Aerobic granulation for wastewater bioremediation: A review
Rapid industrialisation and urbanisation releases numerous toxic compounds into natural water bodies, polluting these pristine fresh water resources. This is a subject of great concern, and the attention of environmentalists around the world has been increased towards this problem in recent years. S...
Saved in:
Published in | Canadian journal of chemical engineering Vol. 91; no. 6; pp. 1045 - 1058 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapid industrialisation and urbanisation releases numerous toxic compounds into natural water bodies, polluting these pristine fresh water resources. This is a subject of great concern, and the attention of environmentalists around the world has been increased towards this problem in recent years. Several techniques have been proposed for efficient wastewater treatment, most of them presenting some limitations, such as poor capacity, the generation of waste products, incomplete mineralisation and a high operating cost. Currently, aerobic granulation treatments are considered to be the most effective and economic alternative. Aerobic granulation is a process of microbial self‐immobilisation that results into a cell‐structured shape, characterised by dense biomass. Aerobic granules have a number of advantages over conventional bioflocs, such as a round and compact structure, good settling ability, high biomass retention and the ability to withstand high organic loading rates. Aerobic granulation technology has been demonstrated to be useful for a wide variety of wastewaters, including industrial, nutrient‐rich and toxic. This paper presents a state‐of‐the‐art review of effective aerobic granulation technology for wastewater treatment selected from the point‐of‐view of basic concepts of aerobic granulation, characterisation and factors that affect aerobic granulation, demonstrating the effectiveness of the cell‐immobilisation (aerobic granulation) technique. © 2012 Canadian Society for Chemical Engineering |
---|---|
AbstractList | Rapid industrialisation and urbanisation releases numerous toxic compounds into natural water bodies, polluting these pristine fresh water resources. This is a subject of great concern, and the attention of environmentalists around the world has been increased towards this problem in recent years. Several techniques have been proposed for efficient wastewater treatment, most of them presenting some limitations, such as poor capacity, the generation of waste products, incomplete mineralisation and a high operating cost. Currently, aerobic granulation treatments are considered to be the most effective and economic alternative. Aerobic granulation is a process of microbial self‐immobilisation that results into a cell‐structured shape, characterised by dense biomass. Aerobic granules have a number of advantages over conventional bioflocs, such as a round and compact structure, good settling ability, high biomass retention and the ability to withstand high organic loading rates. Aerobic granulation technology has been demonstrated to be useful for a wide variety of wastewaters, including industrial, nutrient‐rich and toxic. This paper presents a state‐of‐the‐art review of effective aerobic granulation technology for wastewater treatment selected from the point‐of‐view of basic concepts of aerobic granulation, characterisation and factors that affect aerobic granulation, demonstrating the effectiveness of the cell‐immobilisation (aerobic granulation) technique. © 2012 Canadian Society for Chemical Engineering Rapid industrialisation and urbanisation releases numerous toxic compounds into natural water bodies, polluting these pristine fresh water resources. This is a subject of great concern, and the attention of environmentalists around the world has been increased towards this problem in recent years. Several techniques have been proposed for efficient wastewater treatment, most of them presenting some limitations, such as poor capacity, the generation of waste products, incomplete mineralisation and a high operating cost. Currently, aerobic granulation treatments are considered to be the most effective and economic alternative. Aerobic granulation is a process of microbial self-immobilisation that results into a cell-structured shape, characterised by dense biomass. Aerobic granules have a number of advantages over conventional bioflocs, such as a round and compact structure, good settling ability, high biomass retention and the ability to withstand high organic loading rates. Aerobic granulation technology has been demonstrated to be useful for a wide variety of wastewaters, including industrial, nutrient-rich and toxic. This paper presents a state-of-the-art review of effective aerobic granulation technology for wastewater treatment selected from the point-of-view of basic concepts of aerobic granulation, characterisation and factors that affect aerobic granulation, demonstrating the effectiveness of the cell-immobilisation (aerobic granulation) technique. copyright 2012 Canadian Society for Chemical Engineering |
Author | Sabir, Suhail Khan, Mohammad Zain Mondal, Pijush Kanti |
Author_xml | – sequence: 1 givenname: Mohammad Zain surname: Khan fullname: Khan, Mohammad Zain organization: Department of Civil, Environmental and Geomatic Engineering, Chadwick Building, University College London, Gower Street, WC1E 6BT, London, UK – sequence: 2 givenname: Pijush Kanti surname: Mondal fullname: Mondal, Pijush Kanti organization: Institute of Bioengineering and Biotechnology, Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal – sequence: 3 givenname: Suhail surname: Sabir fullname: Sabir, Suhail email: sabirsuhail09@gmail.com organization: Faculty of Science, Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India |
BookMark | eNp9kF1PwjAUQBuDiYC--Av2aEyG_Vj3oU9IACVEY4KBt6brbk1xbNgOJ_9eYOqDMT41Nz3n5uZ0UKsoC0DonOAewZheqaWCHiURTY5QmyQs8TFJFi3UxhjHfoBZcII6zi13I8UBaaObPtgyNcp7sbLY5LIyZeHp0nq1dBXUsgLrpaa0sILMHH6vvb5n4d1AfYqOtcwdnH29XfQ8Gs4Gd_70cXw_6E99FeAw8SWJY8KzNJU41lmsJcm0YgAh1QlhEOpIqZgBAx5lipAkpKFOZRgDpyqiOmJddNHsXdvybQOuEivjFOS5LKDcOEE4D5Ig4JTvUNygypbOWdBCmepwdmWlyQXBYt9J7DuJQ6edcvlLWVuzknb7N0wauDY5bP8hxWAyGH47fuOYXdGPH0faVxFGLOJi_jAWi9l8gvnoVjyxT4jIiog |
CitedBy_id | crossref_primary_10_5322_JESI_2019_28_8_669 crossref_primary_10_3923_jest_2021_1_12 crossref_primary_10_1002_cben_202400107 crossref_primary_10_1016_j_biortech_2016_06_120 crossref_primary_10_2166_wrd_2015_188 crossref_primary_10_3390_w8050172 crossref_primary_10_1016_j_biortech_2014_08_092 crossref_primary_10_1016_j_jwpe_2023_104712 crossref_primary_10_1016_j_procbio_2017_04_001 crossref_primary_10_1016_j_envint_2020_105540 crossref_primary_10_2478_cons_2017_0003 crossref_primary_10_1016_j_jece_2022_107500 crossref_primary_10_1016_j_jclepro_2018_06_167 crossref_primary_10_1016_j_scitotenv_2023_162213 crossref_primary_10_1186_s40201_015_0188_9 crossref_primary_10_3390_w13070980 crossref_primary_10_1016_j_wroa_2019_100040 crossref_primary_10_1016_j_jes_2020_12_003 crossref_primary_10_1016_j_biortech_2017_09_131 crossref_primary_10_1016_j_jclepro_2017_08_134 crossref_primary_10_1016_j_biortech_2017_06_129 crossref_primary_10_1016_j_cscee_2021_100173 crossref_primary_10_1016_j_jwpe_2024_105972 crossref_primary_10_1007_s00449_020_02302_y crossref_primary_10_1016_j_jwpe_2018_09_002 crossref_primary_10_3389_fmicb_2017_00770 crossref_primary_10_1016_j_cej_2017_12_026 crossref_primary_10_1016_j_cej_2018_11_060 crossref_primary_10_1016_j_jwpe_2019_100889 crossref_primary_10_3390_w14192976 crossref_primary_10_1080_10643389_2018_1439653 crossref_primary_10_1016_j_cej_2024_156275 crossref_primary_10_1016_j_jenvman_2023_118032 crossref_primary_10_1016_j_cej_2025_159365 crossref_primary_10_1039_D4EW00927D crossref_primary_10_1016_j_watres_2020_116657 crossref_primary_10_1016_j_chemosphere_2022_135116 crossref_primary_10_1007_s00253_018_9332_7 crossref_primary_10_1016_j_psep_2017_02_016 crossref_primary_10_1016_j_envpol_2024_123923 crossref_primary_10_15544_jws_2017_009 crossref_primary_10_3390_membranes6020033 crossref_primary_10_1016_j_jwpe_2020_101605 crossref_primary_10_1007_s40710_023_00670_7 crossref_primary_10_1007_s11157_016_9401_2 crossref_primary_10_1007_s11274_016_2179_0 crossref_primary_10_1080_21622515_2020_1732479 crossref_primary_10_1080_09593330_2017_1351494 crossref_primary_10_3390_microorganisms11092328 crossref_primary_10_1016_j_jenvman_2023_118501 crossref_primary_10_2166_wst_2021_415 crossref_primary_10_1016_j_eti_2017_12_006 crossref_primary_10_3390_su141710904 crossref_primary_10_1016_j_biortech_2017_03_005 crossref_primary_10_1016_j_jes_2016_06_012 crossref_primary_10_1016_j_biortech_2014_03_047 crossref_primary_10_1016_j_jece_2020_103681 crossref_primary_10_1080_19443994_2014_895962 crossref_primary_10_1016_j_mex_2022_101710 crossref_primary_10_1016_j_biortech_2016_01_098 crossref_primary_10_1016_j_jece_2018_05_020 crossref_primary_10_1016_j_jwpe_2025_107075 crossref_primary_10_1016_j_ibiod_2020_104963 crossref_primary_10_1016_j_procbio_2017_04_038 crossref_primary_10_1016_j_jenvman_2020_110391 crossref_primary_10_1016_j_jwpe_2019_100785 crossref_primary_10_1088_1755_1315_1091_1_012059 crossref_primary_10_3390_pr10071399 crossref_primary_10_3390_ijerph120810056 crossref_primary_10_1007_s00253_018_8990_9 crossref_primary_10_1016_j_seppur_2023_124892 crossref_primary_10_2166_wst_2015_233 crossref_primary_10_1016_j_biortech_2024_131570 crossref_primary_10_1016_j_scitotenv_2018_07_140 crossref_primary_10_1007_s00253_015_6964_8 crossref_primary_10_1016_j_hazadv_2024_100462 crossref_primary_10_1016_j_jes_2017_08_015 crossref_primary_10_1016_j_jwpe_2020_101709 crossref_primary_10_3390_w12082126 crossref_primary_10_1007_s10661_024_12545_x |
Cites_doi | 10.1016/j.watres.2009.05.007 10.1016/j.chemosphere.2005.04.081 10.1128/AEM.70.11.6767-6775.2004 10.1016/j.biortech.2007.03.011 10.1007/s10532-006-9077-3 10.1007/s00253-004-1657-8 10.1016/S0043-1354(02)00585-7 10.1007/BF00257609 10.1021/es0483140 10.1111/j.1472-765X.2003.01479.x 10.1016/S1001-0742(09)60075-9 10.1016/j.watres.2003.08.017 10.1016/j.chemosphere.2011.11.002 10.1016/j.bej.2004.03.005 10.2166/wst.2006.381 10.1111/j.1462-2920.2007.01456.x 10.30638/eemj.2010.040 10.1016/j.watres.2008.11.009 10.1016/j.biortech.2010.05.078 10.1016/j.biortech.2009.05.058 10.2166/wst.2004.0707 10.1016/j.biotechadv.2009.05.020 10.1061/(ASCE)0733-9372(2001)127:9(825) 10.1016/j.biortech.2009.11.099 10.1007/BF01622068 10.1007/s00284-002-3878-3 10.1016/j.enzmictec.2010.03.011 10.1016/j.chemosphere.2008.11.069 10.1016/S0043-1354(01)00250-0 10.1016/S1093-0191(01)00132-0 10.1016/j.chemosphere.2005.08.055 10.1016/j.chemosphere.2007.05.026 10.1016/j.cej.2010.03.017 10.1016/j.procbio.2007.10.008 10.1128/aem.63.3.1168-1170.1997 10.1016/j.bej.2005.10.002 10.1046/j.1365-2672.2001.01374.x 10.1016/j.watres.2010.07.033 10.1007/s002530051250 10.1007/s00253-005-1991-5 10.1007/s00253-003-1462-9 10.1046/j.1472-765X.2002.01108.x 10.1016/j.biortech.2010.05.062 10.1061/(ASCE)0733-9372(2000)126:12(1145) 10.1016/j.jbiotec.2003.11.008 10.1007/s00248-002-2014-z 10.1016/j.procbio.2004.01.056 10.1016/j.jtice.2009.02.002 10.1016/S1001-0742(08)62263-9 10.1016/j.enzmictec.2007.01.005 10.1016/S1001-0742(09)60256-4 10.1016/j.biotechadv.2008.05.002 10.1016/j.procbio.2009.02.019 10.1007/s00253-005-0088-5 10.1016/S0043-1354(98)00443-6 10.1016/j.biortech.2011.04.057 10.1016/j.biortech.2008.06.015 10.1016/j.watres.2009.10.028 10.1016/j.memsci.2007.08.041 10.1016/S0958-1669(96)80038-3 10.1093/mutage/gel011 10.1046/j.1365-2672.2003.01915.x 10.1007/s00253-008-1604-1 10.1016/j.watres.2009.05.004 10.1038/ismej.2008.12 10.1016/j.procbio.2011.09.007 10.1016/S0927-7765(02)00145-5 10.1016/j.enzmictec.2009.06.014 10.1016/j.biotechadv.2004.05.001 10.1002/cjce.20445 10.1016/j.jhazmat.2009.09.070 10.1007/s10532-010-9364-x 10.1002/bit.1167 10.1016/j.watres.2007.10.021 10.1016/j.watres.2009.08.045 10.1046/j.1472-765X.2003.01312.x 10.1021/es0517771 10.1016/j.chemosphere.2005.09.018 10.1128/aem.58.4.1367-1370.1992 10.1016/j.procbio.2008.10.018 10.1007/BF00409231 10.1046/j.1472-765x.2002.01099.x 10.1016/j.biortech.2008.06.016 10.1007/s00253-006-0797-4 10.1007/s00253-008-1476-4 10.1016/j.biortech.2008.01.073 10.1016/j.jhazmat.2008.11.049 10.1016/j.jhazmat.2008.09.034 10.1016/j.biortech.2009.04.050 10.1016/j.watres.2011.11.054 10.1016/j.chemosphere.2005.11.030 10.2166/wst.2003.0610 10.1080/09593330309385665 10.1061/(ASCE)0733-9372(2004)130:12(1415) 10.1016/j.jhazmat.2011.03.029 10.2166/wst.2009.863 10.1016/j.jhazmat.2010.05.021 10.1016/j.jhazmat.2010.01.037 10.1089/hwm.1988.5.109 10.1016/S0032-9592(03)00307-8 10.1016/S0043-1354(98)00463-1 10.1007/s00253-008-1456-8 10.1061/(ASCE)0733-9372(2006)132:6(694) 10.1007/s002530100766 10.1016/j.cej.2010.08.063 10.2166/wst.2008.393 10.1016/j.enzmictec.2005.07.020 10.1007/s00253-007-1085-7 10.1080/09593330802536339 10.2166/wst.2002.0540 10.1016/S0043-1354(01)00379-7 10.1016/S1001-0742(08)60026-1 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Canadian Society for Chemical Engineering |
Copyright_xml | – notice: Copyright © 2012 Canadian Society for Chemical Engineering |
DBID | BSCLL AAYXX CITATION 7QH 7TV 7UA C1K |
DOI | 10.1002/cjce.21729 |
DatabaseName | Istex CrossRef Aqualine Pollution Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Pollution Abstracts Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Pollution Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-019X |
EndPage | 1058 |
ExternalDocumentID | 10_1002_cjce_21729 CJCE21729 ark_67375_WNG_XTWJ05FB_Q |
Genre | article |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 123 1L6 1OB 1OC 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABEFU ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL CS3 D-E D-F DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IAO ICQ ISN ISR ITC JPC LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TAE TN5 TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WSB WXSBR WYISQ XV2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABJIA ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7QH 7TV 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K |
ID | FETCH-LOGICAL-c4069-a18815dbba08fd8fa1dfc3ee62f913e6f7cc83e3e57dc119626fba68e52c72f73 |
ISSN | 0008-4034 |
IngestDate | Fri Jul 11 10:10:36 EDT 2025 Tue Jul 01 03:38:09 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Wed Jan 22 16:16:51 EST 2025 Wed Oct 30 09:56:39 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4069-a18815dbba08fd8fa1dfc3ee62f913e6f7cc83e3e57dc119626fba68e52c72f73 |
Notes | ArticleID:CJCE21729 istex:29C6A6CFF222B2FCFD5ACC6478BA557346F4DA88 ark:/67375/WNG-XTWJ05FB-Q The following are the major points of this review: 1. Both mixed and pure cultures can be used for cultivating aerobic granules. Generally, mixed culture is employed for degrading a mixture of toxic compounds, and pure culture is useful for degrading a specific toxicant. 2. Aerobic granules are used to treat wastewater containing higher organic loading rates as well as fluctuations in organic loading rates. 3. There is a strong contradiction regarding the effect of DO, HRT and the starvation period on biogranulation. 4. Further research is needed to explore the feasibility of using stored granule as inoculums for rapid startup. The following are the major points of this review 3. There is a strong contradiction regarding the effect of DO, HRT and the starvation period on biogranulation. 1. Both mixed and pure cultures can be used for cultivating aerobic granules. Generally, mixed culture is employed for degrading a mixture of toxic compounds, and pure culture is useful for degrading a specific toxicant. 2. Aerobic granules are used to treat wastewater containing higher organic loading rates as well as fluctuations in organic loading rates. 4. Further research is needed to explore the feasibility of using stored granule as inoculums for rapid startup. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/1822/27728 |
PQID | 1554944525 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1554944525 crossref_citationtrail_10_1002_cjce_21729 crossref_primary_10_1002_cjce_21729 wiley_primary_10_1002_cjce_21729_CJCE21729 istex_primary_ark_67375_WNG_XTWJ05FB_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2013 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: June 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Canadian journal of chemical engineering |
PublicationTitleAlternate | Can. J. Chem. Eng |
PublicationYear | 2013 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Sheng, G. P., A. J. Li, X. Y. Li and H. Q. Yu, " Effects of Seed Sludge Properties and Selective Biomass Discharge on Aerobic Sludge Granulation," Chem. Eng. J. 160, 108-114 (2010). United States Geological Survey (USGS). " Denver, CO. Ground Water and Surface Water: A Single Resource," USGS Circ. 1139, 1-10 (1998). Tay, J. H., Q. S. Liu and Y. Liu, " Microscopic Observation of Aerobic in Sequential Aerobic Sludge Reactor," J. Appl. Microbiol. 91, 168-175 (2001a). Wackett, L. P., " Co-Metabolism: Is the Emperor Wearing Any Clothes?" Curr. Opin. Biotechnol. 7, 321-325 (1996). Nancharaiah, Y. V., H. M. Joshi, T. V. K. Mohan, V. P. Venugopalan and S. V. Narasimhan, " Aerobic Granular Biomass: A Novel Biomaterial for Efficient Uranium Removal," Curr. Sci. 91, 503-509 (2006). Wan, J., Y. Bessiere and M. Sperandio, " Alternating Anoxic Feast/Aerobic Famine Condition for Improving Granular Sludge Formation in Sequencing Batch Airlift Reactor at Reduced Aeration Rate," Water Res. 43, 5097-5108 (2009). Zheng, Y. M., H. Q. Yu, S. J. Liu and X. Z. Liu, " Formation and Instability of Aerobic Granules Under High Organic Loading Conditions," Chemosphere 63, 1791-1800 (2006). Tay, J. H., H. L. Jiang and S. T. L. Tay, " High-Rate Biodegradation of Phenol by Aerobically Grown Microbial Granules," J. Environ. Eng. 130, 1415-1423 (2004b). Thanh, B. X., C. Visvanathan and R. B. Aim, " Characterization of Aerobic Granular Sludge at Various Organic Loading Rates," Process Biochem. 44, 242-245 (2009). Hailei, W., L. Ping, L. Guosheng, L. Xin and Y. Jianming, " Rapid Biodecolourization of Eriochrome Black T Wastewater by Bioaugmented Aerobic Granules Cultivated Through a Specific Method," Enzy. Microb. Technol. 47, 37-43 (2010). Liu, Y., S. F. Yang, Q. S. Liu and J. H. Tay, " The Role of Cell Hydrophobicity in the Formation of Aerobic Granules," Curr. Microbiol. 46, 270-274 (2003a). Wang, S. G., X. W. Liu, H. Y. Zhang, W. X. Gong, X. F. Sun and B. Y. Gao, " Aerobic Granulation for 2,4-Dichlorophenol Biodegradation in a Sequencing Batch Reactor," Chemosphere 69, 769-775 (2007a). Belmonte, M., J. R. Vazquez Padin, M. Figueroa, A. Franco, A. Mosquera-Corral, J. L. Campos and R. Mendez, " Characteristics of Nitrifying Granules Developed in an Air Pulsing SBR," Process Biochem. 44, 602-606 (2009). Kos, B., J. Suskovic, S. Vukovic, M. Simpraga, J. Frece and S. Matosic, " Adhesion and Aggregation Ability of Probiotic Strain Lactobacillus acidophilus M92," J. Appl. Microbiol. 94, 981-987 (2003). Verawaty, M., M. Pijuan, Z. Yuan and P. L. Bond, " Determining the Mechanisms for Aerobic Granulation From Mixed Seed of Floccular and Crushed Granules in Activated Sludge Wastewater Treatment," Water Res. 46, 761-771 (2012). Khan, M. Z., F. Khan and S. Sabir, " Aerobic Granular Treatment of 2,4-Dichlorophenol," Can. J. Chem. Eng. 89(4), 914-920 (2011a). Pan, S., J. H. Tay, Y. X. He and S. T. L. Tay, " The Effect of Hydraulic Retention Time on the Stability of Aerobically Grown Microbial Granules," Lett. Appl. Microbiol. 38, 158-163 (2004). Tay, J. H., Q. S. Liu and Y. Liu, " The Effect of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules," Appl. Microbiol. Biotechnol. 57, 227-233 (2001b). Wang, Z. W., Y. Liu and J. H. Tay, " The Role of SBR Mixed Liquor Volume Exchange Ratio in Aerobic Granulation," Chemosphere 62, 767-771 (2006b). Liu, Q. S., Y. Liu, K. Y. Show and J. H. Tay, " Toxicity Effect of Phenol on Aerobic Granules," Environ. Technol. 30, 69-74 (2009b). Shim, H., E. B. Shin and S. T. Yang, " A Continuous Fibrous-Bed Bioreactor for BTEX Biodegradation By a Co-Culture of Pseudomonas putida and Pseudomonas fluorescens ," Adv. Environ. Res. 7, 203-216 (2002). Limbergen, H. V., E. M. Top and W. Verstraete, " Bioaugmentation in Activated Sludge: Current Features and Future Perspectives," Appl. Microbiol. Biotechnol. 50, 16-23 (1998). Liu, L., D. W. Gao, M. Zhang and Y. Fu, " Comparison of Ca2+ and Mg2+ Enhancing Aerobic Granulation in SBR," J. Hazard. Mater. 181, 382-387 (2010). Adav, S. S., D. J. Lee and J. Y. Lai, " Treating Chemical Industries Influent Using Aerobic Granular Sludge: Recent Development," J. Taiwan Ins. Chem. Eng. 40, 333-336 (2009b). Chen, Y., W. Jiang, D. T. Liang and J. H. Tay, " Structure and Stability of Aerobic Granules Cultivated Under Different Shear Force in Sequencing Batch Reactors," Appl. Microbiol. Biotechnol. 76, 1199-1208 (2007). Wang, Z., L. Liu, J. Yao and W. Cai, " Effects of Extracellular Polymeric Substances on Aerobic Granulation in Sequencing Batch Reactors," Chemosphere 63, 1728-1735 (2006a). Li, A. J. and X. Y. Li, " Selective Sludge Discharge as the Determining Factor in SBR Aerobic Granulation: Numerical Modeling and Experimental Verification," Water Res. 43, 3387-3396 (2009). Adav, S. S., D. J. Lee and J. Y. Lai, " Intergenetic Coaggregation of Strains Isolated From Phenol Degrading Aerobic Granules," Appl. Microbiol. Biotechnol. 79, 657-661 (2008b). Tay, J. H., Q. S. Liu and Y. Liu, " Microscopic Observation of Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor," J. Appl. Microbiol. 91, 168-175 (2001c). Liu, Y., S. F. Yang, L. Qin and J. H. Tay, " A Thermodynamic Interpretation of Cell Hydrophobicity in Aerobic Granulation," Appl. Microbiol. Biotechnol. 64, 410-415 (2004b). Coma, M., S. Puig, M. D. Balaguer and J. Colprim, " The Role of Nitrate and Nitrite in a Granular Sludge Process Treating Low-Strength Wastewater," Chem. Eng. J. 164, 208-213 (2010). Tomei, M. C., M. C. Annesini, S. Rita and A. J. Daugulis, " Biodegradation of 4-Nitrophenol in a Two-Phase Sequencing Batch Reactor: Concept Demonstration, Kinetics and Modelling," Appl. Microbiol. Biotechnol. 80, 1105-1112 (2008). Quan, X., H. Shi, H. Liu, J. Wang and Y. Qian, " Removal of 2,4-Dichlorophenol in a Conventional Activated Sludge System Through Bioaugmentation," Process Biochem. 39, 1701-1707 (2004). Song, Z., N. Ren, K. Zhang and L. Tong, " Influence of Temperature on the Characteristics of Aerobic Granulation in Sequencing Batch Airlift Reactors," J. Environ. Sci. China 21, 273-278 (2009). Zheng, Y. M., H. Q. Yu and G. P. Sheng, " Physical and Chemical Characteristics of Granular Activated Sludge From a Sequencing Batch Airlift Reactor," Process Biochem. 40, 645-650 (2005). Wan, J. and M. Sperandio, " Possible Role of Denitrification on Aerobic Granular Sludge Formation in Sequencing Batch Reactor," Chemosphere 75, 220-227 (2009). Fang, H. H. P. and H. Q. Yu, " Acidification of Lactose in Wastewater" J. Environ. Eng. 127, 825-831 (2001). Tsuneda, S., T. Nagano, T. Hoshino, Y. Ejiri and A. H. Noda, " Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor," Water Res. 37, 4965-4973 (2004). Liu, Y. and J. H. Tay, " State of the Art of Biogranulation Technology for Wastewater Treatment," Biotechnol. Adv. 22, 533-563 (2004). Wu, C. Y., Y. Z. Peng, S. Y. Wang and Y. Ma, " Enhanced Biological Phosphorus Removal by Granular Sludge: From Macro- to Micro-Scale," Water Res. 44, 807-814 (2010). Beun, J. J., J. J. Heijnen and M. C. M. van Loosdrecht, " N-Removal in a Granular Sludge Sequencing Batch Airlift Reactor," Biotechnol. Bioeng. 75, 82-92 (2001). Dangcong, P., N. Bernet, J. Philippe Delgenes and R. Molett, " Aerobic Granular Sludge-A Case Report," Water Res. 33, 890-893 (1999). Shi, X. Y., G. P. Sheng, X. Y. Li and H. Q. Yu, " Operation of a Sequencing Batch Reactor for Cultivating Autotrophic Nitrifying Granules," Bioresour. Technol. 101, 2960-2964 (2010). Brian, A. W. and P. Malcolmm, "The ecology of cyanobacteria: Their diversity in time and space," Kluwer Academic Publishers, Dordrecht, The Netherlands (2002), pp. 89-90. Bull, S., K. Fletcher, A. R. Boobis and J. M. Battershill, " Evidence for Genotoxicity of Pesticides in Pesticide Applicators: A Review," Mutagenesis 21, 93-103 (2006). Liu, Y. and J. H. Tay, " The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge," Water Res. 36, 1653-1665 (2002). Ni, B. J., W. M. Xie, S. G. Liu, H. Q. Yu, Y. Z. Wang, G. Wang and X. L. Dai, " Granulation of Activated Sludge in a Pilot-Scale Sequencing Batch Reactor for the Treatment of Low-Strength Municipal Wastewater," Water Res. 43, 751-761 (2009). Li, Z. H., T. Kuba and T. Kusuda, " The Influence of Starvation Phase on the Properties and the Development of Aerobic Granules," Enzyme Microb. Technol. 38, 670-674 (2006). Li, Y., Y. Lu and H. Xu, " Is Sludge Retention Time a Decisive Factor for Aerobic Granulation in SBR?" Bioresour. Technol. 99, 7672-7677 (2008a). Ivanov, V., X. H. Wang, S. T. L. Tay and J. H. Tay, " Bioaugmentation and Enhanced Formation of Microbial Granules Used in Aerobic Wastewater Treatment," App. Microbiol. Biotechnol. 70, 374-381 (2006). Carucci, A., S. Milia, G. D. Gioannis and M. Piredda, " Acetate-Fed Aerobic Granular Sludge for the Degradation of 4-Chlorophenol," J. Hazard. Mater. 166, 483-490 (2009). Adav, S. S., D. J. Lee and J. Y. Lai, " Aerobic Granulation in Sequencing Batch Reactors at Different Settling Times," Bioresour. Technol. 100, 5359-5361 (2009a). Tay, J. H., V. Ivanov, S. Pan and S. T. L. Tay, " Specific Layers in Aerobically Grown Microbial Granules," Lett. Appl. Microbiol. 34, 254-257 (2002a). Adav, S. S., D. J. Lee and J. Y. Lai, " Aerobic Granules With Inhibitory Strains and Role of Extracellular Polymeric Substances," J. Hazard. Mater. 174, 424-428 (2010). Ivanov, V., X. H. Wang and O. Stabnikova, " Starter Culture of Pseudomonas veronii strain B for Aerobic Granulation," World J. Microbiol. Biotechnol. 21, 533-539 (2007). Wang, F., S. Lu, Y. Wei and M. Ji, " Characteristics of Aerobic Granule and Nitrogen and Phosphorus Removal in a SBR," J. Hazard. Mater. 164, 1223-1227 (2009). Yang, S. F., X. Y. Li and H. Q. Yu, " Formation and Characterization of Fungal and Bacterial Granules Under Different Feeding Alkalinity and pH Conditions," Process Biochem. 43, 8-14 (2008). Carucci, A., S. Milia, G. Cappai and A. Muntoni, " A Direct Comparison Amongst 2004; 21 2004; 22 1998; 1139 2008a; 2 2002a; 34 2006a; 63 2007a; 69 2002c; 46 2006; 38 2010; 101 1992; 58 2010; 181 2007; 75 2007; 76 2008; 100 2005; 69 2010; 22 2010; 21 2007b; 41 1989; 31 2006; 21 2000; 126 2004; 38 2004; 39 2006; 28 2004; 37 2009a; 100 2004c; 108 2008; 20 2010; 9 2011b; 190 2007; 18 2006; 54 2001c; 91 2002; 7 2001a; 91 2008b; 10 2008; 58 2003; 37 2010; 164 1981; 26 1994 2010; 160 2004b; 64 2010; 45 2010; 44 2004; 50 2010; 47 2009; 75 2006; 40 2010; 177 2009; 100 2010; 174 1999; 33 2003a; 47 2003; 28 2001b; 57 2008; 43 2008; 42 2012; 46 2003a; 46 2011a; 89 2006; 70 2009; 44 2009; 43 2006; 132 2008b; 79 2008; 79 1988; 142 2003; 94 2006; 63 2006; 64 2004; 70 2009; 166 2008; 317 2009a; 27 2002b; 44 1998; 50 2009; 164 2006b; 62 2007; 21 2005; 39 2004b; 130 2009; 59 1996; 7 2003b; 24 2002; 36 2008a; 99 2006; 91 2009; 21 1997; 63 2004a; 65 2002; 34 2005; 40 2005 2008; 99 2002 2009b; 30 2001; 127 2003b; 36 2008a; 26 1988; 5 2011; 46 2009b; 40 2008b; 100 2008; 80 2012; 86 2001; 75 2011c; 102 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Brian A. W. (e_1_2_8_14_1) 2002 Tay J. H. (e_1_2_8_91_1) 2002; 46 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 Ivanov V. (e_1_2_8_34_1) 2005 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 United States Geological Survey (USGS) (e_1_2_8_98_1) 1998; 1139 e_1_2_8_6_1 Nancharaiah Y. V. (e_1_2_8_73_1) 2006; 91 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_37_1 e_1_2_8_79_1 Alves M. (e_1_2_8_8_1) 2010; 9 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Ivanov V. (e_1_2_8_31_1) 2004; 50 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 Ivanov V. (e_1_2_8_32_1) 2007; 21 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_97_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Alexander M. (e_1_2_8_7_1) 1994 Mohn W. M. (e_1_2_8_70_1) 1992; 58 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_50_1 Tay J. H. (e_1_2_8_92_1) 2003; 47 e_1_2_8_104_1 |
References_xml | – reference: United States Geological Survey (USGS). " Denver, CO. Ground Water and Surface Water: A Single Resource," USGS Circ. 1139, 1-10 (1998). – reference: Adav, S. S., D. J. Lee and J. Y. Lai, " Treating Chemical Industries Influent Using Aerobic Granular Sludge: Recent Development," J. Taiwan Ins. Chem. Eng. 40, 333-336 (2009b). – reference: Wan, J., Y. Bessiere and M. Sperandio, " Alternating Anoxic Feast/Aerobic Famine Condition for Improving Granular Sludge Formation in Sequencing Batch Airlift Reactor at Reduced Aeration Rate," Water Res. 43, 5097-5108 (2009). – reference: Chen, Y., W. Jiang, D. T. Liang and J. H. Tay, " Structure and Stability of Aerobic Granules Cultivated Under Different Shear Force in Sequencing Batch Reactors," Appl. Microbiol. Biotechnol. 76, 1199-1208 (2007). – reference: Bull, S., K. Fletcher, A. R. Boobis and J. M. Battershill, " Evidence for Genotoxicity of Pesticides in Pesticide Applicators: A Review," Mutagenesis 21, 93-103 (2006). – reference: Khan, M. Z., P. K. Mondal, S. Sabir and V. Tare, " Degradation Pathway, Toxicity and Kinetics of 2,4,6-Trichlorophenol With Different co-Substrates by Aerobic Granules in SBR," Bioresour. Technol. 102, 7016-7021 (2011c). – reference: Liu, Q. S., Y. Liu, K. Y. Show and J. H. Tay, " Toxicity Effect of Phenol on Aerobic Granules," Environ. Technol. 30, 69-74 (2009b). – reference: Ivanov, V., X. H. Wang, S. T. L. Tay and J. H. Tay, " Bioaugmentation and Enhanced Formation of Microbial Granules Used in Aerobic Wastewater Treatment," App. Microbiol. Biotechnol. 70, 374-381 (2006). – reference: Pan, S., J. H. Tay, Y. X. He and S. T. L. Tay, " The Effect of Hydraulic Retention Time on the Stability of Aerobically Grown Microbial Granules," Lett. Appl. Microbiol. 38, 158-163 (2004). – reference: Li, A. J. and X. Y. Li, " Selective Sludge Discharge as the Determining Factor in SBR Aerobic Granulation: Numerical Modeling and Experimental Verification," Water Res. 43, 3387-3396 (2009). – reference: Li, Y., Y. Lu and H. Xu, " Is Sludge Retention Time a Decisive Factor for Aerobic Granulation in SBR?" Bioresour. Technol. 99, 7672-7677 (2008a). – reference: Ivanov, V., X. H. Wang and O. Stabnikova, " Starter Culture of Pseudomonas veronii strain B for Aerobic Granulation," World J. Microbiol. Biotechnol. 21, 533-539 (2007). – reference: Keweloh, H., H. J. Heipieper and H. J. Rehm, " Protection of Bacteria Against Toxicity of Phenol by Immobilization in Calcium Alginate," Appl. Microbiol. Biotechnol. 31, 383-389 (1989). – reference: Wackett, L. P., " Co-Metabolism: Is the Emperor Wearing Any Clothes?" Curr. Opin. Biotechnol. 7, 321-325 (1996). – reference: Khan, F., M. Z. Khan, S. Q. Usmani and S. Sabir, " Biodegradation of Phenol by Aerobic Granulation Technology," Water Sci. Technol. 59, 273-278 (2009). – reference: Adav, S. S., D. J. Lee and J. Y. Lai, " Intergenetic Coaggregation of Strains Isolated From Phenol Degrading Aerobic Granules," Appl. Microbiol. Biotechnol. 79, 657-661 (2008b). – reference: Liu, Y. Q., Y. Liu and J. H. Tay, " The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules," Appl. Microbiol. Biotechnol. 65, 143-148 (2004a). – reference: Zhu, L., X. Y. Xu, W. G. Luo, Z. J. Tian, H. Z. Lin and N. N. A. Zhang, " Comparative Study on the Formation and Characterization of Aerobic 4-Chloroaniline Degrading Granules in SBR and SABR," Appl. Microbiol. Biotechnol. 79, 867-874 (2008). – reference: Tomei, M. C., M. C. Annesini, S. Rita and A. J. Daugulis, " Biodegradation of 4-Nitrophenol in a Two-Phase Sequencing Batch Reactor: Concept Demonstration, Kinetics and Modelling," Appl. Microbiol. Biotechnol. 80, 1105-1112 (2008). – reference: Bar-Or, Y. and M. Shillo, " The Role of Cell-Bound Flocculants in Coflocculation of Benthic Cyanobacteria Phormidium J-1," Arch. Microbiol. 142, 21-27 (1988). – reference: Beun, J. J., M. C. M. van Loosdrecht and J. J. Heijnen, " Aerobic Granulation in a Sequencing Batch Airlift Reactor," Water Res. 36, 702-712 (2002). – reference: Shi, X. Y., G. P. Sheng, X. Y. Li and H. Q. Yu, " Operation of a Sequencing Batch Reactor for Cultivating Autotrophic Nitrifying Granules," Bioresour. Technol. 101, 2960-2964 (2010). – reference: Wang, X. H., H. M. Zhang, F. L. Yang, L. P. Xia and M. M. Gao, " Improved Stability and Performance of Aerobic Granules Under Stepwise Increased Selection Pressure," Enzy. Microb. Technol. 41, 205-211 (2007b). – reference: Tsuneda, S., T. Nagano, T. Hoshino, Y. Ejiri and A. H. Noda, " Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor," Water Res. 37, 4965-4973 (2004). – reference: Wang, F., S. Lu, Y. Wei and M. Ji, " Characteristics of Aerobic Granule and Nitrogen and Phosphorus Removal in a SBR," J. Hazard. Mater. 164, 1223-1227 (2009). – reference: Liu, L., D. W. Gao, M. Zhang and Y. Fu, " Comparison of Ca2+ and Mg2+ Enhancing Aerobic Granulation in SBR," J. Hazard. Mater. 181, 382-387 (2010). – reference: Tay, J. H., Q. S. Liu and Y. Liu, " The Effect of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules," Appl. Microbiol. Biotechnol. 57, 227-233 (2001b). – reference: Yang, S. F., X. Y. Li and H. Q. Yu, " Formation and Characterization of Fungal and Bacterial Granules Under Different Feeding Alkalinity and pH Conditions," Process Biochem. 43, 8-14 (2008). – reference: Fang, F., X. W. Liu, J. Xu, H. Q. Yu and Y. M. Li, " Formation of Aerobic Granules and Their PHB Production at Various Substrate and Ammonium Concentrations," Bioresour. Technol. 100, 59-63 (2008). – reference: Wang, Z., L. Liu, J. Yao and W. Cai, " Effects of Extracellular Polymeric Substances on Aerobic Granulation in Sequencing Batch Reactors," Chemosphere 63, 1728-1735 (2006a). – reference: Beun, J. J., J. J. Heijnen and M. C. M. van Loosdrecht, " N-Removal in a Granular Sludge Sequencing Batch Airlift Reactor," Biotechnol. Bioeng. 75, 82-92 (2001). – reference: Dangcong, P., N. Bernet, J. Philippe Delgenes and R. Molett, " Aerobic Granular Sludge-A Case Report," Water Res. 33, 890-893 (1999). – reference: Alves, M., " Wastewater Treatment for Recovering Water, Energy, Nutrients and Valuable Products," Editorial/Environ. Eng. Manage. J. 9, 293-294 (2010). – reference: Li, Z. H., T. Kuba and T. Kusuda, " The Influence of Starvation Phase on the Properties and the Development of Aerobic Granules," Enzyme Microb. Technol. 38, 670-674 (2006). – reference: Lobos, J., C. Wisniewski, M. Heran and A. Grasmick, " Sequencing Versus Continuous Membrane Bioreactors: Effect of Substrate to Biomass Ratio (F/M) on Process Performance," J Membr. Sci. 317, 71-77 (2008). – reference: Sahinkaya, E. and F. B. Dilek, " Modeling Chlorophenols Degradation in a Sequencing Batch Reactors With Instantaneous Feed-Effect of 2,4-DCP Presence on 4-CP Degradation Kinetics," Biodegradation 18, 427-437 (2007). – reference: Beun, J. J., A. Hendriks, M. C. M. van Loosdrecht, E. Morgenroth and P. A. Wilderer, " Aerobic Granulation in a Sequencing Batch Reactor," Water Res. 33, 2283-2290 (1999). – reference: Kos, B., J. Suskovic, S. Vukovic, M. Simpraga, J. Frece and S. Matosic, " Adhesion and Aggregation Ability of Probiotic Strain Lactobacillus acidophilus M92," J. Appl. Microbiol. 94, 981-987 (2003). – reference: Zita, A. and M. Hermansson, " Effects of Bacterial Cell Surface Structures and Hydrophobicity on Attachment to Activated Sludge Flocs," Appl. Environ. Microbiol. 63, 1168-1170 (1997). – reference: Hailei, W., L. Ping, L. Guosheng, L. Xin and Y. Jianming, " Rapid Biodecolourization of Eriochrome Black T Wastewater by Bioaugmented Aerobic Granules Cultivated Through a Specific Method," Enzy. Microb. Technol. 47, 37-43 (2010). – reference: Liu, D., " A Rapid Biochemical Test for Measuring Chemical Toxicity," Bull. Environ. Contam. Toxicol. 26, 145-149 (1981). – reference: Brian, A. W. and P. Malcolmm, "The ecology of cyanobacteria: Their diversity in time and space," Kluwer Academic Publishers, Dordrecht, The Netherlands (2002), pp. 89-90. – reference: Liu, Y., S. F. Yang and J. H. Tay, " Improved Stability of Aerobic Granules by Selecting Slow-Growing Nitrifying Bacteria," J. Biotechnol. 108, 161-169 (2004c). – reference: Pijuan, M., U. Werner and Z. Yuan, " Effect of Long Term Anaerobic and Intermittent Anaerobic/Aerobic Starvation on Aerobic Granules," Water Res. 43, 3622-3632 (2009). – reference: Wu, C. Y., Y. Z. Peng, R. D. Wang and Y. X. Zhou, " Understanding the Granulation Process of Activated Sludge in a Biological Phosphorus Removal Sequencing Batch Reactor," Chemosphere 86, 767-773 (2012). – reference: Adav, S. S., D. J. Lee, K. Y. Show and J. H. Tay, " Aerobic Granular Sludge: Recent Advances," Biotechnol. Adv. 26, 411-423 (2008a). – reference: Li, Z., T. Zhang, N. Li and X. Wang, " Granulation of Filamentous Microorganisms in a Sequencing Batch Reactor With Saline Wastewater," J. Environ. Sci. 22, 62-67 (2010). – reference: Adav, S. S., D. J. Lee and J. Y. Lai, " Aerobic Granulation in Sequencing Batch Reactors at Different Settling Times," Bioresour. Technol. 100, 5359-5361 (2009a). – reference: Tay, J. H., H. L. Jiang and S. T. L. Tay, " High-Rate Biodegradation of Phenol by Aerobically Grown Microbial Granules," J. Environ. Eng. 130, 1415-1423 (2004b). – reference: Tay, J. H., Q. S. Liu and Y. Liu, " Microscopic Observation of Aerobic in Sequential Aerobic Sludge Reactor," J. Appl. Microbiol. 91, 168-175 (2001a). – reference: Carucci, A., S. Milia, G. Cappai and A. Muntoni, " A Direct Comparison Amongst Different Technologies (Aerobic Granular Sludge, SBR and MBR) for the Treatment of Wastewater Contaminated by 4-Chlorophenol," J. Hazard. Mater. 177, 1119-1125 (2010). – reference: Thanh, B. X., C. Visvanathan and R. B. Aim, " Characterization of Aerobic Granular Sludge at Various Organic Loading Rates," Process Biochem. 44, 242-245 (2009). – reference: Adav, S. S., D. J. Lee and J. Y. Lai, " Aerobic Granules With Inhibitory Strains and Role of Extracellular Polymeric Substances," J. Hazard. Mater. 174, 424-428 (2010). – reference: Sheng, G. P., A. J. Li, X. Y. Li and H. Q. Yu, " Effects of Seed Sludge Properties and Selective Biomass Discharge on Aerobic Sludge Granulation," Chem. Eng. J. 160, 108-114 (2010). – reference: Nancharaiah, Y. V., H. M. Joshi, T. V. K. Mohan, V. P. Venugopalan and S. V. Narasimhan, " Aerobic Granular Biomass: A Novel Biomaterial for Efficient Uranium Removal," Curr. Sci. 91, 503-509 (2006). – reference: Liu, Y., S. F. Yang, L. Qin and J. H. Tay, " A Thermodynamic Interpretation of Cell Hydrophobicity in Aerobic Granulation," Appl. Microbiol. Biotechnol. 64, 410-415 (2004b). – reference: Khan, M. Z., F. Khan and S. Sabir, " Aerobic Granular Treatment of 2,4-Dichlorophenol," Can. J. Chem. Eng. 89(4), 914-920 (2011a). – reference: Li, A. J., X. Y. Li and H. Q. Yu, " Effect of the Food-To-Microorganism (F/M) Ratio on the Formation and Size of Aerobic Sludge Granules," Process Biochem. 46, 2269-2276 (2011). – reference: Liu, Y. and J. H. Tay, " State of the Art of Biogranulation Technology for Wastewater Treatment," Biotechnol. Adv. 22, 533-563 (2004). – reference: Quan, X., H. Shi, H. Liu, J. Wang and Y. Qian, " Removal of 2,4-Dichlorophenol in a Conventional Activated Sludge System Through Bioaugmentation," Process Biochem. 39, 1701-1707 (2004). – reference: Zhu, J. R. and P. A. Wilderer, " Effect of Extended Idle Conditions on Structure and Activity of Granular Activated Sludge," Water Res. 37, 2013-2018 (2003). – reference: Coma, M., S. Puig, M. D. Balaguer and J. Colprim, " The Role of Nitrate and Nitrite in a Granular Sludge Process Treating Low-Strength Wastewater," Chem. Eng. J. 164, 208-213 (2010). – reference: Li, X. M., Q. Q. Liu, Q. Yang, L. Guo, G. M. Zeng, J. M. Hu and W. Zheng, " Enhanced Aerobic Sludge Granulation in Sequencing Batch Reactor by Mg2+ Augmentation," Bioresour. Technol. 100, 64-67 (2008b). – reference: Liu, Y., F. Wang, S. Q. Xia and J. F. Zhao, " Study of 4-t-Octylphenol Degradation and Microbial Community in Granular Sludge," J. Environ. Sci. China 20, 167-171 (2008). – reference: Wang, Z. W., Y. Liu and J. H. Tay, " The Role of SBR Mixed Liquor Volume Exchange Ratio in Aerobic Granulation," Chemosphere 62, 767-771 (2006b). – reference: Wu, C. Y., Y. Z. Peng, S. Y. Wang and Y. Ma, " Enhanced Biological Phosphorus Removal by Granular Sludge: From Macro- to Micro-Scale," Water Res. 44, 807-814 (2010). – reference: Liu, Q. Y. and J. H. Tay, " Influence of Starvation Time on Formation and Stability of Aerobic Granules in Sequencing Batch Reactors," Bioresour. Technol. 99, 980-985 (2008). – reference: Fang, H. H. P. and H. Q. Yu, " Acidification of Lactose in Wastewater" J. Environ. Eng. 127, 825-831 (2001). – reference: Song, Z., Y. Pan, K. Zhang, N. Ren and A. Wang, " Effect of Seed Sludge on Characteristics and Microbial Community of Aerobic Granular Sludge," J. Environ. Sci. 22, 1312-1318 (2010). – reference: Jiang, H. L., J. H. Tay, A. M. Maszenan and S. T. L. Tay, " Bacterial Diversity and Function of Aerobic Granules Engineered in a Sequencing Batch Reactor for Phenol Degradation," Appl. Environ. Microbiol. 70, 6767-6775 (2004). – reference: Qin, L., Y. Liu and J. H. Tay, " Effect of Settling Time on Aerobic Granulation in SBR," Biochem. Eng. J. 21, 47-52 (2004). – reference: Tay, J. H., Q. S. Liu and Y. Liu, " Aerobic Granulation in a Sequential Sludge Blanket Reactor," Water Sci. Technol. 46, 13-18 (2002c). – reference: Belmonte, M., J. R. Vazquez Padin, M. Figueroa, A. Franco, A. Mosquera-Corral, J. L. Campos and R. Mendez, " Characteristics of Nitrifying Granules Developed in an Air Pulsing SBR," Process Biochem. 44, 602-606 (2009). – reference: Song, Z., N. Ren, K. Zhang and L. Tong, " Influence of Temperature on the Characteristics of Aerobic Granulation in Sequencing Batch Airlift Reactors," J. Environ. Sci. China 21, 273-278 (2009). – reference: Liu, X. W., G. P. Sheng and H. Q. Yu, " Physicochemical Characteristics of Microbial Granules," Biotechnol. Adv. 27, 1061-1070 (2009a). – reference: Zheng, Y. M., H. Q. Yu, S. J. Liu and X. Z. Liu, " Formation and Instability of Aerobic Granules Under High Organic Loading Conditions," Chemosphere 63, 1791-1800 (2006). – reference: Lemaire, R., R. I. Webb and Z. G. Yuan, " Micro scale Observations of the Structure of Aerobic Microbial Granules Used for the Treatment of Nutrient Rich Industrial Wastewater," ISME J. 2, 528-541 (2008a). – reference: Mohn, W. M. and K. J. Kennedy, " Reductive Dehalogenation of Chlorophenols By Desulfomoniletiedje DCB-1," Appl. Environ. Microbiol. 58, 1367-1370 (1992). – reference: Wan, J. and M. Sperandio, " Possible Role of Denitrification on Aerobic Granular Sludge Formation in Sequencing Batch Reactor," Chemosphere 75, 220-227 (2009). – reference: Lemaire, R., Z. G. Yuan, L. L. Blackall and G. R. Crocetti, " Microbial Distribution of Accumulibacter spp. and Competibacter spp. in Aerobic Granules From a Lab-Scale Biological Nutrient Removal System," Environ. Microbiol. 10, 354-363 (2008b). – reference: Mondal, P. K., R. Ahmad and S. Q. Usmani, " Anaerobic Biodegradation of Triphenylmethane Dyes in a Hybrid UASFB Reactor for Wastewater Remediation," Biodegradation 21, 1041-1047 (2010). – reference: Yi, S., W. Q. Zhuang, B. Wu, S. T. L. Tay and J. H. Tay, " Biodegradation of Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor," Environ. Sci. Technol. 40, 2396-2401 (2006). – reference: Loehr, R. C. and R. Krishnamoorthy, " Bioaccumulation Potential of Phenolic Compounds," Hazard. Waste Hazard. Mater. 5, 109-119. (1988). – reference: Ni, B. J., W. M. Xie, S. G. Liu, H. Q. Yu, Y. Z. Wang, G. Wang and X. L. Dai, " Granulation of Activated Sludge in a Pilot-Scale Sequencing Batch Reactor for the Treatment of Low-Strength Municipal Wastewater," Water Res. 43, 751-761 (2009). – reference: Tay, S. T. L., V. Ivanov, S. Yi, W. Q. Zhuang and J. H. Tay, " Presence of Anaerobic Bacteroides in Aerobically Grown Microbial Granules," Microb. Ecol. 44, 278-285 (2002b). – reference: Tay, J. H., S. Pan, S. T. L. Tay, V. Ivanov and Y. Liu, " The Effect of Organic Loading Rate on the Aerobic Granulation: The Development of Shear Force Theory," Water Sci. Technol. 47, 235-240 (2003a). – reference: Yu, G. H., Y. C. Juang, D. J. Lee, P. J. He and L. M. Shao, " Enhanced Aerobic Granulation With Extracellular Polymeric Substances (EPS)-Free Pellets," Bioresour. Technol. 100, 4611-4615 (2009). – reference: de Kreuk, M. K. and M. C. M. van Loosdrecht, " Formation of Aerobic Granules With Domestic Sewage," J. Environ. Eng. 132, 694-697 (2006). – reference: Farhadiana, M., D. Ducheza, C. Vachelarda and C. Larrochea, " Monoaromatics Removal From Polluted Water Through Bioreactors-A Review," Water Res. 42, 1325-1341 (2008). – reference: Hailei, W., Y. Guangli, L. Guosheng and P. Feng, " A New Way to Cultivate aerobic Granules in the Process of Papermaking Wastewater Treatment," Biochem. Eng. J. 28, 99-103 (2006). – reference: Juang, Y. C., S. S. Adav, D. J. Lee and J. H. Tay, " Stable Aerobic Granules for Continuous-Flow Reactors: Precipitating Calcium and Iron Salts in Granular Interiors," Bioresour. Technol. 101, 8051-8057 (2010). – reference: Fang, H. H. P. and H. Q. Yu, " Effect of HRT on Mesophilicacidogenesis of Dairy Wastewater," J. Environ. Eng. 126, 1145-1148 (2000). – reference: Khan, M. Z., P. K. Mondal and S. Sabir, " Bioremediation of 2-Chlorophenol Containing Wastewater by Aerobic Granules-Kinetics and Toxicity," J. Hazard. Mater. 190, 222-228 (2011b). – reference: Limbergen, H. V., E. M. Top and W. Verstraete, " Bioaugmentation in Activated Sludge: Current Features and Future Perspectives," Appl. Microbiol. Biotechnol. 50, 16-23 (1998). – reference: Tomei, M. C. and M. C. Annesini, " 4-Nitrophenol Biodegradation in a Sequencing Batch Reactor Operating With Aerobic-Anoxic Cycles," Environ. Sci. Technol. 39, 5059-5065 (2005). – reference: Liu, Q. S., J. H. Tay and Y. Liu, " Substrate Concentration Independent Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor," Environ. Technol. 24, 1235-1243 (2003b). – reference: Gallardo-Moreno, A. M., E. GarduNo, M. L. Gonzín, C. Perez-Giraldo, J. M. Bruque and A. C. Gia, " Analysis of the Hydrophobic Behaviour of Different Strains of Candida parapsilosis Under Two Growth Temperatures," Colloids Surfaces B: Biointerfaces 28, 119-126 (2003). – reference: Verawaty, M., M. Pijuan, Z. Yuan and P. L. Bond, " Determining the Mechanisms for Aerobic Granulation From Mixed Seed of Floccular and Crushed Granules in Activated Sludge Wastewater Treatment," Water Res. 46, 761-771 (2012). – reference: Xu, H. C., P. J. He, G. Z. Wang, G. H. Yu and L. M. Shao, " Enhanced Storage Stability of Aerobic Granules Seeded With pellets," Bioresour. Technol. 101, 8031-8037 (2010). – reference: Liu, Y. Q. and J. H. Tay, " Characteristics and Stability of Aerobic Granules Cultivated With Different Starvation Time," Appl. Microbiol. Biotechnol. 75, 205-210 (2007). – reference: Tay, J. H., S. T. L. Tay, V. Ivanov, S. Pan, H. L. Jiang and Q. S. Liu, " Biomass and Porosity Profiles in Microbial Granules Used for Aerobic wastewater Treatment," Lett. Appl. Microbiol. 36, 297-301 (2003b). – reference: Shim, H., E. B. Shin and S. T. Yang, " A Continuous Fibrous-Bed Bioreactor for BTEX Biodegradation By a Co-Culture of Pseudomonas putida and Pseudomonas fluorescens ," Adv. Environ. Res. 7, 203-216 (2002). – reference: de Kreuk, M. K., N. Kishida, T. Tsuneda and M. C. M. van Loosdrecht, " Behavior of Polymeric Substrates in an Aerobic Granular Sludge System," Water Res. 44, 5929-5938 (2010). – reference: Eker, S. and F. Kargi, " Impacts of COD and DCP Loading Rates on Biological Treatment of 2,4-Dichlorophenol Containing Wastewater in a Perforated Tubes Biofilm Reactor," Chemosphere 64, 1609-1617 (2006). – reference: McSwain, B. S. and R. L. Irvine, " Dissolved Oxygen as a Key Parameter to Aerobic Granule Formation," Water Sci. Technol. 58, 781-787 (2008). – reference: Zheng, Y. M., H. Q. Yu and G. P. Sheng, " Physical and Chemical Characteristics of Granular Activated Sludge From a Sequencing Batch Airlift Reactor," Process Biochem. 40, 645-650 (2005). – reference: Carucci, A., S. Milia, G. D. Gioannis and M. Piredda, " Acetate-Fed Aerobic Granular Sludge for the Degradation of 4-Chlorophenol," J. Hazard. Mater. 166, 483-490 (2009). – reference: Moy, B. Y. P., J. H. Tay, S. K. Toh, Y. Liu and S. T. L. Tay, " High organic Loading Influences the Physical Characteristics of Aerobic Granules," Lett. Appl. Microbiol. 34, 407-412 (2002). – reference: Alexander, M., "Biodegradation and bioremediation," Academic Press, San Diego, California (1994). – reference: Ivanov, V., J. H. Tay, S. T. L. Tay and H. L. Jiang, " Removal of Microparticles by Microbial Granules Used for Aerobic Wastewater Treatment," Water Sci. Technol. 50, 147-154 (2004). – reference: Tay, J. H., Q. S. Liu and Y. Liu, " Microscopic Observation of Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor," J. Appl. Microbiol. 91, 168-175 (2001c). – reference: Wang, Z. W., Y. Liu and J. H. Tay, " Distribution of EPS and Cell Surface Hydrophobicity in Aerobic Granules," Appl. Microbiol. Biotechnol. 69, 469-473 (2005). – reference: Liu, Y. and J. H. Tay, " The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge," Water Res. 36, 1653-1665 (2002). – reference: Wang, S. G., X. W. Liu, H. Y. Zhang, W. X. Gong, X. F. Sun and B. Y. Gao, " Aerobic Granulation for 2,4-Dichlorophenol Biodegradation in a Sequencing Batch Reactor," Chemosphere 69, 769-775 (2007a). – reference: Kong, Y., Y. Q. Liu, J. H. Tay, F. S. Wong and J. Zhu, " Aerobic Granulation in Sequencing Batch Reactors With Different Reactor Height/Diameter Ratios," Enzyme Microb. Technol. 45, 379-383 (2010). – reference: Williams, J. C. and F. L. de los Reyes, III " Microbial Community Structure of Activated Sludge During Aerobic Granulation in an Annular Gap Bioreactor," Water Sci. Technol. 54, 139-146 (2006). – reference: Liu, Y., S. F. Yang, Q. S. Liu and J. H. Tay, " The Role of Cell Hydrophobicity in the Formation of Aerobic Granules," Curr. Microbiol. 46, 270-274 (2003a). – reference: Tay, J. H., V. Ivanov, S. Pan and S. T. L. Tay, " Specific Layers in Aerobically Grown Microbial Granules," Lett. Appl. Microbiol. 34, 254-257 (2002a). – volume: 99 start-page: 7672 year: 2008a end-page: 7677 article-title: Is Sludge Retention Time a Decisive Factor for Aerobic Granulation in SBR? publication-title: Bioresour. Technol. – volume: 100 start-page: 4611 year: 2009 end-page: 4615 article-title: Enhanced Aerobic Granulation With Extracellular Polymeric Substances (EPS)‐Free Pellets publication-title: Bioresour. Technol. – volume: 40 start-page: 333 year: 2009b end-page: 336 article-title: Treating Chemical Industries Influent Using Aerobic Granular Sludge: Recent Development publication-title: J. Taiwan Ins. Chem. Eng. – volume: 142 start-page: 21 year: 1988 end-page: 27 article-title: The Role of Cell‐Bound Flocculants in Coflocculation of Benthic Cyanobacteria J‐1 publication-title: Arch. Microbiol. – volume: 33 start-page: 890 year: 1999 end-page: 893 article-title: Aerobic Granular Sludge—A Case Report publication-title: Water Res. – volume: 79 start-page: 867 year: 2008 end-page: 874 article-title: Comparative Study on the Formation and Characterization of Aerobic 4‐Chloroaniline Degrading Granules in SBR and SABR publication-title: Appl. Microbiol. Biotechnol. – volume: 100 start-page: 5359 year: 2009a end-page: 5361 article-title: Aerobic Granulation in Sequencing Batch Reactors at Different Settling Times publication-title: Bioresour. Technol. – volume: 79 start-page: 657 year: 2008b end-page: 661 article-title: Intergenetic Coaggregation of Strains Isolated From Phenol Degrading Aerobic Granules publication-title: Appl. Microbiol. Biotechnol. – volume: 100 start-page: 64 year: 2008b end-page: 67 article-title: Enhanced Aerobic Sludge Granulation in Sequencing Batch Reactor by Mg Augmentation publication-title: Bioresour. Technol. – volume: 177 start-page: 1119 year: 2010 end-page: 1125 article-title: A Direct Comparison Amongst Different Technologies (Aerobic Granular Sludge, SBR and MBR) for the Treatment of Wastewater Contaminated by 4‐Chlorophenol publication-title: J. Hazard. Mater. – volume: 54 start-page: 139 year: 2006 end-page: 146 article-title: Microbial Community Structure of Activated Sludge During Aerobic Granulation in an Annular Gap Bioreactor publication-title: Water Sci. Technol. – volume: 22 start-page: 62 year: 2010 end-page: 67 article-title: Granulation of Filamentous Microorganisms in a Sequencing Batch Reactor With Saline Wastewater publication-title: J. Environ. Sci. – volume: 91 start-page: 168 year: 2001a end-page: 175 article-title: Microscopic Observation of Aerobic in Sequential Aerobic Sludge Reactor publication-title: J. Appl. Microbiol. – volume: 44 start-page: 807 year: 2010 end-page: 814 article-title: Enhanced Biological Phosphorus Removal by Granular Sludge: From Macro‐ to Micro‐Scale publication-title: Water Res. – volume: 75 start-page: 220 year: 2009 end-page: 227 article-title: Possible Role of Denitrification on Aerobic Granular Sludge Formation in Sequencing Batch Reactor publication-title: Chemosphere – volume: 58 start-page: 781 year: 2008 end-page: 787 article-title: Dissolved Oxygen as a Key Parameter to Aerobic Granule Formation publication-title: Water Sci. Technol. – volume: 127 start-page: 825 year: 2001 end-page: 831 article-title: Acidification of Lactose in Wastewater publication-title: J. Environ. Eng. – volume: 31 start-page: 383 year: 1989 end-page: 389 article-title: Protection of Bacteria Against Toxicity of Phenol by Immobilization in Calcium Alginate publication-title: Appl. Microbiol. Biotechnol. – volume: 40 start-page: 645 year: 2005 end-page: 650 article-title: Physical and Chemical Characteristics of Granular Activated Sludge From a Sequencing Batch Airlift Reactor publication-title: Process Biochem. – volume: 317 start-page: 71 year: 2008 end-page: 77 article-title: Sequencing Versus Continuous Membrane Bioreactors: Effect of Substrate to Biomass Ratio (F/M) on Process Performance publication-title: J Membr. Sci. – volume: 21 start-page: 1041 year: 2010 end-page: 1047 article-title: Anaerobic Biodegradation of Triphenylmethane Dyes in a Hybrid UASFB Reactor for Wastewater Remediation publication-title: Biodegradation – volume: 46 start-page: 761 year: 2012 end-page: 771 article-title: Determining the Mechanisms for Aerobic Granulation From Mixed Seed of Floccular and Crushed Granules in Activated Sludge Wastewater Treatment publication-title: Water Res. – volume: 64 start-page: 1609 year: 2006 end-page: 1617 article-title: Impacts of COD and DCP Loading Rates on Biological Treatment of 2,4‐Dichlorophenol Containing Wastewater in a Perforated Tubes Biofilm Reactor publication-title: Chemosphere – volume: 41 start-page: 205 year: 2007b end-page: 211 article-title: Improved Stability and Performance of Aerobic Granules Under Stepwise Increased Selection Pressure publication-title: Enzy. Microb. Technol. – volume: 27 start-page: 1061 year: 2009a end-page: 1070 article-title: Physicochemical Characteristics of Microbial Granules publication-title: Biotechnol. Adv. – volume: 58 start-page: 1367 year: 1992 end-page: 1370 article-title: Reductive Dehalogenation of Chlorophenols By DCB‐1 publication-title: Appl. Environ. Microbiol. – volume: 7 start-page: 203 year: 2002 end-page: 216 article-title: A Continuous Fibrous‐Bed Bioreactor for BTEX Biodegradation By a Co‐Culture of and publication-title: Adv. Environ. Res. – volume: 22 start-page: 533 year: 2004 end-page: 563 article-title: State of the Art of Biogranulation Technology for Wastewater Treatment publication-title: Biotechnol. Adv. – volume: 89 start-page: 914 issue: 4 year: 2011a end-page: 920 article-title: Aerobic Granular Treatment of 2,4‐Dichlorophenol publication-title: Can. J. Chem. Eng. – volume: 37 start-page: 4965 year: 2004 end-page: 4973 article-title: Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor publication-title: Water Res. – volume: 91 start-page: 503 year: 2006 end-page: 509 article-title: Aerobic Granular Biomass: A Novel Biomaterial for Efficient Uranium Removal publication-title: Curr. Sci. – volume: 36 start-page: 297 year: 2003b end-page: 301 article-title: Biomass and Porosity Profiles in Microbial Granules Used for Aerobic wastewater Treatment publication-title: Lett. Appl. Microbiol. – volume: 18 start-page: 427 year: 2007 end-page: 437 article-title: Modeling Chlorophenols Degradation in a Sequencing Batch Reactors With Instantaneous Feed‐Effect of 2,4‐DCP Presence on 4‐CP Degradation Kinetics publication-title: Biodegradation – volume: 44 start-page: 278 year: 2002b end-page: 285 article-title: Presence of Anaerobic Bacteroides in Aerobically Grown Microbial Granules publication-title: Microb. Ecol. – volume: 34 start-page: 254 year: 2002a end-page: 257 article-title: Specific Layers in Aerobically Grown Microbial Granules publication-title: Lett. Appl. Microbiol. – volume: 5 start-page: 109 year: 1988 end-page: 119 article-title: Bioaccumulation Potential of Phenolic Compounds publication-title: Hazard. Waste Hazard. Mater. – volume: 44 start-page: 5929 year: 2010 end-page: 5938 article-title: Behavior of Polymeric Substrates in an Aerobic Granular Sludge System publication-title: Water Res. – volume: 45 start-page: 379 year: 2010 end-page: 383 article-title: Aerobic Granulation in Sequencing Batch Reactors With Different Reactor Height/Diameter Ratios publication-title: Enzyme Microb. Technol. – volume: 63 start-page: 1791 year: 2006 end-page: 1800 article-title: Formation and Instability of Aerobic Granules Under High Organic Loading Conditions publication-title: Chemosphere – volume: 37 start-page: 2013 year: 2003 end-page: 2018 article-title: Effect of Extended Idle Conditions on Structure and Activity of Granular Activated Sludge publication-title: Water Res. – volume: 39 start-page: 1701 year: 2004 end-page: 1707 article-title: Removal of 2,4‐Dichlorophenol in a Conventional Activated Sludge System Through Bioaugmentation publication-title: Process Biochem. – volume: 21 start-page: 93 year: 2006 end-page: 103 article-title: Evidence for Genotoxicity of Pesticides in Pesticide Applicators: A Review publication-title: Mutagenesis – volume: 50 start-page: 147 year: 2004 end-page: 154 article-title: Removal of Microparticles by Microbial Granules Used for Aerobic Wastewater Treatment publication-title: Water Sci. Technol. – volume: 132 start-page: 694 year: 2006 end-page: 697 article-title: Formation of Aerobic Granules With Domestic Sewage publication-title: J. Environ. Eng. – volume: 38 start-page: 158 year: 2004 end-page: 163 article-title: The Effect of Hydraulic Retention Time on the Stability of Aerobically Grown Microbial Granules publication-title: Lett. Appl. Microbiol. – volume: 46 start-page: 13 year: 2002c end-page: 18 article-title: Aerobic Granulation in a Sequential Sludge Blanket Reactor publication-title: Water Sci. Technol. – start-page: 43 year: 2005 end-page: 52 – volume: 1139 start-page: 1 year: 1998 end-page: 10 article-title: Denver, CO. Ground Water and Surface Water: A Single Resource publication-title: USGS Circ. – volume: 69 start-page: 469 year: 2005 end-page: 473 article-title: Distribution of EPS and Cell Surface Hydrophobicity in Aerobic Granules publication-title: Appl. Microbiol. Biotechnol. – volume: 70 start-page: 374 year: 2006 end-page: 381 article-title: Bioaugmentation and Enhanced Formation of Microbial Granules Used in Aerobic Wastewater Treatment publication-title: App. Microbiol. Biotechnol. – volume: 126 start-page: 1145 year: 2000 end-page: 1148 article-title: Effect of HRT on Mesophilicacidogenesis of Dairy Wastewater publication-title: J. Environ. Eng. – volume: 63 start-page: 1168 year: 1997 end-page: 1170 article-title: Effects of Bacterial Cell Surface Structures and Hydrophobicity on Attachment to Activated Sludge Flocs publication-title: Appl. Environ. Microbiol. – volume: 9 start-page: 293 year: 2010 end-page: 294 article-title: Wastewater Treatment for Recovering Water, Energy, Nutrients and Valuable Products publication-title: Editorial/Environ. Eng. Manage. J. – volume: 50 start-page: 16 year: 1998 end-page: 23 article-title: Bioaugmentation in Activated Sludge: Current Features and Future Perspectives publication-title: Appl. Microbiol. Biotechnol. – volume: 26 start-page: 145 year: 1981 end-page: 149 article-title: A Rapid Biochemical Test for Measuring Chemical Toxicity publication-title: Bull. Environ. Contam. Toxicol. – volume: 181 start-page: 382 year: 2010 end-page: 387 article-title: Comparison of Ca and Mg Enhancing Aerobic Granulation in SBR publication-title: J. Hazard. Mater. – volume: 21 start-page: 47 year: 2004 end-page: 52 article-title: Effect of Settling Time on Aerobic Granulation in SBR publication-title: Biochem. Eng. J. – volume: 164 start-page: 1223 year: 2009 end-page: 1227 article-title: Characteristics of Aerobic Granule and Nitrogen and Phosphorus Removal in a SBR publication-title: J. Hazard. Mater. – volume: 190 start-page: 222 year: 2011b end-page: 228 article-title: Bioremediation of 2‐Chlorophenol Containing Wastewater by Aerobic Granules‐Kinetics and Toxicity publication-title: J. Hazard. Mater. – volume: 42 start-page: 1325 year: 2008 end-page: 1341 article-title: Monoaromatics Removal From Polluted Water Through Bioreactors—A Review publication-title: Water Res. – volume: 101 start-page: 2960 year: 2010 end-page: 2964 article-title: Operation of a Sequencing Batch Reactor for Cultivating Autotrophic Nitrifying Granules publication-title: Bioresour. Technol. – year: 1994 – volume: 70 start-page: 6767 year: 2004 end-page: 6775 article-title: Bacterial Diversity and Function of Aerobic Granules Engineered in a Sequencing Batch Reactor for Phenol Degradation