AcrDB update: Predicted 3D structures of anti‐CRISPRs in human gut viromes

Anti‐CRISPR (Acr) proteins play a key role in phage‐host interactions and hold great promise for advancing genome‐editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Ac...

Full description

Saved in:
Bibliographic Details
Published inProtein science Vol. 34; no. 6; pp. e70177 - n/a
Main Authors Khatri, Minal, Shanmugam, N. R. Siva, Zhang, Xinpeng, Patel, Revanth Sai Kumar Reddy, Yin, Yanbin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Anti‐CRISPR (Acr) proteins play a key role in phage‐host interactions and hold great promise for advancing genome‐editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM‐score ≥0.7) to known Acrs supported by at least two of the three non‐sequence similarity‐based tools (TM‐Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity‐based Acr families. The 163 families were further subject to a structure similarity‐based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co‐localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB.
AbstractList Anti‐CRISPR (Acr) proteins play a key role in phage‐host interactions and hold great promise for advancing genome‐editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM‐score ≥0.7) to known Acrs supported by at least two of the three non‐sequence similarity‐based tools (TM‐Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity‐based Acr families. The 163 families were further subject to a structure similarity‐based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co‐localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB.
Anti-CRISPR (Acr) proteins play a key role in phage-host interactions and hold great promise for advancing genome-editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM-score ≥0.7) to known Acrs supported by at least two of the three non-sequence similarity-based tools (TM-Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity-based Acr families. The 163 families were further subject to a structure similarity-based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co-localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB.Anti-CRISPR (Acr) proteins play a key role in phage-host interactions and hold great promise for advancing genome-editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM-score ≥0.7) to known Acrs supported by at least two of the three non-sequence similarity-based tools (TM-Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity-based Acr families. The 163 families were further subject to a structure similarity-based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co-localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB.
Anti‐CRISPR (Acr) proteins play a key role in phage‐host interactions and hold great promise for advancing genome‐editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM‐score ≥0.7) to known Acrs supported by at least two of the three non‐sequence similarity‐based tools (TM‐Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity‐based Acr families. The 163 families were further subject to a structure similarity‐based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota , Pseudomonadota , and Bacteroidota , which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co‐localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB .
Author Zhang, Xinpeng
Shanmugam, N. R. Siva
Yin, Yanbin
Patel, Revanth Sai Kumar Reddy
Khatri, Minal
AuthorAffiliation 1 Nebraska Food for Health Center, Department of Food Science and Technology University of Nebraska—Lincoln Lincoln Nebraska USA
AuthorAffiliation_xml – name: 1 Nebraska Food for Health Center, Department of Food Science and Technology University of Nebraska—Lincoln Lincoln Nebraska USA
Author_xml – sequence: 1
  givenname: Minal
  surname: Khatri
  fullname: Khatri, Minal
  organization: University of Nebraska—Lincoln
– sequence: 2
  givenname: N. R. Siva
  surname: Shanmugam
  fullname: Shanmugam, N. R. Siva
  organization: University of Nebraska—Lincoln
– sequence: 3
  givenname: Xinpeng
  surname: Zhang
  fullname: Zhang, Xinpeng
  organization: University of Nebraska—Lincoln
– sequence: 4
  givenname: Revanth Sai Kumar Reddy
  surname: Patel
  fullname: Patel, Revanth Sai Kumar Reddy
  organization: University of Nebraska—Lincoln
– sequence: 5
  givenname: Yanbin
  orcidid: 0000-0001-7667-881X
  surname: Yin
  fullname: Yin, Yanbin
  email: yyin@unl.edu
  organization: University of Nebraska—Lincoln
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40400348$$D View this record in MEDLINE/PubMed
BookMark eNp10c1u1DAQB3ALFdFt4cALIEtc4JB27Dj-4FKVLf2QVupqAYmb5U1mW1eJvdhJq976CDwjT0LKthUgcbJG_s1fY88O2QoxICGvGewxAL6_TnFPAVPqGZkwIU2hjfy2RSZgJCt0KfU22cn5CgAE4-ULsi1AAJRCT8jssE5HH-mwblyPH-g8YePrHhtaHtHcp6Huh4SZxhV1ofc_735MF2ef54tMfaCXQ-cCvRh6eu1T7DC_JM9Xrs346uHcJV-PP32Znhaz85Oz6eGsqAVIVRiGgK5S6HAJtTZOS64bVhkHIBnjwiE2rOYNamGWIEXVSI1qpZmoSqN4uUsONrnrYdlhU2Pok2vtOvnOpVsbnbd_3wR_aS_itWUcTGWYHhPePSSk-H3A3NvO5xrb1gWMQ7YlB1mZkis20rf_0Ks4pDC-b1TcgFJM3Ae--XOkp1kef3oE7zegTjHnhKsnwsDeb3Gso_29xdHub-yNb_H2_9DOF-ebjl-htZzu
Cites_doi 10.1093/bioinformatics/btac776
10.1038/s41587-023-01917-2
10.1093/nar/gkae268
10.1093/nar/gkaa432
10.1038/nrmicro.2017.120
10.1093/nar/gkaa351
10.1126/science.abj8754
10.1093/nar/gkad932
10.1016/j.ijbiomac.2022.12.250
10.1093/bioinformatics/btad309
10.1016/j.cell.2021.01.029
10.1016/j.molcel.2022.05.003
10.1093/bioinformatics/btq461
10.1093/nar/gkaa219
10.1093/nar/gkaa951
10.1038/s41467-020-17652-0
10.1093/nar/gkae1171
10.1093/bioinformatics/btad259
10.1093/bioinformatics/btq066
10.1126/science.ade2574
10.1146/annurev-virology-101416-041616
10.1038/s41564-021-00928-6
10.1093/nar/gkw1098
10.1186/1471-2105-11-119
10.1038/s41586-021-03819-2
10.1093/database/baac010
10.1093/bioinformatics/btad031
10.1021/acschembio.7b00831
10.1038/s41587-023-01773-0
10.1038/nature11723
10.7554/eLife.46540
10.1016/S0168-9525(00)02024-2
10.1038/s41467-020-19415-3
10.1089/phage.2021.0007
10.1128/msystems.00455-00419
10.1016/j.jmb.2023.168036
10.1038/s41576-023-00676-9
10.1038/s41586-024-07644-1
10.1016/j.chom.2020.08.003
10.1089/crispr.2023.0011
10.1146/annurev-genet-120417-031321
10.1038/s42003-018-0184-6
10.1093/nar/25.17.3389
10.1093/nar/gkm993
10.1038/s41467-024-45068-7
10.1038/nbt.3988
10.1146/annurev-biochem-011420-111224
10.1093/nar/gkaa857
10.1101/2020.04.23.056945
10.1128/msystems.00817-22
10.1093/bioinformatics/btab007
10.3390/ph15030310
10.1038/s41586-024-07994-w
10.1089/crispr.2018.0043
10.1093/nargab/lqab067
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of The Protein Society.
2025 The Author(s). Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.
2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of The Protein Society.
– notice: 2025 The Author(s). Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.
– notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
DOI 10.1002/pro.70177
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Khatri et al
EISSN 1469-896X
EndPage n/a
ExternalDocumentID PMC12095918
40400348
10_1002_pro_70177
PRO70177
Genre methodAndProtocol
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01GM140370; R21AI171952
– fundername: U.S. Department of Agriculture (USDA)
  funderid: 58‐8042‐9‐089
– fundername: U.S. Department of Agriculture (USDA)
  grantid: 58-8042-9-089
– fundername: NIH HHS
  grantid: R21AI171952
– fundername: NIH HHS
  grantid: R01GM140370
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A8Z
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
PQQKQ
QRW
RCA
RIG
ROL
RPM
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4067-91e0ea57eaeb0c89a8628d159a0061124aeed1c2de849b0645d68e7f814539723
IEDL.DBID 24P
ISSN 0961-8368
1469-896X
IngestDate Thu Aug 21 18:30:08 EDT 2025
Fri Jul 11 17:23:54 EDT 2025
Sat Aug 23 12:35:25 EDT 2025
Mon May 26 01:57:38 EDT 2025
Thu Jul 03 08:44:27 EDT 2025
Thu May 29 13:08:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords virome
CRISPR‐Cas
anti‐CRISPR
anti‐defense genes
bacterial immunity
structure similarity
Language English
License Attribution-NonCommercial
2025 The Author(s). Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4067-91e0ea57eaeb0c89a8628d159a0061124aeed1c2de849b0645d68e7f814539723
Notes Nir Ben‐Tal
Review Editor
Minal Khatri and N. R. Siva Shanmugam are co‐first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Review Editor: Nir Ben‐Tal
ORCID 0000-0001-7667-881X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.70177
PMID 40400348
PQID 3229077148
PQPubID 1016442
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12095918
proquest_miscellaneous_3206593271
proquest_journals_3229077148
pubmed_primary_40400348
crossref_primary_10_1002_pro_70177
wiley_primary_10_1002_pro_70177_PRO70177
PublicationCentury 2000
PublicationDate June 2025
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Bethesda
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 8
2010; 11
2021; 49
2021; 6
2023; 52
2019; 4
2021; 3
2017; 4
2021; 2
2023; 39
2023; 6
1997; 25
2017; 45
2008; 36
2021; 184
2024; 52
2020; 11
2023; 228
2024; 15
2025; 53
2023; 42
2021; 37
2010; 26
2022; 2022
2000; 16
2021; 596
2022; 82
2018; 1
2024; 635
2020
2022; 7
2017; 35
2020; 28
2023; 435
2020; 48
2023; 379
2022; 15
2024; 42
2021; 373
2013; 493
2018; 52
2020; 89
2024; 631
2024; 25
2018; 16
2018; 13
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 89
  start-page: 309
  year: 2020
  end-page: 332
  article-title: Anti‐CRISPRs: protein inhibitors of CRISPR‐Cas systems
  publication-title: Annu Rev Biochem
– volume: 52
  start-page: 445
  year: 2018
  end-page: 464
  article-title: Phage‐encoded anti‐CRISPR defenses
  publication-title: Annu Rev Genet
– volume: 2
  start-page: 214
  year: 2021
  end-page: 223
  article-title: INfrastructure for a PHAge REference database: identification of large‐scale biases in the current collection of cultured phage genomes
  publication-title: Phage
– volume: 16
  start-page: 12
  year: 2018
  end-page: 17
  article-title: Anti‐CRISPR: discovery, mechanism and function
  publication-title: Nat Rev Microbiol
– volume: 373
  start-page: 871
  year: 2021
  end-page: 876
  article-title: Accurate prediction of protein structures and interactions using a three‐track neural network
  publication-title: Science
– volume: 37
  start-page: 2473
  year: 2021
  end-page: 2475
  article-title: Clinker & clustermap.js: automatic generation of gene cluster comparison figures
  publication-title: Bioinformatics
– volume: 11
  start-page: 5652
  year: 2020
  article-title: Discovery of multiple anti‐CRISPRs highlights anti‐defense gene clustering in mobile genetic elements
  publication-title: Nat Commun
– volume: 42
  start-page: 243
  year: 2024
  end-page: 246
  article-title: Fast and accurate protein structure search with Foldseek
  publication-title: Nat Biotechnol
– volume: 26
  start-page: 2460
  year: 2010
  end-page: 2461
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
– volume: 493
  start-page: 429
  year: 2013
  end-page: 432
  article-title: Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system
  publication-title: Nature
– volume: 6
  start-page: 222
  year: 2023
  end-page: 231
  article-title: Search for origins of anti‐CRISPR proteins by structure comparison
  publication-title: CRISPR J
– volume: 16
  start-page: 276
  year: 2000
  end-page: 277
  article-title: EMBOSS: the European molecular biology open software suite
  publication-title: Trends Genet
– volume: 631
  start-page: 670
  year: 2024
  end-page: 677
  article-title: Phage anti‐CRISPR control by an RNA‐ and DNA‐binding helix‐turn‐helix protein
  publication-title: Nature
– volume: 15
  start-page: 649
  year: 2024
  article-title: Structure‐guided discovery of anti‐CRISPR and anti‐phage defense proteins
  publication-title: Nat Commun
– volume: 6
  start-page: 960
  year: 2021
  end-page: 970
  article-title: Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome
  publication-title: Nat Microbiol
– volume: 82
  start-page: 2714
  year: 2022
  end-page: 2726.e4
  article-title: Anti‐CRISPR prediction using deep learning reveals an inhibitor of Cas13b nucleases
  publication-title: Mol Cell
– volume: 26
  start-page: 889
  year: 2010
  end-page: 895
  article-title: How significant is a protein structure similarity with TM‐score = 0.5?
  publication-title: Bioinformatics
– volume: 39
  year: 2023
  article-title: Genome mining for anti‐CRISPR operons using machine learning
  publication-title: Bioinformatics
– volume: 11
  start-page: 1
  year: 2010
  end-page: 11
  article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification
  publication-title: BMC Bioinforma
– volume: 3
  year: 2021
  article-title: PHROG: families of prokaryotic virus proteins clustered using remote homology
  publication-title: NAR Genomics Bioinform
– volume: 45
  start-page: D289
  year: 2017
  end-page: D295
  article-title: CATH: an expanded resource to predict protein function through structure and sequence
  publication-title: Nucleic Acids Res
– volume: 1
  start-page: 180
  year: 2018
  article-title: CRISPRminer is a knowledge base for exploring CRISPR‐Cas systems in microbe and phage interactions
  publication-title: Commun Biol
– volume: 4
  year: 2019
  article-title: Bioinformatics identification of anti‐CRISPR loci by using homology, guilt‐by‐association, and CRISPR self‐targeting spacer approaches
  publication-title: mSystems
– volume: 48
  start-page: W358
  year: 2020
  end-page: W365
  article-title: AcrFinder: genome mining anti‐CRISPR operons in prokaryotes and their viruses
  publication-title: Nucleic Acids Res
– volume: 39
  year: 2023
  article-title: Pharokka: a fast scalable bacteriophage annotation tool
  publication-title: Bioinformatics
– volume: 1
  start-page: 304
  year: 2018
  end-page: 305
  article-title: A unified resource for tracking anti‐CRISPR names
  publication-title: CRISPR J
– volume: 35
  start-page: 1026
  year: 2017
  end-page: 1028
  article-title: MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets
  publication-title: Nat Biotechnol
– volume: 28
  start-page: 724
  year: 2020
  end-page: 740
  article-title: The gut virome database reveals age‐dependent patterns of virome diversity in the human gut
  publication-title: Cell Host Microbe
– volume: 49
  start-page: D630
  year: 2021
  end-page: D638
  article-title: AcrHub: an integrative hub for investigating, predicting and mapping anti‐CRISPR proteins
  publication-title: Nucleic Acids Res
– volume: 36
  start-page: D419
  year: 2008
  end-page: D425
  article-title: Data growth and its impact on the SCOP database: new developments
  publication-title: Nucleic Acids Res
– volume: 25
  start-page: 3389
  year: 1997
  end-page: 3402
  article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res
– volume: 42
  start-page: 975
  issue: 6
  year: 2023
  end-page: 985
  article-title: Protein remote homology detection and structural alignment using deep learning
  publication-title: Nat Biotechnol
– volume: 2022
  year: 2022
  article-title: Anti‐CRISPRdb v2. 2: an online repository of anti‐CRISPR proteins including information on inhibitory mechanisms, activities and neighbors of curated anti‐CRISPR proteins
  publication-title: Database
– volume: 48
  start-page: W348
  year: 2020
  end-page: W357
  article-title: PaCRISPR: a server for predicting and visualizing anti‐CRISPR proteins
  publication-title: Nucleic Acids Res
– volume: 39
  year: 2023
  article-title: AcrNET: predicting anti‐CRISPR with deep learning
  publication-title: Bioinformatics
– volume: 8
  year: 2019
  article-title: Functional metagenomics‐guided discovery of potent Cas9 inhibitors in the human microbiome
  publication-title: Elife
– volume: 52
  start-page: W78
  year: 2024
  end-page: W82
  article-title: Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool
  publication-title: Nucleic Acids Res
– volume: 15
  issue: 3
  year: 2022
  article-title: Rethinking protein drug design with highly accurate structure prediction of anti‐CRISPR proteins
  publication-title: Pharmaceuticals
– volume: 228
  start-page: 706
  year: 2023
  end-page: 714
  article-title: AcrPred: a hybrid optimization with enumerated machine learning algorithm to predict anti‐CRISPR proteins
  publication-title: Int J Biol Macromol
– volume: 52
  start-page: D419
  year: 2023
  end-page: D425
  article-title: dbAPIS: a database of anti‐prokaryotic immune system genes
  publication-title: Nucleic Acids Res
– volume: 435
  year: 2023
  article-title: In silico approaches for prediction of anti‐CRISPR proteins
  publication-title: J Mol Biol
– volume: 184
  start-page: 1098
  year: 2021
  end-page: 1109
  article-title: Massive expansion of human gut bacteriophage diversity
  publication-title: Cell
– volume: 13
  start-page: 417
  year: 2018
  end-page: 423
  article-title: Protein inhibitors of CRISPR‐Cas9
  publication-title: ACS Chem Biol
– volume: 4
  start-page: 37
  year: 2017
  end-page: 59
  article-title: The discovery, mechanisms, and evolutionary impact of anti‐CRISPRs
  publication-title: Annu Rev Virol
– year: 2020
– volume: 53
  year: 2025
  article-title: Exploring the diversity of anti‐defense systems across prokaryotes, phages and mobile genetic elements
  publication-title: Nucleic Acids Res
– volume: 635
  start-page: 186
  year: 2024
  end-page: 192
  article-title: Diverse anti‐defence systems are encoded in the leading region of plasmids
  publication-title: Nature
– volume: 379
  start-page: 1123
  year: 2023
  end-page: 1130
  article-title: Evolutionary‐scale prediction of atomic‐level protein structure with a language model
  publication-title: Science
– volume: 39
  year: 2023
  article-title: Cytoscape.js 2023 update: a graph theory library for visualization and analysis
  publication-title: Bioinformatics
– volume: 49
  start-page: D622
  year: 2021
  end-page: D629
  article-title: AcrDB: a database of anti‐CRISPR operons in prokaryotes and viruses
  publication-title: Nucleic Acids Res
– volume: 11
  start-page: 3784
  year: 2020
  article-title: Machine‐learning approach expands the repertoire of anti‐CRISPR protein families
  publication-title: Nat Commun
– volume: 25
  start-page: 237
  year: 2024
  end-page: 254
  article-title: Inhibitors of bacterial immune systems: discovery, mechanisms and applications
  publication-title: Nat Rev Genet
– volume: 48
  start-page: 4698
  year: 2020
  end-page: 4708
  article-title: Machine learning predicts new anti‐CRISPR proteins
  publication-title: Nucleic Acids Res
– volume: 596
  start-page: 583
  issue: 7873
  year: 2021
  end-page: 589
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 7
  year: 2022
  article-title: AcaFinder: genome mining for anti‐CRISPR‐associated genes
  publication-title: mSystems
– ident: e_1_2_10_10_1
  doi: 10.1093/bioinformatics/btac776
– ident: e_1_2_10_25_1
  doi: 10.1038/s41587-023-01917-2
– ident: e_1_2_10_29_1
  doi: 10.1093/nar/gkae268
– ident: e_1_2_10_48_1
  doi: 10.1093/nar/gkaa432
– ident: e_1_2_10_36_1
  doi: 10.1038/nrmicro.2017.120
– ident: e_1_2_10_54_1
  doi: 10.1093/nar/gkaa351
– ident: e_1_2_10_4_1
  doi: 10.1126/science.abj8754
– ident: e_1_2_10_51_1
  doi: 10.1093/nar/gkad932
– ident: e_1_2_10_13_1
  doi: 10.1016/j.ijbiomac.2022.12.250
– ident: e_1_2_10_52_1
  doi: 10.1093/bioinformatics/btad309
– ident: e_1_2_10_11_1
  doi: 10.1016/j.cell.2021.01.029
– ident: e_1_2_10_46_1
  doi: 10.1016/j.molcel.2022.05.003
– ident: e_1_2_10_18_1
  doi: 10.1093/bioinformatics/btq461
– ident: e_1_2_10_19_1
  doi: 10.1093/nar/gkaa219
– ident: e_1_2_10_47_1
  doi: 10.1093/nar/gkaa951
– ident: e_1_2_10_24_1
  doi: 10.1038/s41467-020-17652-0
– ident: e_1_2_10_44_1
  doi: 10.1093/nar/gkae1171
– ident: e_1_2_10_30_1
  doi: 10.1093/bioinformatics/btad259
– ident: e_1_2_10_50_1
  doi: 10.1093/bioinformatics/btq066
– ident: e_1_2_10_31_1
  doi: 10.1126/science.ade2574
– ident: e_1_2_10_9_1
  doi: 10.1146/annurev-virology-101416-041616
– ident: e_1_2_10_34_1
  doi: 10.1038/s41564-021-00928-6
– ident: e_1_2_10_15_1
  doi: 10.1093/nar/gkw1098
– ident: e_1_2_10_27_1
  doi: 10.1186/1471-2105-11-119
– ident: e_1_2_10_28_1
  doi: 10.1038/s41586-021-03819-2
– ident: e_1_2_10_16_1
  doi: 10.1093/database/baac010
– ident: e_1_2_10_21_1
  doi: 10.1093/bioinformatics/btad031
– ident: e_1_2_10_6_1
  doi: 10.1021/acschembio.7b00831
– ident: e_1_2_10_45_1
  doi: 10.1038/s41587-023-01773-0
– ident: e_1_2_10_8_1
  doi: 10.1038/nature11723
– ident: e_1_2_10_20_1
  doi: 10.7554/eLife.46540
– ident: e_1_2_10_38_1
  doi: 10.1016/S0168-9525(00)02024-2
– ident: e_1_2_10_37_1
  doi: 10.1038/s41467-020-19415-3
– ident: e_1_2_10_12_1
  doi: 10.1089/phage.2021.0007
– ident: e_1_2_10_55_1
  doi: 10.1128/msystems.00455-00419
– ident: e_1_2_10_32_1
  doi: 10.1016/j.jmb.2023.168036
– ident: e_1_2_10_33_1
  doi: 10.1038/s41576-023-00676-9
– ident: e_1_2_10_5_1
  doi: 10.1038/s41586-024-07644-1
– ident: e_1_2_10_23_1
  doi: 10.1016/j.chom.2020.08.003
– ident: e_1_2_10_39_1
  doi: 10.1089/crispr.2023.0011
– ident: e_1_2_10_41_1
  doi: 10.1146/annurev-genet-120417-031321
– ident: e_1_2_10_56_1
  doi: 10.1038/s42003-018-0184-6
– ident: e_1_2_10_2_1
  doi: 10.1093/nar/25.17.3389
– ident: e_1_2_10_3_1
  doi: 10.1093/nar/gkm993
– ident: e_1_2_10_17_1
  doi: 10.1038/s41467-024-45068-7
– ident: e_1_2_10_42_1
  doi: 10.1038/nbt.3988
– ident: e_1_2_10_14_1
  doi: 10.1146/annurev-biochem-011420-111224
– ident: e_1_2_10_26_1
  doi: 10.1093/nar/gkaa857
– ident: e_1_2_10_49_1
  doi: 10.1101/2020.04.23.056945
– ident: e_1_2_10_53_1
  doi: 10.1128/msystems.00817-22
– ident: e_1_2_10_22_1
  doi: 10.1093/bioinformatics/btab007
– ident: e_1_2_10_35_1
  doi: 10.3390/ph15030310
– ident: e_1_2_10_40_1
  doi: 10.1038/s41586-024-07994-w
– ident: e_1_2_10_7_1
  doi: 10.1089/crispr.2018.0043
– ident: e_1_2_10_43_1
  doi: 10.1093/nargab/lqab067
SSID ssj0004123
Score 2.4680724
Snippet Anti‐CRISPR (Acr) proteins play a key role in phage‐host interactions and hold great promise for advancing genome‐editing technologies. However, finding new...
Anti-CRISPR (Acr) proteins play a key role in phage-host interactions and hold great promise for advancing genome-editing technologies. However, finding new...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e70177
SubjectTerms anti‐CRISPR
anti‐defense genes
bacterial immunity
Bacteriophages - chemistry
Bacteriophages - genetics
Cluster analysis
Clustered Regularly Interspaced Short Palindromic Repeats
Clustering
CRISPR
CRISPR‐Cas
Databases, Protein
Gastrointestinal Microbiome
Humans
Models, Molecular
Operons
Protein Conformation
Protein structure
Proteins
Sequences
Similarity
structure similarity
Tools for Protein Science
Viral Proteins - chemistry
Viral Proteins - genetics
Viral Proteins - metabolism
virome
Title AcrDB update: Predicted 3D structures of anti‐CRISPRs in human gut viromes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.70177
https://www.ncbi.nlm.nih.gov/pubmed/40400348
https://www.proquest.com/docview/3229077148
https://www.proquest.com/docview/3206593271
https://pubmed.ncbi.nlm.nih.gov/PMC12095918
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB5ReqCXqvxvC5WpEOISiH82dsppWUpphWC1gLS3yHG87R7IIpY99NZH6DP2STrjbEJXCIlLlMi2Es1kPN_Ynm8AdnmhCUa7SLlURSrXOsrRz0YIFoRXlitbsX1eJGc36vugPViAozoXpuKHaBbcyDLCfE0GbvPJ4SNpKE4wBxr_J_0KXlNqLZ3nE6r3mBTJRVVHPuGRkYmpaYVicdgMnXdGTxDm04OS_wPY4IFO38HbGXRknUrXy7DgyxVY7ZQYNt_-YnssHOYMq-QrsNStC7mtwnnH3Z8cs-kdBfefWe-e9mYQaDJ5wir62CnG3Gw8ZCjl0d_ff7r9b1e9_oSNShZK-LEf0wdG-XC3frIGN6dfrrtn0ayIQuTQV2uczHzsbVt76_PYmdRiCGMKBDGW0At6d4tekjtReKPSnNjrisR4PTRctSWVJFuHxXJc-k1gUqWFiVNXpB5NXztTiGFeuDT2MvFSJS34VEszu6u4MrKKFVng8zgLIm_BVi3nbGYuk0wS67zWGJq1YKdpRjHR7oUt_XhKfWgLWArNW7BRqaV5i6KpSNJoM6ewpgORaM-3lKOfgUybcofbKceh-0G3z3951utfhpv3L-_6Ad4IKhgclm22YBGV6rcRxTzkH8PfitevA_4PQ1ftgA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VciiXqj9AFwq4CBCX0MT2xk4lDssu1S5dymrpSr2FxPHCHpqt9kdVbzxCH6RPxZMw42xSVlUlLr0lsp1YMx7Pjz3fALwJMkVmtPGkiaQnU6W8FPWsh8YCtzIJZFKgfR6H7YH8clo_XYHrMhemwIeoAm4kGW6_JgGngPT-DWoo7jAfFC4otbhSeWQvL9Bhm37stJC7bzk__HzSbHuLmgKeQdWlULatb5O6solNfaOjBC16naFOT0iZo7JLUGkEhmdWyyglMLcs1FYNdSDrgip04XcfwEMZckX1Erjs3WRhBrwoXB8GnhahLnGMfL5fTXVZ-90yaW_fzPzXYnYq73AD1he2KmsUi2sTVmy-BduNHP30s0v2jrnboy4svwVrzbJy3DZ0G2bS-sTm5xRNOGC9CR0GoWXLRIsVeLVzdPLZeMiQraM_v6-a_c73Xn_KRjlzNQPZz_mMUQLemZ0-hsG9UPgJrObj3O4AEzLKtB-ZLLK41yijMz5MMxP5VoRWyLAGr0tqxucFOEdcwDBzfB_HjuQ12C3pHC_kcxoLgrlXCn3BGuxVzUgmOi5JcjueUx86cxZcBTV4WrCl-oukvU_QaL3EsKoDoXYvt-SjXw69m5KV61GAQ9873t4987jX_-Yenv1_11ew1j752o27neOj5_CIU7ViFzPahVVksH2BJtQsfelWLoMf9y0qfwFwDiiy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIcFeJtj4UzbAIEC8hCW2GztIPJSWamXTiAqT9hYS2x19WFqtq6a97SPwPfhWfBLunCajmpB42Vsi24l15_P9se93AK8iq8iMNoE0iQxkoVRQoJ4N0FjgTuaRzCu0z4N491B-PmofrcCvOhemwodoAm4kGX6_JgGf2tHOFWgobjDvFK4ntbhRuecuztFfm30Y9JC5rznvf_rW3Q0WJQUCg5pLoWi70OVt5XJXhEYnORr02qJKz0mXo67LUWdEhlunZVIQlpuNtVMjHcm2oAJd-N1bcJsOF-n-GJfpVRJmxKu69XEUaBHrGsYo5DvNVJeV3zWL9vrFzL8NZq_x-vdgfWGqsk61tu7Diis3YLNTopt-csHeMH951EflN-Buty4ctwn7HXPa-8jmUwomvGfpKZ0FoWHLRI9VcLVz9PHZZMSQq-Pflz-7w8HXdDhj45L5koHseH7GKP_uxM0ewOGNUPghrJaT0j0GJmRidZgYmzjcapTRlo8Ka5LQidgJGbfgZU3NbFphc2QVCjPH90nmSd6C7ZrO2UI8Z5kglHul0BVswYumGclEpyV56SZz6kNHzoKrqAWPKrY0f5G09QkarZcY1nQg0O7llnL8w4N3U65yO4lw6FvP23_PPEuHX_zDk__v-hzupL1-tj842NuCNU61in3EaBtWkb_uKRpQZ8Uzv3AZfL9pSfkDc3gn5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AcrDB+update%3A+Predicted+3D+structures+of+anti-CRISPRs+in+human+gut+viromes&rft.jtitle=Protein+science&rft.au=Khatri%2C+Minal&rft.au=Shanmugam%2C+N+R+Siva&rft.au=Zhang%2C+Xinpeng&rft.au=Patel%2C+Revanth+Sai+Kumar+Reddy&rft.date=2025-06-01&rft.eissn=1469-896X&rft.volume=34&rft.issue=6&rft.spage=e70177&rft_id=info:doi/10.1002%2Fpro.70177&rft_id=info%3Apmid%2F40400348&rft.externalDocID=40400348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon