were successfully utilized to estimate streamflow in recent years In this study, a new approach, covariance matrix adaptation evolution strategy (CMAES), was utilized to improve the accuracy of seven machine learning models, namely extreme learning machine (ELM), elastic net (EN), Gaussian processes regression (GPR), support vector regression (SVR), least square SVR (LSSVR), extreme gradient boosting (XGB), and radial basis function neural network (RBFNN), in predicting streamflow. The CMAES was used for proper tuning of control parameters of these selected machine learning models. Seven input combinations were decided to estimate streamflow based on previous lagged temperature and streamflow data values. For numerical prediction accuracy comparison of these machine learning models, six statistical indexes are used, i.e., relative root mean squared error (RRMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Nash–Sutcliffe efficiency (NSE), and the Kling–Gupta efficiency agreement index (KGE). In contrast, this study uses scatter plots, radar charts, and Taylor diagrams for graphically predicted accuracy comparison. Results show that SVR provided more accurate results than the other methods, especially for the temperature input cases. In contrast, in some streamflow input cases, the LSSVR and GPR were better than the SVR. The SVR tuned by CMAES with temperature and streamflow inputs produced the least RRMSE (0.266), MAE (263.44), and MAPE (12.44) in streamflow estimation. The EN method was found to be the worst model in streamflow prediction. Uncertainty analysis also endorsed the superiority of the SVR over other machine learning methods by having low uncertainty values. Overall, the SVR model based on either temperature or streamflow as inputs, tuned by CMAES, is highly recommended for streamflow estimation.
AbstractList Precise streamflow estimation plays a key role in optimal water resource use, reservoirs operations, and designing and planning future hydropower projects. Machine learning models were successfully utilized to estimate streamflow in recent years In this study, a new approach, covariance matrix adaptation evolution strategy (CMAES), was utilized to improve the accuracy of seven machine learning models, namely extreme learning machine (ELM), elastic net (EN), Gaussian processes regression (GPR), support vector regression (SVR), least square SVR (LSSVR), extreme gradient boosting (XGB), and radial basis function neural network (RBFNN), in predicting streamflow. The CMAES was used for proper tuning of control parameters of these selected machine learning models. Seven input combinations were decided to estimate streamflow based on previous lagged temperature and streamflow data values. For numerical prediction accuracy comparison of these machine learning models, six statistical indexes are used, i.e., relative root mean squared error (RRMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Nash–Sutcliffe efficiency (NSE), and the Kling–Gupta efficiency agreement index (KGE). In contrast, this study uses scatter plots, radar charts, and Taylor diagrams for graphically predicted accuracy comparison. Results show that SVR provided more accurate results than the other methods, especially for the temperature input cases. In contrast, in some streamflow input cases, the LSSVR and GPR were better than the SVR. The SVR tuned by CMAES with temperature and streamflow inputs produced the least RRMSE (0.266), MAE (263.44), and MAPE (12.44) in streamflow estimation. The EN method was found to be the worst model in streamflow prediction. Uncertainty analysis also endorsed the superiority of the SVR over other machine learning methods by having low uncertainty values. Overall, the SVR model based on either temperature or streamflow as inputs, tuned by CMAES, is highly recommended for streamflow estimation.
Audience Academic
Author Kisi, Ozgur
Trajkovic, Slavisa
Ikram, Rana Muhammad Adnan
Shahid, Shamsuddin
Goliatt, Leonardo
Author_xml – sequence: 1
  givenname: Rana Muhammad Adnan
  surname: Ikram
  fullname: Ikram, Rana Muhammad Adnan
– sequence: 2
  givenname: Leonardo
  orcidid: 0000-0002-2844-9470
  surname: Goliatt
  fullname: Goliatt, Leonardo
– sequence: 3
  givenname: Ozgur
  orcidid: 0000-0001-7847-5872
  surname: Kisi
  fullname: Kisi, Ozgur
– sequence: 4
  givenname: Slavisa
  orcidid: 0000-0001-8294-1047
  surname: Trajkovic
  fullname: Trajkovic, Slavisa
– sequence: 5
  givenname: Shamsuddin
  orcidid: 0000-0001-9621-6452
  surname: Shahid
  fullname: Shahid, Shamsuddin
BookMark eNpNUdtKAzEQDaLgrW9-wIKvVnNrsvtYipdCRUF9DrPZbE3pJjWbVv17p62ISWCGM-ecTDKn5DDE4Ai5YPRaiIredJDfGWWKV5odkBPOuR5qLBz-y4_JoO8XFFfFRCmrE5ImcQPJQ7CueISc_FcxbmCVIfsYittNXK532UtOkN38u2hjKqbdKsWND3OU2HcfXDFzkMIWGK-whKDrC79TOejaZfwsnpNrvN16nZOjFpa9G_zGM_J2d_s6eRjOnu6nk_FsaCVVeYgNKmUbK1rOKROy1KLG47iVgkpZCqU4Y1VVl7VtdGnrFjlCylpwYE0D4oxM975NhIVZJd9B-jYRvNkBMc0NpOzt0hlRK7xGOy6qWpaMw0hJLm3NlB5JAI1el3svfN3H2vXZLOI6BWzfcE0V11xoiqzrPWsOaOpDG_HXLO7Gdd7iuFqP-FhzqTTTO8HVXmBT7Pvk2r82GTXbqZr_UxU_VIaWIg
CitedBy_id crossref_primary_10_1080_15715124_2023_2196635
crossref_primary_10_3390_f14020177
crossref_primary_10_1007_s00521_023_08865_7
crossref_primary_10_3390_math11081814
crossref_primary_10_1007_s00500_023_07985_5
crossref_primary_10_1080_13682199_2023_2182557
crossref_primary_10_1016_j_envdev_2022_100766
crossref_primary_10_1038_s41598_023_41113_5
crossref_primary_10_3390_app13031345
crossref_primary_10_1016_j_petlm_2023_05_005
crossref_primary_10_3390_w14213549
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_1007_s10845_022_02047_3
crossref_primary_10_1109_ACCESS_2024_3415381
crossref_primary_10_3390_math11102358
crossref_primary_10_3390_math11143141
crossref_primary_10_1016_j_fuel_2023_128623
crossref_primary_10_1016_j_asej_2024_102916
crossref_primary_10_3390_su15086883
crossref_primary_10_3390_w15061179
crossref_primary_10_1016_j_heliyon_2023_e18506
crossref_primary_10_2166_hydro_2023_101
crossref_primary_10_1007_s00477_023_02557_3
crossref_primary_10_1016_j_heliyon_2023_e19426
Cites_doi 10.1007/s11269-017-1807-2
10.1109/ACCESS.2019.2943515
10.3390/math10142399
10.1111/j.1467-9868.2005.00503.x
10.1016/j.neunet.2014.10.001
10.1007/s13762-014-0613-0
10.22456/2175-2745.80702
10.1007/s00521-013-1341-y
10.1016/j.jhydrol.2015.10.038
10.1016/j.jhydrol.2011.10.039
10.1007/s11269-009-9436-z
10.1023/A:1018628609742
10.1016/j.eswa.2016.11.025
10.1016/j.asoc.2014.02.002
10.1016/S1474-6670(17)31910-9
10.1016/j.asoc.2019.105680
10.1016/j.jmp.2018.03.001
10.1016/j.engappai.2012.05.023
10.1002/hyp.554
10.1016/j.jhydrol.2019.123981
10.1023/A:1015059928466
10.1007/s12517-019-4697-1
10.3390/math10142366
10.1007/s00477-018-1560-y
10.1007/s11269-015-1107-7
10.1007/s11269-020-02631-3
10.1080/02626669809492102
10.3390/math10132245
10.1364/OE.410032
10.1016/j.jhydrol.2019.124371
10.1016/0022-1694(70)90255-6
10.1007/s11269-020-02659-5
10.1016/j.matcom.2007.10.005
10.1162/106365603321828970
10.1016/j.jhydrol.2014.03.057
10.1016/j.aam.2019.101986
10.1016/j.pce.2010.07.021
10.3390/w12061734
10.1145/1961189.1961199
10.3390/math10142446
10.1007/s00521-020-05164-3
10.1016/j.jhydrol.2015.03.016
10.1016/j.aej.2021.04.100
10.20944/preprints201905.0320.v1
10.1007/978-0-387-84858-7
10.1007/978-81-322-1780-0
10.1162/106365601750190398
10.1007/s11600-020-00446-9
10.1016/j.advengsoft.2008.08.002
10.1175/JHM-D-14-0210.1
10.1016/j.jhydrol.2014.01.023
10.1016/j.jhydrol.2020.124901
10.2166/hydro.2019.066
10.28991/HIJ-SP2022-03-02
10.1080/02723646.1981.10642213
10.1109/TCYB.2018.2877641
10.1016/j.jhydrol.2012.11.015
10.3390/w14091449
10.1016/j.envsoft.2017.12.021
10.1145/2939672.2939785
10.1016/j.scs.2020.102562
10.1016/j.chemolab.2015.01.016
10.1016/j.jhydrol.2009.08.003
10.1007/978-981-10-8476-8_15
10.1080/19401493.2014.996608
10.1007/s11269-016-1408-5
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10162971
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_3b63f27e239b4812a56424cb16754aa7
A724671770
10_3390_math10162971
GeographicLocations Brazil
Turkey
Pakistan
United States--US
China
GeographicLocations_xml – name: Brazil
– name: China
– name: United States--US
– name: Pakistan
– name: Turkey
GroupedDBID -~X
3V.
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABJNI
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M0N
M7S
MODMG
M~E
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNS
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
P62
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-13866cdc3f220134873b73be2c43044836621199b8bcd78cbf348344b32a1dda3
IEDL.DBID 8FG
ISSN 2227-7390
IngestDate Tue Oct 22 15:11:35 EDT 2024
Thu Oct 10 18:42:22 EDT 2024
Tue Nov 12 23:48:06 EST 2024
Thu Sep 26 21:18:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-13866cdc3f220134873b73be2c43044836621199b8bcd78cbf348344b32a1dda3
ORCID 0000-0001-7847-5872
0000-0001-9621-6452
0000-0001-8294-1047
0000-0002-2844-9470
OpenAccessLink https://www.proquest.com/docview/2706272370?pq-origsite=%requestingapplication%
PQID 2706272370
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_3b63f27e239b4812a56424cb16754aa7
proquest_journals_2706272370
gale_infotracacademiconefile_A724671770
crossref_primary_10_3390_math10162971
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chen (ref_40) 2020; 28
Schulz (ref_57) 2018; 85
Mehr (ref_17) 2015; 12
Kisi (ref_70) 2008; 79
Hansen (ref_59) 2001; 9
Hadi (ref_22) 2019; 7
Tikhamarine (ref_36) 2019; 12
ref_54
Hansen (ref_37) 2003; 11
ref_53
Adnan (ref_72) 2021; 33
Modaresi (ref_20) 2018; 32
ref_52
Ou (ref_55) 2004; 37
Malik (ref_28) 2020; 34
Li (ref_61) 2018; 50
Wang (ref_56) 2015; 142
Kumar (ref_58) 2020; 114
Raghavendra (ref_12) 2014; 19
Kaveh (ref_41) 2020; 64
Guo (ref_44) 2017; 71
Adnan (ref_25) 2020; 586
Niu (ref_30) 2021; 64
Yuan (ref_67) 2018; 32
Yaseen (ref_19) 2016; 30
ref_65
Rasouli (ref_3) 2012; 414–415
Liu (ref_4) 2015; 16
Chang (ref_48) 2011; 2
Nourani (ref_13) 2014; 514
Dawson (ref_8) 1998; 43
Gupta (ref_64) 2009; 377
ref_26
Gunn (ref_50) 1998; 14
Yaseen (ref_2) 2015; 530
Willmott (ref_62) 1981; 2
Ibrahim (ref_14) 2021; 61
ref_35
ref_34
ref_33
Sudheer (ref_69) 2002; 16
Sun (ref_16) 2014; 511
ref_32
Demirel (ref_9) 2009; 40
ref_31
Kargar (ref_51) 2020; 14
Worland (ref_21) 2018; 101
Saporetti (ref_45) 2018; 25
Kagoda (ref_15) 2010; 35
Wu (ref_71) 2013; 26
Ni (ref_24) 2020; 586
Sattar (ref_68) 2015; 524
Kisi (ref_18) 2015; 29
Suykens (ref_47) 1999; 9
Adnan (ref_5) 2019; 577
Sudheer (ref_11) 2014; 24
Bhadra (ref_10) 2010; 24
Erdal (ref_1) 2013; 477
Li (ref_23) 2020; 22
Rouchier (ref_38) 2016; 9
Jiang (ref_27) 2020; 34
Huang (ref_46) 2015; 61
Nash (ref_63) 1970; 10
ref_42
Alizamir (ref_66) 2020; 68
Zou (ref_43) 2005; 67
ref_49
Parisouj (ref_29) 2020; 34
Liang (ref_39) 2019; 83
Beyer (ref_60) 2002; 1
ref_7
ref_6
References_xml – volume: 32
  start-page: 243
  year: 2018
  ident: ref_20
  article-title: A Comparative Assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K-Nearest Neighbor Regression for Monthly Streamflow Forecasting in Linear and Nonlinear Conditions
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1807-2
  contributor:
    fullname: Modaresi
– volume: 7
  start-page: 141533
  year: 2019
  ident: ref_22
  article-title: Non-Linear Input Variable Selection Approach Integrated With Non-Tuned Data Intelligence Model for Streamflow Pattern Simulation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2943515
  contributor:
    fullname: Hadi
– ident: ref_32
  doi: 10.3390/math10142399
– volume: 67
  start-page: 301
  year: 2005
  ident: ref_43
  article-title: Regularization and Variable Selection via the Elastic Net
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2005.00503.x
  contributor:
    fullname: Zou
– volume: 61
  start-page: 32
  year: 2015
  ident: ref_46
  article-title: Trends in extreme learning machines: A review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.001
  contributor:
    fullname: Huang
– volume: 12
  start-page: 2191
  year: 2015
  ident: ref_17
  article-title: Successive-station monthly streamflow prediction using different artificial neural network algorithms
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-014-0613-0
  contributor:
    fullname: Mehr
– volume: 25
  start-page: 43
  year: 2018
  ident: ref_45
  article-title: Extreme Learning Machine combined with a Differential Evolution algorithm for lithology identification
  publication-title: RITA
  doi: 10.22456/2175-2745.80702
  contributor:
    fullname: Saporetti
– volume: 24
  start-page: 1381
  year: 2014
  ident: ref_11
  article-title: A hybrid SVM-PSO model for forecasting monthly streamflow
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1341-y
  contributor:
    fullname: Sudheer
– volume: 530
  start-page: 829
  year: 2015
  ident: ref_2
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.038
  contributor:
    fullname: Yaseen
– volume: 414–415
  start-page: 284
  year: 2012
  ident: ref_3
  article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.10.039
  contributor:
    fullname: Rasouli
– volume: 24
  start-page: 37
  year: 2010
  ident: ref_10
  article-title: Rainfall-Runoff Modeling: Comparison of Two Approaches with Different Data Requirements
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-009-9436-z
  contributor:
    fullname: Bhadra
– volume: 9
  start-page: 293
  year: 1999
  ident: ref_47
  article-title: Least Squares Support Vector Machine Classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
  contributor:
    fullname: Suykens
– volume: 71
  start-page: 57
  year: 2017
  ident: ref_44
  article-title: Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for two-stage capacitated facility location problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.11.025
  contributor:
    fullname: Guo
– volume: 19
  start-page: 372
  year: 2014
  ident: ref_12
  article-title: Support vector machine applications in the field of hydrology: A review
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.002
  contributor:
    fullname: Raghavendra
– volume: 34
  start-page: 1755
  year: 2020
  ident: ref_28
  article-title: Support vector regression optimized by meta-heuristic algorithms for daily streamflow prediction
  publication-title: Stoch. Hydrol. Hydraul.
  contributor:
    fullname: Malik
– volume: 37
  start-page: 817
  year: 2004
  ident: ref_55
  article-title: Gaussian Process Regression for Batch Process Modelling
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)31910-9
  contributor:
    fullname: Ou
– volume: 83
  start-page: 105680
  year: 2019
  ident: ref_39
  article-title: A covariance matrix adaptation evolution strategy variant and its engineering application
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105680
  contributor:
    fullname: Liang
– volume: 85
  start-page: 1
  year: 2018
  ident: ref_57
  article-title: A Tutorial on Gaussian Process Regression: Modelling, Exploring, and Exploiting Functions
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2018.03.001
  contributor:
    fullname: Schulz
– volume: 26
  start-page: 997
  year: 2013
  ident: ref_71
  article-title: Prediction of rainfall time series using modular soft computingmethods
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.05.023
  contributor:
    fullname: Wu
– volume: 14
  start-page: 311
  year: 2020
  ident: ref_51
  article-title: Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms
  publication-title: Eng. Appl. Comput. Fluid Mech.
  contributor:
    fullname: Kargar
– ident: ref_52
– volume: 16
  start-page: 1325
  year: 2002
  ident: ref_69
  article-title: A data-driven algorithm for constructing artificial neural network rainfall-runoff models
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.554
  contributor:
    fullname: Sudheer
– volume: 577
  start-page: 123981
  year: 2019
  ident: ref_5
  article-title: Daily streamflow prediction using optimally pruned extreme learning machine
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123981
  contributor:
    fullname: Adnan
– volume: 1
  start-page: 3
  year: 2002
  ident: ref_60
  article-title: Evolution Strategies–a Comprehensive Introduction
  publication-title: Nat. Comput.
  doi: 10.1023/A:1015059928466
  contributor:
    fullname: Beyer
– volume: 12
  start-page: 540
  year: 2019
  ident: ref_36
  article-title: A new intelligent method for monthly streamflow prediction: Hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO)
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-019-4697-1
  contributor:
    fullname: Tikhamarine
– ident: ref_33
  doi: 10.3390/math10142366
– volume: 32
  start-page: 2199
  year: 2018
  ident: ref_67
  article-title: Monthly runoff forecasting based on LSTM–ALO model
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1560-y
  contributor:
    fullname: Yuan
– volume: 29
  start-page: 5109
  year: 2015
  ident: ref_18
  article-title: Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1107-7
  contributor:
    fullname: Kisi
– volume: 34
  start-page: 3515
  year: 2020
  ident: ref_27
  article-title: Monthly Streamflow Forecasting Using ELM-IPSO Based on Phase Space Reconstruction
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-020-02631-3
  contributor:
    fullname: Jiang
– volume: 43
  start-page: 47
  year: 1998
  ident: ref_8
  article-title: An artificial neural network approach to rainfall-runoff modelling
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626669809492102
  contributor:
    fullname: Dawson
– ident: ref_34
  doi: 10.3390/math10132245
– volume: 28
  start-page: 33371
  year: 2020
  ident: ref_40
  article-title: Source mask optimization using the covariance matrix adaptation evolution strategy
  publication-title: Opt. Express
  doi: 10.1364/OE.410032
  contributor:
    fullname: Chen
– volume: 586
  start-page: 124371
  year: 2020
  ident: ref_25
  article-title: Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124371
  contributor:
    fullname: Adnan
– volume: 10
  start-page: 282
  year: 1970
  ident: ref_63
  article-title: River flow forecasting through conceptual models part I—A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
  contributor:
    fullname: Nash
– volume: 14
  start-page: 5
  year: 1998
  ident: ref_50
  article-title: Support Vector Machines for Classification and Regression
  publication-title: ISIS Tech. Rep.
  contributor:
    fullname: Gunn
– volume: 34
  start-page: 4113
  year: 2020
  ident: ref_29
  article-title: Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-020-02659-5
  contributor:
    fullname: Parisouj
– volume: 79
  start-page: 94
  year: 2008
  ident: ref_70
  article-title: Constructing neural network sediment estimation models using a data-driven algorithm
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2007.10.005
  contributor:
    fullname: Kisi
– volume: 11
  start-page: 1
  year: 2003
  ident: ref_37
  article-title: Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)
  publication-title: Evol. Comput.
  doi: 10.1162/106365603321828970
  contributor:
    fullname: Hansen
– volume: 514
  start-page: 358
  year: 2014
  ident: ref_13
  article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.057
  contributor:
    fullname: Nourani
– volume: 114
  start-page: 101986
  year: 2020
  ident: ref_58
  article-title: The generalized modified Bessel function and its connection with Voigt line profile and Humbert functions
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2019.101986
  contributor:
    fullname: Kumar
– volume: 35
  start-page: 571
  year: 2010
  ident: ref_15
  article-title: Application of radial basis function neural networks to short-term streamflow forecasting
  publication-title: Phys. Chem. Earth Parts A/B/C
  doi: 10.1016/j.pce.2010.07.021
  contributor:
    fullname: Kagoda
– ident: ref_26
  doi: 10.3390/w12061734
– volume: 2
  start-page: 1
  year: 2011
  ident: ref_48
  article-title: LIBSVM: A Library for Support Vector Machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
  contributor:
    fullname: Chang
– ident: ref_31
  doi: 10.3390/math10142446
– volume: 33
  start-page: 2853
  year: 2021
  ident: ref_72
  article-title: Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05164-3
  contributor:
    fullname: Adnan
– volume: 524
  start-page: 587
  year: 2015
  ident: ref_68
  article-title: Gene expression models for prediction of longitudinal dispersion coefficient in streams
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.03.016
  contributor:
    fullname: Sattar
– volume: 61
  start-page: 279
  year: 2021
  ident: ref_14
  article-title: A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.04.100
  contributor:
    fullname: Ibrahim
– ident: ref_35
  doi: 10.20944/preprints201905.0320.v1
– ident: ref_42
  doi: 10.1007/978-0-387-84858-7
– ident: ref_49
  doi: 10.1007/978-81-322-1780-0
– volume: 9
  start-page: 159
  year: 2001
  ident: ref_59
  article-title: Completely Derandomized Self-Adaptation in Evolution Strategies
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
  contributor:
    fullname: Hansen
– volume: 68
  start-page: 1113
  year: 2020
  ident: ref_66
  article-title: Modelling reference evapotranspiration by combining neuro-fuzzy and evolutionary strategies
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-020-00446-9
  contributor:
    fullname: Alizamir
– volume: 40
  start-page: 467
  year: 2009
  ident: ref_9
  article-title: Flow forecast by SWAT model and ANN in Pracana basin, Portugal
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2008.08.002
  contributor:
    fullname: Demirel
– volume: 16
  start-page: 2209
  year: 2015
  ident: ref_4
  article-title: A Probabilistic Wavelet–Support Vector Regression Model for Streamflow Forecasting with Rainfall and Climate Information Input
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-14-0210.1
  contributor:
    fullname: Liu
– volume: 511
  start-page: 72
  year: 2014
  ident: ref_16
  article-title: Monthly streamflow forecasting using Gaussian Process Regression
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.01.023
  contributor:
    fullname: Sun
– volume: 586
  start-page: 124901
  year: 2020
  ident: ref_24
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124901
  contributor:
    fullname: Ni
– volume: 22
  start-page: 310
  year: 2020
  ident: ref_23
  article-title: A multi-model integration method for monthly streamflow prediction: Modified stacking ensemble strategy
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2019.066
  contributor:
    fullname: Li
– ident: ref_54
– ident: ref_7
  doi: 10.28991/HIJ-SP2022-03-02
– volume: 64
  start-page: 579
  year: 2020
  ident: ref_41
  article-title: Reliability Analysis via an Optimal Covariance Matrix Adaptation Evolution Strategy: Emphasis on Applications in Civil Engineering
  publication-title: Period. Polytech. Civ. Eng.
  contributor:
    fullname: Kaveh
– volume: 2
  start-page: 184
  year: 1981
  ident: ref_62
  article-title: ON the Validation of Models
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.1981.10642213
  contributor:
    fullname: Willmott
– volume: 50
  start-page: 2073
  year: 2018
  ident: ref_61
  article-title: Fast Covariance Matrix Adaptation for Large-Scale Black-Box Optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2877641
  contributor:
    fullname: Li
– volume: 477
  start-page: 119
  year: 2013
  ident: ref_1
  article-title: Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.11.015
  contributor:
    fullname: Erdal
– ident: ref_6
  doi: 10.3390/w14091449
– volume: 101
  start-page: 169
  year: 2018
  ident: ref_21
  article-title: Improving predictions of hydrological low-flow indices in ungaged basins using machine learning
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.12.021
  contributor:
    fullname: Worland
– ident: ref_53
  doi: 10.1145/2939672.2939785
– volume: 64
  start-page: 102562
  year: 2021
  ident: ref_30
  article-title: Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102562
  contributor:
    fullname: Niu
– volume: 142
  start-page: 159
  year: 2015
  ident: ref_56
  article-title: Gaussian process regression with multiple response variables
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.01.016
  contributor:
    fullname: Wang
– volume: 377
  start-page: 80
  year: 2009
  ident: ref_64
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.08.003
  contributor:
    fullname: Gupta
– ident: ref_65
  doi: 10.1007/978-981-10-8476-8_15
– volume: 9
  start-page: 101
  year: 2016
  ident: ref_38
  article-title: Identification of the hygrothermal properties of a building envelope material by the covariance matrix adaptation evolution strategy
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401493.2014.996608
  contributor:
    fullname: Rouchier
– volume: 30
  start-page: 4125
  year: 2016
  ident: ref_19
  article-title: Enhancing Long-Term Streamflow Forecasting and Predicting using Periodicity Data Component: Application of Artificial Intelligence
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1408-5
  contributor:
    fullname: Yaseen
SSID ssj0000913849
Score 2.367315
Snippet Precise streamflow estimation plays a key role in optimal water resource use, reservoirs operations, and designing and planning future hydropower projects....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 2971
SubjectTerms Adaptation
Algorithms
Analysis
Analysis of covariance
Artificial neural networks
Covariance matrix
covariance matrix adaptation evolution strategy
elastic net
Errors
Evolution
extreme learning machine
Food science
Gaussian process
Heuristic
Hydroelectric power
Hydrology
Innovations
Machine learning
Matrices
Neural networks
Numerical prediction
Optimization
Precipitation
Prediction theory
Radial basis function
Statistical analysis
Strategy
Stream flow
Streamflow
streamflow prediction
Support vector machines
support vector regression
Uncertainty analysis
Water resources
Water shortages
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7EnzidkoPiqaxN0qQ5zuEYwsSDgreQpKkKusk2p_73vtfGMQ_iReipNCW8l-R9X_LeF0JOtSpl0NYnFYTrRIjUJa5KbeJ5rkLFS5VZ3NAfXcvhnbi6z-9XrvrCnLBGHrgxXJc7ySumAuPaCYhGNgfELLzLAOkKa5s68lSvkKl6DdYZL4RuMt058Pou4L9HZKpMq-xHDKql-n9bkOsoM9gimxEe0l7TrW2yFsY7ZGO01Fad7ZJpf7IAgoveoiMU2P-gvdK-Nkfq9HIRxxKNurOfFGApXe4dQBPMngw0Cqs-0F5UFQ8z-lS3Cvalep6805spHuLgv_bI3eDytj9M4s0JiYcAjffLF1L60oPlIMBzICXcwROYFzwFQsalRGU37QrnS1V4V3HcVBSOM5uVpeX7pDWejMMBoQB3AJRULlfWiTxIXQRZVhJ16qx0qWyTs29bmtdGIMMAsUCbm1Wbt8kFGnr5Dcpa1y_A2SY62_zl7DY5RzcZnHxgRG9jDQF0FWWsTE8xWPgzpdI26Xx70sRZOTNMoSgz4yo9_I_eHJF1hsUQdTpgh7Tm07dwDBBl7k7q0fgFF6DjRw
  priority: 102
  providerName: Directory of Open Access Journals
Title Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction
URI https://www.proquest.com/docview/2706272370
https://doaj.org/article/3b63f27e239b4812a56424cb16754aa7
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5Bc4FDxVMESuQDiNMqu7bX3j2hJEqIkFJVVSv1Zvm1oRJkQ9IW-PfMbJxADyDtad-asWfmG4-_AXhX66BibX3WoLvOpMxd5prcZl6UOjYi6MJSQn9xquaX8vNVeZUSbttUVrm3iZ2hDq2nHPmQayLU5ULnH9ffM-oaRaurqYXGQ-gVXGsCX9Xs0yHHQpyXlax39e4C0f0Qo8AvhFd5rYt7nqgj7P-XWe58zewJHKcgkY12Wn0KD-LqGTxeHBhWt89hM2nvEOaSztiCaPZ_slGw693COpvepRHFEvvsL4bBKTtkEPARqqGMLNGrLtkocYvHLbvunor2W_O1_cHONrSUQ-96AZez6cVknqX-CZlHN01d5iulfPCi4ejmBUIT4fCI3EuRIywTShG_W-0q54OuvGsEpRalE9wWIVjxEo5W7Sq-AoZBD4YmjSu1dbKMqq6iCo0itjqrXK768H4vS7Pe0WQYhBckc_O3zPswJkEf7iFy6-5Eu1maNFeMcPgpriMXtZMYgNgSQZL0rkBwI63VffhAajI0BVGI3qadBPirRGZlRpqj-S-0zvtwstekSXNza_6MpNf_v_wGHnHa7NCV-53A0c3mNr7FEOTGDbpxNoDeeHp6dj7ogPxvAIXeXw
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61cGh7qOhLbAvUh1Y9RSS2YyenakGLlpZdIQQSN8uvAFK72e5S2v57ZrLehR5AyimJE2vG9sw3Hn8D8KnWQcXa-qxBc51JmbvMNbnNvCh1bETQhaWA_mishmfy23l5ngJu85RWuVwTu4U6tJ5i5LtcE6EuFzr_Ov2VUdUo2l1NJTSewjpRVSH4Wt8bjI9PVlEWYr2sZL3IeBeI73fRD7wkxMprXfxnizrK_ocW5s7aHGzAy-Qmsv5Cr6_gSZy8hhejFcfq_A3M9tsbBLqkNTYiov2_rB_sdLG1zgY3aUyxxD_7j6F7ylYxBGxCWZSRJYLVC9ZP7OJxzq66VtH-bH60f9jxjDZz6Ftv4exgcLo_zFIFhcyjoaY685VSPnjRcDT0AsGJcHhF7qXIEZgJpYjhrXaV80FX3jWCgovSCW6LEKx4B2uTdhI3gaHbg85J40ptnSyjqquoQqOIr84ql6sefF7K0kwXRBkGAQbJ3NyXeQ_2SNCrd4jeurvRzi5Mmi1GOPwV15GL2kl0QWyJMEl6VyC8kdbqHnwhNRmahChEb9NZAuwq0VmZvuZoAAqt8x5sLTVp0uycm7ux9P7xxx_h2fB0dGSODsffP8BzTkcfuuS_LVi7nv2O2-iQXLudNOpuARxY4CE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LjxMxDLagKyE4IJ6isEAOIE6jziSZZOaEukur5dGqQqy0tyjPBQk6pV0W-PfY07TAAaQ5zVu2E_tznM8Az1odVGytLxK660LK0hUulbbwotYxiaArSwn92VydnMo3Z_VZrn_a5LLK3ZzYT9Sh85QjH3FNhLpc6HKUclnE4tX05eprQR2kaKU1t9O4CgdaKlEO4OBoMl-832dciAGzke22-l0g1h9hTPiR0CtvdfWXX-rp-_81SfeeZ3oLbuaQkY23Or4NV-LyDtyY7flWN3dhfdxdIuglDbIZke7_YONgV9tldja5zPbFMhftT4ahKtvnE_ARqqiMLJOtnrNxZhqPG_apfyraL-lz950t1rSwQ--6B6fTyYfjkyJ3Uyg8Om3qOd8o5YMXiaPTFwhUhMMjci9FiSBNKEVsb61rnA-68S4JSjRKJ7itQrDiPgyW3TI-AIYhEAYqydXaOllH1TZRhaSIu84qV6ohPN_J0qy2pBkGwQbJ3Pwp8yEckaD39xDVdX-iW5-bPHKMcPgpriMXrZMYjtgaIZP0rkKoI63VQ3hBajI0IFGI3uZ9BfirRG1lxpqjM6i0LodwuNOkySN1Y37b1cP_X34K19DgzLvX87eP4DqnXRB9HeAhDC7W3-JjjE0u3JNsdL8Aak_kTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariance+Matrix+Adaptation+Evolution+Strategy+for+Improving+Machine+Learning+Approaches+in+Streamflow+Prediction&rft.jtitle=Mathematics+%28Basel%29&rft.au=Rana+Muhammad+Adnan+Ikram&rft.au=Goliatt%2C+Leonardo&rft.au=Kisi%2C+Ozgur&rft.au=Trajkovic%2C+Slavisa&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=16&rft.spage=2971&rft_id=info:doi/10.3390%2Fmath10162971&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon