Pretrichodermamide A Biosynthesis Reveals the Hidden Diversity of Epidithiodiketopiperazines
Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A (1) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 18; pp. e202217212 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
24.04.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A (1) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for generating ETP diversity. Seven tailoring enzymes encoded by the tda cluster are involved in 1 biosynthesis, that is, four P450s TdaB and TdaQ for 1,2‐oxazine formation, TdaI for C7′‐hydroxylation, and TdaG for C4, C5‐epoxidation, two methyltransferases TdaH for C6′‐ and TdaO for C7′‐O‐methylation, and a reductase TdaD for furan opening. Gene deletions led to the identification of 25 novel ETPs, including 20 shunt products, indicating the catalytic promiscuity of Tda enzymes. Particularly, TdaG and TdaD accept various substrates and catalyze regiospecific reactions at different stages of 1 biosynthesis. Our study not only uncovers a hidden library of ETP alkaloids, but also helps to understand the hidden chemical diversity of natural products by pathway manipulation.
The biosynthetic route of fungal epidithiodiketopiperazines (ETPs) was revealed by elucidating the biosynthesis of pretrichodermamide A. Diverse ETP derivatives, including 25 novel compounds, were characterized from tda gene deletion mutants, indicating divergent metabolic pathways of ETP intermediates and enzyme catalytic promiscuity. |
---|---|
AbstractList | Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A (1) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for generating ETP diversity. Seven tailoring enzymes encoded by the tda cluster are involved in 1 biosynthesis, that is, four P450s TdaB and TdaQ for 1,2‐oxazine formation, TdaI for C7′‐hydroxylation, and TdaG for C4, C5‐epoxidation, two methyltransferases TdaH for C6′‐ and TdaO for C7′‐O‐methylation, and a reductase TdaD for furan opening. Gene deletions led to the identification of 25 novel ETPs, including 20 shunt products, indicating the catalytic promiscuity of Tda enzymes. Particularly, TdaG and TdaD accept various substrates and catalyze regiospecific reactions at different stages of 1 biosynthesis. Our study not only uncovers a hidden library of ETP alkaloids, but also helps to understand the hidden chemical diversity of natural products by pathway manipulation.
The biosynthetic route of fungal epidithiodiketopiperazines (ETPs) was revealed by elucidating the biosynthesis of pretrichodermamide A. Diverse ETP derivatives, including 25 novel compounds, were characterized from tda gene deletion mutants, indicating divergent metabolic pathways of ETP intermediates and enzyme catalytic promiscuity. Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A ( 1 ) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for generating ETP diversity. Seven tailoring enzymes encoded by the tda cluster are involved in 1 biosynthesis, that is, four P450s TdaB and TdaQ for 1,2‐oxazine formation, TdaI for C7′‐hydroxylation, and TdaG for C4, C5‐epoxidation, two methyltransferases TdaH for C6′‐ and TdaO for C7′‐O‐methylation, and a reductase TdaD for furan opening. Gene deletions led to the identification of 25 novel ETPs, including 20 shunt products, indicating the catalytic promiscuity of Tda enzymes. Particularly, TdaG and TdaD accept various substrates and catalyze regiospecific reactions at different stages of 1 biosynthesis. Our study not only uncovers a hidden library of ETP alkaloids, but also helps to understand the hidden chemical diversity of natural products by pathway manipulation. Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A (1) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for generating ETP diversity. Seven tailoring enzymes encoded by the tda cluster are involved in 1 biosynthesis, that is, four P450s TdaB and TdaQ for 1,2‐oxazine formation, TdaI for C7′‐hydroxylation, and TdaG for C4, C5‐epoxidation, two methyltransferases TdaH for C6′‐ and TdaO for C7′‐O‐methylation, and a reductase TdaD for furan opening. Gene deletions led to the identification of 25 novel ETPs, including 20 shunt products, indicating the catalytic promiscuity of Tda enzymes. Particularly, TdaG and TdaD accept various substrates and catalyze regiospecific reactions at different stages of 1 biosynthesis. Our study not only uncovers a hidden library of ETP alkaloids, but also helps to understand the hidden chemical diversity of natural products by pathway manipulation. Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A (1) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for generating ETP diversity. Seven tailoring enzymes encoded by the tda cluster are involved in 1 biosynthesis, that is, four P450s TdaB and TdaQ for 1,2-oxazine formation, TdaI for C7'-hydroxylation, and TdaG for C4, C5-epoxidation, two methyltransferases TdaH for C6'- and TdaO for C7'-O-methylation, and a reductase TdaD for furan opening. Gene deletions led to the identification of 25 novel ETPs, including 20 shunt products, indicating the catalytic promiscuity of Tda enzymes. Particularly, TdaG and TdaD accept various substrates and catalyze regiospecific reactions at different stages of 1 biosynthesis. Our study not only uncovers a hidden library of ETP alkaloids, but also helps to understand the hidden chemical diversity of natural products by pathway manipulation.Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A (1) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for generating ETP diversity. Seven tailoring enzymes encoded by the tda cluster are involved in 1 biosynthesis, that is, four P450s TdaB and TdaQ for 1,2-oxazine formation, TdaI for C7'-hydroxylation, and TdaG for C4, C5-epoxidation, two methyltransferases TdaH for C6'- and TdaO for C7'-O-methylation, and a reductase TdaD for furan opening. Gene deletions led to the identification of 25 novel ETPs, including 20 shunt products, indicating the catalytic promiscuity of Tda enzymes. Particularly, TdaG and TdaD accept various substrates and catalyze regiospecific reactions at different stages of 1 biosynthesis. Our study not only uncovers a hidden library of ETP alkaloids, but also helps to understand the hidden chemical diversity of natural products by pathway manipulation. |
Author | Fan, Jie Ran, Huomiao Li, Yuanyuan Liu, Huan Hu, Youcai Li, Shu‐Ming Yin, Wen‐Bing Wei, Peng‐Lin |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0003-4720-8581 surname: Fan fullname: Fan, Jie organization: Chinese Academy of Sciences – sequence: 2 givenname: Huomiao surname: Ran fullname: Ran, Huomiao organization: Chinese Academy of Sciences – sequence: 3 givenname: Peng‐Lin surname: Wei fullname: Wei, Peng‐Lin organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Yuanyuan surname: Li fullname: Li, Yuanyuan organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Huan surname: Liu fullname: Liu, Huan organization: Chinese Academy of Sciences – sequence: 6 givenname: Shu‐Ming orcidid: 0000-0003-4583-2655 surname: Li fullname: Li, Shu‐Ming organization: Philipps-Universität Marburg – sequence: 7 givenname: Youcai surname: Hu fullname: Hu, Youcai organization: Peking Union Medical College – sequence: 8 givenname: Wen‐Bing orcidid: 0000-0002-9184-3198 surname: Yin fullname: Yin, Wen‐Bing email: yinwb@im.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36867112$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFDEYh4NU7JdXjzLgxcus-Zxkjmu72kJRkfZWGDKTd9i3zkzGJFtZ_3qzbK1QkB5CEnieX3jzOyYHk5-AkDeMLhil_IOdEBaccs40Z_wFOWKKs1JoLQ7yWQpRaqPYITmO8S7zxtDqFTkUlak0Y_yI3H4LkAJ2a-8gjHZEB8Wy-Ig-bqe0hoix-A73YIdY5Gtxgc7BVJzjPYSIaVv4vljN6DCt0Tv8AcnPOEOwv3GCeEpe9tmE1w_7Cbn5tLo-uyivvn6-PFtelZ2kFS9rqZymWrSqNp1q-8qIqlVKgtHWiDyX5M4p4FR2HaWqrhRVvRFctHVLbQ3ihLzf587B_9xATM2IsYNhsBP4TWy4YazeLfk8qo2QmTUmo--eoHd-E6Y8SA6kmaiE3AW-faA27QiumQOONmybv1-cgcUe6IKPMUD_iDDa7Dpsdh02jx1mQT4ROkw2oZ9SsDj8X6v32i8cYPvMI83yy-Xqn_sHa46vKQ |
CitedBy_id | crossref_primary_10_1039_D2CS00909A crossref_primary_10_1002_anie_202304252 crossref_primary_10_1002_ange_202304252 crossref_primary_10_1016_j_biortech_2024_131703 crossref_primary_10_1021_jacsau_4c00279 crossref_primary_10_1039_D3NP90029K crossref_primary_10_1016_j_bbrc_2023_08_047 crossref_primary_10_1016_j_biotechadv_2025_108547 crossref_primary_10_1002_advs_202407195 crossref_primary_10_1002_adsc_202400671 crossref_primary_10_1016_j_bioorg_2024_108105 crossref_primary_10_1039_D3NP00023K crossref_primary_10_1002_cbic_202300770 crossref_primary_10_3390_antiox14030330 crossref_primary_10_3390_jof11040241 |
Cites_doi | 10.7164/antibiotics.40.589 10.1021/acs.chemrev.9b00525 10.1039/c2np20023f 10.1039/b413440k 10.1016/j.mycres.2007.08.017 10.1002/anie.202116928 10.1016/0378-1119(90)90142-E 10.1039/C7RA10389A 10.1016/j.phytol.2014.12.010 10.1099/mic.0.000649 10.1021/cr100292w 10.1002/ange.201909052 10.1021/jacs.5b05205 10.1021/ol061046l 10.3390/md13063640 10.1016/j.tetlet.2019.151412 10.7164/antibiotics.35.374 10.1139/m83-053 10.1021/acs.jnatprod.5b00102 10.1002/cbic.202000403 10.1002/anie.200801652 10.1021/ja3123653 10.1002/anie.201909052 10.1021/jacs.0c08879 10.1039/B603084J 10.1021/acs.jnatprod.6b00963 10.1002/slct.201700262 10.7164/antibiotics.37.667 10.1055/s-0040-1720383 10.1021/acs.jnatprod.6b00483 10.1002/anie.201806740 10.1021/np500822k 10.1002/ange.200801652 10.1038/nchembio.1897 10.1039/D0OB01202E 10.1126/sciadv.abo6094 10.1021/ol062993x 10.1016/B978-0-12-818655-8.00013-5 10.1007/s11458-009-0037-4 10.1021/jacs.2c00881 10.1039/C3NP70097F 10.1007/s00253-011-3689-1 10.1039/D0SC06647H 10.1021/acs.jnatprod.9b01283 10.1021/acs.jnatprod.5b00669 10.1099/mic.0.27847-0 10.1038/nchem.2671 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 7S9 L.6 |
DOI | 10.1002/anie.202217212 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36867112 10_1002_anie_202217212 ANIE202217212 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: YJ20200201; 2020M680720; 2022T150689; YJ20200309; 2021M693362 – fundername: Key Research Program of Frontier Sciences, Chinese Academy of Sciences funderid: ZDBS-LY-SM016 – fundername: Biological Resources Program, Chinese Academy of Sciences funderid: KFJ-BRP-009-005 – fundername: National Key Research and Development Program of China funderid: 2018YFA0901901 – fundername: National Natural Science Foundation of China funderid: 32200046; 21778075; 31861133004 – fundername: Deutsche Forschungsgemeinschaft funderid: Li844/11-1 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4062-945d7073b598c5bf6836b554e87a8372142dd5e204cc00596505f8323b9b0a9e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 18:27:32 EDT 2025 Fri Jul 11 02:22:34 EDT 2025 Sun Jul 13 05:36:14 EDT 2025 Sat Aug 02 01:41:11 EDT 2025 Tue Jul 01 01:47:06 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Wed Jan 22 16:21:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Fungi Alkaloids Biosynthesis Enzyme Catalysis Substrate Promiscuity |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4062-945d7073b598c5bf6836b554e87a8372142dd5e204cc00596505f8323b9b0a9e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4583-2655 0000-0003-4720-8581 0000-0002-9184-3198 |
PMID | 36867112 |
PQID | 2801886344 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2811981194 proquest_miscellaneous_2783498188 proquest_journals_2801886344 pubmed_primary_36867112 crossref_primary_10_1002_anie_202217212 crossref_citationtrail_10_1002_anie_202217212 wiley_primary_10_1002_anie_202217212_ANIE202217212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 24, 2023 |
PublicationDateYYYYMMDD | 2023-04-24 |
PublicationDate_xml | – month: 04 year: 2023 text: April 24, 2023 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 164 2015; 13 2015; 78 1982; 35 2017; 7 2017; 80 2005; 151 2017; 2 2021; 22 2020; 83 2020; 61 2015; 11 2006; 8 2008 2008; 47 120 2021; 143 2017; 9 2019 2019; 58 131 2016; 79 2011; 111 2020; 18 2022; 144 2012; 93 2021; 32 2021; 12 1987; 40 2015; 137 1984; 37 2022 2022; 61 2022; 8 2007; 9 2013; 135 2019; 119 2012; 29 2005; 3 2009; 4 2008; 112 1983; 29 2007; 24 1990; 93 2014; 31 2018; 57 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_26_1 e_1_2_7_47_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_50_1 e_1_2_7_52_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_1 e_1_2_7_35_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_42_1 e_1_2_7_12_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_34_3 e_1_2_7_36_2 e_1_2_7_38_1 |
References_xml | – volume: 22 start-page: 416 year: 2021 end-page: 422 publication-title: ChemBioChem – volume: 13 start-page: 3640 year: 2015 end-page: 3652 publication-title: Mar. Drugs – volume: 78 start-page: 1294 year: 2015 end-page: 1299 publication-title: J. Nat. Prod. – volume: 29 start-page: 321 year: 1983 end-page: 324 publication-title: Can. J. Microbiol. – volume: 47 120 start-page: 6829 6935 year: 2008 2008 end-page: 6831 6937 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 977 year: 2007 end-page: 980 publication-title: Org. Lett. – volume: 11 start-page: 168 year: 2015 end-page: 172 publication-title: Phytochem. Lett. – volume: 93 start-page: 467 year: 2012 end-page: 472 publication-title: Appl. Microbiol. Biotechnol. – volume: 151 start-page: 1021 year: 2005 end-page: 1032 publication-title: Microbiology – volume: 79 start-page: 685 year: 2016 end-page: 690 publication-title: J. Nat. Prod. – volume: 57 start-page: 14051 year: 2018 end-page: 14054 publication-title: Angew. Chem. Int. Ed. – volume: 80 start-page: 676 year: 2017 end-page: 683 publication-title: J. Nat. Prod. – start-page: 283 year: 2022 end-page: 415 – volume: 7 start-page: 48019 year: 2017 end-page: 48024 publication-title: RSC Adv. – volume: 111 start-page: 5004 year: 2011 end-page: 5041 publication-title: Chem. Rev. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 12 start-page: 4132 year: 2021 end-page: 4138 publication-title: Chem. Sci. – volume: 32 start-page: 1865 year: 2021 end-page: 1868 publication-title: Synlett – volume: 164 start-page: 769 year: 2018 end-page: 778 publication-title: Microbiology – volume: 8 start-page: 3073 year: 2006 end-page: 3075 publication-title: Org. Lett. – volume: 78 start-page: 2319 year: 2015 end-page: 2321 publication-title: J. Nat. Prod. – volume: 11 start-page: 671 year: 2015 end-page: 677 publication-title: Nat. Chem. Biol. – volume: 80 start-page: 71 year: 2017 end-page: 75 publication-title: J. Nat. Prod. – volume: 35 start-page: 374 year: 1982 end-page: 377 publication-title: J. Antibiot. – volume: 29 start-page: 1099 year: 2012 end-page: 1110 publication-title: Nat. Prod. Rep. – volume: 58 131 start-page: 14589 14731 year: 2019 2019 end-page: 14593 14735 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 7205 year: 2013 end-page: 7213 publication-title: J. Am. Chem. Soc. – volume: 83 start-page: 2045 year: 2020 end-page: 2053 publication-title: J. Nat. Prod. – volume: 9 start-page: 379 year: 2017 end-page: 386 publication-title: Nat. Chem. – volume: 119 start-page: 12524 year: 2019 end-page: 12547 publication-title: Chem. Rev. – volume: 31 start-page: 1376 year: 2014 end-page: 1404 publication-title: Nat. Prod. Rep. – volume: 37 start-page: 667 year: 1984 end-page: 669 publication-title: J. Antibiot. – volume: 18 start-page: 5344 year: 2020 end-page: 5348 publication-title: Org. Biomol. Chem. – volume: 143 start-page: 206 year: 2021 end-page: 213 publication-title: J. Am. Chem. Soc. – volume: 61 year: 2020 publication-title: Tetrahedron Lett. – volume: 24 start-page: 393 year: 2007 end-page: 416 publication-title: Nat. Prod. Rep. – volume: 93 start-page: 101 year: 1990 end-page: 109 publication-title: Gene – volume: 144 start-page: 4269 year: 2022 end-page: 4276 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 123 year: 2005 end-page: 129 publication-title: Org. Biomol. Chem. – volume: 2 start-page: 3347 year: 2017 end-page: 3352 publication-title: ChemistrySelect – volume: 4 start-page: 249 year: 2009 end-page: 258 publication-title: Front. Chem. China – volume: 112 start-page: 162 year: 2008 end-page: 169 publication-title: Mycol. Res. – volume: 40 start-page: 589 year: 1987 end-page: 593 publication-title: J. Antibiot. – volume: 137 start-page: 8050 year: 2015 end-page: 8053 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_20_2 doi: 10.7164/antibiotics.40.589 – ident: e_1_2_7_4_2 doi: 10.1021/acs.chemrev.9b00525 – ident: e_1_2_7_6_2 doi: 10.1039/c2np20023f – ident: e_1_2_7_51_2 doi: 10.1039/b413440k – ident: e_1_2_7_10_2 doi: 10.1016/j.mycres.2007.08.017 – ident: e_1_2_7_43_2 doi: 10.1002/anie.202116928 – ident: e_1_2_7_49_1 doi: 10.1016/0378-1119(90)90142-E – ident: e_1_2_7_28_2 doi: 10.1039/C7RA10389A – ident: e_1_2_7_56_1 – ident: e_1_2_7_17_2 doi: 10.1016/j.phytol.2014.12.010 – ident: e_1_2_7_47_2 doi: 10.1099/mic.0.000649 – ident: e_1_2_7_55_2 doi: 10.1021/cr100292w – ident: e_1_2_7_7_3 doi: 10.1002/ange.201909052 – ident: e_1_2_7_33_2 doi: 10.1021/jacs.5b05205 – ident: e_1_2_7_30_2 doi: 10.1021/ol061046l – ident: e_1_2_7_53_2 doi: 10.3390/md13063640 – ident: e_1_2_7_16_1 – ident: e_1_2_7_36_2 doi: 10.1016/j.tetlet.2019.151412 – ident: e_1_2_7_22_2 doi: 10.7164/antibiotics.35.374 – ident: e_1_2_7_21_2 doi: 10.1139/m83-053 – ident: e_1_2_7_38_1 – ident: e_1_2_7_18_2 doi: 10.1021/acs.jnatprod.5b00102 – ident: e_1_2_7_29_2 doi: 10.1002/cbic.202000403 – ident: e_1_2_7_34_2 doi: 10.1002/anie.200801652 – ident: e_1_2_7_14_2 doi: 10.1021/ja3123653 – ident: e_1_2_7_32_1 – ident: e_1_2_7_19_1 – ident: e_1_2_7_46_1 – ident: e_1_2_7_7_2 doi: 10.1002/anie.201909052 – ident: e_1_2_7_39_2 doi: 10.1021/jacs.0c08879 – ident: e_1_2_7_2_2 doi: 10.1039/B603084J – ident: e_1_2_7_52_2 doi: 10.1021/acs.jnatprod.6b00963 – ident: e_1_2_7_41_1 doi: 10.1002/slct.201700262 – ident: e_1_2_7_23_2 doi: 10.7164/antibiotics.37.667 – ident: e_1_2_7_37_2 doi: 10.1055/s-0040-1720383 – ident: e_1_2_7_25_1 doi: 10.1021/acs.jnatprod.6b00483 – ident: e_1_2_7_45_2 doi: 10.1002/anie.201806740 – ident: e_1_2_7_27_2 doi: 10.1021/np500822k – ident: e_1_2_7_34_3 doi: 10.1002/ange.200801652 – ident: e_1_2_7_3_2 doi: 10.1038/nchembio.1897 – ident: e_1_2_7_48_2 doi: 10.1039/D0OB01202E – ident: e_1_2_7_8_2 doi: 10.1126/sciadv.abo6094 – ident: e_1_2_7_35_2 doi: 10.1021/ol062993x – ident: e_1_2_7_1_1 – ident: e_1_2_7_54_2 doi: 10.1016/B978-0-12-818655-8.00013-5 – ident: e_1_2_7_31_1 doi: 10.1007/s11458-009-0037-4 – ident: e_1_2_7_44_2 doi: 10.1021/jacs.2c00881 – ident: e_1_2_7_12_2 doi: 10.1039/C3NP70097F – ident: e_1_2_7_40_2 doi: 10.1007/s00253-011-3689-1 – ident: e_1_2_7_15_1 doi: 10.1039/D0SC06647H – ident: e_1_2_7_50_1 – ident: e_1_2_7_13_2 doi: 10.1021/acs.jnatprod.9b01283 – ident: e_1_2_7_42_1 – ident: e_1_2_7_9_1 – ident: e_1_2_7_24_1 doi: 10.1021/acs.jnatprod.5b00669 – ident: e_1_2_7_26_1 – ident: e_1_2_7_11_2 doi: 10.1099/mic.0.27847-0 – ident: e_1_2_7_5_2 doi: 10.1038/nchem.2671 |
SSID | ssj0028806 |
Score | 2.5046775 |
Snippet | Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202217212 |
SubjectTerms | Alkaloids biochemical pathways Biosynthesis Chemical reactions DNA methylation Enzyme Catalysis Enzymes Epoxidation Fungi furans genes Hydroxylation methyltransferases Methyltransferases - metabolism Models, Molecular Molecular Structure Natural products Oxazine Oxazines - chemistry oxidoreductases Reductases regioselectivity Substrate Promiscuity Substrates Trichoderma |
Title | Pretrichodermamide A Biosynthesis Reveals the Hidden Diversity of Epidithiodiketopiperazines |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202217212 https://www.ncbi.nlm.nih.gov/pubmed/36867112 https://www.proquest.com/docview/2801886344 https://www.proquest.com/docview/2783498188 https://www.proquest.com/docview/2811981194 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ba9swFBajl-3Sbe26ZcuKBoOdlDiS7EjHrE1IBysjNJBDwUiWDKadHeJksP76vmfHbrPSDraDwUaSeZaenj5Z0vcR8jlCdTTDLYucSxiuBDLlQs-sFFYlMD8w1VLM9_NoOpffFuHi3in-mh-i_eGGPaOK19jBjS37d6SheAIb5nccFZYqmWHcsIWoaNbyR3Fwzvp4kRAMVegb1saA93eL745KD6DmLnKthp7JS2Iao-sdJ1e9zdr2kps_-Bz_56tekf0tLqWj2pFek2c-PyDPTxo5uENy-WOF4lsQLR0G85-Z83REv2ZF-TsHEFlmJZ35XwA7SwqPdIrUJDk9bbZ90CKl42WGR0CywmVXfl0ss6VfVezW5Rsyn4wvTqZsK83AEkAAnGkZuiFEBxtqlYQ2jZSILCATr4YGprzI4-agyXkgk6RS-AGPSCF4CKttYLQXR2QvL3L_jlAttIQBA9ICJ6M0MNwMZKo5ILPApAPbIaxpmjjZ8pajfMZ1XDMu8xjrLG7rrEO-tPmXNWPHozm7TUvH255bxhyGbKUiIWWHfGqToa5xIcXkvthAHlQn0QB11BN51GCg8YL3vK29qDVHRMgqiAbwyhf-Ymc8Oj8bt0_v_6XQB_IC7gUug3HZJXvr1cZ_BDS1tsdVj7kFeE0USg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VciiX8qYLBYwE4pQ2sZ3UPnBYulvt0naFqlbqASnEiSNFbZPVZhdU_lX_Sn8RM3mhBQESUg8cckjiRBN7JvP59X0ArwNSR4u4cYIkiR2aCXRU4lvHSGFUjP2DqJqKOZwEoxP54dQ_XYGrdi9MzQ_RDbhRZFT_awpwGpDe_sEaSluwsYPHSWLJ4826yn17-RV7beW78QCb-A3ne8Pj3ZHTCAs4MeYv7mjpJzvo28bXKvZNGigRGMyrVu1E2GEjFrIEDeaujONKnwa_J0XXF0YbN9JW4HtvwW2SESe6_sFRx1jFMRzqDU1COKR73_JEunx72d7lPPgLuF3GylWy27sL12011WtczrYWc7MVf_uJQfK_qsd7sN5Ab9avY-U-rNj8Aazttop3D-HTxxnpi2FCSChfXWSJZX32PivKyxxxcpmV7Mh-QWRdMjxlI2JfydmgXdnCipQNpxntcsmKJDuz82KaTe2sIvAuH8HJjXzcY1jNi9xuANNCS8yJeM9NZJC6EY88mWqO4NONUs_0wGl9IYwbanZSCDkPa1JpHlIbhV0b9eBtV35ak5L8tuRm61ph83MqQ46oRKlASNmDV91trGuaK4pyWyywDAmwaERz6g9llOdpOvA9T2q37cwRAREnkgG8cr6_2Bn2J-Nhd_b0Xx56CWuj48OD8GA82X8Gd_C6oFk_LjdhdT5b2OcIHufmRRWuDD7ftF9_B3J4bkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3o-FAkYCcUqb2E4aHzgs3V3tUlhVFZV6QApx7EhR2yTa7ILKr-Kv8I-YyQstCJCQeuCQQxInGtszmc-x_X0AzwNSR4u5dgJjEodmAp3Q-NbRUugwwfFBXE_FvJsH0yP55tg_3oCv3V6Yhh-i_-FGkVF_rynAS5Pu_CANpR3YOL7jpLDk8XZZ5b49_4yDturVbIQ9_ILzyfj93tRpdQWcBNMXd5T0zS66tvZVmPg6DUIRaEyrNtyNcbxGJGQG7eWuTJJangark6LnC620Gysr8L2X4LIMXEViEaPDnrCKYzQ0-5mEcEj2vqOJdPnOur3rafAXbLsOletcN7kB37pWapa4nGyvlno7-fITgeT_1Iw34XoLvNmwiZRbsGHz23B1r9O7uwMfDhakLobpwFC2OsuMZUP2Oiuq8xxRcpVV7NB-QlxdMTxlU-JeydmoW9fCipSNy4z2uGSFyU7ssiiz0i5q-u7qLhxdSOXuwWZe5PYBMCWUxIyI91wjg9SNeezJVHGEnm6cenoATucKUdISs5M-yGnUUErziPoo6vtoAC_78mVDSfLbkludZ0Xtp6mKOGKSMAyElAN41t_GtqaZoji3xQrLkPyKQiwX_qFM6HmKDnzP_cZre3NEQLSJZACvfe8vdkbD-Wzcnz38l4eewpWD0SR6O5vvP4JreFnQlB-XW7C5XKzsY0SOS_2kDlYGHy_arb8Digts9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pretrichodermamide+A+Biosynthesis+Reveals+the+Hidden+Diversity+of+Epidithiodiketopiperazines&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fan%2C+Jie&rft.au=Ran%2C+Huomiao&rft.au=Wei%2C+Peng%E2%80%90Lin&rft.au=Li%2C+Yuanyuan&rft.date=2023-04-24&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=18&rft_id=info:doi/10.1002%2Fanie.202217212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202217212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |