Aerobic granulation for wastewater bioremediation: A review

Rapid industrialisation and urbanisation releases numerous toxic compounds into natural water bodies, polluting these pristine fresh water resources. This is a subject of great concern, and the attention of environmentalists around the world has been increased towards this problem in recent years. S...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of chemical engineering Vol. 91; no. 6; pp. 1045 - 1058
Main Authors Khan, Mohammad Zain, Mondal, Pijush Kanti, Sabir, Suhail
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rapid industrialisation and urbanisation releases numerous toxic compounds into natural water bodies, polluting these pristine fresh water resources. This is a subject of great concern, and the attention of environmentalists around the world has been increased towards this problem in recent years. Several techniques have been proposed for efficient wastewater treatment, most of them presenting some limitations, such as poor capacity, the generation of waste products, incomplete mineralisation and a high operating cost. Currently, aerobic granulation treatments are considered to be the most effective and economic alternative. Aerobic granulation is a process of microbial self‐immobilisation that results into a cell‐structured shape, characterised by dense biomass. Aerobic granules have a number of advantages over conventional bioflocs, such as a round and compact structure, good settling ability, high biomass retention and the ability to withstand high organic loading rates. Aerobic granulation technology has been demonstrated to be useful for a wide variety of wastewaters, including industrial, nutrient‐rich and toxic. This paper presents a state‐of‐the‐art review of effective aerobic granulation technology for wastewater treatment selected from the point‐of‐view of basic concepts of aerobic granulation, characterisation and factors that affect aerobic granulation, demonstrating the effectiveness of the cell‐immobilisation (aerobic granulation) technique. © 2012 Canadian Society for Chemical Engineering
AbstractList Rapid industrialisation and urbanisation releases numerous toxic compounds into natural water bodies, polluting these pristine fresh water resources. This is a subject of great concern, and the attention of environmentalists around the world has been increased towards this problem in recent years. Several techniques have been proposed for efficient wastewater treatment, most of them presenting some limitations, such as poor capacity, the generation of waste products, incomplete mineralisation and a high operating cost. Currently, aerobic granulation treatments are considered to be the most effective and economic alternative. Aerobic granulation is a process of microbial self‐immobilisation that results into a cell‐structured shape, characterised by dense biomass. Aerobic granules have a number of advantages over conventional bioflocs, such as a round and compact structure, good settling ability, high biomass retention and the ability to withstand high organic loading rates. Aerobic granulation technology has been demonstrated to be useful for a wide variety of wastewaters, including industrial, nutrient‐rich and toxic. This paper presents a state‐of‐the‐art review of effective aerobic granulation technology for wastewater treatment selected from the point‐of‐view of basic concepts of aerobic granulation, characterisation and factors that affect aerobic granulation, demonstrating the effectiveness of the cell‐immobilisation (aerobic granulation) technique. © 2012 Canadian Society for Chemical Engineering
Rapid industrialisation and urbanisation releases numerous toxic compounds into natural water bodies, polluting these pristine fresh water resources. This is a subject of great concern, and the attention of environmentalists around the world has been increased towards this problem in recent years. Several techniques have been proposed for efficient wastewater treatment, most of them presenting some limitations, such as poor capacity, the generation of waste products, incomplete mineralisation and a high operating cost. Currently, aerobic granulation treatments are considered to be the most effective and economic alternative. Aerobic granulation is a process of microbial self-immobilisation that results into a cell-structured shape, characterised by dense biomass. Aerobic granules have a number of advantages over conventional bioflocs, such as a round and compact structure, good settling ability, high biomass retention and the ability to withstand high organic loading rates. Aerobic granulation technology has been demonstrated to be useful for a wide variety of wastewaters, including industrial, nutrient-rich and toxic. This paper presents a state-of-the-art review of effective aerobic granulation technology for wastewater treatment selected from the point-of-view of basic concepts of aerobic granulation, characterisation and factors that affect aerobic granulation, demonstrating the effectiveness of the cell-immobilisation (aerobic granulation) technique. copyright 2012 Canadian Society for Chemical Engineering
Author Sabir, Suhail
Khan, Mohammad Zain
Mondal, Pijush Kanti
Author_xml – sequence: 1
  givenname: Mohammad Zain
  surname: Khan
  fullname: Khan, Mohammad Zain
  organization: Department of Civil, Environmental and Geomatic Engineering, Chadwick Building, University College London, Gower Street, WC1E 6BT, London, UK
– sequence: 2
  givenname: Pijush Kanti
  surname: Mondal
  fullname: Mondal, Pijush Kanti
  organization: Institute of Bioengineering and Biotechnology, Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
– sequence: 3
  givenname: Suhail
  surname: Sabir
  fullname: Sabir, Suhail
  email: sabirsuhail09@gmail.com
  organization: Faculty of Science, Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
BookMark eNp9kF1PwjAUQBuDiYC--Av2aEyG_Vj3oU9IACVEY4KBt6brbk1xbNgOJ_9eYOqDMT41Nz3n5uZ0UKsoC0DonOAewZheqaWCHiURTY5QmyQs8TFJFi3UxhjHfoBZcII6zi13I8UBaaObPtgyNcp7sbLY5LIyZeHp0nq1dBXUsgLrpaa0sILMHH6vvb5n4d1AfYqOtcwdnH29XfQ8Gs4Gd_70cXw_6E99FeAw8SWJY8KzNJU41lmsJcm0YgAh1QlhEOpIqZgBAx5lipAkpKFOZRgDpyqiOmJddNHsXdvybQOuEivjFOS5LKDcOEE4D5Ig4JTvUNygypbOWdBCmepwdmWlyQXBYt9J7DuJQ6edcvlLWVuzknb7N0wauDY5bP8hxWAyGH47fuOYXdGPH0faVxFGLOJi_jAWi9l8gvnoVjyxT4jIiog
CitedBy_id crossref_primary_10_5322_JESI_2019_28_8_669
crossref_primary_10_3923_jest_2021_1_12
crossref_primary_10_1002_cben_202400107
crossref_primary_10_1016_j_biortech_2016_06_120
crossref_primary_10_2166_wrd_2015_188
crossref_primary_10_3390_w8050172
crossref_primary_10_1016_j_biortech_2014_08_092
crossref_primary_10_1016_j_jwpe_2023_104712
crossref_primary_10_1016_j_procbio_2017_04_001
crossref_primary_10_1016_j_envint_2020_105540
crossref_primary_10_2478_cons_2017_0003
crossref_primary_10_1016_j_jece_2022_107500
crossref_primary_10_1016_j_jclepro_2018_06_167
crossref_primary_10_1016_j_scitotenv_2023_162213
crossref_primary_10_1186_s40201_015_0188_9
crossref_primary_10_3390_w13070980
crossref_primary_10_1016_j_wroa_2019_100040
crossref_primary_10_1016_j_jes_2020_12_003
crossref_primary_10_1016_j_biortech_2017_09_131
crossref_primary_10_1016_j_jclepro_2017_08_134
crossref_primary_10_1016_j_biortech_2017_06_129
crossref_primary_10_1016_j_cscee_2021_100173
crossref_primary_10_1016_j_jwpe_2024_105972
crossref_primary_10_1007_s00449_020_02302_y
crossref_primary_10_1016_j_jwpe_2018_09_002
crossref_primary_10_3389_fmicb_2017_00770
crossref_primary_10_1016_j_cej_2017_12_026
crossref_primary_10_1016_j_cej_2018_11_060
crossref_primary_10_1016_j_jwpe_2019_100889
crossref_primary_10_3390_w14192976
crossref_primary_10_1080_10643389_2018_1439653
crossref_primary_10_1016_j_cej_2024_156275
crossref_primary_10_1016_j_jenvman_2023_118032
crossref_primary_10_1016_j_cej_2025_159365
crossref_primary_10_1039_D4EW00927D
crossref_primary_10_1016_j_watres_2020_116657
crossref_primary_10_1016_j_chemosphere_2022_135116
crossref_primary_10_1007_s00253_018_9332_7
crossref_primary_10_1016_j_psep_2017_02_016
crossref_primary_10_1016_j_envpol_2024_123923
crossref_primary_10_15544_jws_2017_009
crossref_primary_10_3390_membranes6020033
crossref_primary_10_1016_j_jwpe_2020_101605
crossref_primary_10_1007_s40710_023_00670_7
crossref_primary_10_1007_s11157_016_9401_2
crossref_primary_10_1007_s11274_016_2179_0
crossref_primary_10_1080_21622515_2020_1732479
crossref_primary_10_1080_09593330_2017_1351494
crossref_primary_10_3390_microorganisms11092328
crossref_primary_10_1016_j_jenvman_2023_118501
crossref_primary_10_2166_wst_2021_415
crossref_primary_10_1016_j_eti_2017_12_006
crossref_primary_10_3390_su141710904
crossref_primary_10_1016_j_biortech_2017_03_005
crossref_primary_10_1016_j_jes_2016_06_012
crossref_primary_10_1016_j_biortech_2014_03_047
crossref_primary_10_1016_j_jece_2020_103681
crossref_primary_10_1080_19443994_2014_895962
crossref_primary_10_1016_j_mex_2022_101710
crossref_primary_10_1016_j_biortech_2016_01_098
crossref_primary_10_1016_j_jece_2018_05_020
crossref_primary_10_1016_j_jwpe_2025_107075
crossref_primary_10_1016_j_ibiod_2020_104963
crossref_primary_10_1016_j_procbio_2017_04_038
crossref_primary_10_1016_j_jenvman_2020_110391
crossref_primary_10_1016_j_jwpe_2019_100785
crossref_primary_10_1088_1755_1315_1091_1_012059
crossref_primary_10_3390_pr10071399
crossref_primary_10_3390_ijerph120810056
crossref_primary_10_1007_s00253_018_8990_9
crossref_primary_10_1016_j_seppur_2023_124892
crossref_primary_10_2166_wst_2015_233
crossref_primary_10_1016_j_biortech_2024_131570
crossref_primary_10_1016_j_scitotenv_2018_07_140
crossref_primary_10_1007_s00253_015_6964_8
crossref_primary_10_1016_j_hazadv_2024_100462
crossref_primary_10_1016_j_jes_2017_08_015
crossref_primary_10_1016_j_jwpe_2020_101709
crossref_primary_10_3390_w12082126
crossref_primary_10_1007_s10661_024_12545_x
Cites_doi 10.1016/j.watres.2009.05.007
10.1016/j.chemosphere.2005.04.081
10.1128/AEM.70.11.6767-6775.2004
10.1016/j.biortech.2007.03.011
10.1007/s10532-006-9077-3
10.1007/s00253-004-1657-8
10.1016/S0043-1354(02)00585-7
10.1007/BF00257609
10.1021/es0483140
10.1111/j.1472-765X.2003.01479.x
10.1016/S1001-0742(09)60075-9
10.1016/j.watres.2003.08.017
10.1016/j.chemosphere.2011.11.002
10.1016/j.bej.2004.03.005
10.2166/wst.2006.381
10.1111/j.1462-2920.2007.01456.x
10.30638/eemj.2010.040
10.1016/j.watres.2008.11.009
10.1016/j.biortech.2010.05.078
10.1016/j.biortech.2009.05.058
10.2166/wst.2004.0707
10.1016/j.biotechadv.2009.05.020
10.1061/(ASCE)0733-9372(2001)127:9(825)
10.1016/j.biortech.2009.11.099
10.1007/BF01622068
10.1007/s00284-002-3878-3
10.1016/j.enzmictec.2010.03.011
10.1016/j.chemosphere.2008.11.069
10.1016/S0043-1354(01)00250-0
10.1016/S1093-0191(01)00132-0
10.1016/j.chemosphere.2005.08.055
10.1016/j.chemosphere.2007.05.026
10.1016/j.cej.2010.03.017
10.1016/j.procbio.2007.10.008
10.1128/aem.63.3.1168-1170.1997
