Promoting Cardiomyogenesis of hBMSC with a Forming Self‐Assembly hBMSC Microtissues/HA‐GRGD/SF‐PCL Cardiac Patch Is Mediated by the Synergistic Functions of HA‐GRGD

Bone marrow‐derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing huma...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular bioscience Vol. 17; no. 3; pp. np - n/a
Main Authors Chung, Tze‐Wen, Lo, Hsin‐Yu, Chou, Tzung‐Han, Chen, Jan‐Hou, Wang, Shoei‐Shen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bone marrow‐derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow–derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)‐poly(ε‐caprolactone) (PCL) based patches is hereby designed. After an elastic SF‐PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF‐PCL(HSP) and HA‐GRGD/SF‐PCL(HGSP) patches are fabricated by photochemically grafting HA and HA‐GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium assay. Notably, the formation of 5‐aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of ≈317 μm wide and 26 μm high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac‐specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA‐GRGD on enhancing the activity of F‐actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering. Hyaluronic acid/GRGD decorated silk cardiac patches mediate human bone marrow–derived mesenchymal stem cell from 2D monolayer migrating to 3D microtissues at cardiomyogenic differentiation.
AbstractList Bone marrow‐derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow–derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)‐poly(ε‐caprolactone) (PCL) based patches is hereby designed. After an elastic SF‐PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF‐PCL(HSP) and HA‐GRGD/SF‐PCL(HGSP) patches are fabricated by photochemically grafting HA and HA‐GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium assay. Notably, the formation of 5‐aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of ≈317 μm wide and 26 μm high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac‐specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA‐GRGD on enhancing the activity of F‐actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering. image
Bone marrow-derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow-derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)-poly(ε-caprolactone) (PCL) based patches is hereby designed. After an elastic SF-PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF-PCL(HSP) and HA-GRGD/SF-PCL(HGSP) patches are fabricated by photochemically grafting HA and HA-GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Notably, the formation of 5-aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of ≈317 μm wide and 26 μm high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac-specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA-GRGD on enhancing the activity of F-actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering.
Bone marrow‐derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow–derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)‐poly(ε‐caprolactone) (PCL) based patches is hereby designed. After an elastic SF‐PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF‐PCL(HSP) and HA‐GRGD/SF‐PCL(HGSP) patches are fabricated by photochemically grafting HA and HA‐GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium assay. Notably, the formation of 5‐aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of ≈317 μm wide and 26 μm high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac‐specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA‐GRGD on enhancing the activity of F‐actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering. Hyaluronic acid/GRGD decorated silk cardiac patches mediate human bone marrow–derived mesenchymal stem cell from 2D monolayer migrating to 3D microtissues at cardiomyogenic differentiation.
Bone marrow-derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow-derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)-poly( epsilon -caprolactone) (PCL) based patches is hereby designed. After an elastic SF-PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF-PCL(HSP) and HA-GRGD/SF-PCL(HGSP) patches are fabricated by photochemically grafting HA and HA-GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo p henyl)-2H-tetrazolium assay. Notably, the formation of 5-aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of approximately 317 mu m wide and 26 mu m high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac-specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA-GRGD on enhancing the activity of F-actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering. Hyaluronic acid/GRGD decorated silk cardiac patches mediate human bone marrow-derived mesenchymal stem cell from 2D monolayer migrating to 3D microtissues at cardiomyogenic differentiation.
Bone marrow-derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow-derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)-poly([epsi]-caprolactone) (PCL) based patches is hereby designed. After an elastic SF-PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF-PCL(HSP) and HA-GRGD/SF-PCL(HGSP) patches are fabricated by photochemically grafting HA and HA-GRGD onto SP surfaces. The results show that the proliferations of hBMSC on HGSP patches significantly exceed those on the other patches, as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Notably, the formation of 5-aza inducing cardiomyogenic differentiations of hBMSCMT/HGSP patches is observed with typical sizes of [asymptotically =]317 µm wide and 26 µm high. The cardiomyogenesis of hBMSCMT/HGSP patches including the expressions of cardiac-specific genes (e.g., Gata4) and proteins (e.g., connexin43 (CX43)) significantly exceeds those of hBMSC monolayer on the HSP and SP patches. Promoting in vitro cardiomyogenesis of hBMSC with forming cardiomyogenic differentiation of hBMSCMT/HGSP hybrid patch is possibly mediated by the synergistic functions of HA-GRGD on enhancing the activity of F-actin. The hBMSCMT/HGSP cardiac patch may be further employed to cardiac tissue engineering.
Author Lo, Hsin‐Yu
Chou, Tzung‐Han
Wang, Shoei‐Shen
Chung, Tze‐Wen
Chen, Jan‐Hou
Author_xml – sequence: 1
  givenname: Tze‐Wen
  surname: Chung
  fullname: Chung, Tze‐Wen
  email: twchung@ym.edu.tw
  organization: National Yang‐Ming University
– sequence: 2
  givenname: Hsin‐Yu
  surname: Lo
  fullname: Lo, Hsin‐Yu
  organization: National Yang‐Ming University
– sequence: 3
  givenname: Tzung‐Han
  surname: Chou
  fullname: Chou, Tzung‐Han
  organization: National Yunlin University of Science and Technology
– sequence: 4
  givenname: Jan‐Hou
  surname: Chen
  fullname: Chen, Jan‐Hou
  organization: National Yunlin University of Science and Technology
– sequence: 5
  givenname: Shoei‐Shen
  surname: Wang
  fullname: Wang, Shoei‐Shen
  organization: National Taiwan University College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27678265$$D View this record in MEDLINE/PubMed
BookMark eNqNksuK2zAUhk2Z0rm02y6LoJtukki-SPIy42kygYSGpl0bSTlKNNjWVLIZvOsj9EHmqeZJKjdpCgOlRQgdwff_0rlcRmeNbSCK3hI8JhjHk1pIM44xoRgTlryILggldJSRPDs7xZydR5fe3w0Iz-NX0XnMKOMxzS6ix7WztW1Ns0OFcFtj697uoAFvPLIa7a9XmwI9mHaPBJpZVw_gBir99P3H1HuoZdUfoZVRLhh534Gf3E4DMP88v5lsZiFaF8uDvVBoLVq1RwuPVhDuLWyR7FG7B7TpG3A741uj0KxrVGts8-sTJ7PX0UstKg9vjudV9HX28UtxO1p-mi-K6XKkUkyTEculUiAx1pxmnMcq3lKVhiWo1KBTmeuMh5rhlENCqMTANAw7S2kqmU6uog8H33tnv4V02rI2XkFViQZs50vCOWGUZEnyH2iWszS0hwb0_TP0znauCYkEijHGSZzhQL07Up2sYVveO1ML15e_WxaA8QEI5fbegT4hBJfDTJTDTJSnmQiC9JlAmVYM1W2dMNXfZflB9mAq6P_xSLmaXi_-aH8CyP3ODw
CitedBy_id crossref_primary_10_1021_acsnano_0c10724
crossref_primary_10_1161_CIRCULATIONAHA_123_067097
crossref_primary_10_1038_s41551_021_00812_y
crossref_primary_10_1002_adhm_202000735
crossref_primary_10_1002_term_2616
crossref_primary_10_1177_08853282211018529
crossref_primary_10_3390_ma11050795
crossref_primary_10_3390_s20020366
Cites_doi 10.1089/scd.2008.0292
10.1016/j.biomaterials.2012.04.030
10.1074/jbc.R100037200
10.1089/ten.2006.12.2729
10.1111/j.1525-1594.2006.00178.x
10.1073/pnas.1008117107
10.1093/eurjhf/hfn017
10.1007/s10856-012-4764-6
10.1016/j.biomaterials.2009.01.030
10.1532/IJH97.07041
10.1002/mabi.201500396
10.1039/b927168f
10.1161/CIRCRESAHA.108.175158
10.1016/j.biomaterials.2009.09.096
10.18063/IJB.2016.01.006
10.1002/jbm.a.30225
10.1016/j.biomaterials.2004.02.047
10.1016/j.colsurfb.2008.06.014
10.1634/stemcells.2005-0186
10.1016/j.biomaterials.2013.01.091
10.1016/j.memsci.2007.09.068
10.1016/j.biomaterials.2006.09.009
10.1634/stemcells.2007-0826
10.1016/j.actbio.2015.11.006
10.1016/j.progpolymsci.2013.09.002
10.1083/jcb.200310024
10.1016/S0142-9612(02)00231-4
10.1038/nrm2593
10.1089/ten.teb.2013.0537
10.1083/jcb.153.7.1427
10.18063/IJB.2016.01.005
10.1016/j.biomaterials.2012.08.069
10.1016/j.biomaterials.2013.04.034
10.1371/journal.pone.0121155
10.1111/j.1743-6109.2006.00119.x
10.1016/j.actbio.2009.12.033
10.1097/01.blo.0000205879.50834.fe
10.1155/2012/346972
10.1016/j.biomaterials.2010.12.035
10.1016/j.jss.2009.09.052
10.1002/stem.1191
10.1046/j.1525-1594.2001.025008617.x
10.1016/S0142-9612(03)00361-2
10.1371/journal.pone.0034960
10.1016/j.biomaterials.2007.10.048
10.1016/j.carbpol.2012.04.057
10.1016/j.biomaterials.2010.09.023
10.1002/mabi.200700030
10.1016/j.biomaterials.2012.12.021
10.1002/mame.201500028
10.1074/jbc.M411082200
10.1002/adhm.201500154
10.1016/j.tibtech.2012.12.003
10.1016/j.biomaterials.2009.03.057
10.1016/j.eurpolymj.2015.08.025
10.1016/j.biomaterials.2010.08.017
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/mabi.201600173
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Engineering Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1616-5195
EndPage n/a
ExternalDocumentID 4320853351
27678265
10_1002_mabi_201600173
MABI201600173
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Council of the Republic of China, Taiwan
  funderid: 103‐2221‐E‐010‐006
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
ID FETCH-LOGICAL-c4063-79bcceb00f865882c2d6c4c4ca6bfef4b9f58201048e316b0e7fee7fe5464b7f3
IEDL.DBID DR2
ISSN 1616-5187
IngestDate Thu Jul 10 20:55:43 EDT 2025
Fri Jul 11 01:50:49 EDT 2025
Fri Jul 25 10:33:41 EDT 2025
Wed Feb 19 02:40:24 EST 2025
Tue Jul 01 04:32:47 EDT 2025
Thu Apr 24 23:02:46 EDT 2025
Wed Jan 22 16:35:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords hBMSC microtissues/patch
GRGD
cardiac tissue engineering
cardiomyogenesis
hyaluronic acid
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4063-79bcceb00f865882c2d6c4c4ca6bfef4b9f58201048e316b0e7fee7fe5464b7f3
Notes Present address: Department of Biomedical Engineering, National Yang‐Ming University, Taipei 11221, Taiwan
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27678265
PQID 1877781250
PQPubID 2034242
PageCount 13
ParticipantIDs proquest_miscellaneous_1881761533
proquest_miscellaneous_1859741606
proquest_journals_1877781250
pubmed_primary_27678265
crossref_primary_10_1002_mabi_201600173
crossref_citationtrail_10_1002_mabi_201600173
wiley_primary_10_1002_mabi_201600173_MABI201600173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular bioscience
PublicationTitleAlternate Macromol Biosci
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 165
2006; 30
2012; 2012
2010; 107
2015; 71
2002; 277
2016; 30
2003; 19
2008; 102
2005; 26
2014; 20
2007; 28
2009; 11
2011; 168
2009; 10
2006; 24
2008; 29
2008; 316
2007; 7
2008; 66
2005; 72
2006; 448
2012; 23
2010; 6
2007; 26
2009; 18
2010; 31
2015; 4
2006; 12
2006; 14
2015; 10
1997
2011; 32
2015; 9
2016; 16
2012; 33
2001; 25
2012; 30
2009; 30
2016; 2
2004; 279
2001; 153
2013; 34
2002; 23
2013; 31
2003; 24
2014; 39
2007; 86
2012; 7
2012; 89
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Lanza R. P. (e_1_2_6_43_1) 1997
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Xing Y. (e_1_2_6_50_1) 2003; 19
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 28
  start-page: 641
  year: 2007
  publication-title: Biomaterials
– volume: 89
  start-page: 723
  year: 2012
  publication-title: Carbohydr. Polym.
– volume: 12
  start-page: 2729
  year: 2006
  publication-title: Tissue Eng.
– volume: 7
  start-page: 643
  year: 2007
  publication-title: Macromol. Biosci.
– volume: 316
  start-page: 89
  year: 2008
  publication-title: J. Membr. Sci.
– volume: 32
  start-page: 2734
  year: 2011
  publication-title: Biomaterials
– volume: 30
  start-page: 35
  year: 2006
  publication-title: Artif. Organs
– start-page: 225
  year: 1997
– volume: 2
  start-page: 63
  year: 2016
  publication-title: Int. J. Bioprinting
– volume: 277
  start-page: 4581
  year: 2002
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 365
  year: 2014
  publication-title: Tissue Eng., Part B
– volume: 66
  start-page: 218
  year: 2008
  publication-title: Colloids Surf., B
– volume: 10
  start-page: e0121155
  year: 2015
  publication-title: PLoS One
– volume: 24
  start-page: 928
  year: 2006
  publication-title: Stem Cells
– volume: 34
  start-page: 3938
  year: 2013
  publication-title: Biomaterials
– volume: 18
  start-page: 907
  year: 2009
  publication-title: Stem Cells Dev.
– volume: 29
  start-page: 1017
  year: 2008
  publication-title: Biomaterials
– volume: 6
  start-page: 3395
  year: 2010
  publication-title: Soft Matter
– volume: 23
  start-page: 3067
  year: 2012
  publication-title: J. Mater. Sci.: Mater. Med.
– volume: 102
  start-page: 1155
  year: 2008
  publication-title: Circ. Res.
– volume: 24
  start-page: 4655
  year: 2003
  publication-title: Biomaterials
– volume: 2012
  start-page: 346972
  year: 2012
  publication-title: Biochem. Res. Int.
– volume: 33
  start-page: 5541
  year: 2012
  publication-title: Biomaterials
– volume: 279
  start-page: 55651
  year: 2004
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 21
  year: 2009
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 34
  start-page: 6339
  year: 2013
  publication-title: Biomaterials
– volume: 33
  start-page: 8943
  year: 2012
  publication-title: Biomaterials
– volume: 153
  start-page: 1427
  year: 2001
  publication-title: J. Cell Biol.
– volume: 26
  start-page: 1695
  year: 2007
  publication-title: Stem Cells
– volume: 86
  start-page: 17
  year: 2007
  publication-title: Int. J. Hematol.
– volume: 30
  start-page: 2705
  year: 2009
  publication-title: Biomaterials
– volume: 32
  start-page: 734
  year: 2011
  publication-title: Biomaterials
– volume: 19
  start-page: 242
  year: 2003
  publication-title: Fayixue Zazhi
– volume: 30
  start-page: 2283
  year: 2012
  publication-title: Stem Cells
– volume: 23
  start-page: 4803
  year: 2002
  publication-title: Biomaterials
– volume: 26
  start-page: 147
  year: 2005
  publication-title: Biomaterials
– volume: 14
  start-page: 252
  year: 2006
  publication-title: Wound Repair Regener.
– volume: 11
  start-page: 147
  year: 2009
  publication-title: Eur. J. Heart Failure
– volume: 16
  start-page: 958
  year: 2016
  publication-title: Macromol. Biosci.
– volume: 2
  start-page: 6
  year: 2016
  publication-title: J. Bioprinting
– volume: 31
  start-page: 8953
  year: 2010
  publication-title: Biomaterials
– volume: 6
  start-page: 2028
  year: 2010
  publication-title: Acta Biomater.
– volume: 4
  start-page: 2012
  year: 2015
  publication-title: Adv. Healthcare Mater.
– volume: 39
  start-page: 251
  year: 2014
  publication-title: Prog. Polym. Sci.
– volume: 448
  start-page: 234
  year: 2006
  publication-title: Clin. Orthop. Relat. Res.
– volume: 30
  start-page: 3757
  year: 2009
  publication-title: Biomaterials
– volume: 30
  start-page: 177
  year: 2016
  publication-title: Acta Biomater.
– volume: 9
  start-page: 858
  year: 2015
  publication-title: Macromol. Mater. Eng.
– volume: 31
  start-page: 854
  year: 2010
  publication-title: Biomaterials
– volume: 71
  start-page: 490
  year: 2015
  publication-title: Eur. Polym. J.
– volume: 107
  start-page: 13724
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 108
  year: 2013
  publication-title: Trends Biotechnol.
– volume: 7
  start-page: e34960
  year: 2012
  publication-title: PLoS One
– volume: 34
  start-page: 2428
  year: 2013
  publication-title: Biomaterials
– volume: 168
  start-page: 9
  year: 2011
  publication-title: J. Surg. Res.
– volume: 25
  start-page: 617
  year: 2001
  publication-title: Artif. Organs
– volume: 165
  start-page: 893
  year: 2004
  publication-title: J. Cell Biol.
– volume: 72
  start-page: 213
  year: 2005
  publication-title: J. Biomed. Mater. Res., Part A
– ident: e_1_2_6_49_1
  doi: 10.1089/scd.2008.0292
– ident: e_1_2_6_13_1
  doi: 10.1016/j.biomaterials.2012.04.030
– volume: 19
  start-page: 242
  year: 2003
  ident: e_1_2_6_50_1
  publication-title: Fayixue Zazhi
– ident: e_1_2_6_28_1
  doi: 10.1074/jbc.R100037200
– ident: e_1_2_6_47_1
  doi: 10.1089/ten.2006.12.2729
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1525-1594.2006.00178.x
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.1008117107
– ident: e_1_2_6_18_1
  doi: 10.1093/eurjhf/hfn017
– ident: e_1_2_6_39_1
  doi: 10.1007/s10856-012-4764-6
– ident: e_1_2_6_52_1
  doi: 10.1016/j.biomaterials.2009.01.030
– ident: e_1_2_6_4_1
  doi: 10.1532/IJH97.07041
– ident: e_1_2_6_1_1
  doi: 10.1002/mabi.201500396
– ident: e_1_2_6_45_1
  doi: 10.1039/b927168f
– ident: e_1_2_6_2_1
  doi: 10.1161/CIRCRESAHA.108.175158
– ident: e_1_2_6_32_1
  doi: 10.1016/j.biomaterials.2009.09.096
– ident: e_1_2_6_15_1
  doi: 10.18063/IJB.2016.01.006
– ident: e_1_2_6_19_1
  doi: 10.1002/jbm.a.30225
– ident: e_1_2_6_22_1
  doi: 10.1016/j.biomaterials.2004.02.047
– ident: e_1_2_6_41_1
  doi: 10.1016/j.colsurfb.2008.06.014
– ident: e_1_2_6_54_1
  doi: 10.1634/stemcells.2005-0186
– ident: e_1_2_6_57_1
  doi: 10.1016/j.biomaterials.2013.01.091
– ident: e_1_2_6_42_1
  doi: 10.1016/j.memsci.2007.09.068
– ident: e_1_2_6_12_1
  doi: 10.1016/j.biomaterials.2006.09.009
– ident: e_1_2_6_3_1
  doi: 10.1634/stemcells.2007-0826
– ident: e_1_2_6_11_1
  doi: 10.1016/j.actbio.2015.11.006
– ident: e_1_2_6_26_1
  doi: 10.1016/j.progpolymsci.2013.09.002
– ident: e_1_2_6_55_1
  doi: 10.1083/jcb.200310024
– ident: e_1_2_6_34_1
  doi: 10.1016/S0142-9612(02)00231-4
– ident: e_1_2_6_53_1
  doi: 10.1038/nrm2593
– ident: e_1_2_6_7_1
  doi: 10.1089/ten.teb.2013.0537
– ident: e_1_2_6_58_1
  doi: 10.1083/jcb.153.7.1427
– ident: e_1_2_6_17_1
  doi: 10.18063/IJB.2016.01.005
– ident: e_1_2_6_37_1
  doi: 10.1016/j.biomaterials.2012.08.069
– ident: e_1_2_6_6_1
  doi: 10.1016/j.biomaterials.2013.04.034
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pone.0121155
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1743-6109.2006.00119.x
– ident: e_1_2_6_16_1
  doi: 10.1016/j.actbio.2009.12.033
– ident: e_1_2_6_24_1
  doi: 10.1097/01.blo.0000205879.50834.fe
– ident: e_1_2_6_56_1
  doi: 10.1155/2012/346972
– ident: e_1_2_6_9_1
  doi: 10.1016/j.biomaterials.2010.12.035
– ident: e_1_2_6_31_1
  doi: 10.1016/j.jss.2009.09.052
– ident: e_1_2_6_10_1
  doi: 10.1002/stem.1191
– ident: e_1_2_6_40_1
  doi: 10.1046/j.1525-1594.2001.025008617.x
– ident: e_1_2_6_35_1
  doi: 10.1016/S0142-9612(03)00361-2
– ident: e_1_2_6_36_1
  doi: 10.1371/journal.pone.0034960
– ident: e_1_2_6_46_1
  doi: 10.1016/j.biomaterials.2007.10.048
– ident: e_1_2_6_30_1
  doi: 10.1016/j.carbpol.2012.04.057
– ident: e_1_2_6_20_1
  doi: 10.1016/j.biomaterials.2010.09.023
– ident: e_1_2_6_23_1
  doi: 10.1002/mabi.200700030
– ident: e_1_2_6_5_1
  doi: 10.1016/j.biomaterials.2012.12.021
– ident: e_1_2_6_14_1
  doi: 10.1002/mame.201500028
– ident: e_1_2_6_48_1
  doi: 10.1074/jbc.M411082200
– ident: e_1_2_6_21_1
  doi: 10.1002/adhm.201500154
– ident: e_1_2_6_51_1
  doi: 10.1016/j.tibtech.2012.12.003
– ident: e_1_2_6_25_1
  doi: 10.1016/j.biomaterials.2009.03.057
– ident: e_1_2_6_44_1
  doi: 10.1016/j.eurpolymj.2015.08.025
– ident: e_1_2_6_33_1
  doi: 10.1016/j.biomaterials.2010.08.017
– start-page: 225
  volume-title: Principle of Tissue Engineering
  year: 1997
  ident: e_1_2_6_43_1
SSID ssj0017892
Score 2.211282
Snippet Bone marrow‐derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo...
Bone marrow-derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage np
SubjectTerms Actins - metabolism
Biocompatible Materials
Bone marrow
Bone Marrow Cells - cytology
Caproates - chemistry
cardiac tissue engineering
cardiomyogenesis
Cell Differentiation - genetics
Cell Proliferation - genetics
Fibroins - chemistry
GRGD
hBMSC microtissues/patch
Humans
hyaluronic acid
Hyaluronic Acid - chemistry
Lactones - chemistry
Mesenchymal Stromal Cells - cytology
Myocardial Infarction - pathology
Myocardial Infarction - therapy
Myocytes, Cardiac - cytology
Silk - chemistry
Stem cells
Tetrazolium Salts - chemistry
Thiazoles - chemistry
Tissue Culture Techniques
Tissue Engineering
Tissue Scaffolds
Title Promoting Cardiomyogenesis of hBMSC with a Forming Self‐Assembly hBMSC Microtissues/HA‐GRGD/SF‐PCL Cardiac Patch Is Mediated by the Synergistic Functions of HA‐GRGD
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmabi.201600173
https://www.ncbi.nlm.nih.gov/pubmed/27678265
https://www.proquest.com/docview/1877781250
https://www.proquest.com/docview/1859741606
https://www.proquest.com/docview/1881761533
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQXuDC_09gQUZC4uRt4ia299gNZLuIoGrLSnuLbMfurmgTRNpDOfEIPAhPxZPgcX6gIEACRZESZWJNNPbMF3v8DULPhLbA6VESoUJJYofoiUwoIzYqORR2iJSvQ5a_YdOz-NV5cv7DLv6WH2KYcIOR4f01DHCpmtF30tCVVJeQmgURmwPdJyRsASo6HfijIi58VWSHahhJIsF71saQjnZf341Kv0DNXeTqQ092A8le6Tbj5N3BZq0O9Mef-Bz_56tuousdLsWTtiPdQldMdRtdTftycHfQl1mbuFctcOpzWFfbegGO8rLBtcUXR_k8xTCriyXOasiwWeC5Wdqvnz7DwvJKLbedUA45gGtv8GY0nTiB49PjF6N55q5m6eu2eanxzEWJC3zS4NyXEzElVlvs8Cqeb2HDomeYxpmLy37ogBJDY3fRWfbybTolXakHoh2iGBN-qLSGMkZWOEgkqKYl07E7JFPW2Fgd2gSwivM3ZhwxFRpuDZxJzGLF7fge2qvqyjxAWJe0dJ5FGGvLmDHtALCOachCyVhiQxEg0pu60B0POpTjWBYtgzMtwAbFYIMAPR_k37cMIL-V3O97TtF5gqaIgHDRoagkDNDT4bGzHSzMyMrUG5CB3zrXCvuTjIi4R-cBut_2ykEdyh3koCwJEPV96y96Fvnk6GS4e_gvLz1C1yjgG5-Mt4_21h825rFDZ2v1xI_Ab4DNMxk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6CcTFu-GcEBhgJiausiZs43mWXkbXQTNW6SdxFsWN3E22CaHtRrngEHoSn4knwcX5QQYAEiiIlyonl6NjnfHFOvg_gJZcaOT0KlwsvdwOD6N08pMzVfhGhsIMvrA5ZesqGF8Gbd2FbTYj_wtT8EN2CG84MG69xguOCdO8Ha-giF1dYm4UpO-pfhxso6430-cdnHYOUH3Gri2xwDXNDn0ctb6NHe9v3b-elX8DmNna1ySe5DaLtdl1z8v5gvRIH8tNPjI7_9Vx34FYDTcmgHkt34Zoq78Fu3CrC3Yevk7p2r5yR2JaxLjbVDGPl1ZJUmlwepdOY4MIuyUlSYZHNjEzVXH_7_AW_LS_EfNMYpVgGuLI-X_aGA2NwcnZy3Jsm5mgSj-vmc0kmJlFcktGSpFZRRBVEbIiBrGS6wX8WLck0SUxqtrMHO9E19gAuktfn8dBt1B5caUBF340OhZSoZKS5QUWcSlowGZgtZ0IrHYhDHSJcMSFH9X0mPBVphXsYsEBEuv8QdsqqVI-AyIIWJrhwpXURMCYNBpYB9ZiXMxZqjzvgtr7OZEOFjooc86wmcaYZ-iDrfODAq87-Q00C8lvL_XboZE0wWGY-ci4aIBV6DrzoLhvf4beZvFTVGm3wzc60wv5kw_3IAnQH9uph2XWHRgZ1UBY6QO3g-ks_s3RwNOrOHv_LTc9hd3iejrPx6PTtE7hJEe7Y2rx92Fl9XKunBqytxDM7Hb8DmZA3NQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6CIQE3jL9BYICRkLjKmriJk1526bIWlqlambS7KHbsbqJNJtpelCsegQfhqfYk83F-oCBAAkWREuXEcnTsc744J98H8CYUCjk9cjvkTmZ7GtHbmU-Zrdw8QGEHlxsdsuSYDU-9d2f-2Q9_8Vf8EO2CG84ME69xgl_mqvOdNHSe8QsszcKMHXRvwi2POT0UbxictARSbhAaWWQNa5jtu2HQ0DY6tLN5_2Za-gVrbkJXk3vibciaXlclJx_3Vku-Jz7_ROj4P491H-7VwJT0q5H0AG7I4iHciRo9uEfwbVxV7hVTEpki1vm6nGKkvFiQUpHz_WQSEVzWJRmJSyyxmZKJnKmrL1_xy_Kcz9a1UYJFgEvj8UVn2NcGhyeHg84k1kfj6KhqPhNkrNPEORktSGL0RGRO-JpowEoma_xj0VBMk1gnZjN3sBNtY4_hND74EA3tWuvBFhpSdO2gx4VAHSMVakwUUkFzJjy9ZYwrqTzeUz6CFR1wZNdl3JGBkrj7HvN4oLo7sFWUhXwKROQ016EllErlHmNCI2DhUYc5GWO-ckIL7MbVqaiJ0FGPY5ZWFM40RR-krQ8seNvaX1YUIL-13G1GTlqHgkXqIuOihlG-Y8Hr9rL2HX6ZyQpZrtAG3-t0K-xPNqEbGHhuwZNqVLbdoYHGHJT5FlAztv7SzzTp74_as2f_ctMruD0exOnR6Pj9c7hLEeuYwrxd2Fp-WskXGqkt-UszGa8Bxjk15A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promoting+Cardiomyogenesis+of+hBMSC+with+a+Forming+Self-Assembly+hBMSC+Microtissues%2FHA-GRGD%2FSF-PCL+Cardiac+Patch+Is+Mediated+by+the+Synergistic+Functions+of+HA-GRGD&rft.jtitle=Macromolecular+bioscience&rft.au=Chung%2C+Tze-Wen&rft.au=Lo%2C+Hsin-Yu&rft.au=Chou%2C+Tzung-Han&rft.au=Chen%2C+Jan-Hou&rft.date=2017-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-5187&rft.eissn=1616-5195&rft.volume=17&rft.issue=3&rft_id=info:doi/10.1002%2Fmabi.201600173&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4320853351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-5187&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-5187&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-5187&client=summon