EXPERIMENTAL SKELETAL MUSCLE GRAFTS AS A MODEL OF REGENERATION
Background: It is now well established that mature skeletal muscle has the ability to regenerate, and reports on this phenomenon have existed in the research literature for some 40 years. However, it is only relatively recently, largely due to the advances in microsurgery, that practising surgeons c...
Saved in:
Published in | Australian and New Zealand Journal of Surgery Vol. 67; no. 1; pp. 35 - 39 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: It is now well established that mature skeletal muscle has the ability to regenerate, and reports on this phenomenon have existed in the research literature for some 40 years. However, it is only relatively recently, largely due to the advances in microsurgery, that practising surgeons can make direct use of the regenerative ability of skeletal muscle.
Methods: Most of the key data on skeletal muscle regeneration have come from experimental studies on muscle grafts in small animal models. One such model is the transplantation of the extensor digitorum muscle of the mouse or rat into the contralateral site, or the relocation of this muscle onto the surface of the tibialis anterior muscle. These and other models, together with the important cellular mechanisms involved in the regeneration of skeletal muscle, are reviewed briefly in this article.
Results: Skeletal muscle cells regenerate rapidly in muscle grafts, arising from satellite cells in the surviving peripheral fibres of the graft within 2 days after grafting. The resultant myoblasts progress towards the necrotic graft centre and occupy the area by 5 days. Revascularization commences at 3 days after grafting, but reinnervation takes many weeks to complete.
Conclusions: With the established knowledge on skeletal muscle regeneration, largely gained from experimental studies of muscle grafts, an understanding of these mechanisms should now be fundamental knowledge for today's practising surgeons. |
---|---|
AbstractList | It is now well established that mature skeletal muscle has the ability to regenerate, and reports on this phenomenon have existed in the research literature for some 40 years. However, it is only relatively recently, largely due to the advances in microsurgery, that practising surgeons can make direct use of the regenerative ability of skeletal muscle.
Most of the key data on skeletal muscle regeneration have come from experimental studies on muscle grafts in small animal models. One such model is the transplantation of the extensor digitorum muscle of the mouse or rat into the contralateral site, or the relocation of this muscle onto the surface of the tibialis anterior muscle. These and other models, together with the important cellular mechanisms involved in the regeneration of skeletal muscle, are reviewed briefly in this article.
Skeletal muscle cells regenerate rapidly in muscle grafts, arising from satellite cells in the surviving peripheral fibres of the graft within 2 days after grafting. The resultant myoblasts progress towards the necrotic graft centre and occupy the area by 5 days. Revascularization commences at 3 days after grafting, but reinnervation takes many weeks to complete.
With the established knowledge on skeletal muscle regeneration, largely gained from experimental studies of muscle grafts; an understanding of these mechanisms should now be fundamental knowledge for today's practising surgeons. Background: It is now well established that mature skeletal muscle has the ability to regenerate, and reports on this phenomenon have existed in the research literature for some 40 years. However, it is only relatively recently, largely due to the advances in microsurgery, that practising surgeons can make direct use of the regenerative ability of skeletal muscle. Methods: Most of the key data on skeletal muscle regeneration have come from experimental studies on muscle grafts in small animal models. One such model is the transplantation of the extensor digitorum muscle of the mouse or rat into the contralateral site, or the relocation of this muscle onto the surface of the tibialis anterior muscle. These and other models, together with the important cellular mechanisms involved in the regeneration of skeletal muscle, are reviewed briefly in this article. Results: Skeletal muscle cells regenerate rapidly in muscle grafts, arising from satellite cells in the surviving peripheral fibres of the graft within 2 days after grafting. The resultant myoblasts progress towards the necrotic graft centre and occupy the area by 5 days. Revascularization commences at 3 days after grafting, but reinnervation takes many weeks to complete. Conclusions: With the established knowledge on skeletal muscle regeneration, largely gained from experimental studies of muscle grafts, an understanding of these mechanisms should now be fundamental knowledge for today's practising surgeons. |
Author | Lawson-Smith, Matthew J. McGeachie, John K. |
Author_xml | – sequence: 1 givenname: Matthew J. surname: Lawson-Smith fullname: Lawson-Smith, Matthew J. organization: Department of Anatomy and Human Biology, The University of Western Australia, Nedlands, Western Australia, Australia – sequence: 2 givenname: John K. surname: McGeachie fullname: McGeachie, John K. organization: Department of Anatomy and Human Biology, The University of Western Australia, Nedlands, Western Australia, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9033374$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kNtqwkAQhpdisWr7CIXQ-6S72fNFC8GuqTYmNom09GbZmBW0asVYqm_fBMVhmAM__8B8XdDa_GwsAA8IeqiOx6WHCKGujyT3kKzLvoBISOQdrkDnIrVAB0JIXMGEfwO6VbVsViZEG7QlxBhz0gHP6nOi0uFYxXkQOdmbilQzjKdZP1JOmAaDPHOCOp1x8qIiJxk4qQpVrNIgHybxLbiem1Vl7869B6YDlfdf3SgJh_0gcmcEMuqS2dywmaEQ-oiV1BgrsDVIEp9DaWTJMSz8kom5paiwJReI0xIjQSBk2M4g7oH7093tb7G2pd7uFmuzO-rzH7X-dNL_Fit7vMgI6gaYXuqGim6o6AaYPgPTBx3EGaa13z35F9XeHi5-s_vWjGNO9Ucc6skIS8q_3vUI_wNF9mj7 |
CitedBy_id | crossref_primary_10_1067_msy_2001_110022 crossref_primary_10_1089_10763270260424240 crossref_primary_10_1177_096368970000900309 crossref_primary_10_1097_PRS_0000000000006296 crossref_primary_10_1177_002215540104900807 |
ContentType | Journal Article |
DBID | BSCLL CGR CUY CVF ECM EIF NPM |
DOI | 10.1111/j.1445-2197.1997.tb01891.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1445-2197 |
EndPage | 39 |
ExternalDocumentID | 9033374 ANS35 ark_67375_WNG_PJ3957ZQ_J |
Genre | miscellaneous Journal Article Review |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 23M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M J5H K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RJQFR ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 YFH ZGI ZXP ~IA ~WT 1OB 23N AHEFC CGR CUY CVF EAS ECM EIF HJTMK NPM PALCI RIWAO SAMSI WH7 WUP |
ID | FETCH-LOGICAL-c4065-4cfa6ca500216d5aae83ea1942709a9d730b2d68fe51bed78175d31840063ec03 |
IEDL.DBID | DR2 |
ISSN | 0004-8682 |
IngestDate | Wed Oct 16 00:48:38 EDT 2024 Sat Aug 24 01:00:30 EDT 2024 Wed Oct 30 09:57:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4065-4cfa6ca500216d5aae83ea1942709a9d730b2d68fe51bed78175d31840063ec03 |
Notes | ark:/67375/WNG-PJ3957ZQ-J ArticleID:ANS35 istex:DE2D18021EBBC3A2398B26C8EFB8FE5BD0395DEE |
PMID | 9033374 |
PageCount | 5 |
ParticipantIDs | pubmed_primary_9033374 wiley_primary_10_1111_j_1445_2197_1997_tb01891_x_ANS35 istex_primary_ark_67375_WNG_PJ3957ZQ_J |
PublicationCentury | 1900 |
PublicationDate | 1997-01 January 1997 1997-Jan |
PublicationDateYYYYMMDD | 1997-01-01 |
PublicationDate_xml | – month: 01 year: 1997 text: 1997-01 |
PublicationDecade | 1990 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Australia |
PublicationTitle | Australian and New Zealand Journal of Surgery |
PublicationTitleAlternate | Aust N Z J Surg |
PublicationYear | 1997 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Donovan CM, Faulkner JA. Plasticity of skeletal muscle: Regenerating fibers adapt more rapidly than surviving fibers. J. Appl. Physiol. 1987; 62: 2507-11. Womble MD. The clustering of acetyl choline receptors and formation of neuro muscular junctions in regenerating mammalian muscle grafts. Am. J. Anat. 1986; 176: 191-205. Campion DR. The muscle satellite cell: A review. Int. Rev. Cytol. 1984; 87: 225-51. Roberts P., McGeachie JK, Smith ER, Grounds MD. The initiation and duration of myogenesis in transplants of intact skeletal muscles: An autoradiographic study in mice. Anat. Rec. 1989; 224: 1-6. Carlson BM, Faulkner JA. The regeneration of skeletal muscle fibres following injury: A review. Med. Sci. Sports Exerc. 1983; 15: 187-98. Phillips GD, Hoffman JR, Knighton DR. Migration of myogenic cells in the rat extensor digitorum longus muscle studied with a split autograft model. Cell Tissue Res. 1990; 262: 81-8. McGeachie JK, Allbrook DB. Cell proliferation in skeletal muscle following denervation or tenotomy. Cell Tissue Res. 1978; 193: 259-67. Roberts P., McGeachie JK. Endothelial cell activation during angiogenesis in freely transplanted skeletal muscles in mice and its relationship to the onset of myogenesis. J. Anat. 1990; 169: 197-207. Schultz E., Jaryszak DL, Valliere CR. Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 1985; 8: 217-22. Vracko R., Benditt EP. Basal lamina: The scaffold for orderly cell replacement. J. Cell Biol. 1972; 55: 406-19. Carlson BM. The regeneration of the completely excised gastrocnemius muscle in the frog and rat from minced muscle fragments. J. Morphol. 1968; 125: 447-72. Grounds MD, McGeachie JK. Myogenic cell replication in minced skeletal muscle isografts of Swiss and BALB/c mice. Muscle Nerve 1990; 13: 305-13. Basson MD, Carlson BM. Myotoxicity of single and repeated injections of mepivicaine (carbocaine) in the rat. Anesth. Analg. 1980; 59: 275-82. Carlson BM, Gutmann E. Regeneration in free grafts of normal and denervated muscles in the rat: Morphology and histochemistry. Anat. Rec. 1975; 183: 47-62. Mufti SA, Carlson BM, Maxwell LC, Faulkner JA. The free grafting of entire limb muscles in the cat: Morphology. Anat. Rec. 1977; 188: 417-30. Rantanen J., Hurme T., Lukka R., Heino J., Kalimo H. Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: Evidence for two different populations of satellite cells. Lab. Invest. 1995; 72: 341-7. Schmalbruch H. Skeletal Muscle. Berlin : Springer Verlag, 1985. Maltin CA, Harris JB, Cullen MJ. Regeneration of mammalian skeletal muscle following the injection of the snake-venom toxin, taipoxin. Cell Tissue Res. 1983; 232: 565-77. Harris JB, Johnson MA, Karlsson E. Pathological responses of rat skeletal muscle to a single subcutaneous injection of a toxin isolated from the venom of the Australian tiger snake, Notechis scutatus scutatus. Clin. Exp. Pharmacol. Physiol. 1975; 2: 383-404. Schultz E., Albright DJ, Jaryszak DL, David TL. Survival of satellite cells in whole muscle transplants. Anat. Rec. 1988; 222: 12-17. Mitchell CA, McGeachie JK, Grounds MD. The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration. Growth Factors 1996; 13: 1-19. Maley MAL, Davies MJ, Grounds MD. Extracellular matrix growth factors, genetics: Their influence on cell proliferation and myotube formation in primary cultures of adult mouse skeletal muscle. Exp. Cell Res. 1995; 219: 169-79. McGeachie JK, Grounds MD. Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice: An autoradiographic study. Cell Tissue Res. 1987; 248: 125-30. Church JCT. Cell populations in skeletal muscle after regeneration. Embryol. Exp. Morph. 1970a; 23: 531-7. Le Gros Clark WE. An experimental study of the regeneration of mammalian striped muscle. J. Anat. 1946; 80: 24-36. Mitchell CA, Davies MJ, Grounds MD et al. Enhancement of neovascularization in regenerating skeletal muscle by the sustained release of euracamide from a polymer matrix. J. Biomater. Appl. 1996; 10: 230-49. Mastaglia FL, Dawkins RL, Papadimitriou JM. Morphological changes in skeletal muscle after transplantation: A light and electron microscopical study of the initial phases of degeneration and regeneration. J. Neurol. Sci. 1975; 25: 227-47. Snow MH. Myogenic cell formation in regenerating rat skeletal muscle injured by mincing I: A fine structural study. Anat. Rec. 1977a; 188: 181-200. Grounds MD. Towards understanding skeletal muscle regeneration. Pathol. Res. Pract. 1991; 187: 1-22. Artacho-Pérula E., Roldán-Villalobos R., Vaamonde-Lemos R. Quantitative study of the microvascular pattern in tourniquet-induced muscle ischemia. Anal. Quant. Cytol. Histol. 1989; 12: 139-45. Benoit PW, Belt WD. Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic bupivicaine (Marcaine). J. Anat. 1970; 107: 547-66. Ono K., Abe J-I, Kagawa H., Hizawa K. Immunohistochemical analysis of myoblast proliferation and differentiation in experimental skeletal muscle regeneration. Zentralbl. Pathol. 1993; 139: 231-7. Kakulus BA, McHowell JMcC, Roses AD. Duchenne Muscular Dystrophy: Animal Models and Genetic Manipulation. New York : Raven Press, 1992. Prendergast FJ, McGeachie JK, Edis RH, Allbrook D. Whole muscle reimplantation with microneurovascular anastomoses. A functional and histological study. Ann. R. Coll. Surg. Eng. 1977; 59: 393-400. Snow MH. Myogenic cell formation in regenerating rat skeletal muscle injured by mincing II: An autoradiographic study. Anal. Rec. 1977b; 188: 201-18. Carlson BM. The regeneration of skeletal muscle: A review. Am. J. Anat. 1973; 137: 119-49. Mauro A. Satellite cell of skeletal muscle fibres. J. Biophys. Biochem. Cytol. 1961; 9: 493-5. Hansen-Smith FM, Carlson BM. Cellular responses to free grafting of the extensor digitorum longus muscle in rat. J. Neurol. Sci. 1979; 41: 149-73. Schmalbruch H. The morphology of regeneration of skeletal muscles in the rat. Tissue Cell 1976; 8: 673-92. Harris JB, Johnson MA. Further observations on the physiological responses of rat skeletal muscle to toxins isolated from the venom of the Australian tiger snake, Notechis scutatus scutatus. Clin. Exp. Pharmacol. Physiol. 1978; 5: 587-600. Faulkner JA, Weiss SW, McGeachie JK. Revascularisation of skeletal muscle transplanted into the hamster cheek pouch: Intravital and light microscopy. Microvasc. Res. 1983; 26: 49-64. Carlson BM. A quantitative study of muscle fiber survival and regeneration in normal, predenervated and marcaine-treated free muscle grafts in the rat. Exp. Neurol. 1976; 52: 421-32. Roberts P., McGeachie JK. The influence of revascularization, pharmacological agents, and exercise on the regeneration of skeletal muscle, with particular reference to muscle transplantation. Basic Appl. Myol. 1992; 2: 5-16. Allbrook DB. Skeletal muscle regeneration. Muscle Nerve 1981; 4: 234-45. Carlson BM, Gutmann E. Free grafting of the extensor digitorum longus muscle in the rat after marcaine pretreatment. Exp. Neurol. 1976; 53: 82-93. Grounds MD. Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age and sex of host mice. J. Pathol. 1987; 153: 71-82. 1995; 72 1983; 232 1990; 13 1986; 176 1946; 80 1968; 125 1995; 219 1978; 5 1988; 222 1970 1983; 15 1990; 262 1979 1991; 187 1987; 153 1977a; 188 1993; 139 1989; 224 1978; 193 1985 1975; 2 1975; 183 1961; 9 1981 1983; 26 1972; 55 1992; 2 1990; 169 1987; 248 1970a; 23 1984; 87 1985; 8 1981; 4 1993 1992 1970; 107 1972; 4 1977; 188 1996; 13 1976; 8 1996; 10 1977b; 188 1976; 53 1980; 59 1976; 52 1973; 137 1989; 12 1987; 62 1977; 59 1975; 25 1979; 41 |
References_xml | – year: 1985 – volume: 219 start-page: 169 year: 1995 end-page: 79 article-title: Extracellular matrix growth factors, genetics: Their influence on cell proliferation and myotube formation in primary cultures of adult mouse skeletal muscle publication-title: Exp. Cell Res. – volume: 139 start-page: 231 year: 1993 end-page: 7 article-title: Immunohistochemical analysis of myoblast proliferation and differentiation in experimental skeletal muscle regeneration publication-title: Zentralbl. Pathol. – volume: 224 start-page: 1 year: 1989 end-page: 6 article-title: The initiation and duration of myogenesis in transplants of intact skeletal muscles: An autoradiographic study in mice publication-title: Anat. Rec. – volume: 87 start-page: 225 year: 1984 end-page: 51 article-title: The muscle satellite cell: A review publication-title: Int. Rev. Cytol. – volume: 248 start-page: 125 year: 1987 end-page: 30 article-title: Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice: An autoradiographic study publication-title: Cell Tissue Res. – volume: 8 start-page: 673 year: 1976 end-page: 92 article-title: The morphology of regeneration of skeletal muscles in the rat publication-title: Tissue Cell – start-page: 25 year: 1970 end-page: 37 – volume: 12 start-page: 139 year: 1989 end-page: 45 article-title: Quantitative study of the microvascular pattern in tourniquet‐induced muscle ischemia publication-title: Anal. Quant. Cytol. Histol. – volume: 52 start-page: 421 year: 1976 end-page: 32 article-title: A quantitative study of muscle fiber survival and regeneration in normal, predenervated and marcaine‐treated free muscle grafts in the rat publication-title: Exp. Neurol. – volume: 59 start-page: 275 year: 1980 end-page: 82 article-title: Myotoxicity of single and repeated injections of mepivicaine (carbocaine) in the rat publication-title: Anesth. Analg. – volume: 183 start-page: 47 year: 1975 end-page: 62 article-title: Regeneration in free grafts of normal and denervated muscles in the rat: Morphology and histochemistry publication-title: Anat. Rec. – volume: 13 start-page: 305 year: 1990 end-page: 13 article-title: Myogenic cell replication in minced skeletal muscle isografts of Swiss and BALB/c mice publication-title: Muscle Nerve – volume: 188 start-page: 417 year: 1977 end-page: 30 article-title: The free grafting of entire limb muscles in the cat: Morphology publication-title: Anat. Rec. – volume: 72 start-page: 341 year: 1995 end-page: 7 article-title: Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: Evidence for two different populations of satellite cells publication-title: Lab. Invest. – volume: 107 start-page: 547 year: 1970 end-page: 66 article-title: Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic bupivicaine (Marcaine) publication-title: J. Anat. – volume: 8 start-page: 217 year: 1985 end-page: 22 article-title: Response of satellite cells to focal skeletal muscle injury publication-title: Muscle Nerve – volume: 62 start-page: 2507 year: 1987 end-page: 11 article-title: Plasticity of skeletal muscle: Regenerating fibers adapt more rapidly than surviving fibers publication-title: J. Appl. Physiol. – volume: 10 start-page: 230 year: 1996 end-page: 49 article-title: Enhancement of neovascularization in regenerating skeletal muscle by the sustained release of euracamide from a polymer matrix publication-title: J. Biomater. Appl. – volume: 169 start-page: 197 year: 1990 end-page: 207 article-title: Endothelial cell activation during angiogenesis in freely transplanted skeletal muscles in mice and its relationship to the onset of myogenesis publication-title: J. Anat. – volume: 2 start-page: 5 year: 1992 end-page: 16 article-title: The influence of revascularization, pharmacological agents, and exercise on the regeneration of skeletal muscle, with particular reference to muscle transplantation publication-title: Basic Appl. Myol. – volume: 188 start-page: 181 year: 1977a end-page: 200 article-title: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing I: A fine structural study publication-title: Anat. Rec. – volume: 153 start-page: 71 year: 1987 end-page: 82 article-title: Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age and sex of host mice publication-title: J. Pathol. – volume: 262 start-page: 81 year: 1990 end-page: 8 article-title: Migration of myogenic cells in the rat extensor digitorum longus muscle studied with a split autograft model publication-title: Cell Tissue Res. – volume: 5 start-page: 587 year: 1978 end-page: 600 article-title: Further observations on the physiological responses of rat skeletal muscle to toxins isolated from the venom of the Australian tiger snake, Notechis scutatus scutatus publication-title: Clin. Exp. Pharmacol. Physiol. – volume: 232 start-page: 565 year: 1983 end-page: 77 article-title: Regeneration of mammalian skeletal muscle following the injection of the snake‐venom toxin, taipoxin publication-title: Cell Tissue Res. – volume: 188 start-page: 201 year: 1977b end-page: 18 article-title: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing II: An autoradiographic study publication-title: Anal. Rec. – volume: 23 start-page: 531 year: 1970a end-page: 7 article-title: Cell populations in skeletal muscle after regeneration publication-title: Embryol. Exp. Morph. – volume: 2 start-page: 383 year: 1975 end-page: 404 article-title: Pathological responses of rat skeletal muscle to a single subcutaneous injection of a toxin isolated from the venom of the Australian tiger snake, Notechis scutatus scutatus publication-title: Clin. Exp. Pharmacol. Physiol. – volume: 9 start-page: 493 year: 1961 end-page: 5 article-title: Satellite cell of skeletal muscle fibres publication-title: J. Biophys. Biochem. Cytol. – volume: 25 start-page: 227 year: 1975 end-page: 47 article-title: Morphological changes in skeletal muscle after transplantation: A light and electron microscopical study of the initial phases of degeneration and regeneration publication-title: J. Neurol. Sci. – volume: 137 start-page: 119 year: 1973 end-page: 49 article-title: The regeneration of skeletal muscle: A review publication-title: Am. J. Anat. – volume: 187 start-page: 1 year: 1991 end-page: 22 article-title: Towards understanding skeletal muscle regeneration publication-title: Pathol. Res. Pract. – start-page: 501 year: 1979 end-page: 7 – volume: 193 start-page: 259 year: 1978 end-page: 67 article-title: Cell proliferation in skeletal muscle following denervation or tenotomy publication-title: Cell Tissue Res. – volume: 59 start-page: 393 year: 1977 end-page: 400 article-title: Whole muscle reimplantation with microneurovascular anastomoses. A functional and histological study publication-title: Ann. R. Coll. Surg. Eng. – volume: 4 start-page: 234 year: 1981 end-page: 45 article-title: Skeletal muscle regeneration publication-title: Muscle Nerve – start-page: 3 year: 1981 end-page: 18 – volume: 222 start-page: 12 year: 1988 end-page: 17 article-title: Survival of satellite cells in whole muscle transplants publication-title: Anat. Rec. – volume: 15 start-page: 187 year: 1983 end-page: 98 article-title: The regeneration of skeletal muscle fibres following injury: A review publication-title: Med. Sci. Sports Exerc. – volume: 13 start-page: 1 year: 1996 end-page: 19 article-title: The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration publication-title: Growth Factors – year: 1992 – volume: 53 start-page: 82 year: 1976 end-page: 93 article-title: Free grafting of the extensor digitorum longus muscle in the rat after marcaine pretreatment publication-title: Exp. Neurol. – volume: 176 start-page: 191 year: 1986 end-page: 205 article-title: The clustering of acetyl choline receptors and formation of neuro muscular junctions in regenerating mammalian muscle grafts publication-title: Am. J. Anat. – start-page: 118 year: 1970 end-page: 21 – volume: 26 start-page: 49 year: 1983 end-page: 64 article-title: Revascularisation of skeletal muscle transplanted into the hamster cheek pouch: Intravital and light microscopy publication-title: Microvasc. Res. – start-page: 210 year: 1993 end-page: 56 – volume: 4 year: 1972 – volume: 125 start-page: 447 year: 1968 end-page: 72 article-title: The regeneration of the completely excised gastrocnemius muscle in the frog and rat from minced muscle fragments publication-title: J. Morphol. – volume: 80 start-page: 24 year: 1946 end-page: 36 article-title: An experimental study of the regeneration of mammalian striped muscle publication-title: J. Anat. – volume: 41 start-page: 149 year: 1979 end-page: 73 article-title: Cellular responses to free grafting of the extensor digitorum longus muscle in rat publication-title: J. Neurol. Sci. – volume: 55 start-page: 406 year: 1972 end-page: 19 article-title: Basal lamina: The scaffold for orderly cell replacement publication-title: J. Cell Biol. |
SSID | ssj0004688 ssj0016695 |
Score | 1.4376068 |
SecondaryResourceType | review_article |
Snippet | Background: It is now well established that mature skeletal muscle has the ability to regenerate, and reports on this phenomenon have existed in the research... It is now well established that mature skeletal muscle has the ability to regenerate, and reports on this phenomenon have existed in the research literature... |
SourceID | pubmed wiley istex |
SourceType | Index Database Publisher |
StartPage | 35 |
SubjectTerms | Animals grafting Key words Mice Muscle, Skeletal - blood supply Muscle, Skeletal - innervation Muscle, Skeletal - physiology Muscle, Skeletal - transplantation myoblast myogenesis myotube Rats regeneration Regeneration - physiology reinnervation revascularization satellite cell skeletal muscle Transplantation, Heterotopic |
Title | EXPERIMENTAL SKELETAL MUSCLE GRAFTS AS A MODEL OF REGENERATION |
URI | https://api.istex.fr/ark:/67375/WNG-PJ3957ZQ-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1445-2197.1997.tb01891.x https://www.ncbi.nlm.nih.gov/pubmed/9033374 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA_iky9-oMP5RR_Et442SZP0RSiu25j7ch84fAlpk74Mp8wNhn-9ubbOMfBFhFJKaQu53iW_u9z9DqFbQRTlGhtXexy7VDHsKp9ZZ8XHxs6GAkjPINuix1oT2p4G07I8GmphCn6ITcANLCOfr8HAVfKxY-Q0cK3FcSi54xDj9EXo1wBR-oRDfl99iLeKJMXP_gJjYdHbwKOuYAKXdKRljs8v37X4FUS_3lqstgFtviI1jtDr91iKRJRZbbVMaunnDs3jfw32GB2W0NWJCl07QXtmforu4-nA-oLQEiDqOKPHuBPDRXcCFB9Ocxg1xiMnsofT7dfjjtNvOMO4yJeD4NgZmjTi8UPLLXsyuKld-gOXpplieRsF7DMdKGUEMcoPKeZeqEJtJ4wEayYyE_iJ0VxYeKIJuJEWC5nUIxW0P3-bm3PkYJyk1j3TItOcJmmWpNa5wpib1KqI4lkV3eXilu8F74ZUixmkofFAPveactCGLcaXJ9muokrxPzZPhh4hhNMqYrlQN_e3PR4aSBCnBHHKUpxyLaPeiAQXf33xEh0U_LYQo7lC-8vFylxb1LJMbnJttOfeoPsF4ufXtg |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9jHvTiByrOzx7EW0ebpkl6EYrrNrdu033g8BLSJr0IU2SD4V9vXtvNMfAiQg-ltIW85L33ey8vv4fQLfckYQprWzkM20RSbEuXmmDFxdpYQw6kZ1Bt0aftCelM_WkF9VZnYQp-iHXCDTQjt9eg4JCQ3tJy4ttG5RicuWOQ5HR54NYNpNwx-u9ChVdjiDeOSfKfHQZKg6K7gUNsTjkuCUnLKp9ffmwQLAh_ueGuNiFt7pOaB2i2Gk1RivJWX8yTevq1RfT4b8M9RPslerXCYrkdoYqeHaP7aPpkwkHoChDG1qgbxRHc9CbA8mG1hmFzPLJCc1m9QSOKrUHTGkZFyRzkx07QpBmNH9p22ZbBTo33922SZpLmnRSwS5Uvpeaelm5AMHMCGShjMxKsKM-07yZaMW4QivIgkjRwSKeOd4qqs_eZPkMWxklqIjTFM8VIkmZJauIrjJlOzSqRLKuhu1ze4qOg3hDy8w0q0ZgvXvot8dSBXcbXZ9GpodNiQtZvBo7neYzUEM2lun6-GfQQX4A4BYhTlOIUSxH2R55__tcPb9Bue9yLRfzY716gvYLuFlI2l6g6_1zoKwNi5sl1vjS_AYoP2ss |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-iIL74gYrzsw_iW0ebpkn6IhTXOrfuw83h8CWkTfoynEMmiH-9ubbOIvgiQh9KaQu53CW_u9z9DqFL7knCFNa2chi2iaTYli41zoqLtVkNOZCeQbZFn7YnpDP1p1V5NNTClPwQq4AbWEaxXoOBL1T-w8iJbxuLY1ByxyDG6fLAbRpEuUEoDoBJvzXCtSpJ_n3AQGlQNjdwiM0pxxUfaZXk88uPDYAF2b_Xdqs6oi22pHgHPX8NpsxEmTXflmkz-_jB8_hfo91F2xV2tcJS2fbQmp7vo-toOjTOIPQECBNr3I2SCG56E-D4sG5HYfwwtkJzWb1BK0qsQWyNojJhDqJjB2gSRw83bbtqymBnZu_3bZLlkhZ9FLBLlS-l5p6WbkAwcwIZKLNipFhRnmvfTbVi3OAT5YEfacCQzhzvEK3PX-b6CFkYp5nxzxTPFSNplqeZ8a4wZjozOiJZ3kBXhbjFoiTeEPJ1BnlozBeP_Vsx7MAZ49O96DTQYTkfqzcDx_M8RhqIFkJdPa-7PMQXIE4B4hSVOMW7CPtjzz_-64cXaHPYikVy1--eoK2S6xbiNadoffn6ps8Mglmm54VifgL5u9l6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EXPERIMENTAL+SKELETAL+MUSCLE+GRAFTS+AS+A+MODEL+OF+REGENERATION&rft.jtitle=Australian+and+New+Zealand+Journal+of+Surgery&rft.au=Lawson%E2%80%90Smith%2C+Matthew+J.&rft.au=McGeachie%2C+John+K.&rft.date=1997-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0004-8682&rft.eissn=1445-2197&rft.volume=67&rft.issue=1&rft.spage=35&rft.epage=39&rft_id=info:doi/10.1111%2Fj.1445-2197.1997.tb01891.x&rft.externalDBID=10.1111%252Fj.1445-2197.1997.tb01891.x&rft.externalDocID=ANS35 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-8682&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-8682&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-8682&client=summon |