10.1016/j.bej.2005.10.002
10.1046/j.1365-2672.2001.01374.x
10.1016/j.watres.2010.07.033
10.1007/s002530051250
10.1007/s00253-005-1991-5
10.1007/s00253-003-1462-9
10.1046/j.1472-765X.2002.01108.x
10.1016/j.biortech.2010.05.062
10.1061/(ASCE)0733-9372(2000)126:12(1145)
10.1016/j.jbiotec.2003.11.008
10.1007/s00248-002-2014-z
10.1016/j.procbio.2004.01.056
10.1016/j.jtice.2009.02.002
10.1016/S1001-0742(08)62263-9
10.1016/j.enzmictec.2007.01.005
10.1016/S1001-0742(09)60256-4
10.1016/j.biotechadv.2008.05.002
10.1016/j.procbio.2009.02.019
10.1007/s00253-005-0088-5
10.1016/S0043-1354(98)00443-6
10.1016/j.biortech.2011.04.057
10.1016/j.biortech.2008.06.015
10.1016/j.watres.2009.10.028
10.1016/j.memsci.2007.08.041
10.1016/S0958-1669(96)80038-3
10.1093/mutage/gel011
10.1046/j.1365-2672.2003.01915.x
10.1007/s00253-008-1604-1
10.1016/j.watres.2009.05.004
10.1038/ismej.2008.12
10.1016/j.procbio.2011.09.007
10.1016/S0927-7765(02)00145-5
10.1016/j.enzmictec.2009.06.014
10.1016/j.biotechadv.2004.05.001
10.1002/cjce.20445
10.1016/j.jhazmat.2009.09.070
10.1007/s10532-010-9364-x
10.1002/bit.1167
10.1016/j.watres.2007.10.021
10.1016/j.watres.2009.08.045
10.1046/j.1472-765X.2003.01312.x
10.1021/es0517771
10.1016/j.chemosphere.2005.09.018
10.1128/aem.58.4.1367-1370.1992
10.1016/j.procbio.2008.10.018
10.1007/BF00409231
10.1046/j.1472-765x.2002.01099.x
10.1016/j.biortech.2008.06.016
10.1007/s00253-006-0797-4
10.1007/s00253-008-1476-4
10.1016/j.biortech.2008.01.073
10.1016/j.jhazmat.2008.11.049
10.1016/j.jhazmat.2008.09.034
10.1016/j.biortech.2009.04.050
10.1016/j.watres.2011.11.054
10.1016/j.chemosphere.2005.11.030
10.2166/wst.2003.0610
10.1080/09593330309385665
10.1061/(ASCE)0733-9372(2004)130:12(1415)
10.1016/j.jhazmat.2011.03.029
10.2166/wst.2009.863
10.1016/j.jhazmat.2010.05.021
10.1016/j.jhazmat.2010.01.037
10.1089/hwm.1988.5.109
10.1016/S0032-9592(03)00307-8
10.1016/S0043-1354(98)00463-1
10.1007/s00253-008-1456-8
10.1061/(ASCE)0733-9372(2006)132:6(694)
10.1007/s002530100766
10.1016/j.cej.2010.08.063
10.2166/wst.2008.393
10.1016/j.enzmictec.2005.07.020
10.1007/s00253-007-1085-7
10.1080/09593330802536339
10.2166/wst.2002.0540
10.1016/S0043-1354(01)00379-7
10.1016/S1001-0742(08)60026-1
ContentType Journal Article
Copyright Copyright © 2012 Canadian Society for Chemical Engineering
Copyright_xml – notice: Copyright © 2012 Canadian Society for Chemical Engineering
DBID BSCLL
AAYXX
CITATION
7QH
7TV
7UA
C1K
DOI 10.1002/cjce.21729
DatabaseName Istex
CrossRef
Aqualine
Pollution Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Pollution Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Pollution Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-019X
EndPage 1058
ExternalDocumentID 10_1002_cjce_21729
CJCE21729
ark_67375_WNG_XTWJ05FB_Q
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IAO
ICQ
ISN
ISR
ITC
JPC
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WSB
WXSBR
WYISQ
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABJIA
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QH
7TV
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
ID FETCH-LOGICAL-c4069-a18815dbba08fd8fa1dfc3ee62f913e6f7cc83e3e57dc119626fba68e52c72f73
ISSN 0008-4034
IngestDate Fri Jul 11 10:10:36 EDT 2025
Tue Jul 01 03:38:09 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Jan 22 16:16:51 EST 2025
Wed Oct 30 09:56:39 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4069-a18815dbba08fd8fa1dfc3ee62f913e6f7cc83e3e57dc119626fba68e52c72f73
Notes ArticleID:CJCE21729
istex:29C6A6CFF222B2FCFD5ACC6478BA557346F4DA88
ark:/67375/WNG-XTWJ05FB-Q
The following are the major points of this review:  1. Both mixed and pure cultures can be used for cultivating aerobic granules. Generally, mixed culture is employed for degrading a mixture of toxic compounds, and pure culture is useful for degrading a specific toxicant.  2. Aerobic granules are used to treat wastewater containing higher organic loading rates as well as fluctuations in organic loading rates.  3. There is a strong contradiction regarding the effect of DO, HRT and the starvation period on biogranulation.  4. Further research is needed to explore the feasibility of using stored granule as inoculums for rapid startup.
The following are the major points of this review
3. There is a strong contradiction regarding the effect of DO, HRT and the starvation period on biogranulation.
1. Both mixed and pure cultures can be used for cultivating aerobic granules. Generally, mixed culture is employed for degrading a mixture of toxic compounds, and pure culture is useful for degrading a specific toxicant.
2. Aerobic granules are used to treat wastewater containing higher organic loading rates as well as fluctuations in organic loading rates.
4. Further research is needed to explore the feasibility of using stored granule as inoculums for rapid startup.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/1822/27728
PQID 1554944525
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_1554944525
crossref_citationtrail_10_1002_cjce_21729
crossref_primary_10_1002_cjce_21729
wiley_primary_10_1002_cjce_21729_CJCE21729
istex_primary_ark_67375_WNG_XTWJ05FB_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2013
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: June 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Canadian journal of chemical engineering
PublicationTitleAlternate Can. J. Chem. Eng
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Sheng, G. P., A. J. Li, X. Y. Li and H. Q. Yu, " Effects of Seed Sludge Properties and Selective Biomass Discharge on Aerobic Sludge Granulation," Chem. Eng. J. 160, 108-114 (2010).
United States Geological Survey (USGS). " Denver, CO. Ground Water and Surface Water: A Single Resource," USGS Circ. 1139, 1-10 (1998).
Tay, J. H., Q. S. Liu and Y. Liu, " Microscopic Observation of Aerobic in Sequential Aerobic Sludge Reactor," J. Appl. Microbiol. 91, 168-175 (2001a).
Wackett, L. P., " Co-Metabolism: Is the Emperor Wearing Any Clothes?" Curr. Opin. Biotechnol. 7, 321-325 (1996).
Nancharaiah, Y. V., H. M. Joshi, T. V. K. Mohan, V. P. Venugopalan and S. V. Narasimhan, " Aerobic Granular Biomass: A Novel Biomaterial for Efficient Uranium Removal," Curr. Sci. 91, 503-509 (2006).
Wan, J., Y. Bessiere and M. Sperandio, " Alternating Anoxic Feast/Aerobic Famine Condition for Improving Granular Sludge Formation in Sequencing Batch Airlift Reactor at Reduced Aeration Rate," Water Res. 43, 5097-5108 (2009).
Zheng, Y. M., H. Q. Yu, S. J. Liu and X. Z. Liu, " Formation and Instability of Aerobic Granules Under High Organic Loading Conditions," Chemosphere 63, 1791-1800 (2006).
Tay, J. H., H. L. Jiang and S. T. L. Tay, " High-Rate Biodegradation of Phenol by Aerobically Grown Microbial Granules," J. Environ. Eng. 130, 1415-1423 (2004b).
Thanh, B. X., C. Visvanathan and R. B. Aim, " Characterization of Aerobic Granular Sludge at Various Organic Loading Rates," Process Biochem. 44, 242-245 (2009).
Hailei, W., L. Ping, L. Guosheng, L. Xin and Y. Jianming, " Rapid Biodecolourization of Eriochrome Black T Wastewater by Bioaugmented Aerobic Granules Cultivated Through a Specific Method," Enzy. Microb. Technol. 47, 37-43 (2010).
Liu, Y., S. F. Yang, Q. S. Liu and J. H. Tay, " The Role of Cell Hydrophobicity in the Formation of Aerobic Granules," Curr. Microbiol. 46, 270-274 (2003a).
Wang, S. G., X. W. Liu, H. Y. Zhang, W. X. Gong, X. F. Sun and B. Y. Gao, " Aerobic Granulation for 2,4-Dichlorophenol Biodegradation in a Sequencing Batch Reactor," Chemosphere 69, 769-775 (2007a).
Belmonte, M., J. R. Vazquez Padin, M. Figueroa, A. Franco, A. Mosquera-Corral, J. L. Campos and R. Mendez, " Characteristics of Nitrifying Granules Developed in an Air Pulsing SBR," Process Biochem. 44, 602-606 (2009).
Kos, B., J. Suskovic, S. Vukovic, M. Simpraga, J. Frece and S. Matosic, " Adhesion and Aggregation Ability of Probiotic Strain Lactobacillus acidophilus M92," J. Appl. Microbiol. 94, 981-987 (2003).
Verawaty, M., M. Pijuan, Z. Yuan and P. L. Bond, " Determining the Mechanisms for Aerobic Granulation From Mixed Seed of Floccular and Crushed Granules in Activated Sludge Wastewater Treatment," Water Res. 46, 761-771 (2012).
Khan, M. Z., F. Khan and S. Sabir, " Aerobic Granular Treatment of 2,4-Dichlorophenol," Can. J. Chem. Eng. 89(4), 914-920 (2011a).
Pan, S., J. H. Tay, Y. X. He and S. T. L. Tay, " The Effect of Hydraulic Retention Time on the Stability of Aerobically Grown Microbial Granules," Lett. Appl. Microbiol. 38, 158-163 (2004).
Tay, J. H., Q. S. Liu and Y. Liu, " The Effect of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules," Appl. Microbiol. Biotechnol. 57, 227-233 (2001b).
Wang, Z. W., Y. Liu and J. H. Tay, " The Role of SBR Mixed Liquor Volume Exchange Ratio in Aerobic Granulation," Chemosphere 62, 767-771 (2006b).
Liu, Q. S., Y. Liu, K. Y. Show and J. H. Tay, " Toxicity Effect of Phenol on Aerobic Granules," Environ. Technol. 30, 69-74 (2009b).
Shim, H., E. B. Shin and S. T. Yang, " A Continuous Fibrous-Bed Bioreactor for BTEX Biodegradation By a Co-Culture of Pseudomonas putida and Pseudomonas fluorescens ," Adv. Environ. Res. 7, 203-216 (2002).
Limbergen, H. V., E. M. Top and W. Verstraete, " Bioaugmentation in Activated Sludge: Current Features and Future Perspectives," Appl. Microbiol. Biotechnol. 50, 16-23 (1998).
Liu, L., D. W. Gao, M. Zhang and Y. Fu, " Comparison of Ca2+ and Mg2+ Enhancing Aerobic Granulation in SBR," J. Hazard. Mater. 181, 382-387 (2010).
Adav, S. S., D. J. Lee and J. Y. Lai, " Treating Chemical Industries Influent Using Aerobic Granular Sludge: Recent Development," J. Taiwan Ins. Chem. Eng. 40, 333-336 (2009b).
Chen, Y., W. Jiang, D. T. Liang and J. H. Tay, " Structure and Stability of Aerobic Granules Cultivated Under Different Shear Force in Sequencing Batch Reactors," Appl. Microbiol. Biotechnol. 76, 1199-1208 (2007).
Wang, Z., L. Liu, J. Yao and W. Cai, " Effects of Extracellular Polymeric Substances on Aerobic Granulation in Sequencing Batch Reactors," Chemosphere 63, 1728-1735 (2006a).
Li, A. J. and X. Y. Li, " Selective Sludge Discharge as the Determining Factor in SBR Aerobic Granulation: Numerical Modeling and Experimental Verification," Water Res. 43, 3387-3396 (2009).
Adav, S. S., D. J. Lee and J. Y. Lai, " Intergenetic Coaggregation of Strains Isolated From Phenol Degrading Aerobic Granules," Appl. Microbiol. Biotechnol. 79, 657-661 (2008b).
Tay, J. H., Q. S. Liu and Y. Liu, " Microscopic Observation of Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor," J. Appl. Microbiol. 91, 168-175 (2001c).
Liu, Y., S. F. Yang, L. Qin and J. H. Tay, " A Thermodynamic Interpretation of Cell Hydrophobicity in Aerobic Granulation," Appl. Microbiol. Biotechnol. 64, 410-415 (2004b).
Coma, M., S. Puig, M. D. Balaguer and J. Colprim, " The Role of Nitrate and Nitrite in a Granular Sludge Process Treating Low-Strength Wastewater," Chem. Eng. J. 164, 208-213 (2010).
Tomei, M. C., M. C. Annesini, S. Rita and A. J. Daugulis, " Biodegradation of 4-Nitrophenol in a Two-Phase Sequencing Batch Reactor: Concept Demonstration, Kinetics and Modelling," Appl. Microbiol. Biotechnol. 80, 1105-1112 (2008).
Quan, X., H. Shi, H. Liu, J. Wang and Y. Qian, " Removal of 2,4-Dichlorophenol in a Conventional Activated Sludge System Through Bioaugmentation," Process Biochem. 39, 1701-1707 (2004).
Song, Z., N. Ren, K. Zhang and L. Tong, " Influence of Temperature on the Characteristics of Aerobic Granulation in Sequencing Batch Airlift Reactors," J. Environ. Sci. China 21, 273-278 (2009).
Zheng, Y. M., H. Q. Yu and G. P. Sheng, " Physical and Chemical Characteristics of Granular Activated Sludge From a Sequencing Batch Airlift Reactor," Process Biochem. 40, 645-650 (2005).
Wan, J. and M. Sperandio, " Possible Role of Denitrification on Aerobic Granular Sludge Formation in Sequencing Batch Reactor," Chemosphere 75, 220-227 (2009).
Fang, H. H. P. and H. Q. Yu, " Acidification of Lactose in Wastewater" J. Environ. Eng. 127, 825-831 (2001).
Tsuneda, S., T. Nagano, T. Hoshino, Y. Ejiri and A. H. Noda, " Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor," Water Res. 37, 4965-4973 (2004).
Liu, Y. and J. H. Tay, " State of the Art of Biogranulation Technology for Wastewater Treatment," Biotechnol. Adv. 22, 533-563 (2004).
Wu, C. Y., Y. Z. Peng, S. Y. Wang and Y. Ma, " Enhanced Biological Phosphorus Removal by Granular Sludge: From Macro- to Micro-Scale," Water Res. 44, 807-814 (2010).
Beun, J. J., J. J. Heijnen and M. C. M. van Loosdrecht, " N-Removal in a Granular Sludge Sequencing Batch Airlift Reactor," Biotechnol. Bioeng. 75, 82-92 (2001).
Dangcong, P., N. Bernet, J. Philippe Delgenes and R. Molett, " Aerobic Granular Sludge-A Case Report," Water Res. 33, 890-893 (1999).
Shi, X. Y., G. P. Sheng, X. Y. Li and H. Q. Yu, " Operation of a Sequencing Batch Reactor for Cultivating Autotrophic Nitrifying Granules," Bioresour. Technol. 101, 2960-2964 (2010).
Brian, A. W. and P. Malcolmm, "The ecology of cyanobacteria: Their diversity in time and space," Kluwer Academic Publishers, Dordrecht, The Netherlands (2002), pp. 89-90.
Bull, S., K. Fletcher, A. R. Boobis and J. M. Battershill, " Evidence for Genotoxicity of Pesticides in Pesticide Applicators: A Review," Mutagenesis 21, 93-103 (2006).
Liu, Y. and J. H. Tay, " The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge," Water Res. 36, 1653-1665 (2002).
Ni, B. J., W. M. Xie, S. G. Liu, H. Q. Yu, Y. Z. Wang, G. Wang and X. L. Dai, " Granulation of Activated Sludge in a Pilot-Scale Sequencing Batch Reactor for the Treatment of Low-Strength Municipal Wastewater," Water Res. 43, 751-761 (2009).
Li, Z. H., T. Kuba and T. Kusuda, " The Influence of Starvation Phase on the Properties and the Development of Aerobic Granules," Enzyme Microb. Technol. 38, 670-674 (2006).
Li, Y., Y. Lu and H. Xu, " Is Sludge Retention Time a Decisive Factor for Aerobic Granulation in SBR?" Bioresour. Technol. 99, 7672-7677 (2008a).
Ivanov, V., X. H. Wang, S. T. L. Tay and J. H. Tay, " Bioaugmentation and Enhanced Formation of Microbial Granules Used in Aerobic Wastewater Treatment," App. Microbiol. Biotechnol. 70, 374-381 (2006).
Carucci, A., S. Milia, G. D. Gioannis and M. Piredda, " Acetate-Fed Aerobic Granular Sludge for the Degradation of 4-Chlorophenol," J. Hazard. Mater. 166, 483-490 (2009).
Adav, S. S., D. J. Lee and J. Y. Lai, " Aerobic Granulation in Sequencing Batch Reactors at Different Settling Times," Bioresour. Technol. 100, 5359-5361 (2009a).
Tay, J. H., V. Ivanov, S. Pan and S. T. L. Tay, " Specific Layers in Aerobically Grown Microbial Granules," Lett. Appl. Microbiol. 34, 254-257 (2002a).
Adav, S. S., D. J. Lee and J. Y. Lai, " Aerobic Granules With Inhibitory Strains and Role of Extracellular Polymeric Substances," J. Hazard. Mater. 174, 424-428 (2010).
Ivanov, V., X. H. Wang and O. Stabnikova, " Starter Culture of Pseudomonas veronii strain B for Aerobic Granulation," World J. Microbiol. Biotechnol. 21, 533-539 (2007).
Wang, F., S. Lu, Y. Wei and M. Ji, " Characteristics of Aerobic Granule and Nitrogen and Phosphorus Removal in a SBR," J. Hazard. Mater. 164, 1223-1227 (2009).
Yang, S. F., X. Y. Li and H. Q. Yu, " Formation and Characterization of Fungal and Bacterial Granules Under Different Feeding Alkalinity and pH Conditions," Process Biochem. 43, 8-14 (2008).
Carucci, A., S. Milia, G. Cappai and A. Muntoni, " A Direct Comparison Amongst
2004; 21
2004; 22
1998; 1139
2008a; 2
2002a; 34
2006a; 63
2007a; 69
2002c; 46
2006; 38
2010; 101
1992; 58
2010; 181
2007; 75
2007; 76
2008; 100
2005; 69
2010; 22
2010; 21
2007b; 41
1989; 31
2006; 21
2000; 126
2004; 38
2004; 39
2006; 28
2004; 37
2009a; 100
2004c; 108
2008; 20
2010; 9
2011b; 190
2007; 18
2006; 54
2001c; 91
2002; 7
2001a; 91
2008b; 10
2008; 58
2003; 37
2010; 164
1981; 26
1994
2010; 160
2004b; 64
2010; 45
2010; 44
2004; 50
2010; 47
2009; 75
2006; 40
2010; 177
2009; 100
2010; 174
1999; 33
2003a; 47
2003; 28
2001b; 57
2008; 43
2008; 42
2012; 46
2003a; 46
2011a; 89
2006; 70
2009; 44
2009; 43
2006; 132
2008b; 79
2008; 79
1988; 142
2003; 94
2006; 63
2006; 64
2004; 70
2009; 166
2008; 317
2009a; 27
2002b; 44
1998; 50
2009; 164
2006b; 62
2007; 21
2005; 39
2004b; 130
2009; 59
1996; 7
2003b; 24
2002; 36
2008a; 99
2006; 91
2009; 21
1997; 63
2004a; 65
2002; 34
2005; 40
2005
2008; 99
2002
2009b; 30
2001; 127
2003b; 36
2008a; 26
1988; 5
2011; 46
2009b; 40
2008b; 100
2008; 80
2012; 86
2001; 75
2011c; 102
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Brian A. W. (e_1_2_8_14_1) 2002
Tay J. H. (e_1_2_8_91_1) 2002; 46
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
Ivanov V. (e_1_2_8_34_1) 2005
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
United States Geological Survey (USGS) (e_1_2_8_98_1) 1998; 1139
e_1_2_8_6_1
Nancharaiah Y. V. (e_1_2_8_73_1) 2006; 91
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_37_1
e_1_2_8_79_1
Alves M. (e_1_2_8_8_1) 2010; 9
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Ivanov V. (e_1_2_8_31_1) 2004; 50
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
Ivanov V. (e_1_2_8_32_1) 2007; 21
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_97_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Alexander M. (e_1_2_8_7_1) 1994
Mohn W. M. (e_1_2_8_70_1) 1992; 58
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_50_1
Tay J. H. (e_1_2_8_92_1) 2003; 47
e_1_2_8_104_1
References_xml – reference: United States Geological Survey (USGS). " Denver, CO. Ground Water and Surface Water: A Single Resource," USGS Circ. 1139, 1-10 (1998).
– reference: Adav, S. S., D. J. Lee and J. Y. Lai, " Treating Chemical Industries Influent Using Aerobic Granular Sludge: Recent Development," J. Taiwan Ins. Chem. Eng. 40, 333-336 (2009b).
– reference: Wan, J., Y. Bessiere and M. Sperandio, " Alternating Anoxic Feast/Aerobic Famine Condition for Improving Granular Sludge Formation in Sequencing Batch Airlift Reactor at Reduced Aeration Rate," Water Res. 43, 5097-5108 (2009).
– reference: Chen, Y., W. Jiang, D. T. Liang and J. H. Tay, " Structure and Stability of Aerobic Granules Cultivated Under Different Shear Force in Sequencing Batch Reactors," Appl. Microbiol. Biotechnol. 76, 1199-1208 (2007).
– reference: Bull, S., K. Fletcher, A. R. Boobis and J. M. Battershill, " Evidence for Genotoxicity of Pesticides in Pesticide Applicators: A Review," Mutagenesis 21, 93-103 (2006).
– reference: Khan, M. Z., P. K. Mondal, S. Sabir and V. Tare, " Degradation Pathway, Toxicity and Kinetics of 2,4,6-Trichlorophenol With Different co-Substrates by Aerobic Granules in SBR," Bioresour. Technol. 102, 7016-7021 (2011c).
– reference: Liu, Q. S., Y. Liu, K. Y. Show and J. H. Tay, " Toxicity Effect of Phenol on Aerobic Granules," Environ. Technol. 30, 69-74 (2009b).
– reference: Ivanov, V., X. H. Wang, S. T. L. Tay and J. H. Tay, " Bioaugmentation and Enhanced Formation of Microbial Granules Used in Aerobic Wastewater Treatment," App. Microbiol. Biotechnol. 70, 374-381 (2006).
– reference: Pan, S., J. H. Tay, Y. X. He and S. T. L. Tay, " The Effect of Hydraulic Retention Time on the Stability of Aerobically Grown Microbial Granules," Lett. Appl. Microbiol. 38, 158-163 (2004).
– reference: Li, A. J. and X. Y. Li, " Selective Sludge Discharge as the Determining Factor in SBR Aerobic Granulation: Numerical Modeling and Experimental Verification," Water Res. 43, 3387-3396 (2009).
– reference: Li, Y., Y. Lu and H. Xu, " Is Sludge Retention Time a Decisive Factor for Aerobic Granulation in SBR?" Bioresour. Technol. 99, 7672-7677 (2008a).
– reference: Ivanov, V., X. H. Wang and O. Stabnikova, " Starter Culture of Pseudomonas veronii strain B for Aerobic Granulation," World J. Microbiol. Biotechnol. 21, 533-539 (2007).
– reference: Keweloh, H., H. J. Heipieper and H. J. Rehm, " Protection of Bacteria Against Toxicity of Phenol by Immobilization in Calcium Alginate," Appl. Microbiol. Biotechnol. 31, 383-389 (1989).
– reference: Wackett, L. P., " Co-Metabolism: Is the Emperor Wearing Any Clothes?" Curr. Opin. Biotechnol. 7, 321-325 (1996).
– reference: Khan, F., M. Z. Khan, S. Q. Usmani and S. Sabir, " Biodegradation of Phenol by Aerobic Granulation Technology," Water Sci. Technol. 59, 273-278 (2009).
– reference: Adav, S. S., D. J. Lee and J. Y. Lai, " Intergenetic Coaggregation of Strains Isolated From Phenol Degrading Aerobic Granules," Appl. Microbiol. Biotechnol. 79, 657-661 (2008b).
– reference: Liu, Y. Q., Y. Liu and J. H. Tay, " The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules," Appl. Microbiol. Biotechnol. 65, 143-148 (2004a).
– reference: Zhu, L., X. Y. Xu, W. G. Luo, Z. J. Tian, H. Z. Lin and N. N. A. Zhang, " Comparative Study on the Formation and Characterization of Aerobic 4-Chloroaniline Degrading Granules in SBR and SABR," Appl. Microbiol. Biotechnol. 79, 867-874 (2008).
– reference: Tomei, M. C., M. C. Annesini, S. Rita and A. J. Daugulis, " Biodegradation of 4-Nitrophenol in a Two-Phase Sequencing Batch Reactor: Concept Demonstration, Kinetics and Modelling," Appl. Microbiol. Biotechnol. 80, 1105-1112 (2008).
– reference: Bar-Or, Y. and M. Shillo, " The Role of Cell-Bound Flocculants in Coflocculation of Benthic Cyanobacteria Phormidium J-1," Arch. Microbiol. 142, 21-27 (1988).
– reference: Beun, J. J., M. C. M. van Loosdrecht and J. J. Heijnen, " Aerobic Granulation in a Sequencing Batch Airlift Reactor," Water Res. 36, 702-712 (2002).
– reference: Shi, X. Y., G. P. Sheng, X. Y. Li and H. Q. Yu, " Operation of a Sequencing Batch Reactor for Cultivating Autotrophic Nitrifying Granules," Bioresour. Technol. 101, 2960-2964 (2010).
– reference: Wang, X. H., H. M. Zhang, F. L. Yang, L. P. Xia and M. M. Gao, " Improved Stability and Performance of Aerobic Granules Under Stepwise Increased Selection Pressure," Enzy. Microb. Technol. 41, 205-211 (2007b).
– reference: Tsuneda, S., T. Nagano, T. Hoshino, Y. Ejiri and A. H. Noda, " Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor," Water Res. 37, 4965-4973 (2004).
– reference: Wang, F., S. Lu, Y. Wei and M. Ji, " Characteristics of Aerobic Granule and Nitrogen and Phosphorus Removal in a SBR," J. Hazard. Mater. 164, 1223-1227 (2009).
– reference: Liu, L., D. W. Gao, M. Zhang and Y. Fu, " Comparison of Ca2+ and Mg2+ Enhancing Aerobic Granulation in SBR," J. Hazard. Mater. 181, 382-387 (2010).
– reference: Tay, J. H., Q. S. Liu and Y. Liu, " The Effect of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules," Appl. Microbiol. Biotechnol. 57, 227-233 (2001b).
– reference: Yang, S. F., X. Y. Li and H. Q. Yu, " Formation and Characterization of Fungal and Bacterial Granules Under Different Feeding Alkalinity and pH Conditions," Process Biochem. 43, 8-14 (2008).
– reference: Fang, F., X. W. Liu, J. Xu, H. Q. Yu and Y. M. Li, " Formation of Aerobic Granules and Their PHB Production at Various Substrate and Ammonium Concentrations," Bioresour. Technol. 100, 59-63 (2008).
– reference: Wang, Z., L. Liu, J. Yao and W. Cai, " Effects of Extracellular Polymeric Substances on Aerobic Granulation in Sequencing Batch Reactors," Chemosphere 63, 1728-1735 (2006a).
– reference: Beun, J. J., J. J. Heijnen and M. C. M. van Loosdrecht, " N-Removal in a Granular Sludge Sequencing Batch Airlift Reactor," Biotechnol. Bioeng. 75, 82-92 (2001).
– reference: Dangcong, P., N. Bernet, J. Philippe Delgenes and R. Molett, " Aerobic Granular Sludge-A Case Report," Water Res. 33, 890-893 (1999).
– reference: Alves, M., " Wastewater Treatment for Recovering Water, Energy, Nutrients and Valuable Products," Editorial/Environ. Eng. Manage. J. 9, 293-294 (2010).
– reference: Li, Z. H., T. Kuba and T. Kusuda, " The Influence of Starvation Phase on the Properties and the Development of Aerobic Granules," Enzyme Microb. Technol. 38, 670-674 (2006).
– reference: Lobos, J., C. Wisniewski, M. Heran and A. Grasmick, " Sequencing Versus Continuous Membrane Bioreactors: Effect of Substrate to Biomass Ratio (F/M) on Process Performance," J Membr. Sci. 317, 71-77 (2008).
– reference: Sahinkaya, E. and F. B. Dilek, " Modeling Chlorophenols Degradation in a Sequencing Batch Reactors With Instantaneous Feed-Effect of 2,4-DCP Presence on 4-CP Degradation Kinetics," Biodegradation 18, 427-437 (2007).
– reference: Beun, J. J., A. Hendriks, M. C. M. van Loosdrecht, E. Morgenroth and P. A. Wilderer, " Aerobic Granulation in a Sequencing Batch Reactor," Water Res. 33, 2283-2290 (1999).
– reference: Kos, B., J. Suskovic, S. Vukovic, M. Simpraga, J. Frece and S. Matosic, " Adhesion and Aggregation Ability of Probiotic Strain Lactobacillus acidophilus M92," J. Appl. Microbiol. 94, 981-987 (2003).
– reference: Zita, A. and M. Hermansson, " Effects of Bacterial Cell Surface Structures and Hydrophobicity on Attachment to Activated Sludge Flocs," Appl. Environ. Microbiol. 63, 1168-1170 (1997).
– reference: Hailei, W., L. Ping, L. Guosheng, L. Xin and Y. Jianming, " Rapid Biodecolourization of Eriochrome Black T Wastewater by Bioaugmented Aerobic Granules Cultivated Through a Specific Method," Enzy. Microb. Technol. 47, 37-43 (2010).
– reference: Liu, D., " A Rapid Biochemical Test for Measuring Chemical Toxicity," Bull. Environ. Contam. Toxicol. 26, 145-149 (1981).
– reference: Brian, A. W. and P. Malcolmm, "The ecology of cyanobacteria: Their diversity in time and space," Kluwer Academic Publishers, Dordrecht, The Netherlands (2002), pp. 89-90.
– reference: Liu, Y., S. F. Yang and J. H. Tay, " Improved Stability of Aerobic Granules by Selecting Slow-Growing Nitrifying Bacteria," J. Biotechnol. 108, 161-169 (2004c).
– reference: Pijuan, M., U. Werner and Z. Yuan, " Effect of Long Term Anaerobic and Intermittent Anaerobic/Aerobic Starvation on Aerobic Granules," Water Res. 43, 3622-3632 (2009).
– reference: Wu, C. Y., Y. Z. Peng, R. D. Wang and Y. X. Zhou, " Understanding the Granulation Process of Activated Sludge in a Biological Phosphorus Removal Sequencing Batch Reactor," Chemosphere 86, 767-773 (2012).
– reference: Adav, S. S., D. J. Lee, K. Y. Show and J. H. Tay, " Aerobic Granular Sludge: Recent Advances," Biotechnol. Adv. 26, 411-423 (2008a).
– reference: Li, Z., T. Zhang, N. Li and X. Wang, " Granulation of Filamentous Microorganisms in a Sequencing Batch Reactor With Saline Wastewater," J. Environ. Sci. 22, 62-67 (2010).
– reference: Adav, S. S., D. J. Lee and J. Y. Lai, " Aerobic Granulation in Sequencing Batch Reactors at Different Settling Times," Bioresour. Technol. 100, 5359-5361 (2009a).
– reference: Tay, J. H., H. L. Jiang and S. T. L. Tay, " High-Rate Biodegradation of Phenol by Aerobically Grown Microbial Granules," J. Environ. Eng. 130, 1415-1423 (2004b).
– reference: Tay, J. H., Q. S. Liu and Y. Liu, " Microscopic Observation of Aerobic in Sequential Aerobic Sludge Reactor," J. Appl. Microbiol. 91, 168-175 (2001a).
– reference: Carucci, A., S. Milia, G. Cappai and A. Muntoni, " A Direct Comparison Amongst Different Technologies (Aerobic Granular Sludge, SBR and MBR) for the Treatment of Wastewater Contaminated by 4-Chlorophenol," J. Hazard. Mater. 177, 1119-1125 (2010).
– reference: Thanh, B. X., C. Visvanathan and R. B. Aim, " Characterization of Aerobic Granular Sludge at Various Organic Loading Rates," Process Biochem. 44, 242-245 (2009).
– reference: Adav, S. S., D. J. Lee and J. Y. Lai, " Aerobic Granules With Inhibitory Strains and Role of Extracellular Polymeric Substances," J. Hazard. Mater. 174, 424-428 (2010).
– reference: Sheng, G. P., A. J. Li, X. Y. Li and H. Q. Yu, " Effects of Seed Sludge Properties and Selective Biomass Discharge on Aerobic Sludge Granulation," Chem. Eng. J. 160, 108-114 (2010).
– reference: Nancharaiah, Y. V., H. M. Joshi, T. V. K. Mohan, V. P. Venugopalan and S. V. Narasimhan, " Aerobic Granular Biomass: A Novel Biomaterial for Efficient Uranium Removal," Curr. Sci. 91, 503-509 (2006).
– reference: Liu, Y., S. F. Yang, L. Qin and J. H. Tay, " A Thermodynamic Interpretation of Cell Hydrophobicity in Aerobic Granulation," Appl. Microbiol. Biotechnol. 64, 410-415 (2004b).
– reference: Khan, M. Z., F. Khan and S. Sabir, " Aerobic Granular Treatment of 2,4-Dichlorophenol," Can. J. Chem. Eng. 89(4), 914-920 (2011a).
– reference: Li, A. J., X. Y. Li and H. Q. Yu, " Effect of the Food-To-Microorganism (F/M) Ratio on the Formation and Size of Aerobic Sludge Granules," Process Biochem. 46, 2269-2276 (2011).
– reference: Liu, Y. and J. H. Tay, " State of the Art of Biogranulation Technology for Wastewater Treatment," Biotechnol. Adv. 22, 533-563 (2004).
– reference: Quan, X., H. Shi, H. Liu, J. Wang and Y. Qian, " Removal of 2,4-Dichlorophenol in a Conventional Activated Sludge System Through Bioaugmentation," Process Biochem. 39, 1701-1707 (2004).
– reference: Zhu, J. R. and P. A. Wilderer, " Effect of Extended Idle Conditions on Structure and Activity of Granular Activated Sludge," Water Res. 37, 2013-2018 (2003).
– reference: Coma, M., S. Puig, M. D. Balaguer and J. Colprim, " The Role of Nitrate and Nitrite in a Granular Sludge Process Treating Low-Strength Wastewater," Chem. Eng. J. 164, 208-213 (2010).
– reference: Li, X. M., Q. Q. Liu, Q. Yang, L. Guo, G. M. Zeng, J. M. Hu and W. Zheng, " Enhanced Aerobic Sludge Granulation in Sequencing Batch Reactor by Mg2+ Augmentation," Bioresour. Technol. 100, 64-67 (2008b).
– reference: Liu, Y., F. Wang, S. Q. Xia and J. F. Zhao, " Study of 4-t-Octylphenol Degradation and Microbial Community in Granular Sludge," J. Environ. Sci. China 20, 167-171 (2008).
– reference: Wang, Z. W., Y. Liu and J. H. Tay, " The Role of SBR Mixed Liquor Volume Exchange Ratio in Aerobic Granulation," Chemosphere 62, 767-771 (2006b).
– reference: Wu, C. Y., Y. Z. Peng, S. Y. Wang and Y. Ma, " Enhanced Biological Phosphorus Removal by Granular Sludge: From Macro- to Micro-Scale," Water Res. 44, 807-814 (2010).
– reference: Liu, Q. Y. and J. H. Tay, " Influence of Starvation Time on Formation and Stability of Aerobic Granules in Sequencing Batch Reactors," Bioresour. Technol. 99, 980-985 (2008).
– reference: Fang, H. H. P. and H. Q. Yu, " Acidification of Lactose in Wastewater" J. Environ. Eng. 127, 825-831 (2001).
– reference: Song, Z., Y. Pan, K. Zhang, N. Ren and A. Wang, " Effect of Seed Sludge on Characteristics and Microbial Community of Aerobic Granular Sludge," J. Environ. Sci. 22, 1312-1318 (2010).
– reference: Jiang, H. L., J. H. Tay, A. M. Maszenan and S. T. L. Tay, " Bacterial Diversity and Function of Aerobic Granules Engineered in a Sequencing Batch Reactor for Phenol Degradation," Appl. Environ. Microbiol. 70, 6767-6775 (2004).
– reference: Qin, L., Y. Liu and J. H. Tay, " Effect of Settling Time on Aerobic Granulation in SBR," Biochem. Eng. J. 21, 47-52 (2004).
– reference: Tay, J. H., Q. S. Liu and Y. Liu, " Aerobic Granulation in a Sequential Sludge Blanket Reactor," Water Sci. Technol. 46, 13-18 (2002c).
– reference: Belmonte, M., J. R. Vazquez Padin, M. Figueroa, A. Franco, A. Mosquera-Corral, J. L. Campos and R. Mendez, " Characteristics of Nitrifying Granules Developed in an Air Pulsing SBR," Process Biochem. 44, 602-606 (2009).
– reference: Song, Z., N. Ren, K. Zhang and L. Tong, " Influence of Temperature on the Characteristics of Aerobic Granulation in Sequencing Batch Airlift Reactors," J. Environ. Sci. China 21, 273-278 (2009).
– reference: Liu, X. W., G. P. Sheng and H. Q. Yu, " Physicochemical Characteristics of Microbial Granules," Biotechnol. Adv. 27, 1061-1070 (2009a).
– reference: Zheng, Y. M., H. Q. Yu, S. J. Liu and X. Z. Liu, " Formation and Instability of Aerobic Granules Under High Organic Loading Conditions," Chemosphere 63, 1791-1800 (2006).
– reference: Lemaire, R., R. I. Webb and Z. G. Yuan, " Micro scale Observations of the Structure of Aerobic Microbial Granules Used for the Treatment of Nutrient Rich Industrial Wastewater," ISME J. 2, 528-541 (2008a).
– reference: Mohn, W. M. and K. J. Kennedy, " Reductive Dehalogenation of Chlorophenols By Desulfomoniletiedje DCB-1," Appl. Environ. Microbiol. 58, 1367-1370 (1992).
– reference: Wan, J. and M. Sperandio, " Possible Role of Denitrification on Aerobic Granular Sludge Formation in Sequencing Batch Reactor," Chemosphere 75, 220-227 (2009).
– reference: Lemaire, R., Z. G. Yuan, L. L. Blackall and G. R. Crocetti, " Microbial Distribution of Accumulibacter spp. and Competibacter spp. in Aerobic Granules From a Lab-Scale Biological Nutrient Removal System," Environ. Microbiol. 10, 354-363 (2008b).
– reference: Mondal, P. K., R. Ahmad and S. Q. Usmani, " Anaerobic Biodegradation of Triphenylmethane Dyes in a Hybrid UASFB Reactor for Wastewater Remediation," Biodegradation 21, 1041-1047 (2010).
– reference: Yi, S., W. Q. Zhuang, B. Wu, S. T. L. Tay and J. H. Tay, " Biodegradation of Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor," Environ. Sci. Technol. 40, 2396-2401 (2006).
– reference: Loehr, R. C. and R. Krishnamoorthy, " Bioaccumulation Potential of Phenolic Compounds," Hazard. Waste Hazard. Mater. 5, 109-119. (1988).
– reference: Ni, B. J., W. M. Xie, S. G. Liu, H. Q. Yu, Y. Z. Wang, G. Wang and X. L. Dai, " Granulation of Activated Sludge in a Pilot-Scale Sequencing Batch Reactor for the Treatment of Low-Strength Municipal Wastewater," Water Res. 43, 751-761 (2009).
– reference: Tay, S. T. L., V. Ivanov, S. Yi, W. Q. Zhuang and J. H. Tay, " Presence of Anaerobic Bacteroides in Aerobically Grown Microbial Granules," Microb. Ecol. 44, 278-285 (2002b).
– reference: Tay, J. H., S. Pan, S. T. L. Tay, V. Ivanov and Y. Liu, " The Effect of Organic Loading Rate on the Aerobic Granulation: The Development of Shear Force Theory," Water Sci. Technol. 47, 235-240 (2003a).
– reference: Yu, G. H., Y. C. Juang, D. J. Lee, P. J. He and L. M. Shao, " Enhanced Aerobic Granulation With Extracellular Polymeric Substances (EPS)-Free Pellets," Bioresour. Technol. 100, 4611-4615 (2009).
– reference: de Kreuk, M. K. and M. C. M. van Loosdrecht, " Formation of Aerobic Granules With Domestic Sewage," J. Environ. Eng. 132, 694-697 (2006).
– reference: Farhadiana, M., D. Ducheza, C. Vachelarda and C. Larrochea, " Monoaromatics Removal From Polluted Water Through Bioreactors-A Review," Water Res. 42, 1325-1341 (2008).
– reference: Hailei, W., Y. Guangli, L. Guosheng and P. Feng, " A New Way to Cultivate aerobic Granules in the Process of Papermaking Wastewater Treatment," Biochem. Eng. J. 28, 99-103 (2006).
– reference: Juang, Y. C., S. S. Adav, D. J. Lee and J. H. Tay, " Stable Aerobic Granules for Continuous-Flow Reactors: Precipitating Calcium and Iron Salts in Granular Interiors," Bioresour. Technol. 101, 8051-8057 (2010).
– reference: Fang, H. H. P. and H. Q. Yu, " Effect of HRT on Mesophilicacidogenesis of Dairy Wastewater," J. Environ. Eng. 126, 1145-1148 (2000).
– reference: Khan, M. Z., P. K. Mondal and S. Sabir, " Bioremediation of 2-Chlorophenol Containing Wastewater by Aerobic Granules-Kinetics and Toxicity," J. Hazard. Mater. 190, 222-228 (2011b).
– reference: Limbergen, H. V., E. M. Top and W. Verstraete, " Bioaugmentation in Activated Sludge: Current Features and Future Perspectives," Appl. Microbiol. Biotechnol. 50, 16-23 (1998).
– reference: Tomei, M. C. and M. C. Annesini, " 4-Nitrophenol Biodegradation in a Sequencing Batch Reactor Operating With Aerobic-Anoxic Cycles," Environ. Sci. Technol. 39, 5059-5065 (2005).
– reference: Liu, Q. S., J. H. Tay and Y. Liu, " Substrate Concentration Independent Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor," Environ. Technol. 24, 1235-1243 (2003b).
– reference: Gallardo-Moreno, A. M., E. GarduNo, M. L. Gonzín, C. Perez-Giraldo, J. M. Bruque and A. C. Gia, " Analysis of the Hydrophobic Behaviour of Different Strains of Candida parapsilosis Under Two Growth Temperatures," Colloids Surfaces B: Biointerfaces 28, 119-126 (2003).
– reference: Verawaty, M., M. Pijuan, Z. Yuan and P. L. Bond, " Determining the Mechanisms for Aerobic Granulation From Mixed Seed of Floccular and Crushed Granules in Activated Sludge Wastewater Treatment," Water Res. 46, 761-771 (2012).
– reference: Xu, H. C., P. J. He, G. Z. Wang, G. H. Yu and L. M. Shao, " Enhanced Storage Stability of Aerobic Granules Seeded With pellets," Bioresour. Technol. 101, 8031-8037 (2010).
– reference: Liu, Y. Q. and J. H. Tay, " Characteristics and Stability of Aerobic Granules Cultivated With Different Starvation Time," Appl. Microbiol. Biotechnol. 75, 205-210 (2007).
– reference: Tay, J. H., S. T. L. Tay, V. Ivanov, S. Pan, H. L. Jiang and Q. S. Liu, " Biomass and Porosity Profiles in Microbial Granules Used for Aerobic wastewater Treatment," Lett. Appl. Microbiol. 36, 297-301 (2003b).
– reference: Shim, H., E. B. Shin and S. T. Yang, " A Continuous Fibrous-Bed Bioreactor for BTEX Biodegradation By a Co-Culture of Pseudomonas putida and Pseudomonas fluorescens ," Adv. Environ. Res. 7, 203-216 (2002).
– reference: de Kreuk, M. K., N. Kishida, T. Tsuneda and M. C. M. van Loosdrecht, " Behavior of Polymeric Substrates in an Aerobic Granular Sludge System," Water Res. 44, 5929-5938 (2010).
– reference: Eker, S. and F. Kargi, " Impacts of COD and DCP Loading Rates on Biological Treatment of 2,4-Dichlorophenol Containing Wastewater in a Perforated Tubes Biofilm Reactor," Chemosphere 64, 1609-1617 (2006).
– reference: McSwain, B. S. and R. L. Irvine, " Dissolved Oxygen as a Key Parameter to Aerobic Granule Formation," Water Sci. Technol. 58, 781-787 (2008).
– reference: Zheng, Y. M., H. Q. Yu and G. P. Sheng, " Physical and Chemical Characteristics of Granular Activated Sludge From a Sequencing Batch Airlift Reactor," Process Biochem. 40, 645-650 (2005).
– reference: Carucci, A., S. Milia, G. D. Gioannis and M. Piredda, " Acetate-Fed Aerobic Granular Sludge for the Degradation of 4-Chlorophenol," J. Hazard. Mater. 166, 483-490 (2009).
– reference: Moy, B. Y. P., J. H. Tay, S. K. Toh, Y. Liu and S. T. L. Tay, " High organic Loading Influences the Physical Characteristics of Aerobic Granules," Lett. Appl. Microbiol. 34, 407-412 (2002).
– reference: Alexander, M., "Biodegradation and bioremediation," Academic Press, San Diego, California (1994).
– reference: Ivanov, V., J. H. Tay, S. T. L. Tay and H. L. Jiang, " Removal of Microparticles by Microbial Granules Used for Aerobic Wastewater Treatment," Water Sci. Technol. 50, 147-154 (2004).
– reference: Tay, J. H., Q. S. Liu and Y. Liu, " Microscopic Observation of Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor," J. Appl. Microbiol. 91, 168-175 (2001c).
– reference: Wang, Z. W., Y. Liu and J. H. Tay, " Distribution of EPS and Cell Surface Hydrophobicity in Aerobic Granules," Appl. Microbiol. Biotechnol. 69, 469-473 (2005).
– reference: Liu, Y. and J. H. Tay, " The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge," Water Res. 36, 1653-1665 (2002).
– reference: Wang, S. G., X. W. Liu, H. Y. Zhang, W. X. Gong, X. F. Sun and B. Y. Gao, " Aerobic Granulation for 2,4-Dichlorophenol Biodegradation in a Sequencing Batch Reactor," Chemosphere 69, 769-775 (2007a).
– reference: Kong, Y., Y. Q. Liu, J. H. Tay, F. S. Wong and J. Zhu, " Aerobic Granulation in Sequencing Batch Reactors With Different Reactor Height/Diameter Ratios," Enzyme Microb. Technol. 45, 379-383 (2010).
– reference: Williams, J. C. and F. L. de los Reyes, III " Microbial Community Structure of Activated Sludge During Aerobic Granulation in an Annular Gap Bioreactor," Water Sci. Technol. 54, 139-146 (2006).
– reference: Liu, Y., S. F. Yang, Q. S. Liu and J. H. Tay, " The Role of Cell Hydrophobicity in the Formation of Aerobic Granules," Curr. Microbiol. 46, 270-274 (2003a).
– reference: Tay, J. H., V. Ivanov, S. Pan and S. T. L. Tay, " Specific Layers in Aerobically Grown Microbial Granules," Lett. Appl. Microbiol. 34, 254-257 (2002a).
– volume: 99
  start-page: 7672
  year: 2008a
  end-page: 7677
  article-title: Is Sludge Retention Time a Decisive Factor for Aerobic Granulation in SBR?
  publication-title: Bioresour. Technol.
– volume: 100
  start-page: 4611
  year: 2009
  end-page: 4615
  article-title: Enhanced Aerobic Granulation With Extracellular Polymeric Substances (EPS)‐Free Pellets
  publication-title: Bioresour. Technol.
– volume: 40
  start-page: 333
  year: 2009b
  end-page: 336
  article-title: Treating Chemical Industries Influent Using Aerobic Granular Sludge: Recent Development
  publication-title: J. Taiwan Ins. Chem. Eng.
– volume: 142
  start-page: 21
  year: 1988
  end-page: 27
  article-title: The Role of Cell‐Bound Flocculants in Coflocculation of Benthic Cyanobacteria J‐1
  publication-title: Arch. Microbiol.
– volume: 33
  start-page: 890
  year: 1999
  end-page: 893
  article-title: Aerobic Granular Sludge—A Case Report
  publication-title: Water Res.
– volume: 79
  start-page: 867
  year: 2008
  end-page: 874
  article-title: Comparative Study on the Formation and Characterization of Aerobic 4‐Chloroaniline Degrading Granules in SBR and SABR
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 100
  start-page: 5359
  year: 2009a
  end-page: 5361
  article-title: Aerobic Granulation in Sequencing Batch Reactors at Different Settling Times
  publication-title: Bioresour. Technol.
– volume: 79
  start-page: 657
  year: 2008b
  end-page: 661
  article-title: Intergenetic Coaggregation of Strains Isolated From Phenol Degrading Aerobic Granules
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 100
  start-page: 64
  year: 2008b
  end-page: 67
  article-title: Enhanced Aerobic Sludge Granulation in Sequencing Batch Reactor by Mg Augmentation
  publication-title: Bioresour. Technol.
– volume: 177
  start-page: 1119
  year: 2010
  end-page: 1125
  article-title: A Direct Comparison Amongst Different Technologies (Aerobic Granular Sludge, SBR and MBR) for the Treatment of Wastewater Contaminated by 4‐Chlorophenol
  publication-title: J. Hazard. Mater.
– volume: 54
  start-page: 139
  year: 2006
  end-page: 146
  article-title: Microbial Community Structure of Activated Sludge During Aerobic Granulation in an Annular Gap Bioreactor
  publication-title: Water Sci. Technol.
– volume: 22
  start-page: 62
  year: 2010
  end-page: 67
  article-title: Granulation of Filamentous Microorganisms in a Sequencing Batch Reactor With Saline Wastewater
  publication-title: J. Environ. Sci.
– volume: 91
  start-page: 168
  year: 2001a
  end-page: 175
  article-title: Microscopic Observation of Aerobic in Sequential Aerobic Sludge Reactor
  publication-title: J. Appl. Microbiol.
– volume: 44
  start-page: 807
  year: 2010
  end-page: 814
  article-title: Enhanced Biological Phosphorus Removal by Granular Sludge: From Macro‐ to Micro‐Scale
  publication-title: Water Res.
– volume: 75
  start-page: 220
  year: 2009
  end-page: 227
  article-title: Possible Role of Denitrification on Aerobic Granular Sludge Formation in Sequencing Batch Reactor
  publication-title: Chemosphere
– volume: 58
  start-page: 781
  year: 2008
  end-page: 787
  article-title: Dissolved Oxygen as a Key Parameter to Aerobic Granule Formation
  publication-title: Water Sci. Technol.
– volume: 127
  start-page: 825
  year: 2001
  end-page: 831
  article-title: Acidification of Lactose in Wastewater
  publication-title: J. Environ. Eng.
– volume: 31
  start-page: 383
  year: 1989
  end-page: 389
  article-title: Protection of Bacteria Against Toxicity of Phenol by Immobilization in Calcium Alginate
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 40
  start-page: 645
  year: 2005
  end-page: 650
  article-title: Physical and Chemical Characteristics of Granular Activated Sludge From a Sequencing Batch Airlift Reactor
  publication-title: Process Biochem.
– volume: 317
  start-page: 71
  year: 2008
  end-page: 77
  article-title: Sequencing Versus Continuous Membrane Bioreactors: Effect of Substrate to Biomass Ratio (F/M) on Process Performance
  publication-title: J Membr. Sci.
– volume: 21
  start-page: 1041
  year: 2010
  end-page: 1047
  article-title: Anaerobic Biodegradation of Triphenylmethane Dyes in a Hybrid UASFB Reactor for Wastewater Remediation
  publication-title: Biodegradation
– volume: 46
  start-page: 761
  year: 2012
  end-page: 771
  article-title: Determining the Mechanisms for Aerobic Granulation From Mixed Seed of Floccular and Crushed Granules in Activated Sludge Wastewater Treatment
  publication-title: Water Res.
– volume: 64
  start-page: 1609
  year: 2006
  end-page: 1617
  article-title: Impacts of COD and DCP Loading Rates on Biological Treatment of 2,4‐Dichlorophenol Containing Wastewater in a Perforated Tubes Biofilm Reactor
  publication-title: Chemosphere
– volume: 41
  start-page: 205
  year: 2007b
  end-page: 211
  article-title: Improved Stability and Performance of Aerobic Granules Under Stepwise Increased Selection Pressure
  publication-title: Enzy. Microb. Technol.
– volume: 27
  start-page: 1061
  year: 2009a
  end-page: 1070
  article-title: Physicochemical Characteristics of Microbial Granules
  publication-title: Biotechnol. Adv.
– volume: 58
  start-page: 1367
  year: 1992
  end-page: 1370
  article-title: Reductive Dehalogenation of Chlorophenols By DCB‐1
  publication-title: Appl. Environ. Microbiol.
– volume: 7
  start-page: 203
  year: 2002
  end-page: 216
  article-title: A Continuous Fibrous‐Bed Bioreactor for BTEX Biodegradation By a Co‐Culture of and
  publication-title: Adv. Environ. Res.
– volume: 22
  start-page: 533
  year: 2004
  end-page: 563
  article-title: State of the Art of Biogranulation Technology for Wastewater Treatment
  publication-title: Biotechnol. Adv.
– volume: 89
  start-page: 914
  issue: 4
  year: 2011a
  end-page: 920
  article-title: Aerobic Granular Treatment of 2,4‐Dichlorophenol
  publication-title: Can. J. Chem. Eng.
– volume: 37
  start-page: 4965
  year: 2004
  end-page: 4973
  article-title: Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor
  publication-title: Water Res.
– volume: 91
  start-page: 503
  year: 2006
  end-page: 509
  article-title: Aerobic Granular Biomass: A Novel Biomaterial for Efficient Uranium Removal
  publication-title: Curr. Sci.
– volume: 36
  start-page: 297
  year: 2003b
  end-page: 301
  article-title: Biomass and Porosity Profiles in Microbial Granules Used for Aerobic wastewater Treatment
  publication-title: Lett. Appl. Microbiol.
– volume: 18
  start-page: 427
  year: 2007
  end-page: 437
  article-title: Modeling Chlorophenols Degradation in a Sequencing Batch Reactors With Instantaneous Feed‐Effect of 2,4‐DCP Presence on 4‐CP Degradation Kinetics
  publication-title: Biodegradation
– volume: 44
  start-page: 278
  year: 2002b
  end-page: 285
  article-title: Presence of Anaerobic Bacteroides in Aerobically Grown Microbial Granules
  publication-title: Microb. Ecol.
– volume: 34
  start-page: 254
  year: 2002a
  end-page: 257
  article-title: Specific Layers in Aerobically Grown Microbial Granules
  publication-title: Lett. Appl. Microbiol.
– volume: 5
  start-page: 109
  year: 1988
  end-page: 119
  article-title: Bioaccumulation Potential of Phenolic Compounds
  publication-title: Hazard. Waste Hazard. Mater.
– volume: 44
  start-page: 5929
  year: 2010
  end-page: 5938
  article-title: Behavior of Polymeric Substrates in an Aerobic Granular Sludge System
  publication-title: Water Res.
– volume: 45
  start-page: 379
  year: 2010
  end-page: 383
  article-title: Aerobic Granulation in Sequencing Batch Reactors With Different Reactor Height/Diameter Ratios
  publication-title: Enzyme Microb. Technol.
– volume: 63
  start-page: 1791
  year: 2006
  end-page: 1800
  article-title: Formation and Instability of Aerobic Granules Under High Organic Loading Conditions
  publication-title: Chemosphere
– volume: 37
  start-page: 2013
  year: 2003
  end-page: 2018
  article-title: Effect of Extended Idle Conditions on Structure and Activity of Granular Activated Sludge
  publication-title: Water Res.
– volume: 39
  start-page: 1701
  year: 2004
  end-page: 1707
  article-title: Removal of 2,4‐Dichlorophenol in a Conventional Activated Sludge System Through Bioaugmentation
  publication-title: Process Biochem.
– volume: 21
  start-page: 93
  year: 2006
  end-page: 103
  article-title: Evidence for Genotoxicity of Pesticides in Pesticide Applicators: A Review
  publication-title: Mutagenesis
– volume: 50
  start-page: 147
  year: 2004
  end-page: 154
  article-title: Removal of Microparticles by Microbial Granules Used for Aerobic Wastewater Treatment
  publication-title: Water Sci. Technol.
– volume: 132
  start-page: 694
  year: 2006
  end-page: 697
  article-title: Formation of Aerobic Granules With Domestic Sewage
  publication-title: J. Environ. Eng.
– volume: 38
  start-page: 158
  year: 2004
  end-page: 163
  article-title: The Effect of Hydraulic Retention Time on the Stability of Aerobically Grown Microbial Granules
  publication-title: Lett. Appl. Microbiol.
– volume: 46
  start-page: 13
  year: 2002c
  end-page: 18
  article-title: Aerobic Granulation in a Sequential Sludge Blanket Reactor
  publication-title: Water Sci. Technol.
– start-page: 43
  year: 2005
  end-page: 52
– volume: 1139
  start-page: 1
  year: 1998
  end-page: 10
  article-title: Denver, CO. Ground Water and Surface Water: A Single Resource
  publication-title: USGS Circ.
– volume: 69
  start-page: 469
  year: 2005
  end-page: 473
  article-title: Distribution of EPS and Cell Surface Hydrophobicity in Aerobic Granules
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 70
  start-page: 374
  year: 2006
  end-page: 381
  article-title: Bioaugmentation and Enhanced Formation of Microbial Granules Used in Aerobic Wastewater Treatment
  publication-title: App. Microbiol. Biotechnol.
– volume: 126
  start-page: 1145
  year: 2000
  end-page: 1148
  article-title: Effect of HRT on Mesophilicacidogenesis of Dairy Wastewater
  publication-title: J. Environ. Eng.
– volume: 63
  start-page: 1168
  year: 1997
  end-page: 1170
  article-title: Effects of Bacterial Cell Surface Structures and Hydrophobicity on Attachment to Activated Sludge Flocs
  publication-title: Appl. Environ. Microbiol.
– volume: 9
  start-page: 293
  year: 2010
  end-page: 294
  article-title: Wastewater Treatment for Recovering Water, Energy, Nutrients and Valuable Products
  publication-title: Editorial/Environ. Eng. Manage. J.
– volume: 50
  start-page: 16
  year: 1998
  end-page: 23
  article-title: Bioaugmentation in Activated Sludge: Current Features and Future Perspectives
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 26
  start-page: 145
  year: 1981
  end-page: 149
  article-title: A Rapid Biochemical Test for Measuring Chemical Toxicity
  publication-title: Bull. Environ. Contam. Toxicol.
– volume: 181
  start-page: 382
  year: 2010
  end-page: 387
  article-title: Comparison of Ca and Mg Enhancing Aerobic Granulation in SBR
  publication-title: J. Hazard. Mater.
– volume: 21
  start-page: 47
  year: 2004
  end-page: 52
  article-title: Effect of Settling Time on Aerobic Granulation in SBR
  publication-title: Biochem. Eng. J.
– volume: 164
  start-page: 1223
  year: 2009
  end-page: 1227
  article-title: Characteristics of Aerobic Granule and Nitrogen and Phosphorus Removal in a SBR
  publication-title: J. Hazard. Mater.
– volume: 190
  start-page: 222
  year: 2011b
  end-page: 228
  article-title: Bioremediation of 2‐Chlorophenol Containing Wastewater by Aerobic Granules‐Kinetics and Toxicity
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 1325
  year: 2008
  end-page: 1341
  article-title: Monoaromatics Removal From Polluted Water Through Bioreactors—A Review
  publication-title: Water Res.
– volume: 101
  start-page: 2960
  year: 2010
  end-page: 2964
  article-title: Operation of a Sequencing Batch Reactor for Cultivating Autotrophic Nitrifying Granules
  publication-title: Bioresour. Technol.
– year: 1994
– volume: 70
  start-page: 6767
  year: 2004
  end-page: 6775
  article-title: Bacterial Diversity and Function of Aerobic Granules Engineered in a Sequencing Batch Reactor for Phenol Degradation
  publication-title: Appl. Environ. Microbiol.
– volume: 86
  start-page: 767
  year: 2012
  end-page: 773
  article-title: Understanding the Granulation Process of Activated Sludge in a Biological Phosphorus Removal Sequencing Batch Reactor
  publication-title: Chemosphere
– volume: 174
  start-page: 424
  year: 2010
  end-page: 428
  article-title: Aerobic Granules With Inhibitory Strains and Role of Extracellular Polymeric Substances
  publication-title: J. Hazard. Mater.
– volume: 38
  start-page: 670
  year: 2006
  end-page: 674
  article-title: The Influence of Starvation Phase on the Properties and the Development of Aerobic Granules
  publication-title: Enzyme Microb. Technol.
– volume: 30
  start-page: 69
  year: 2009b
  end-page: 74
  article-title: Toxicity Effect of Phenol on Aerobic Granules
  publication-title: Environ. Technol.
– volume: 75
  start-page: 82
  year: 2001
  end-page: 92
  article-title: N‐Removal in a Granular Sludge Sequencing Batch Airlift Reactor
  publication-title: Biotechnol. Bioeng.
– volume: 47
  start-page: 37
  year: 2010
  end-page: 43
  article-title: Rapid Biodecolourization of Eriochrome Black T Wastewater by Bioaugmented Aerobic Granules Cultivated Through a Specific Method
  publication-title: Enzy. Microb. Technol.
– volume: 40
  start-page: 2396
  year: 2006
  end-page: 2401
  article-title: Biodegradation of Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 5097
  year: 2009
  end-page: 5108
  article-title: Alternating Anoxic Feast/Aerobic Famine Condition for Improving Granular Sludge Formation in Sequencing Batch Airlift Reactor at Reduced Aeration Rate
  publication-title: Water Res.
– volume: 166
  start-page: 483
  year: 2009
  end-page: 490
  article-title: Acetate‐Fed Aerobic Granular Sludge for the Degradation of 4‐Chlorophenol
  publication-title: J. Hazard. Mater.
– volume: 94
  start-page: 981
  year: 2003
  end-page: 987
  article-title: Adhesion and Aggregation Ability of Probiotic Strain M92
  publication-title: J. Appl. Microbiol.
– volume: 34
  start-page: 407
  year: 2002
  end-page: 412
  article-title: High organic Loading Influences the Physical Characteristics of Aerobic Granules
  publication-title: Lett. Appl. Microbiol.
– volume: 44
  start-page: 602
  year: 2009
  end-page: 606
  article-title: Characteristics of Nitrifying Granules Developed in an Air Pulsing SBR
  publication-title: Process Biochem.
– volume: 28
  start-page: 119
  year: 2003
  end-page: 126
  article-title: Analysis of the Hydrophobic Behaviour of Different Strains of Under Two Growth Temperatures
  publication-title: Colloids Surfaces B: Biointerfaces
– volume: 91
  start-page: 168
  year: 2001c
  end-page: 175
  article-title: Microscopic Observation of Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor
  publication-title: J. Appl. Microbiol.
– volume: 99
  start-page: 980
  year: 2008
  end-page: 985
  article-title: Influence of Starvation Time on Formation and Stability of Aerobic Granules in Sequencing Batch Reactors
  publication-title: Bioresour. Technol.
– volume: 57
  start-page: 227
  year: 2001b
  end-page: 233
  article-title: The Effect of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 164
  start-page: 208
  year: 2010
  end-page: 213
  article-title: The Role of Nitrate and Nitrite in a Granular Sludge Process Treating Low‐Strength Wastewater
  publication-title: Chem. Eng. J.
– volume: 102
  start-page: 7016
  year: 2011c
  end-page: 7021
  article-title: Degradation Pathway, Toxicity and Kinetics of 2,4,6‐Trichlorophenol With Different co‐Substrates by Aerobic Granules in SBR
  publication-title: Bioresour. Technol.
– volume: 10
  start-page: 354
  year: 2008b
  end-page: 363
  article-title: Microbial Distribution of spp. and spp. in Aerobic Granules From a Lab‐Scale Biological Nutrient Removal System
  publication-title: Environ. Microbiol.
– volume: 47
  start-page: 235
  year: 2003a
  end-page: 240
  article-title: The Effect of Organic Loading Rate on the Aerobic Granulation: The Development of Shear Force Theory
  publication-title: Water Sci. Technol.
– volume: 2
  start-page: 528
  year: 2008a
  end-page: 541
  article-title: Micro scale Observations of the Structure of Aerobic Microbial Granules Used for the Treatment of Nutrient Rich Industrial Wastewater
  publication-title: ISME J.
– volume: 108
  start-page: 161
  year: 2004c
  end-page: 169
  article-title: Improved Stability of Aerobic Granules by Selecting Slow‐Growing Nitrifying Bacteria
  publication-title: J. Biotechnol.
– volume: 43
  start-page: 751
  year: 2009
  end-page: 761
  article-title: Granulation of Activated Sludge in a Pilot‐Scale Sequencing Batch Reactor for the Treatment of Low‐Strength Municipal Wastewater
  publication-title: Water Res.
– volume: 130
  start-page: 1415
  year: 2004b
  end-page: 1423
  article-title: High‐Rate Biodegradation of Phenol by Aerobically Grown Microbial Granules
  publication-title: J. Environ. Eng.
– volume: 39
  start-page: 5059
  year: 2005
  end-page: 5065
  article-title: 4‐Nitrophenol Biodegradation in a Sequencing Batch Reactor Operating With Aerobic–Anoxic Cycles
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 8
  year: 2008
  end-page: 14
  article-title: Formation and Characterization of Fungal and Bacterial Granules Under Different Feeding Alkalinity and pH Conditions
  publication-title: Process Biochem.
– volume: 24
  start-page: 1235
  year: 2003b
  end-page: 1243
  article-title: Substrate Concentration Independent Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor
  publication-title: Environ. Technol.
– volume: 64
  start-page: 410
  year: 2004b
  end-page: 415
  article-title: A Thermodynamic Interpretation of Cell Hydrophobicity in Aerobic Granulation
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 75
  start-page: 205
  year: 2007
  end-page: 210
  article-title: Characteristics and Stability of Aerobic Granules Cultivated With Different Starvation Time
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 160
  start-page: 108
  year: 2010
  end-page: 114
  article-title: Effects of Seed Sludge Properties and Selective Biomass Discharge on Aerobic Sludge Granulation
  publication-title: Chem. Eng. J.
– start-page: 89
  year: 2002
  end-page: 90
– volume: 36
  start-page: 1653
  year: 2002
  end-page: 1665
  article-title: The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge
  publication-title: Water Res.
– volume: 26
  start-page: 411
  year: 2008a
  end-page: 423
  article-title: Aerobic Granular Sludge: Recent Advances
  publication-title: Biotechnol. Adv.
– volume: 80
  start-page: 1105
  year: 2008
  end-page: 1112
  article-title: Biodegradation of 4‐Nitrophenol in a Two‐Phase Sequencing Batch Reactor: Concept Demonstration, Kinetics and Modelling
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 43
  start-page: 3622
  year: 2009
  end-page: 3632
  article-title: Effect of Long Term Anaerobic and Intermittent Anaerobic/Aerobic Starvation on Aerobic Granules
  publication-title: Water Res.
– volume: 20
  start-page: 167
  year: 2008
  end-page: 171
  article-title: Study of 4‐ ‐Octylphenol Degradation and Microbial Community in Granular Sludge
  publication-title: J. Environ. Sci. China
– volume: 63
  start-page: 1728
  year: 2006a
  end-page: 1735
  article-title: Effects of Extracellular Polymeric Substances on Aerobic Granulation in Sequencing Batch Reactors
  publication-title: Chemosphere
– volume: 44
  start-page: 242
  year: 2009
  end-page: 245
  article-title: Characterization of Aerobic Granular Sludge at Various Organic Loading Rates
  publication-title: Process Biochem.
– volume: 76
  start-page: 1199
  year: 2007
  end-page: 1208
  article-title: Structure and Stability of Aerobic Granules Cultivated Under Different Shear Force in Sequencing Batch Reactors
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 21
  start-page: 533
  year: 2007
  end-page: 539
  article-title: Starter Culture of strain B for Aerobic Granulation
  publication-title: World J. Microbiol. Biotechnol.
– volume: 59
  start-page: 273
  year: 2009
  end-page: 278
  article-title: Biodegradation of Phenol by Aerobic Granulation Technology
  publication-title: Water Sci. Technol.
– volume: 100
  start-page: 59
  year: 2008
  end-page: 63
  article-title: Formation of Aerobic Granules and Their PHB Production at Various Substrate and Ammonium Concentrations
  publication-title: Bioresour. Technol.
– volume: 28
  start-page: 99
  year: 2006
  end-page: 103
  article-title: A New Way to Cultivate aerobic Granules in the Process of Papermaking Wastewater Treatment
  publication-title: Biochem. Eng. J.
– volume: 101
  start-page: 8031
  year: 2010
  end-page: 8037
  article-title: Enhanced Storage Stability of Aerobic Granules Seeded With pellets
  publication-title: Bioresour. Technol.
– volume: 69
  start-page: 769
  year: 2007a
  end-page: 775
  article-title: Aerobic Granulation for 2,4‐Dichlorophenol Biodegradation in a Sequencing Batch Reactor
  publication-title: Chemosphere
– volume: 46
  start-page: 2269
  year: 2011
  end-page: 2276
  article-title: Effect of the Food‐To‐Microorganism (F/M) Ratio on the Formation and Size of Aerobic Sludge Granules
  publication-title: Process Biochem.
– volume: 43
  start-page: 3387
  year: 2009
  end-page: 3396
  article-title: Selective Sludge Discharge as the Determining Factor in SBR Aerobic Granulation: Numerical Modeling and Experimental Verification
  publication-title: Water Res.
– volume: 36
  start-page: 702
  year: 2002
  end-page: 712
  article-title: Aerobic Granulation in a Sequencing Batch Airlift Reactor
  publication-title: Water Res.
– volume: 7
  start-page: 321
  year: 1996
  end-page: 325
  article-title: Co‐Metabolism: Is the Emperor Wearing Any Clothes?
  publication-title: Curr. Opin. Biotechnol.
– volume: 46
  start-page: 270
  year: 2003a
  end-page: 274
  article-title: The Role of Cell Hydrophobicity in the Formation of Aerobic Granules
  publication-title: Curr. Microbiol.
– volume: 21
  start-page: 273
  year: 2009
  end-page: 278
  article-title: Influence of Temperature on the Characteristics of Aerobic Granulation in Sequencing Batch Airlift Reactors
  publication-title: J. Environ. Sci. China
– volume: 62
  start-page: 767
  year: 2006b
  end-page: 771
  article-title: The Role of SBR Mixed Liquor Volume Exchange Ratio in Aerobic Granulation
  publication-title: Chemosphere
– volume: 22
  start-page: 1312
  year: 2010
  end-page: 1318
  article-title: Effect of Seed Sludge on Characteristics and Microbial Community of Aerobic Granular Sludge
  publication-title: J. Environ. Sci.
– volume: 65
  start-page: 143
  year: 2004a
  end-page: 148
  article-title: The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 33
  start-page: 2283
  year: 1999
  end-page: 2290
  article-title: Aerobic Granulation in a Sequencing Batch Reactor
  publication-title: Water Res.
– volume: 101
  start-page: 8051
  year: 2010
  end-page: 8057
  article-title: Stable Aerobic Granules for Continuous‐Flow Reactors: Precipitating Calcium and Iron Salts in Granular Interiors
  publication-title: Bioresour. Technol.
– ident: e_1_2_8_76_1
  doi: 10.1016/j.watres.2009.05.007
– ident: e_1_2_8_104_1
  doi: 10.1016/j.chemosphere.2005.04.081
– ident: e_1_2_8_35_1
  doi: 10.1128/AEM.70.11.6767-6775.2004
– ident: e_1_2_8_61_1
  doi: 10.1016/j.biortech.2007.03.011
– ident: e_1_2_8_79_1
  doi: 10.1007/s10532-006-9077-3
– ident: e_1_2_8_56_1
  doi: 10.1007/s00253-004-1657-8
– ident: e_1_2_8_118_1
  doi: 10.1016/S0043-1354(02)00585-7
– ident: e_1_2_8_37_1
  doi: 10.1007/BF00257609
– ident: e_1_2_8_95_1
  doi: 10.1021/es0483140
– ident: e_1_2_8_75_1
  doi: 10.1111/j.1472-765X.2003.01479.x
– ident: e_1_2_8_51_1
  doi: 10.1016/S1001-0742(09)60075-9
– start-page: 89
  volume-title: The ecology of cyanobacteria: Their diversity in time and space
  year: 2002
  ident: e_1_2_8_14_1
– ident: e_1_2_8_97_1
  doi: 10.1016/j.watres.2003.08.017
– ident: e_1_2_8_111_1
  doi: 10.1016/j.chemosphere.2011.11.002
– ident: e_1_2_8_77_1
  doi: 10.1016/j.bej.2004.03.005
– ident: e_1_2_8_109_1
  doi: 10.2166/wst.2006.381
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1462-2920.2007.01456.x
– volume: 9
  start-page: 293
  year: 2010
  ident: e_1_2_8_8_1
  article-title: Wastewater Treatment for Recovering Water, Energy, Nutrients and Valuable Products
  publication-title: Editorial/Environ. Eng. Manage. J.
  doi: 10.30638/eemj.2010.040
– ident: e_1_2_8_74_1
  doi: 10.1016/j.watres.2008.11.009
– ident: e_1_2_8_36_1
  doi: 10.1016/j.biortech.2010.05.078
– ident: e_1_2_8_3_1
  doi: 10.1016/j.biortech.2009.05.058
– volume: 50
  start-page: 147
  year: 2004
  ident: e_1_2_8_31_1
  article-title: Removal of Microparticles by Microbial Granules Used for Aerobic Wastewater Treatment
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2004.0707
– ident: e_1_2_8_57_1
  doi: 10.1016/j.biotechadv.2009.05.020
– ident: e_1_2_8_26_1
  doi: 10.1061/(ASCE)0733-9372(2001)127:9(825)
– ident: e_1_2_8_81_1
  doi: 10.1016/j.biortech.2009.11.099
– ident: e_1_2_8_53_1
  doi: 10.1007/BF01622068
– ident: e_1_2_8_63_1
  doi: 10.1007/s00284-002-3878-3
– ident: e_1_2_8_30_1
  doi: 10.1016/j.enzmictec.2010.03.011
– ident: e_1_2_8_102_1
  doi: 10.1016/j.chemosphere.2008.11.069
– ident: e_1_2_8_13_1
  doi: 10.1016/S0043-1354(01)00250-0
– ident: e_1_2_8_82_1
  doi: 10.1016/S1093-0191(01)00132-0
– ident: e_1_2_8_116_1
  doi: 10.1016/j.chemosphere.2005.08.055
– ident: e_1_2_8_106_1
  doi: 10.1016/j.chemosphere.2007.05.026
– ident: e_1_2_8_80_1
  doi: 10.1016/j.cej.2010.03.017
– ident: e_1_2_8_113_1
  doi: 10.1016/j.procbio.2007.10.008
– ident: e_1_2_8_120_1
  doi: 10.1128/aem.63.3.1168-1170.1997
– ident: e_1_2_8_29_1
  doi: 10.1016/j.bej.2005.10.002
– ident: e_1_2_8_90_1
  doi: 10.1046/j.1365-2672.2001.01374.x
– ident: e_1_2_8_21_1
  doi: 10.1016/j.watres.2010.07.033
– ident: e_1_2_8_52_1
  doi: 10.1007/s002530051250
– ident: e_1_2_8_103_1
  doi: 10.1007/s00253-005-1991-5
– ident: e_1_2_8_65_1
  doi: 10.1007/s00253-003-1462-9
– ident: e_1_2_8_72_1
  doi: 10.1046/j.1472-765X.2002.01108.x
– volume: 21
  start-page: 533
  year: 2007
  ident: e_1_2_8_32_1
  article-title: Starter Culture of Pseudomonas veronii strain B for Aerobic Granulation
  publication-title: World J. Microbiol. Biotechnol.
– ident: e_1_2_8_112_1
  doi: 10.1016/j.biortech.2010.05.062
– ident: e_1_2_8_25_1
  doi: 10.1061/(ASCE)0733-9372(2000)126:12(1145)
– ident: e_1_2_8_64_1
  doi: 10.1016/j.jbiotec.2003.11.008
– ident: e_1_2_8_86_1
  doi: 10.1007/s00248-002-2014-z
– ident: e_1_2_8_117_1
  doi: 10.1016/j.procbio.2004.01.056
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jtice.2009.02.002
– ident: e_1_2_8_84_1
  doi: 10.1016/S1001-0742(08)62263-9
– ident: e_1_2_8_108_1
  doi: 10.1016/j.enzmictec.2007.01.005
– ident: e_1_2_8_83_1
  doi: 10.1016/S1001-0742(09)60256-4
– ident: e_1_2_8_6_1
  doi: 10.1016/j.biotechadv.2008.05.002
– ident: e_1_2_8_10_1
  doi: 10.1016/j.procbio.2009.02.019
– ident: e_1_2_8_33_1
  doi: 10.1007/s00253-005-0088-5
– ident: e_1_2_8_20_1
  doi: 10.1016/S0043-1354(98)00443-6
– ident: e_1_2_8_41_1
  doi: 10.1016/j.biortech.2011.04.057
– ident: e_1_2_8_49_1
  doi: 10.1016/j.biortech.2008.06.015
– ident: e_1_2_8_110_1
  doi: 10.1016/j.watres.2009.10.028
– ident: e_1_2_8_67_1
  doi: 10.1016/j.memsci.2007.08.041
– ident: e_1_2_8_100_1
  doi: 10.1016/S0958-1669(96)80038-3
– ident: e_1_2_8_15_1
  doi: 10.1093/mutage/gel011
– ident: e_1_2_8_43_1
  doi: 10.1046/j.1365-2672.2003.01915.x
– ident: e_1_2_8_96_1
  doi: 10.1007/s00253-008-1604-1
– ident: e_1_2_8_47_1
  doi: 10.1016/j.watres.2009.05.004
– ident: e_1_2_8_44_1
  doi: 10.1038/ismej.2008.12
– ident: e_1_2_8_48_1
  doi: 10.1016/j.procbio.2011.09.007
– ident: e_1_2_8_28_1
  doi: 10.1016/S0927-7765(02)00145-5
– ident: e_1_2_8_42_1
  doi: 10.1016/j.enzmictec.2009.06.014
– ident: e_1_2_8_59_1
  doi: 10.1016/j.biotechadv.2004.05.001
– ident: e_1_2_8_88_1
  doi: 10.1046/j.1365-2672.2001.01374.x
– start-page: 43
  volume-title: Aerobic Granular Sludge
  year: 2005
  ident: e_1_2_8_34_1
– ident: e_1_2_8_38_1
  doi: 10.1002/cjce.20445
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jhazmat.2009.09.070
– ident: e_1_2_8_71_1
  doi: 10.1007/s10532-010-9364-x
– ident: e_1_2_8_11_1
  doi: 10.1002/bit.1167
– ident: e_1_2_8_27_1
  doi: 10.1016/j.watres.2007.10.021
– ident: e_1_2_8_101_1
  doi: 10.1016/j.watres.2009.08.045
– ident: e_1_2_8_93_1
  doi: 10.1046/j.1472-765X.2003.01312.x
– ident: e_1_2_8_114_1
  doi: 10.1021/es0517771
– ident: e_1_2_8_105_1
  doi: 10.1016/j.chemosphere.2005.09.018
– volume: 58
  start-page: 1367
  year: 1992
  ident: e_1_2_8_70_1
  article-title: Reductive Dehalogenation of Chlorophenols By Desulfomoniletiedje DCB‐1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.58.4.1367-1370.1992
– ident: e_1_2_8_94_1
  doi: 10.1016/j.procbio.2008.10.018
– ident: e_1_2_8_9_1
  doi: 10.1007/BF00409231
– ident: e_1_2_8_85_1
  doi: 10.1046/j.1472-765x.2002.01099.x
– ident: e_1_2_8_24_1
  doi: 10.1016/j.biortech.2008.06.016
– ident: e_1_2_8_60_1
  doi: 10.1007/s00253-006-0797-4
– ident: e_1_2_8_119_1
  doi: 10.1007/s00253-008-1476-4
– ident: e_1_2_8_50_1
  doi: 10.1016/j.biortech.2008.01.073
– volume-title: Biodegradation and bioremediation
  year: 1994
  ident: e_1_2_8_7_1
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jhazmat.2008.11.049
– ident: e_1_2_8_107_1
  doi: 10.1016/j.jhazmat.2008.09.034
– ident: e_1_2_8_115_1
  doi: 10.1016/j.biortech.2009.04.050
– ident: e_1_2_8_99_1
  doi: 10.1016/j.watres.2011.11.054
– ident: e_1_2_8_23_1
  doi: 10.1016/j.chemosphere.2005.11.030
– volume: 47
  start-page: 235
  year: 2003
  ident: e_1_2_8_92_1
  article-title: The Effect of Organic Loading Rate on the Aerobic Granulation: The Development of Shear Force Theory
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2003.0610
– ident: e_1_2_8_62_1
  doi: 10.1080/09593330309385665
– ident: e_1_2_8_87_1
  doi: 10.1061/(ASCE)0733-9372(2004)130:12(1415)
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jhazmat.2011.03.029
– ident: e_1_2_8_39_1
  doi: 10.2166/wst.2009.863
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jhazmat.2010.05.021
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jhazmat.2010.01.037
– ident: e_1_2_8_68_1
  doi: 10.1089/hwm.1988.5.109
– ident: e_1_2_8_78_1
  doi: 10.1016/S0032-9592(03)00307-8
– ident: e_1_2_8_12_1
  doi: 10.1016/S0043-1354(98)00463-1
– ident: e_1_2_8_2_1
  doi: 10.1007/s00253-008-1456-8
– ident: e_1_2_8_22_1
  doi: 10.1061/(ASCE)0733-9372(2006)132:6(694)
– ident: e_1_2_8_89_1
  doi: 10.1007/s002530100766
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cej.2010.08.063
– ident: e_1_2_8_69_1
  doi: 10.2166/wst.2008.393
– ident: e_1_2_8_46_1
  doi: 10.1016/j.enzmictec.2005.07.020
– ident: e_1_2_8_18_1
  doi: 10.1007/s00253-007-1085-7
– ident: e_1_2_8_55_1
  doi: 10.1080/09593330802536339
– volume: 46
  start-page: 13
  year: 2002
  ident: e_1_2_8_91_1
  article-title: Aerobic Granulation in a Sequential Sludge Blanket Reactor
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2002.0540
– volume: 1139
  start-page: 1
  year: 1998
  ident: e_1_2_8_98_1
  article-title: Denver, CO. Ground Water and Surface Water: A Single Resource
  publication-title: USGS Circ.
– ident: e_1_2_8_58_1
  doi: 10.1016/S0043-1354(01)00379-7
– volume: 91
  start-page: 503
  year: 2006
  ident: e_1_2_8_73_1
  article-title: Aerobic Granular Biomass: A Novel Biomaterial for Efficient Uranium Removal
  publication-title: Curr. Sci.
– ident: e_1_2_8_66_1
  doi: 10.1016/S1001-0742(08)60026-1
SSID ssj0002041
Score 2.2961214
Snippet Rapid industrialisation and urbanisation releases numerous toxic compounds into natural water bodies, polluting these pristine fresh water resources. This is a...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1045
SubjectTerms aerobic granules
biodegradation
cell immobilisation
kinetics
SBR
Title Aerobic granulation for wastewater bioremediation: A review
URI https://api.istex.fr/ark:/67375/WNG-XTWJ05FB-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjce.21729
https://www.proquest.com/docview/1554944525
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdK-wIPiE9RBigIhARVRuJ8OfAUysZU6CREp1W8RLZjrxmsRWsjEP8S_yTn2HFTVNCAlyiKLFu5O9-Xz79D6DFEDBxjFrsp2FY3VBVihCfY5X5CPElTKVN1OXl8GB8chaNpNO10frSqlqoV2-Xft94r-Reuwjfgq7ol-xectZPCB3gH_sITOAzPC_E4EwpFiQ9OwOCYNlx12eBXulQ5MYV_yMqFygAWpa3iyMx1lbZbajEKWkASvIESEGvIQqueZzpvOl7M6NkZLQYfaWmlDNREQXVn5PK0Ws4Gb4F7pU3lUFbqXl_VrKnvMFmHugNEO-vw37pNVV2EnsljCq1700CVbtWdda1y1q28jBC2NS2EkVHLaoObSLZaBI0wy0-52FW9uNK13WvO-n8xh7ZIkZ5_UlVvSZQfH77Jp5PjkRftv8rfX0I9DDEJ7qJe9nr87oM1_NgLTYNG_W8WDRc_X6-_4f_01Fb-thHctEOk2seZXENXTXDiZFrSrqOOmN9AV1qQlTfRSyNzTkvmHJA5Zy1zzqbMvXAyR0vcLXS0vzcZHrimAYfL1YVol_qE-FHBGPWILIikfiF5IESMZeoHIpYJ5yQQgYiSgvugy3EsGY2JiDDsd5kEt1F3vpiLO8ihvk85l2DOeBgSSgiTIUxYhHHqMwgh-uhpQ5acG3R61STlc65xtXGuSJjXJOyjR3bsF43JsnXUk5q6dsjv-NlHDxvy56Bb1YEZnYtFtcyVr52G6uS_j57VfPnDevlwNNyr3-5edOUddHm9t-6h7uq8EvfBx12xB0a2fgKWC6mR
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerobic+granulation+for+wastewater+bioremediation%3A+A+review&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Khan%2C+Mohammad+Zain&rft.au=Mondal%2C+Pijush+Kanti&rft.au=Sabir%2C+Suhail&rft.date=2013-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=91&rft.issue=6&rft.spage=1045&rft.epage=1058&rft_id=info:doi/10.1002%2Fcjce.21729&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XTWJ05FB_Q
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon