Promoting Cardiomyogenesis of hBMSC with a Forming Self‐Assembly hBMSC Microtissues/HA‐GRGD/SF‐PCL Cardiac Patch Is Mediated by the Synergistic Functions of HA‐GRGD
Bone marrow‐derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing huma...
Saved in:
Published in | Macromolecular bioscience Vol. 17; no. 3; pp. np - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bone marrow‐derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow–derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)‐poly(ε‐caprolactone) (PCL) based patches is hereby designed. After an elastic SF‐PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF‐PCL(HSP) and HA‐GRGD/SF‐PCL(HGSP) patches are fabricated by photochemically grafting HA and HA‐GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium assay. Notably, the formation of 5‐aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of ≈317 μm wide and 26 μm high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac‐specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA‐GRGD on enhancing the activity of F‐actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering.
Hyaluronic acid/GRGD decorated silk cardiac patches mediate human bone marrow–derived mesenchymal stem cell from 2D monolayer migrating to 3D microtissues at cardiomyogenic differentiation. |
---|---|
AbstractList | Bone marrow‐derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow–derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)‐poly(ε‐caprolactone) (PCL) based patches is hereby designed. After an elastic SF‐PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF‐PCL(HSP) and HA‐GRGD/SF‐PCL(HGSP) patches are fabricated by photochemically grafting HA and HA‐GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium assay. Notably, the formation of 5‐aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of ≈317 μm wide and 26 μm high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac‐specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA‐GRGD on enhancing the activity of F‐actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering.
image Bone marrow-derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow-derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)-poly(ε-caprolactone) (PCL) based patches is hereby designed. After an elastic SF-PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF-PCL(HSP) and HA-GRGD/SF-PCL(HGSP) patches are fabricated by photochemically grafting HA and HA-GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Notably, the formation of 5-aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of ≈317 μm wide and 26 μm high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac-specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA-GRGD on enhancing the activity of F-actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering. Bone marrow‐derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow–derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)‐poly(ε‐caprolactone) (PCL) based patches is hereby designed. After an elastic SF‐PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF‐PCL(HSP) and HA‐GRGD/SF‐PCL(HGSP) patches are fabricated by photochemically grafting HA and HA‐GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium assay. Notably, the formation of 5‐aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of ≈317 μm wide and 26 μm high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac‐specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA‐GRGD on enhancing the activity of F‐actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering. Hyaluronic acid/GRGD decorated silk cardiac patches mediate human bone marrow–derived mesenchymal stem cell from 2D monolayer migrating to 3D microtissues at cardiomyogenic differentiation. Bone marrow-derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow-derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)-poly( epsilon -caprolactone) (PCL) based patches is hereby designed. After an elastic SF-PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF-PCL(HSP) and HA-GRGD/SF-PCL(HGSP) patches are fabricated by photochemically grafting HA and HA-GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo p henyl)-2H-tetrazolium assay. Notably, the formation of 5-aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of approximately 317 mu m wide and 26 mu m high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac-specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA-GRGD on enhancing the activity of F-actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering. Hyaluronic acid/GRGD decorated silk cardiac patches mediate human bone marrow-derived mesenchymal stem cell from 2D monolayer migrating to 3D microtissues at cardiomyogenic differentiation. Bone marrow-derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow-derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)-poly([epsi]-caprolactone) (PCL) based patches is hereby designed. After an elastic SF-PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF-PCL(HSP) and HA-GRGD/SF-PCL(HGSP) patches are fabricated by photochemically grafting HA and HA-GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Notably, the formation of 5-aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of [asymptotically =]317 µm wide and 26 µm high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac-specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA-GRGD on enhancing the activity of F-actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering. |
Author | Lo, Hsin‐Yu Chou, Tzung‐Han Wang, Shoei‐Shen Chung, Tze‐Wen Chen, Jan‐Hou |
Author_xml | – sequence: 1 givenname: Tze‐Wen surname: Chung fullname: Chung, Tze‐Wen email: twchung@ym.edu.tw organization: National Yang‐Ming University – sequence: 2 givenname: Hsin‐Yu surname: Lo fullname: Lo, Hsin‐Yu organization: National Yang‐Ming University – sequence: 3 givenname: Tzung‐Han surname: Chou fullname: Chou, Tzung‐Han organization: National Yunlin University of Science and Technology – sequence: 4 givenname: Jan‐Hou surname: Chen fullname: Chen, Jan‐Hou organization: National Yunlin University of Science and Technology – sequence: 5 givenname: Shoei‐Shen surname: Wang fullname: Wang, Shoei‐Shen organization: National Taiwan University College of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27678265$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksuK2zAUhk2Z0rm02y6LoJtukki-SPIy42kygYSGpl0bSTlKNNjWVLIZvOsj9EHmqeZJKjdpCgOlRQgdwff_0rlcRmeNbSCK3hI8JhjHk1pIM44xoRgTlryILggldJSRPDs7xZydR5fe3w0Iz-NX0XnMKOMxzS6ix7WztW1Ns0OFcFtj697uoAFvPLIa7a9XmwI9mHaPBJpZVw_gBir99P3H1HuoZdUfoZVRLhh534Gf3E4DMP88v5lsZiFaF8uDvVBoLVq1RwuPVhDuLWyR7FG7B7TpG3A741uj0KxrVGts8-sTJ7PX0UstKg9vjudV9HX28UtxO1p-mi-K6XKkUkyTEculUiAx1pxmnMcq3lKVhiWo1KBTmeuMh5rhlENCqMTANAw7S2kqmU6uog8H33tnv4V02rI2XkFViQZs50vCOWGUZEnyH2iWszS0hwb0_TP0znauCYkEijHGSZzhQL07Up2sYVveO1ML15e_WxaA8QEI5fbegT4hBJfDTJTDTJSnmQiC9JlAmVYM1W2dMNXfZflB9mAq6P_xSLmaXi_-aH8CyP3ODw |
CitedBy_id | crossref_primary_10_1021_acsnano_0c10724 crossref_primary_10_1161_CIRCULATIONAHA_123_067097 crossref_primary_10_1038_s41551_021_00812_y crossref_primary_10_1002_adhm_202000735 crossref_primary_10_1002_term_2616 crossref_primary_10_1177_08853282211018529 crossref_primary_10_3390_ma11050795 crossref_primary_10_3390_s20020366 |
Cites_doi | 10.1089/scd.2008.0292 10.1016/j.biomaterials.2012.04.030 10.1074/jbc.R100037200 10.1089/ten.2006.12.2729 10.1111/j.1525-1594.2006.00178.x 10.1073/pnas.1008117107 10.1093/eurjhf/hfn017 10.1007/s10856-012-4764-6 10.1016/j.biomaterials.2009.01.030 10.1532/IJH97.07041 10.1002/mabi.201500396 10.1039/b927168f 10.1161/CIRCRESAHA.108.175158 10.1016/j.biomaterials.2009.09.096 10.18063/IJB.2016.01.006 10.1002/jbm.a.30225 10.1016/j.biomaterials.2004.02.047 10.1016/j.colsurfb.2008.06.014 10.1634/stemcells.2005-0186 10.1016/j.biomaterials.2013.01.091 10.1016/j.memsci.2007.09.068 10.1016/j.biomaterials.2006.09.009 10.1634/stemcells.2007-0826 10.1016/j.actbio.2015.11.006 10.1016/j.progpolymsci.2013.09.002 10.1083/jcb.200310024 10.1016/S0142-9612(02)00231-4 10.1038/nrm2593 10.1089/ten.teb.2013.0537 10.1083/jcb.153.7.1427 10.18063/IJB.2016.01.005 10.1016/j.biomaterials.2012.08.069 10.1016/j.biomaterials.2013.04.034 10.1371/journal.pone.0121155 10.1111/j.1743-6109.2006.00119.x 10.1016/j.actbio.2009.12.033 10.1097/01.blo.0000205879.50834.fe 10.1155/2012/346972 10.1016/j.biomaterials.2010.12.035 10.1016/j.jss.2009.09.052 10.1002/stem.1191 10.1046/j.1525-1594.2001.025008617.x 10.1016/S0142-9612(03)00361-2 10.1371/journal.pone.0034960 10.1016/j.biomaterials.2007.10.048 10.1016/j.carbpol.2012.04.057 10.1016/j.biomaterials.2010.09.023 10.1002/mabi.200700030 10.1016/j.biomaterials.2012.12.021 10.1002/mame.201500028 10.1074/jbc.M411082200 10.1002/adhm.201500154 10.1016/j.tibtech.2012.12.003 10.1016/j.biomaterials.2009.03.057 10.1016/j.eurpolymj.2015.08.025 10.1016/j.biomaterials.2010.08.017 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/mabi.201600173 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Engineering Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1616-5195 |
EndPage | n/a |
ExternalDocumentID | 4320853351 27678265 10_1002_mabi_201600173 MABI201600173 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Council of the Republic of China, Taiwan funderid: 103‐2221‐E‐010‐006 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZY4 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4063-79bcceb00f865882c2d6c4c4ca6bfef4b9f58201048e316b0e7fee7fe5464b7f3 |
IEDL.DBID | DR2 |
ISSN | 1616-5187 |
IngestDate | Thu Jul 10 20:55:43 EDT 2025 Fri Jul 11 01:50:49 EDT 2025 Fri Jul 25 10:33:41 EDT 2025 Wed Feb 19 02:40:24 EST 2025 Tue Jul 01 04:32:47 EDT 2025 Thu Apr 24 23:02:46 EDT 2025 Wed Jan 22 16:35:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | hBMSC microtissues/patch GRGD cardiac tissue engineering cardiomyogenesis hyaluronic acid |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4063-79bcceb00f865882c2d6c4c4ca6bfef4b9f58201048e316b0e7fee7fe5464b7f3 |
Notes | Present address: Department of Biomedical Engineering, National Yang‐Ming University, Taipei 11221, Taiwan ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27678265 |
PQID | 1877781250 |
PQPubID | 2034242 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1881761533 proquest_miscellaneous_1859741606 proquest_journals_1877781250 pubmed_primary_27678265 crossref_primary_10_1002_mabi_201600173 crossref_citationtrail_10_1002_mabi_201600173 wiley_primary_10_1002_mabi_201600173_MABI201600173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2017 2017-03-00 20170301 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular bioscience |
PublicationTitleAlternate | Macromol Biosci |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 165 2006; 30 2012; 2012 2010; 107 2015; 71 2002; 277 2016; 30 2003; 19 2008; 102 2005; 26 2014; 20 2007; 28 2009; 11 2011; 168 2009; 10 2006; 24 2008; 29 2008; 316 2007; 7 2008; 66 2005; 72 2006; 448 2012; 23 2010; 6 2007; 26 2009; 18 2010; 31 2015; 4 2006; 12 2006; 14 2015; 10 1997 2011; 32 2015; 9 2016; 16 2012; 33 2001; 25 2012; 30 2009; 30 2016; 2 2004; 279 2001; 153 2013; 34 2002; 23 2013; 31 2003; 24 2014; 39 2007; 86 2012; 7 2012; 89 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Lanza R. P. (e_1_2_6_43_1) 1997 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 Xing Y. (e_1_2_6_50_1) 2003; 19 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 28 start-page: 641 year: 2007 publication-title: Biomaterials – volume: 89 start-page: 723 year: 2012 publication-title: Carbohydr. Polym. – volume: 12 start-page: 2729 year: 2006 publication-title: Tissue Eng. – volume: 7 start-page: 643 year: 2007 publication-title: Macromol. Biosci. – volume: 316 start-page: 89 year: 2008 publication-title: J. Membr. Sci. – volume: 32 start-page: 2734 year: 2011 publication-title: Biomaterials – volume: 30 start-page: 35 year: 2006 publication-title: Artif. Organs – start-page: 225 year: 1997 – volume: 2 start-page: 63 year: 2016 publication-title: Int. J. Bioprinting – volume: 277 start-page: 4581 year: 2002 publication-title: J. Biol. Chem. – volume: 20 start-page: 365 year: 2014 publication-title: Tissue Eng., Part B – volume: 66 start-page: 218 year: 2008 publication-title: Colloids Surf., B – volume: 10 start-page: e0121155 year: 2015 publication-title: PLoS One – volume: 24 start-page: 928 year: 2006 publication-title: Stem Cells – volume: 34 start-page: 3938 year: 2013 publication-title: Biomaterials – volume: 18 start-page: 907 year: 2009 publication-title: Stem Cells Dev. – volume: 29 start-page: 1017 year: 2008 publication-title: Biomaterials – volume: 6 start-page: 3395 year: 2010 publication-title: Soft Matter – volume: 23 start-page: 3067 year: 2012 publication-title: J. Mater. Sci.: Mater. Med. – volume: 102 start-page: 1155 year: 2008 publication-title: Circ. Res. – volume: 24 start-page: 4655 year: 2003 publication-title: Biomaterials – volume: 2012 start-page: 346972 year: 2012 publication-title: Biochem. Res. Int. – volume: 33 start-page: 5541 year: 2012 publication-title: Biomaterials – volume: 279 start-page: 55651 year: 2004 publication-title: J. Biol. Chem. – volume: 10 start-page: 21 year: 2009 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 34 start-page: 6339 year: 2013 publication-title: Biomaterials – volume: 33 start-page: 8943 year: 2012 publication-title: Biomaterials – volume: 153 start-page: 1427 year: 2001 publication-title: J. Cell Biol. – volume: 26 start-page: 1695 year: 2007 publication-title: Stem Cells – volume: 86 start-page: 17 year: 2007 publication-title: Int. J. Hematol. – volume: 30 start-page: 2705 year: 2009 publication-title: Biomaterials – volume: 32 start-page: 734 year: 2011 publication-title: Biomaterials – volume: 19 start-page: 242 year: 2003 publication-title: Fayixue Zazhi – volume: 30 start-page: 2283 year: 2012 publication-title: Stem Cells – volume: 23 start-page: 4803 year: 2002 publication-title: Biomaterials – volume: 26 start-page: 147 year: 2005 publication-title: Biomaterials – volume: 14 start-page: 252 year: 2006 publication-title: Wound Repair Regener. – volume: 11 start-page: 147 year: 2009 publication-title: Eur. J. Heart Failure – volume: 16 start-page: 958 year: 2016 publication-title: Macromol. Biosci. – volume: 2 start-page: 6 year: 2016 publication-title: J. Bioprinting – volume: 31 start-page: 8953 year: 2010 publication-title: Biomaterials – volume: 6 start-page: 2028 year: 2010 publication-title: Acta Biomater. – volume: 4 start-page: 2012 year: 2015 publication-title: Adv. Healthcare Mater. – volume: 39 start-page: 251 year: 2014 publication-title: Prog. Polym. Sci. – volume: 448 start-page: 234 year: 2006 publication-title: Clin. Orthop. Relat. Res. – volume: 30 start-page: 3757 year: 2009 publication-title: Biomaterials – volume: 30 start-page: 177 year: 2016 publication-title: Acta Biomater. – volume: 9 start-page: 858 year: 2015 publication-title: Macromol. Mater. Eng. – volume: 31 start-page: 854 year: 2010 publication-title: Biomaterials – volume: 71 start-page: 490 year: 2015 publication-title: Eur. Polym. J. – volume: 107 start-page: 13724 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 108 year: 2013 publication-title: Trends Biotechnol. – volume: 7 start-page: e34960 year: 2012 publication-title: PLoS One – volume: 34 start-page: 2428 year: 2013 publication-title: Biomaterials – volume: 168 start-page: 9 year: 2011 publication-title: J. Surg. Res. – volume: 25 start-page: 617 year: 2001 publication-title: Artif. Organs – volume: 165 start-page: 893 year: 2004 publication-title: J. Cell Biol. – volume: 72 start-page: 213 year: 2005 publication-title: J. Biomed. Mater. Res., Part A – ident: e_1_2_6_49_1 doi: 10.1089/scd.2008.0292 – ident: e_1_2_6_13_1 doi: 10.1016/j.biomaterials.2012.04.030 – volume: 19 start-page: 242 year: 2003 ident: e_1_2_6_50_1 publication-title: Fayixue Zazhi – ident: e_1_2_6_28_1 doi: 10.1074/jbc.R100037200 – ident: e_1_2_6_47_1 doi: 10.1089/ten.2006.12.2729 – ident: e_1_2_6_38_1 doi: 10.1111/j.1525-1594.2006.00178.x – ident: e_1_2_6_8_1 doi: 10.1073/pnas.1008117107 – ident: e_1_2_6_18_1 doi: 10.1093/eurjhf/hfn017 – ident: e_1_2_6_39_1 doi: 10.1007/s10856-012-4764-6 – ident: e_1_2_6_52_1 doi: 10.1016/j.biomaterials.2009.01.030 – ident: e_1_2_6_4_1 doi: 10.1532/IJH97.07041 – ident: e_1_2_6_1_1 doi: 10.1002/mabi.201500396 – ident: e_1_2_6_45_1 doi: 10.1039/b927168f – ident: e_1_2_6_2_1 doi: 10.1161/CIRCRESAHA.108.175158 – ident: e_1_2_6_32_1 doi: 10.1016/j.biomaterials.2009.09.096 – ident: e_1_2_6_15_1 doi: 10.18063/IJB.2016.01.006 – ident: e_1_2_6_19_1 doi: 10.1002/jbm.a.30225 – ident: e_1_2_6_22_1 doi: 10.1016/j.biomaterials.2004.02.047 – ident: e_1_2_6_41_1 doi: 10.1016/j.colsurfb.2008.06.014 – ident: e_1_2_6_54_1 doi: 10.1634/stemcells.2005-0186 – ident: e_1_2_6_57_1 doi: 10.1016/j.biomaterials.2013.01.091 – ident: e_1_2_6_42_1 doi: 10.1016/j.memsci.2007.09.068 – ident: e_1_2_6_12_1 doi: 10.1016/j.biomaterials.2006.09.009 – ident: e_1_2_6_3_1 doi: 10.1634/stemcells.2007-0826 – ident: e_1_2_6_11_1 doi: 10.1016/j.actbio.2015.11.006 – ident: e_1_2_6_26_1 doi: 10.1016/j.progpolymsci.2013.09.002 – ident: e_1_2_6_55_1 doi: 10.1083/jcb.200310024 – ident: e_1_2_6_34_1 doi: 10.1016/S0142-9612(02)00231-4 – ident: e_1_2_6_53_1 doi: 10.1038/nrm2593 – ident: e_1_2_6_7_1 doi: 10.1089/ten.teb.2013.0537 – ident: e_1_2_6_58_1 doi: 10.1083/jcb.153.7.1427 – ident: e_1_2_6_17_1 doi: 10.18063/IJB.2016.01.005 – ident: e_1_2_6_37_1 doi: 10.1016/j.biomaterials.2012.08.069 – ident: e_1_2_6_6_1 doi: 10.1016/j.biomaterials.2013.04.034 – ident: e_1_2_6_27_1 doi: 10.1371/journal.pone.0121155 – ident: e_1_2_6_29_1 doi: 10.1111/j.1743-6109.2006.00119.x – ident: e_1_2_6_16_1 doi: 10.1016/j.actbio.2009.12.033 – ident: e_1_2_6_24_1 doi: 10.1097/01.blo.0000205879.50834.fe – ident: e_1_2_6_56_1 doi: 10.1155/2012/346972 – ident: e_1_2_6_9_1 doi: 10.1016/j.biomaterials.2010.12.035 – ident: e_1_2_6_31_1 doi: 10.1016/j.jss.2009.09.052 – ident: e_1_2_6_10_1 doi: 10.1002/stem.1191 – ident: e_1_2_6_40_1 doi: 10.1046/j.1525-1594.2001.025008617.x – ident: e_1_2_6_35_1 doi: 10.1016/S0142-9612(03)00361-2 – ident: e_1_2_6_36_1 doi: 10.1371/journal.pone.0034960 – ident: e_1_2_6_46_1 doi: 10.1016/j.biomaterials.2007.10.048 – ident: e_1_2_6_30_1 doi: 10.1016/j.carbpol.2012.04.057 – ident: e_1_2_6_20_1 doi: 10.1016/j.biomaterials.2010.09.023 – ident: e_1_2_6_23_1 doi: 10.1002/mabi.200700030 – ident: e_1_2_6_5_1 doi: 10.1016/j.biomaterials.2012.12.021 – ident: e_1_2_6_14_1 doi: 10.1002/mame.201500028 – ident: e_1_2_6_48_1 doi: 10.1074/jbc.M411082200 – ident: e_1_2_6_21_1 doi: 10.1002/adhm.201500154 – ident: e_1_2_6_51_1 doi: 10.1016/j.tibtech.2012.12.003 – ident: e_1_2_6_25_1 doi: 10.1016/j.biomaterials.2009.03.057 – ident: e_1_2_6_44_1 doi: 10.1016/j.eurpolymj.2015.08.025 – ident: e_1_2_6_33_1 doi: 10.1016/j.biomaterials.2010.08.017 – start-page: 225 volume-title: Principle of Tissue Engineering year: 1997 ident: e_1_2_6_43_1 |
SSID | ssj0017892 |
Score | 2.211282 |
Snippet | Bone marrow‐derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo... Bone marrow-derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | np |
SubjectTerms | Actins - metabolism Biocompatible Materials Bone marrow Bone Marrow Cells - cytology Caproates - chemistry cardiac tissue engineering cardiomyogenesis Cell Differentiation - genetics Cell Proliferation - genetics Fibroins - chemistry GRGD hBMSC microtissues/patch Humans hyaluronic acid Hyaluronic Acid - chemistry Lactones - chemistry Mesenchymal Stromal Cells - cytology Myocardial Infarction - pathology Myocardial Infarction - therapy Myocytes, Cardiac - cytology Silk - chemistry Stem cells Tetrazolium Salts - chemistry Thiazoles - chemistry Tissue Culture Techniques Tissue Engineering Tissue Scaffolds |
Title | Promoting Cardiomyogenesis of hBMSC with a Forming Self‐Assembly hBMSC Microtissues/HA‐GRGD/SF‐PCL Cardiac Patch Is Mediated by the Synergistic Functions of HA‐GRGD |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmabi.201600173 https://www.ncbi.nlm.nih.gov/pubmed/27678265 https://www.proquest.com/docview/1877781250 https://www.proquest.com/docview/1859741606 https://www.proquest.com/docview/1881761533 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQXuDC_09gQUZC4uRt4ia299gNZLuIoGrLSnuLbMfurmgTRNpDOfEIPAhPxZPgcX6gIEACRZESZWJNNPbMF3v8DULPhLbA6VESoUJJYofoiUwoIzYqORR2iJSvQ5a_YdOz-NV5cv7DLv6WH2KYcIOR4f01DHCpmtF30tCVVJeQmgURmwPdJyRsASo6HfijIi58VWSHahhJIsF71saQjnZf341Kv0DNXeTqQ092A8le6Tbj5N3BZq0O9Mef-Bz_56tuousdLsWTtiPdQldMdRtdTftycHfQl1mbuFctcOpzWFfbegGO8rLBtcUXR_k8xTCriyXOasiwWeC5Wdqvnz7DwvJKLbedUA45gGtv8GY0nTiB49PjF6N55q5m6eu2eanxzEWJC3zS4NyXEzElVlvs8Cqeb2HDomeYxpmLy37ogBJDY3fRWfbybTolXakHoh2iGBN-qLSGMkZWOEgkqKYl07E7JFPW2Fgd2gSwivM3ZhwxFRpuDZxJzGLF7fge2qvqyjxAWJe0dJ5FGGvLmDHtALCOachCyVhiQxEg0pu60B0POpTjWBYtgzMtwAbFYIMAPR_k37cMIL-V3O97TtF5gqaIgHDRoagkDNDT4bGzHSzMyMrUG5CB3zrXCvuTjIi4R-cBut_2ykEdyh3koCwJEPV96y96Fvnk6GS4e_gvLz1C1yjgG5-Mt4_21h825rFDZ2v1xI_Ab4DNMxk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6CcTFu-GcEBhgJiausiZs43mWXkbXQTNW6SdxFsWN3E22CaHtRrngEHoSn4knwcX5QQYAEiiIlyonl6NjnfHFOvg_gJZcaOT0KlwsvdwOD6N08pMzVfhGhsIMvrA5ZesqGF8Gbd2FbTYj_wtT8EN2CG84MG69xguOCdO8Ha-giF1dYm4UpO-pfhxso6430-cdnHYOUH3Gri2xwDXNDn0ctb6NHe9v3b-elX8DmNna1ySe5DaLtdl1z8v5gvRIH8tNPjI7_9Vx34FYDTcmgHkt34Zoq78Fu3CrC3Yevk7p2r5yR2JaxLjbVDGPl1ZJUmlwepdOY4MIuyUlSYZHNjEzVXH_7_AW_LS_EfNMYpVgGuLI-X_aGA2NwcnZy3Jsm5mgSj-vmc0kmJlFcktGSpFZRRBVEbIiBrGS6wX8WLck0SUxqtrMHO9E19gAuktfn8dBt1B5caUBF340OhZSoZKS5QUWcSlowGZgtZ0IrHYhDHSJcMSFH9X0mPBVphXsYsEBEuv8QdsqqVI-AyIIWJrhwpXURMCYNBpYB9ZiXMxZqjzvgtr7OZEOFjooc86wmcaYZ-iDrfODAq87-Q00C8lvL_XboZE0wWGY-ci4aIBV6DrzoLhvf4beZvFTVGm3wzc60wv5kw_3IAnQH9uph2XWHRgZ1UBY6QO3g-ks_s3RwNOrOHv_LTc9hd3iejrPx6PTtE7hJEe7Y2rx92Fl9XKunBqytxDM7Hb8DmZA3NQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6CIQE3jL9BYICRkLjKmriJk1526bIWlqlambS7KHbsbqJNJtpelCsegQfhqfYk83F-oCBAAkWREuXEcnTsc744J98H8CYUCjk9cjvkTmZ7GtHbmU-Zrdw8QGEHlxsdsuSYDU-9d2f-2Q9_8Vf8EO2CG84ME69xgl_mqvOdNHSe8QsszcKMHXRvwi2POT0UbxictARSbhAaWWQNa5jtu2HQ0DY6tLN5_2Za-gVrbkJXk3vibciaXlclJx_3Vku-Jz7_ROj4P491H-7VwJT0q5H0AG7I4iHciRo9uEfwbVxV7hVTEpki1vm6nGKkvFiQUpHz_WQSEVzWJRmJSyyxmZKJnKmrL1_xy_Kcz9a1UYJFgEvj8UVn2NcGhyeHg84k1kfj6KhqPhNkrNPEORktSGL0RGRO-JpowEoma_xj0VBMk1gnZjN3sBNtY4_hND74EA3tWuvBFhpSdO2gx4VAHSMVakwUUkFzJjy9ZYwrqTzeUz6CFR1wZNdl3JGBkrj7HvN4oLo7sFWUhXwKROQ016EllErlHmNCI2DhUYc5GWO-ckIL7MbVqaiJ0FGPY5ZWFM40RR-krQ8seNvaX1YUIL-13G1GTlqHgkXqIuOihlG-Y8Hr9rL2HX6ZyQpZrtAG3-t0K-xPNqEbGHhuwZNqVLbdoYHGHJT5FlAztv7SzzTp74_as2f_ctMruD0exOnR6Pj9c7hLEeuYwrxd2Fp-WskXGqkt-UszGa8Bxjk15A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promoting+Cardiomyogenesis+of+hBMSC+with+a+Forming+Self-Assembly+hBMSC+Microtissues%2FHA-GRGD%2FSF-PCL+Cardiac+Patch+Is+Mediated+by+the+Synergistic+Functions+of+HA-GRGD&rft.jtitle=Macromolecular+bioscience&rft.au=Chung%2C+Tze-Wen&rft.au=Lo%2C+Hsin-Yu&rft.au=Chou%2C+Tzung-Han&rft.au=Chen%2C+Jan-Hou&rft.date=2017-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-5187&rft.eissn=1616-5195&rft.volume=17&rft.issue=3&rft_id=info:doi/10.1002%2Fmabi.201600173&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4320853351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-5187&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-5187&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-5187&client=summon |