publication-title: Appl. Environ. Microbiol. – volume: 86 start-page: 767 year: 2012 end-page: 773 article-title: Understanding the Granulation Process of Activated Sludge in a Biological Phosphorus Removal Sequencing Batch Reactor publication-title: Chemosphere – volume: 174 start-page: 424 year: 2010 end-page: 428 article-title: Aerobic Granules With Inhibitory Strains and Role of Extracellular Polymeric Substances publication-title: J. Hazard. Mater. – volume: 38 start-page: 670 year: 2006 end-page: 674 article-title: The Influence of Starvation Phase on the Properties and the Development of Aerobic Granules publication-title: Enzyme Microb. Technol. – volume: 30 start-page: 69 year: 2009b end-page: 74 article-title: Toxicity Effect of Phenol on Aerobic Granules publication-title: Environ. Technol. – volume: 75 start-page: 82 year: 2001 end-page: 92 article-title: N‐Removal in a Granular Sludge Sequencing Batch Airlift Reactor publication-title: Biotechnol. Bioeng. – volume: 47 start-page: 37 year: 2010 end-page: 43 article-title: Rapid Biodecolourization of Eriochrome Black T Wastewater by Bioaugmented Aerobic Granules Cultivated Through a Specific Method publication-title: Enzy. Microb. Technol. – volume: 40 start-page: 2396 year: 2006 end-page: 2401 article-title: Biodegradation of Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor publication-title: Environ. Sci. Technol. – volume: 43 start-page: 5097 year: 2009 end-page: 5108 article-title: Alternating Anoxic Feast/Aerobic Famine Condition for Improving Granular Sludge Formation in Sequencing Batch Airlift Reactor at Reduced Aeration Rate publication-title: Water Res. – volume: 166 start-page: 483 year: 2009 end-page: 490 article-title: Acetate‐Fed Aerobic Granular Sludge for the Degradation of 4‐Chlorophenol publication-title: J. Hazard. Mater. – volume: 94 start-page: 981 year: 2003 end-page: 987 article-title: Adhesion and Aggregation Ability of Probiotic Strain M92 publication-title: J. Appl. Microbiol. – volume: 34 start-page: 407 year: 2002 end-page: 412 article-title: High organic Loading Influences the Physical Characteristics of Aerobic Granules publication-title: Lett. Appl. Microbiol. – volume: 44 start-page: 602 year: 2009 end-page: 606 article-title: Characteristics of Nitrifying Granules Developed in an Air Pulsing SBR publication-title: Process Biochem. – volume: 28 start-page: 119 year: 2003 end-page: 126 article-title: Analysis of the Hydrophobic Behaviour of Different Strains of Under Two Growth Temperatures publication-title: Colloids Surfaces B: Biointerfaces – volume: 91 start-page: 168 year: 2001c end-page: 175 article-title: Microscopic Observation of Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor publication-title: J. Appl. Microbiol. – volume: 99 start-page: 980 year: 2008 end-page: 985 article-title: Influence of Starvation Time on Formation and Stability of Aerobic Granules in Sequencing Batch Reactors publication-title: Bioresour. Technol. – volume: 57 start-page: 227 year: 2001b end-page: 233 article-title: The Effect of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules publication-title: Appl. Microbiol. Biotechnol. – volume: 164 start-page: 208 year: 2010 end-page: 213 article-title: The Role of Nitrate and Nitrite in a Granular Sludge Process Treating Low‐Strength Wastewater publication-title: Chem. Eng. J. – volume: 102 start-page: 7016 year: 2011c end-page: 7021 article-title: Degradation Pathway, Toxicity and Kinetics of 2,4,6‐Trichlorophenol With Different co‐Substrates by Aerobic Granules in SBR publication-title: Bioresour. Technol. – volume: 10 start-page: 354 year: 2008b end-page: 363 article-title: Microbial Distribution of spp. and spp. in Aerobic Granules From a Lab‐Scale Biological Nutrient Removal System publication-title: Environ. Microbiol. – volume: 47 start-page: 235 year: 2003a end-page: 240 article-title: The Effect of Organic Loading Rate on the Aerobic Granulation: The Development of Shear Force Theory publication-title: Water Sci. Technol. – volume: 2 start-page: 528 year: 2008a end-page: 541 article-title: Micro scale Observations of the Structure of Aerobic Microbial Granules Used for the Treatment of Nutrient Rich Industrial Wastewater publication-title: ISME J. – volume: 108 start-page: 161 year: 2004c end-page: 169 article-title: Improved Stability of Aerobic Granules by Selecting Slow‐Growing Nitrifying Bacteria publication-title: J. Biotechnol. – volume: 43 start-page: 751 year: 2009 end-page: 761 article-title: Granulation of Activated Sludge in a Pilot‐Scale Sequencing Batch Reactor for the Treatment of Low‐Strength Municipal Wastewater publication-title: Water Res. – volume: 130 start-page: 1415 year: 2004b end-page: 1423 article-title: High‐Rate Biodegradation of Phenol by Aerobically Grown Microbial Granules publication-title: J. Environ. Eng. – volume: 39 start-page: 5059 year: 2005 end-page: 5065 article-title: 4‐Nitrophenol Biodegradation in a Sequencing Batch Reactor Operating With Aerobic–Anoxic Cycles publication-title: Environ. Sci. Technol. – volume: 43 start-page: 8 year: 2008 end-page: 14 article-title: Formation and Characterization of Fungal and Bacterial Granules Under Different Feeding Alkalinity and pH Conditions publication-title: Process Biochem. – volume: 24 start-page: 1235 year: 2003b end-page: 1243 article-title: Substrate Concentration Independent Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor publication-title: Environ. Technol. – volume: 64 start-page: 410 year: 2004b end-page: 415 article-title: A Thermodynamic Interpretation of Cell Hydrophobicity in Aerobic Granulation publication-title: Appl. Microbiol. Biotechnol. – volume: 75 start-page: 205 year: 2007 end-page: 210 article-title: Characteristics and Stability of Aerobic Granules Cultivated With Different Starvation Time publication-title: Appl. Microbiol. Biotechnol. – volume: 160 start-page: 108 year: 2010 end-page: 114 article-title: Effects of Seed Sludge Properties and Selective Biomass Discharge on Aerobic Sludge Granulation publication-title: Chem. Eng. J. – start-page: 89 year: 2002 end-page: 90 – volume: 36 start-page: 1653 year: 2002 end-page: 1665 article-title: The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge publication-title: Water Res. – volume: 26 start-page: 411 year: 2008a end-page: 423 article-title: Aerobic Granular Sludge: Recent Advances publication-title: Biotechnol. Adv. – volume: 80 start-page: 1105 year: 2008 end-page: 1112 article-title: Biodegradation of 4‐Nitrophenol in a Two‐Phase Sequencing Batch Reactor: Concept Demonstration, Kinetics and Modelling publication-title: Appl. Microbiol. Biotechnol. – volume: 43 start-page: 3622 year: 2009 end-page: 3632 article-title: Effect of Long Term Anaerobic and Intermittent Anaerobic/Aerobic Starvation on Aerobic Granules publication-title: Water Res. – volume: 20 start-page: 167 year: 2008 end-page: 171 article-title: Study of 4‐ ‐Octylphenol Degradation and Microbial Community in Granular Sludge publication-title: J. Environ. Sci. China – volume: 63 start-page: 1728 year: 2006a end-page: 1735 article-title: Effects of Extracellular Polymeric Substances on Aerobic Granulation in Sequencing Batch Reactors publication-title: Chemosphere – volume: 44 start-page: 242 year: 2009 end-page: 245 article-title: Characterization of Aerobic Granular Sludge at Various Organic Loading Rates publication-title: Process Biochem. – volume: 76 start-page: 1199 year: 2007 end-page: 1208 article-title: Structure and Stability of Aerobic Granules Cultivated Under Different Shear Force in Sequencing Batch Reactors publication-title: Appl. Microbiol. Biotechnol. – volume: 21 start-page: 533 year: 2007 end-page: 539 article-title: Starter Culture of strain B for Aerobic Granulation publication-title: World J. Microbiol. Biotechnol. – volume: 59 start-page: 273 year: 2009 end-page: 278 article-title: Biodegradation of Phenol by Aerobic Granulation Technology publication-title: Water Sci. Technol. – volume: 100 start-page: 59 year: 2008 end-page: 63 article-title: Formation of Aerobic Granules and Their PHB Production at Various Substrate and Ammonium Concentrations publication-title: Bioresour. Technol. – volume: 28 start-page: 99 year: 2006 end-page: 103 article-title: A New Way to Cultivate aerobic Granules in the Process of Papermaking Wastewater Treatment publication-title: Biochem. Eng. J. – volume: 101 start-page: 8031 year: 2010 end-page: 8037 article-title: Enhanced Storage Stability of Aerobic Granules Seeded With pellets publication-title: Bioresour. Technol. – volume: 69 start-page: 769 year: 2007a end-page: 775 article-title: Aerobic Granulation for 2,4‐Dichlorophenol Biodegradation in a Sequencing Batch Reactor publication-title: Chemosphere – volume: 46 start-page: 2269 year: 2011 end-page: 2276 article-title: Effect of the Food‐To‐Microorganism (F/M) Ratio on the Formation and Size of Aerobic Sludge Granules publication-title: Process Biochem. – volume: 43 start-page: 3387 year: 2009 end-page: 3396 article-title: Selective Sludge Discharge as the Determining Factor in SBR Aerobic Granulation: Numerical Modeling and Experimental Verification publication-title: Water Res. – volume: 36 start-page: 702 year: 2002 end-page: 712 article-title: Aerobic Granulation in a Sequencing Batch Airlift Reactor publication-title: Water Res. – volume: 7 start-page: 321 year: 1996 end-page: 325 article-title: Co‐Metabolism: Is the Emperor Wearing Any Clothes? publication-title: Curr. Opin. Biotechnol. – volume: 46 start-page: 270 year: 2003a end-page: 274 article-title: The Role of Cell Hydrophobicity in the Formation of Aerobic Granules publication-title: Curr. Microbiol. – volume: 21 start-page: 273 year: 2009 end-page: 278 article-title: Influence of Temperature on the Characteristics of Aerobic Granulation in Sequencing Batch Airlift Reactors publication-title: J. Environ. Sci. China – volume: 62 start-page: 767 year: 2006b end-page: 771 article-title: The Role of SBR Mixed Liquor Volume Exchange Ratio in Aerobic Granulation publication-title: Chemosphere – volume: 22 start-page: 1312 year: 2010 end-page: 1318 article-title: Effect of Seed Sludge on Characteristics and Microbial Community of Aerobic Granular Sludge publication-title: J. Environ. Sci. – volume: 65 start-page: 143 year: 2004a end-page: 148 article-title: The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules publication-title: Appl. Microbiol. Biotechnol. – volume: 33 start-page: 2283 year: 1999 end-page: 2290 article-title: Aerobic Granulation in a Sequencing Batch Reactor publication-title: Water Res. – volume: 101 start-page: 8051 year: 2010 end-page: 8057 article-title: Stable Aerobic Granules for Continuous‐Flow Reactors: Precipitating Calcium and Iron Salts in Granular Interiors publication-title: Bioresour. Technol. – ident: e_1_2_8_76_1 doi: 10.1016/j.watres.2009.05.007 – ident: e_1_2_8_104_1 doi: 10.1016/j.chemosphere.2005.04.081 – ident: e_1_2_8_35_1 doi: 10.1128/AEM.70.11.6767-6775.2004 – ident: e_1_2_8_61_1 doi: 10.1016/j.biortech.2007.03.011 – ident: e_1_2_8_79_1 doi: 10.1007/s10532-006-9077-3 – ident: e_1_2_8_56_1 doi: 10.1007/s00253-004-1657-8 – ident: e_1_2_8_118_1 doi: 10.1016/S0043-1354(02)00585-7 – ident: e_1_2_8_37_1 doi: 10.1007/BF00257609 – ident: e_1_2_8_95_1 doi: 10.1021/es0483140 – ident: e_1_2_8_75_1 doi: 10.1111/j.1472-765X.2003.01479.x – ident: e_1_2_8_51_1 doi: 10.1016/S1001-0742(09)60075-9 – start-page: 89 volume-title: The ecology of cyanobacteria: Their diversity in time and space year: 2002 ident: e_1_2_8_14_1 – ident: e_1_2_8_97_1 doi: 10.1016/j.watres.2003.08.017 – ident: e_1_2_8_111_1 doi: 10.1016/j.chemosphere.2011.11.002 – ident: e_1_2_8_77_1 doi: 10.1016/j.bej.2004.03.005 – ident: e_1_2_8_109_1 doi: 10.2166/wst.2006.381 – ident: e_1_2_8_45_1 doi: 10.1111/j.1462-2920.2007.01456.x – volume: 9 start-page: 293 year: 2010 ident: e_1_2_8_8_1 article-title: Wastewater Treatment for Recovering Water, Energy, Nutrients and Valuable Products publication-title: Editorial/Environ. Eng. Manage. J. doi: 10.30638/eemj.2010.040 – ident: e_1_2_8_74_1 doi: 10.1016/j.watres.2008.11.009 – ident: e_1_2_8_36_1 doi: 10.1016/j.biortech.2010.05.078 – ident: e_1_2_8_3_1 doi: 10.1016/j.biortech.2009.05.058 – volume: 50 start-page: 147 year: 2004 ident: e_1_2_8_31_1 article-title: Removal of Microparticles by Microbial Granules Used for Aerobic Wastewater Treatment publication-title: Water Sci. Technol. doi: 10.2166/wst.2004.0707 – ident: e_1_2_8_57_1 doi: 10.1016/j.biotechadv.2009.05.020 – ident: e_1_2_8_26_1 doi: 10.1061/(ASCE)0733-9372(2001)127:9(825) – ident: e_1_2_8_81_1 doi: 10.1016/j.biortech.2009.11.099 – ident: e_1_2_8_53_1 doi: 10.1007/BF01622068 – ident: e_1_2_8_63_1 doi: 10.1007/s00284-002-3878-3 – ident: e_1_2_8_30_1 doi: 10.1016/j.enzmictec.2010.03.011 – ident: e_1_2_8_102_1 doi: 10.1016/j.chemosphere.2008.11.069 – ident: e_1_2_8_13_1 doi: 10.1016/S0043-1354(01)00250-0 – ident: e_1_2_8_82_1 doi: 10.1016/S1093-0191(01)00132-0 – ident: e_1_2_8_116_1 doi: 10.1016/j.chemosphere.2005.08.055 – ident: e_1_2_8_106_1 doi: 10.1016/j.chemosphere.2007.05.026 – ident: e_1_2_8_80_1 doi: 10.1016/j.cej.2010.03.017 – ident: e_1_2_8_113_1 doi: 10.1016/j.procbio.2007.10.008 – ident: e_1_2_8_120_1 doi: 10.1128/aem.63.3.1168-1170.1997 – ident: e_1_2_8_29_1 doi: 10.1016/j.bej.2005.10.002 – ident: e_1_2_8_90_1 doi: 10.1046/j.1365-2672.2001.01374.x – ident: e_1_2_8_21_1 doi: 10.1016/j.watres.2010.07.033 – ident: e_1_2_8_52_1 doi: 10.1007/s002530051250 – ident: e_1_2_8_103_1 doi: 10.1007/s00253-005-1991-5 – ident: e_1_2_8_65_1 doi: 10.1007/s00253-003-1462-9 – ident: e_1_2_8_72_1 doi: 10.1046/j.1472-765X.2002.01108.x – volume: 21 start-page: 533 year: 2007 ident: e_1_2_8_32_1 article-title: Starter Culture of Pseudomonas veronii strain B for Aerobic Granulation publication-title: World J. Microbiol. Biotechnol. – ident: e_1_2_8_112_1 doi: 10.1016/j.biortech.2010.05.062 – ident: e_1_2_8_25_1 doi: 10.1061/(ASCE)0733-9372(2000)126:12(1145) – ident: e_1_2_8_64_1 doi: 10.1016/j.jbiotec.2003.11.008 – ident: e_1_2_8_86_1 doi: 10.1007/s00248-002-2014-z – ident: e_1_2_8_117_1 doi: 10.1016/j.procbio.2004.01.056 – ident: e_1_2_8_4_1 doi: 10.1016/j.jtice.2009.02.002 – ident: e_1_2_8_84_1 doi: 10.1016/S1001-0742(08)62263-9 – ident: e_1_2_8_108_1 doi: 10.1016/j.enzmictec.2007.01.005 – ident: e_1_2_8_83_1 doi: 10.1016/S1001-0742(09)60256-4 – ident: e_1_2_8_6_1 doi: 10.1016/j.biotechadv.2008.05.002 – ident: e_1_2_8_10_1 doi: 10.1016/j.procbio.2009.02.019 – ident: e_1_2_8_33_1 doi: 10.1007/s00253-005-0088-5 – ident: e_1_2_8_20_1 doi: 10.1016/S0043-1354(98)00443-6 – ident: e_1_2_8_41_1 doi: 10.1016/j.biortech.2011.04.057 – ident: e_1_2_8_49_1 doi: 10.1016/j.biortech.2008.06.015 – ident: e_1_2_8_110_1 doi: 10.1016/j.watres.2009.10.028 – ident: e_1_2_8_67_1 doi: 10.1016/j.memsci.2007.08.041 – ident: e_1_2_8_100_1 doi: 10.1016/S0958-1669(96)80038-3 – ident: e_1_2_8_15_1 doi: 10.1093/mutage/gel011 – ident: e_1_2_8_43_1 doi: 10.1046/j.1365-2672.2003.01915.x – ident: e_1_2_8_96_1 doi: 10.1007/s00253-008-1604-1 – ident: e_1_2_8_47_1 doi: 10.1016/j.watres.2009.05.004 – ident: e_1_2_8_44_1 doi: 10.1038/ismej.2008.12 – ident: e_1_2_8_48_1 doi: 10.1016/j.procbio.2011.09.007 – ident: e_1_2_8_28_1 doi: 10.1016/S0927-7765(02)00145-5 – ident: e_1_2_8_42_1 doi: 10.1016/j.enzmictec.2009.06.014 – ident: e_1_2_8_59_1 doi: 10.1016/j.biotechadv.2004.05.001 – ident: e_1_2_8_88_1 doi: 10.1046/j.1365-2672.2001.01374.x – start-page: 43 volume-title: Aerobic Granular Sludge year: 2005 ident: e_1_2_8_34_1 – ident: e_1_2_8_38_1 doi: 10.1002/cjce.20445 – ident: e_1_2_8_5_1 doi: 10.1016/j.jhazmat.2009.09.070 – ident: e_1_2_8_71_1 doi: 10.1007/s10532-010-9364-x – ident: e_1_2_8_11_1 doi: 10.1002/bit.1167 – ident: e_1_2_8_27_1 doi: 10.1016/j.watres.2007.10.021 – ident: e_1_2_8_101_1 doi: 10.1016/j.watres.2009.08.045 – ident: e_1_2_8_93_1 doi: 10.1046/j.1472-765X.2003.01312.x – ident: e_1_2_8_114_1 doi: 10.1021/es0517771 – ident: e_1_2_8_105_1 doi: 10.1016/j.chemosphere.2005.09.018 – volume: 58 start-page: 1367 year: 1992 ident: e_1_2_8_70_1 article-title: Reductive Dehalogenation of Chlorophenols By Desulfomoniletiedje DCB‐1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.58.4.1367-1370.1992 – ident: e_1_2_8_94_1 doi: 10.1016/j.procbio.2008.10.018 – ident: e_1_2_8_9_1 doi: 10.1007/BF00409231 – ident: e_1_2_8_85_1 doi: 10.1046/j.1472-765x.2002.01099.x – ident: e_1_2_8_24_1 doi: 10.1016/j.biortech.2008.06.016 – ident: e_1_2_8_60_1 doi: 10.1007/s00253-006-0797-4 – ident: e_1_2_8_119_1 doi: 10.1007/s00253-008-1476-4 – ident: e_1_2_8_50_1 doi: 10.1016/j.biortech.2008.01.073 – volume-title: Biodegradation and bioremediation year: 1994 ident: e_1_2_8_7_1 – ident: e_1_2_8_16_1 doi: 10.1016/j.jhazmat.2008.11.049 – ident: e_1_2_8_107_1 doi: 10.1016/j.jhazmat.2008.09.034 – ident: e_1_2_8_115_1 doi: 10.1016/j.biortech.2009.04.050 – ident: e_1_2_8_99_1 doi: 10.1016/j.watres.2011.11.054 – ident: e_1_2_8_23_1 doi: 10.1016/j.chemosphere.2005.11.030 – volume: 47 start-page: 235 year: 2003 ident: e_1_2_8_92_1 article-title: The Effect of Organic Loading Rate on the Aerobic Granulation: The Development of Shear Force Theory publication-title: Water Sci. Technol. doi: 10.2166/wst.2003.0610 – ident: e_1_2_8_62_1 doi: 10.1080/09593330309385665 – ident: e_1_2_8_87_1 doi: 10.1061/(ASCE)0733-9372(2004)130:12(1415) – ident: e_1_2_8_40_1 doi: 10.1016/j.jhazmat.2011.03.029 – ident: e_1_2_8_39_1 doi: 10.2166/wst.2009.863 – ident: e_1_2_8_54_1 doi: 10.1016/j.jhazmat.2010.05.021 – ident: e_1_2_8_17_1 doi: 10.1016/j.jhazmat.2010.01.037 – ident: e_1_2_8_68_1 doi: 10.1089/hwm.1988.5.109 – ident: e_1_2_8_78_1 doi: 10.1016/S0032-9592(03)00307-8 – ident: e_1_2_8_12_1 doi: 10.1016/S0043-1354(98)00463-1 – ident: e_1_2_8_2_1 doi: 10.1007/s00253-008-1456-8 – ident: e_1_2_8_22_1 doi: 10.1061/(ASCE)0733-9372(2006)132:6(694) – ident: e_1_2_8_89_1 doi: 10.1007/s002530100766 – ident: e_1_2_8_19_1 doi: 10.1016/j.cej.2010.08.063 – ident: e_1_2_8_69_1 doi: 10.2166/wst.2008.393 – ident: e_1_2_8_46_1 doi: 10.1016/j.enzmictec.2005.07.020 – ident: e_1_2_8_18_1 doi: 10.1007/s00253-007-1085-7 – ident: e_1_2_8_55_1 doi: 10.1080/09593330802536339 – volume: 46 start-page: 13 year: 2002 ident: e_1_2_8_91_1 article-title: Aerobic Granulation in a Sequential Sludge Blanket Reactor publication-title: Water Sci. Technol. doi: 10.2166/wst.2002.0540 – volume: 1139 start-page: 1 year: 1998 ident: e_1_2_8_98_1 article-title: Denver, CO. Ground Water and Surface Water: A Single Resource publication-title: USGS Circ. – ident: e_1_2_8_58_1 doi: 10.1016/S0043-1354(01)00379-7 – volume: 91 start-page: 503 year: 2006 ident: e_1_2_8_73_1 article-title: Aerobic Granular Biomass: A Novel Biomaterial for Efficient Uranium Removal publication-title: Curr. Sci. – ident: e_1_2_8_66_1 doi: 10.1016/S1001-0742(08)60026-1 |
SSID | ssj0002041 |
Score | 2.2961214 |
Snippet | Rapid industrialisation and urbanisation releases numerous toxic compounds into natural water bodies, polluting these pristine fresh water resources. This is a... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1045 |
SubjectTerms | aerobic granules biodegradation cell immobilisation kinetics SBR |
Title | Aerobic granulation for wastewater bioremediation: A review |
URI | https://api.istex.fr/ark:/67375/WNG-XTWJ05FB-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjce.21729 https://www.proquest.com/docview/1554944525 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdK-wIPiE9RBigIhARVRuJ8OfAUysZU6CREp1W8RLZjrxmsRWsjEP8S_yTn2HFTVNCAlyiKLFu5O9-Xz79D6DFEDBxjFrsp2FY3VBVihCfY5X5CPElTKVN1OXl8GB8chaNpNO10frSqlqoV2-Xft94r-Reuwjfgq7ol-xectZPCB3gH_sITOAzPC_E4EwpFiQ9OwOCYNlx12eBXulQ5MYV_yMqFygAWpa3iyMx1lbZbajEKWkASvIESEGvIQqueZzpvOl7M6NkZLQYfaWmlDNREQXVn5PK0Ws4Gb4F7pU3lUFbqXl_VrKnvMFmHugNEO-vw37pNVV2EnsljCq1700CVbtWdda1y1q28jBC2NS2EkVHLaoObSLZaBI0wy0-52FW9uNK13WvO-n8xh7ZIkZ5_UlVvSZQfH77Jp5PjkRftv8rfX0I9DDEJ7qJe9nr87oM1_NgLTYNG_W8WDRc_X6-_4f_01Fb-thHctEOk2seZXENXTXDiZFrSrqOOmN9AV1qQlTfRSyNzTkvmHJA5Zy1zzqbMvXAyR0vcLXS0vzcZHrimAYfL1YVol_qE-FHBGPWILIikfiF5IESMZeoHIpYJ5yQQgYiSgvugy3EsGY2JiDDsd5kEt1F3vpiLO8ihvk85l2DOeBgSSgiTIUxYhHHqMwgh-uhpQ5acG3R61STlc65xtXGuSJjXJOyjR3bsF43JsnXUk5q6dsjv-NlHDxvy56Bb1YEZnYtFtcyVr52G6uS_j57VfPnDevlwNNyr3-5edOUddHm9t-6h7uq8EvfBx12xB0a2fgKWC6mR |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerobic+granulation+for+wastewater+bioremediation%3A+A+review&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Khan%2C+Mohammad+Zain&rft.au=Mondal%2C+Pijush+Kanti&rft.au=Sabir%2C+Suhail&rft.date=2013-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=91&rft.issue=6&rft.spage=1045&rft.epage=1058&rft_id=info:doi/10.1002%2Fcjce.21729&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XTWJ05FB_Q |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon |