AcrDB update: Predicted 3D structures of anti‐CRISPRs in human gut viromes
Anti‐CRISPR (Acr) proteins play a key role in phage‐host interactions and hold great promise for advancing genome‐editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Ac...
Saved in:
Published in | Protein science Vol. 34; no. 6; pp. e70177 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anti‐CRISPR (Acr) proteins play a key role in phage‐host interactions and hold great promise for advancing genome‐editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM‐score ≥0.7) to known Acrs supported by at least two of the three non‐sequence similarity‐based tools (TM‐Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity‐based Acr families. The 163 families were further subject to a structure similarity‐based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co‐localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB. |
---|---|
AbstractList | Anti‐CRISPR (Acr) proteins play a key role in phage‐host interactions and hold great promise for advancing genome‐editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM‐score ≥0.7) to known Acrs supported by at least two of the three non‐sequence similarity‐based tools (TM‐Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity‐based Acr families. The 163 families were further subject to a structure similarity‐based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co‐localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB. Anti-CRISPR (Acr) proteins play a key role in phage-host interactions and hold great promise for advancing genome-editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM-score ≥0.7) to known Acrs supported by at least two of the three non-sequence similarity-based tools (TM-Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity-based Acr families. The 163 families were further subject to a structure similarity-based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co-localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB.Anti-CRISPR (Acr) proteins play a key role in phage-host interactions and hold great promise for advancing genome-editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM-score ≥0.7) to known Acrs supported by at least two of the three non-sequence similarity-based tools (TM-Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity-based Acr families. The 163 families were further subject to a structure similarity-based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co-localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB. Anti‐CRISPR (Acr) proteins play a key role in phage‐host interactions and hold great promise for advancing genome‐editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM‐score ≥0.7) to known Acrs supported by at least two of the three non‐sequence similarity‐based tools (TM‐Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity‐based Acr families. The 163 families were further subject to a structure similarity‐based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota , Pseudomonadota , and Bacteroidota , which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co‐localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB . |
Author | Zhang, Xinpeng Shanmugam, N. R. Siva Yin, Yanbin Patel, Revanth Sai Kumar Reddy Khatri, Minal |
AuthorAffiliation | 1 Nebraska Food for Health Center, Department of Food Science and Technology University of Nebraska—Lincoln Lincoln Nebraska USA |
AuthorAffiliation_xml | – name: 1 Nebraska Food for Health Center, Department of Food Science and Technology University of Nebraska—Lincoln Lincoln Nebraska USA |
Author_xml | – sequence: 1 givenname: Minal surname: Khatri fullname: Khatri, Minal organization: University of Nebraska—Lincoln – sequence: 2 givenname: N. R. Siva surname: Shanmugam fullname: Shanmugam, N. R. Siva organization: University of Nebraska—Lincoln – sequence: 3 givenname: Xinpeng surname: Zhang fullname: Zhang, Xinpeng organization: University of Nebraska—Lincoln – sequence: 4 givenname: Revanth Sai Kumar Reddy surname: Patel fullname: Patel, Revanth Sai Kumar Reddy organization: University of Nebraska—Lincoln – sequence: 5 givenname: Yanbin orcidid: 0000-0001-7667-881X surname: Yin fullname: Yin, Yanbin email: yyin@unl.edu organization: University of Nebraska—Lincoln |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40400348$$D View this record in MEDLINE/PubMed |
BookMark | eNp10c1u1DAQB3ALFdFt4cALIEtc4JB27Dj-4FKVLf2QVupqAYmb5U1mW1eJvdhJq976CDwjT0LKthUgcbJG_s1fY88O2QoxICGvGewxAL6_TnFPAVPqGZkwIU2hjfy2RSZgJCt0KfU22cn5CgAE4-ULsi1AAJRCT8jssE5HH-mwblyPH-g8YePrHhtaHtHcp6Huh4SZxhV1ofc_735MF2ef54tMfaCXQ-cCvRh6eu1T7DC_JM9Xrs346uHcJV-PP32Znhaz85Oz6eGsqAVIVRiGgK5S6HAJtTZOS64bVhkHIBnjwiE2rOYNamGWIEXVSI1qpZmoSqN4uUsONrnrYdlhU2Pok2vtOvnOpVsbnbd_3wR_aS_itWUcTGWYHhPePSSk-H3A3NvO5xrb1gWMQ7YlB1mZkis20rf_0Ks4pDC-b1TcgFJM3Ae--XOkp1kef3oE7zegTjHnhKsnwsDeb3Gso_29xdHub-yNb_H2_9DOF-ebjl-htZzu |
Cites_doi | 10.1093/bioinformatics/btac776 10.1038/s41587-023-01917-2 10.1093/nar/gkae268 10.1093/nar/gkaa432 10.1038/nrmicro.2017.120 10.1093/nar/gkaa351 10.1126/science.abj8754 10.1093/nar/gkad932 10.1016/j.ijbiomac.2022.12.250 10.1093/bioinformatics/btad309 10.1016/j.cell.2021.01.029 10.1016/j.molcel.2022.05.003 10.1093/bioinformatics/btq461 10.1093/nar/gkaa219 10.1093/nar/gkaa951 10.1038/s41467-020-17652-0 10.1093/nar/gkae1171 10.1093/bioinformatics/btad259 10.1093/bioinformatics/btq066 10.1126/science.ade2574 10.1146/annurev-virology-101416-041616 10.1038/s41564-021-00928-6 10.1093/nar/gkw1098 10.1186/1471-2105-11-119 10.1038/s41586-021-03819-2 10.1093/database/baac010 10.1093/bioinformatics/btad031 10.1021/acschembio.7b00831 10.1038/s41587-023-01773-0 10.1038/nature11723 10.7554/eLife.46540 10.1016/S0168-9525(00)02024-2 10.1038/s41467-020-19415-3 10.1089/phage.2021.0007 10.1128/msystems.00455-00419 10.1016/j.jmb.2023.168036 10.1038/s41576-023-00676-9 10.1038/s41586-024-07644-1 10.1016/j.chom.2020.08.003 10.1089/crispr.2023.0011 10.1146/annurev-genet-120417-031321 10.1038/s42003-018-0184-6 10.1093/nar/25.17.3389 10.1093/nar/gkm993 10.1038/s41467-024-45068-7 10.1038/nbt.3988 10.1146/annurev-biochem-011420-111224 10.1093/nar/gkaa857 10.1101/2020.04.23.056945 10.1128/msystems.00817-22 10.1093/bioinformatics/btab007 10.3390/ph15030310 10.1038/s41586-024-07994-w 10.1089/crispr.2018.0043 10.1093/nargab/lqab067 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of The Protein Society. 2025 The Author(s). Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of The Protein Society. – notice: 2025 The Author(s). Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. – notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/pro.70177 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Immunology Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Khatri et al |
EISSN | 1469-896X |
EndPage | n/a |
ExternalDocumentID | PMC12095918 40400348 10_1002_pro_70177 PRO70177 |
Genre | methodAndProtocol Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R01GM140370; R21AI171952 – fundername: U.S. Department of Agriculture (USDA) funderid: 58‐8042‐9‐089 – fundername: U.S. Department of Agriculture (USDA) grantid: 58-8042-9-089 – fundername: NIH HHS grantid: R21AI171952 – fundername: NIH HHS grantid: R01GM140370 |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A8Z AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W PQQKQ QRW RCA RIG ROL RPM SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4067-91e0ea57eaeb0c89a8628d159a0061124aeed1c2de849b0645d68e7f814539723 |
IEDL.DBID | 24P |
ISSN | 0961-8368 1469-896X |
IngestDate | Thu Aug 21 18:30:08 EDT 2025 Fri Jul 11 17:23:54 EDT 2025 Sat Aug 23 12:35:25 EDT 2025 Mon May 26 01:57:38 EDT 2025 Thu Jul 03 08:44:27 EDT 2025 Thu May 29 13:08:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | virome CRISPR‐Cas anti‐CRISPR anti‐defense genes bacterial immunity structure similarity |
Language | English |
License | Attribution-NonCommercial 2025 The Author(s). Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4067-91e0ea57eaeb0c89a8628d159a0061124aeed1c2de849b0645d68e7f814539723 |
Notes | Nir Ben‐Tal Review Editor Minal Khatri and N. R. Siva Shanmugam are co‐first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Review Editor: Nir Ben‐Tal |
ORCID | 0000-0001-7667-881X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.70177 |
PMID | 40400348 |
PQID | 3229077148 |
PQPubID | 1016442 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12095918 proquest_miscellaneous_3206593271 proquest_journals_3229077148 pubmed_primary_40400348 crossref_primary_10_1002_pro_70177 wiley_primary_10_1002_pro_70177_PRO70177 |
PublicationCentury | 2000 |
PublicationDate | June 2025 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Bethesda |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2019; 8 2010; 11 2021; 49 2021; 6 2023; 52 2019; 4 2021; 3 2017; 4 2021; 2 2023; 39 2023; 6 1997; 25 2017; 45 2008; 36 2021; 184 2024; 52 2020; 11 2023; 228 2024; 15 2025; 53 2023; 42 2021; 37 2010; 26 2022; 2022 2000; 16 2021; 596 2022; 82 2018; 1 2024; 635 2020 2022; 7 2017; 35 2020; 28 2023; 435 2020; 48 2023; 379 2022; 15 2024; 42 2021; 373 2013; 493 2018; 52 2020; 89 2024; 631 2024; 25 2018; 16 2018; 13 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 89 start-page: 309 year: 2020 end-page: 332 article-title: Anti‐CRISPRs: protein inhibitors of CRISPR‐Cas systems publication-title: Annu Rev Biochem – volume: 52 start-page: 445 year: 2018 end-page: 464 article-title: Phage‐encoded anti‐CRISPR defenses publication-title: Annu Rev Genet – volume: 2 start-page: 214 year: 2021 end-page: 223 article-title: INfrastructure for a PHAge REference database: identification of large‐scale biases in the current collection of cultured phage genomes publication-title: Phage – volume: 16 start-page: 12 year: 2018 end-page: 17 article-title: Anti‐CRISPR: discovery, mechanism and function publication-title: Nat Rev Microbiol – volume: 373 start-page: 871 year: 2021 end-page: 876 article-title: Accurate prediction of protein structures and interactions using a three‐track neural network publication-title: Science – volume: 37 start-page: 2473 year: 2021 end-page: 2475 article-title: Clinker & clustermap.js: automatic generation of gene cluster comparison figures publication-title: Bioinformatics – volume: 11 start-page: 5652 year: 2020 article-title: Discovery of multiple anti‐CRISPRs highlights anti‐defense gene clustering in mobile genetic elements publication-title: Nat Commun – volume: 42 start-page: 243 year: 2024 end-page: 246 article-title: Fast and accurate protein structure search with Foldseek publication-title: Nat Biotechnol – volume: 26 start-page: 2460 year: 2010 end-page: 2461 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics – volume: 493 start-page: 429 year: 2013 end-page: 432 article-title: Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system publication-title: Nature – volume: 6 start-page: 222 year: 2023 end-page: 231 article-title: Search for origins of anti‐CRISPR proteins by structure comparison publication-title: CRISPR J – volume: 16 start-page: 276 year: 2000 end-page: 277 article-title: EMBOSS: the European molecular biology open software suite publication-title: Trends Genet – volume: 631 start-page: 670 year: 2024 end-page: 677 article-title: Phage anti‐CRISPR control by an RNA‐ and DNA‐binding helix‐turn‐helix protein publication-title: Nature – volume: 15 start-page: 649 year: 2024 article-title: Structure‐guided discovery of anti‐CRISPR and anti‐phage defense proteins publication-title: Nat Commun – volume: 6 start-page: 960 year: 2021 end-page: 970 article-title: Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome publication-title: Nat Microbiol – volume: 82 start-page: 2714 year: 2022 end-page: 2726.e4 article-title: Anti‐CRISPR prediction using deep learning reveals an inhibitor of Cas13b nucleases publication-title: Mol Cell – volume: 26 start-page: 889 year: 2010 end-page: 895 article-title: How significant is a protein structure similarity with TM‐score = 0.5? publication-title: Bioinformatics – volume: 39 year: 2023 article-title: Genome mining for anti‐CRISPR operons using machine learning publication-title: Bioinformatics – volume: 11 start-page: 1 year: 2010 end-page: 11 article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification publication-title: BMC Bioinforma – volume: 3 year: 2021 article-title: PHROG: families of prokaryotic virus proteins clustered using remote homology publication-title: NAR Genomics Bioinform – volume: 45 start-page: D289 year: 2017 end-page: D295 article-title: CATH: an expanded resource to predict protein function through structure and sequence publication-title: Nucleic Acids Res – volume: 1 start-page: 180 year: 2018 article-title: CRISPRminer is a knowledge base for exploring CRISPR‐Cas systems in microbe and phage interactions publication-title: Commun Biol – volume: 4 year: 2019 article-title: Bioinformatics identification of anti‐CRISPR loci by using homology, guilt‐by‐association, and CRISPR self‐targeting spacer approaches publication-title: mSystems – volume: 48 start-page: W358 year: 2020 end-page: W365 article-title: AcrFinder: genome mining anti‐CRISPR operons in prokaryotes and their viruses publication-title: Nucleic Acids Res – volume: 39 year: 2023 article-title: Pharokka: a fast scalable bacteriophage annotation tool publication-title: Bioinformatics – volume: 1 start-page: 304 year: 2018 end-page: 305 article-title: A unified resource for tracking anti‐CRISPR names publication-title: CRISPR J – volume: 35 start-page: 1026 year: 2017 end-page: 1028 article-title: MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets publication-title: Nat Biotechnol – volume: 28 start-page: 724 year: 2020 end-page: 740 article-title: The gut virome database reveals age‐dependent patterns of virome diversity in the human gut publication-title: Cell Host Microbe – volume: 49 start-page: D630 year: 2021 end-page: D638 article-title: AcrHub: an integrative hub for investigating, predicting and mapping anti‐CRISPR proteins publication-title: Nucleic Acids Res – volume: 36 start-page: D419 year: 2008 end-page: D425 article-title: Data growth and its impact on the SCOP database: new developments publication-title: Nucleic Acids Res – volume: 25 start-page: 3389 year: 1997 end-page: 3402 article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res – volume: 42 start-page: 975 issue: 6 year: 2023 end-page: 985 article-title: Protein remote homology detection and structural alignment using deep learning publication-title: Nat Biotechnol – volume: 2022 year: 2022 article-title: Anti‐CRISPRdb v2. 2: an online repository of anti‐CRISPR proteins including information on inhibitory mechanisms, activities and neighbors of curated anti‐CRISPR proteins publication-title: Database – volume: 48 start-page: W348 year: 2020 end-page: W357 article-title: PaCRISPR: a server for predicting and visualizing anti‐CRISPR proteins publication-title: Nucleic Acids Res – volume: 39 year: 2023 article-title: AcrNET: predicting anti‐CRISPR with deep learning publication-title: Bioinformatics – volume: 8 year: 2019 article-title: Functional metagenomics‐guided discovery of potent Cas9 inhibitors in the human microbiome publication-title: Elife – volume: 52 start-page: W78 year: 2024 end-page: W82 article-title: Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool publication-title: Nucleic Acids Res – volume: 15 issue: 3 year: 2022 article-title: Rethinking protein drug design with highly accurate structure prediction of anti‐CRISPR proteins publication-title: Pharmaceuticals – volume: 228 start-page: 706 year: 2023 end-page: 714 article-title: AcrPred: a hybrid optimization with enumerated machine learning algorithm to predict anti‐CRISPR proteins publication-title: Int J Biol Macromol – volume: 52 start-page: D419 year: 2023 end-page: D425 article-title: dbAPIS: a database of anti‐prokaryotic immune system genes publication-title: Nucleic Acids Res – volume: 435 year: 2023 article-title: In silico approaches for prediction of anti‐CRISPR proteins publication-title: J Mol Biol – volume: 184 start-page: 1098 year: 2021 end-page: 1109 article-title: Massive expansion of human gut bacteriophage diversity publication-title: Cell – volume: 13 start-page: 417 year: 2018 end-page: 423 article-title: Protein inhibitors of CRISPR‐Cas9 publication-title: ACS Chem Biol – volume: 4 start-page: 37 year: 2017 end-page: 59 article-title: The discovery, mechanisms, and evolutionary impact of anti‐CRISPRs publication-title: Annu Rev Virol – year: 2020 – volume: 53 year: 2025 article-title: Exploring the diversity of anti‐defense systems across prokaryotes, phages and mobile genetic elements publication-title: Nucleic Acids Res – volume: 635 start-page: 186 year: 2024 end-page: 192 article-title: Diverse anti‐defence systems are encoded in the leading region of plasmids publication-title: Nature – volume: 379 start-page: 1123 year: 2023 end-page: 1130 article-title: Evolutionary‐scale prediction of atomic‐level protein structure with a language model publication-title: Science – volume: 39 year: 2023 article-title: Cytoscape.js 2023 update: a graph theory library for visualization and analysis publication-title: Bioinformatics – volume: 49 start-page: D622 year: 2021 end-page: D629 article-title: AcrDB: a database of anti‐CRISPR operons in prokaryotes and viruses publication-title: Nucleic Acids Res – volume: 11 start-page: 3784 year: 2020 article-title: Machine‐learning approach expands the repertoire of anti‐CRISPR protein families publication-title: Nat Commun – volume: 25 start-page: 237 year: 2024 end-page: 254 article-title: Inhibitors of bacterial immune systems: discovery, mechanisms and applications publication-title: Nat Rev Genet – volume: 48 start-page: 4698 year: 2020 end-page: 4708 article-title: Machine learning predicts new anti‐CRISPR proteins publication-title: Nucleic Acids Res – volume: 596 start-page: 583 issue: 7873 year: 2021 end-page: 589 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 7 year: 2022 article-title: AcaFinder: genome mining for anti‐CRISPR‐associated genes publication-title: mSystems – ident: e_1_2_10_10_1 doi: 10.1093/bioinformatics/btac776 – ident: e_1_2_10_25_1 doi: 10.1038/s41587-023-01917-2 – ident: e_1_2_10_29_1 doi: 10.1093/nar/gkae268 – ident: e_1_2_10_48_1 doi: 10.1093/nar/gkaa432 – ident: e_1_2_10_36_1 doi: 10.1038/nrmicro.2017.120 – ident: e_1_2_10_54_1 doi: 10.1093/nar/gkaa351 – ident: e_1_2_10_4_1 doi: 10.1126/science.abj8754 – ident: e_1_2_10_51_1 doi: 10.1093/nar/gkad932 – ident: e_1_2_10_13_1 doi: 10.1016/j.ijbiomac.2022.12.250 – ident: e_1_2_10_52_1 doi: 10.1093/bioinformatics/btad309 – ident: e_1_2_10_11_1 doi: 10.1016/j.cell.2021.01.029 – ident: e_1_2_10_46_1 doi: 10.1016/j.molcel.2022.05.003 – ident: e_1_2_10_18_1 doi: 10.1093/bioinformatics/btq461 – ident: e_1_2_10_19_1 doi: 10.1093/nar/gkaa219 – ident: e_1_2_10_47_1 doi: 10.1093/nar/gkaa951 – ident: e_1_2_10_24_1 doi: 10.1038/s41467-020-17652-0 – ident: e_1_2_10_44_1 doi: 10.1093/nar/gkae1171 – ident: e_1_2_10_30_1 doi: 10.1093/bioinformatics/btad259 – ident: e_1_2_10_50_1 doi: 10.1093/bioinformatics/btq066 – ident: e_1_2_10_31_1 doi: 10.1126/science.ade2574 – ident: e_1_2_10_9_1 doi: 10.1146/annurev-virology-101416-041616 – ident: e_1_2_10_34_1 doi: 10.1038/s41564-021-00928-6 – ident: e_1_2_10_15_1 doi: 10.1093/nar/gkw1098 – ident: e_1_2_10_27_1 doi: 10.1186/1471-2105-11-119 – ident: e_1_2_10_28_1 doi: 10.1038/s41586-021-03819-2 – ident: e_1_2_10_16_1 doi: 10.1093/database/baac010 – ident: e_1_2_10_21_1 doi: 10.1093/bioinformatics/btad031 – ident: e_1_2_10_6_1 doi: 10.1021/acschembio.7b00831 – ident: e_1_2_10_45_1 doi: 10.1038/s41587-023-01773-0 – ident: e_1_2_10_8_1 doi: 10.1038/nature11723 – ident: e_1_2_10_20_1 doi: 10.7554/eLife.46540 – ident: e_1_2_10_38_1 doi: 10.1016/S0168-9525(00)02024-2 – ident: e_1_2_10_37_1 doi: 10.1038/s41467-020-19415-3 – ident: e_1_2_10_12_1 doi: 10.1089/phage.2021.0007 – ident: e_1_2_10_55_1 doi: 10.1128/msystems.00455-00419 – ident: e_1_2_10_32_1 doi: 10.1016/j.jmb.2023.168036 – ident: e_1_2_10_33_1 doi: 10.1038/s41576-023-00676-9 – ident: e_1_2_10_5_1 doi: 10.1038/s41586-024-07644-1 – ident: e_1_2_10_23_1 doi: 10.1016/j.chom.2020.08.003 – ident: e_1_2_10_39_1 doi: 10.1089/crispr.2023.0011 – ident: e_1_2_10_41_1 doi: 10.1146/annurev-genet-120417-031321 – ident: e_1_2_10_56_1 doi: 10.1038/s42003-018-0184-6 – ident: e_1_2_10_2_1 doi: 10.1093/nar/25.17.3389 – ident: e_1_2_10_3_1 doi: 10.1093/nar/gkm993 – ident: e_1_2_10_17_1 doi: 10.1038/s41467-024-45068-7 – ident: e_1_2_10_42_1 doi: 10.1038/nbt.3988 – ident: e_1_2_10_14_1 doi: 10.1146/annurev-biochem-011420-111224 – ident: e_1_2_10_26_1 doi: 10.1093/nar/gkaa857 – ident: e_1_2_10_49_1 doi: 10.1101/2020.04.23.056945 – ident: e_1_2_10_53_1 doi: 10.1128/msystems.00817-22 – ident: e_1_2_10_22_1 doi: 10.1093/bioinformatics/btab007 – ident: e_1_2_10_35_1 doi: 10.3390/ph15030310 – ident: e_1_2_10_40_1 doi: 10.1038/s41586-024-07994-w – ident: e_1_2_10_7_1 doi: 10.1089/crispr.2018.0043 – ident: e_1_2_10_43_1 doi: 10.1093/nargab/lqab067 |
SSID | ssj0004123 |
Score | 2.4680724 |
Snippet | Anti‐CRISPR (Acr) proteins play a key role in phage‐host interactions and hold great promise for advancing genome‐editing technologies. However, finding new... Anti-CRISPR (Acr) proteins play a key role in phage-host interactions and hold great promise for advancing genome-editing technologies. However, finding new... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e70177 |
SubjectTerms | anti‐CRISPR anti‐defense genes bacterial immunity Bacteriophages - chemistry Bacteriophages - genetics Cluster analysis Clustered Regularly Interspaced Short Palindromic Repeats Clustering CRISPR CRISPR‐Cas Databases, Protein Gastrointestinal Microbiome Humans Models, Molecular Operons Protein Conformation Protein structure Proteins Sequences Similarity structure similarity Tools for Protein Science Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - metabolism virome |
Title | AcrDB update: Predicted 3D structures of anti‐CRISPRs in human gut viromes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.70177 https://www.ncbi.nlm.nih.gov/pubmed/40400348 https://www.proquest.com/docview/3229077148 https://www.proquest.com/docview/3206593271 https://pubmed.ncbi.nlm.nih.gov/PMC12095918 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB5ReqCXqvxvC5WpEOISiH82dsppWUpphWC1gLS3yHG87R7IIpY99NZH6DP2STrjbEJXCIlLlMi2Es1kPN_Ynm8AdnmhCUa7SLlURSrXOsrRz0YIFoRXlitbsX1eJGc36vugPViAozoXpuKHaBbcyDLCfE0GbvPJ4SNpKE4wBxr_J_0KXlNqLZ3nE6r3mBTJRVVHPuGRkYmpaYVicdgMnXdGTxDm04OS_wPY4IFO38HbGXRknUrXy7DgyxVY7ZQYNt_-YnssHOYMq-QrsNStC7mtwnnH3Z8cs-kdBfefWe-e9mYQaDJ5wir62CnG3Gw8ZCjl0d_ff7r9b1e9_oSNShZK-LEf0wdG-XC3frIGN6dfrrtn0ayIQuTQV2uczHzsbVt76_PYmdRiCGMKBDGW0At6d4tekjtReKPSnNjrisR4PTRctSWVJFuHxXJc-k1gUqWFiVNXpB5NXztTiGFeuDT2MvFSJS34VEszu6u4MrKKFVng8zgLIm_BVi3nbGYuk0wS67zWGJq1YKdpRjHR7oUt_XhKfWgLWArNW7BRqaV5i6KpSNJoM6ewpgORaM-3lKOfgUybcofbKceh-0G3z3951utfhpv3L-_6Ad4IKhgclm22YBGV6rcRxTzkH8PfitevA_4PQ1ftgA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VciiXqj9AFwq4CBCX0MT2xk4lDssu1S5dymrpSr2FxPHCHpqt9kdVbzxCH6RPxZMw42xSVlUlLr0lsp1YMx7Pjz3fALwJMkVmtPGkiaQnU6W8FPWsh8YCtzIJZFKgfR6H7YH8clo_XYHrMhemwIeoAm4kGW6_JgGngPT-DWoo7jAfFC4otbhSeWQvL9Bhm37stJC7bzk__HzSbHuLmgKeQdWlULatb5O6solNfaOjBC16naFOT0iZo7JLUGkEhmdWyyglMLcs1FYNdSDrgip04XcfwEMZckX1Erjs3WRhBrwoXB8GnhahLnGMfL5fTXVZ-90yaW_fzPzXYnYq73AD1he2KmsUi2sTVmy-BduNHP30s0v2jrnboy4svwVrzbJy3DZ0G2bS-sTm5xRNOGC9CR0GoWXLRIsVeLVzdPLZeMiQraM_v6-a_c73Xn_KRjlzNQPZz_mMUQLemZ0-hsG9UPgJrObj3O4AEzLKtB-ZLLK41yijMz5MMxP5VoRWyLAGr0tqxucFOEdcwDBzfB_HjuQ12C3pHC_kcxoLgrlXCn3BGuxVzUgmOi5JcjueUx86cxZcBTV4WrCl-oukvU_QaL3EsKoDoXYvt-SjXw69m5KV61GAQ9873t4987jX_-Yenv1_11ew1j752o27neOj5_CIU7ViFzPahVVksH2BJtQsfelWLoMf9y0qfwFwDiiy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIcFeJtj4UzbAIEC8hCW2GztIPJSWamXTiAqT9hYS2x19WFqtq6a97SPwPfhWfBLunCajmpB42Vsi24l15_P9se93AK8iq8iMNoE0iQxkoVRQoJ4N0FjgTuaRzCu0z4N491B-PmofrcCvOhemwodoAm4kGX6_JgGf2tHOFWgobjDvFK4ntbhRuecuztFfm30Y9JC5rznvf_rW3Q0WJQUCg5pLoWi70OVt5XJXhEYnORr02qJKz0mXo67LUWdEhlunZVIQlpuNtVMjHcm2oAJd-N1bcJsOF-n-GJfpVRJmxKu69XEUaBHrGsYo5DvNVJeV3zWL9vrFzL8NZq_x-vdgfWGqsk61tu7Diis3YLNTopt-csHeMH951EflN-Buty4ctwn7HXPa-8jmUwomvGfpKZ0FoWHLRI9VcLVz9PHZZMSQq-Pflz-7w8HXdDhj45L5koHseH7GKP_uxM0ewOGNUPghrJaT0j0GJmRidZgYmzjcapTRlo8Ka5LQidgJGbfgZU3NbFphc2QVCjPH90nmSd6C7ZrO2UI8Z5kglHul0BVswYumGclEpyV56SZz6kNHzoKrqAWPKrY0f5G09QkarZcY1nQg0O7llnL8w4N3U65yO4lw6FvP23_PPEuHX_zDk__v-hzupL1-tj842NuCNU61in3EaBtWkb_uKRpQZ8Uzv3AZfL9pSfkDc3gn5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AcrDB+update%3A+Predicted+3D+structures+of+anti-CRISPRs+in+human+gut+viromes&rft.jtitle=Protein+science&rft.au=Khatri%2C+Minal&rft.au=Shanmugam%2C+N+R+Siva&rft.au=Zhang%2C+Xinpeng&rft.au=Patel%2C+Revanth+Sai+Kumar+Reddy&rft.date=2025-06-01&rft.eissn=1469-896X&rft.volume=34&rft.issue=6&rft.spage=e70177&rft_id=info:doi/10.1002%2Fpro.70177&rft_id=info%3Apmid%2F40400348&rft.externalDocID=40400348 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |