Identifying valuable information from twitter during natural disasters
ABSTRACT Social media is a vital source of information during any major event, especially natural disasters. However, with the exponential increase in volume of social media data, so comes the increase in conversational data that does not provide valuable information, especially in the context of di...
Saved in:
Published in | American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting Vol. 51; no. 1; pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | ABSTRACT
Social media is a vital source of information during any major event, especially natural disasters. However, with the exponential increase in volume of social media data, so comes the increase in conversational data that does not provide valuable information, especially in the context of disaster events, thus, diminishing peoples’ ability to find the information that they need in order to organize relief efforts, find help, and potentially save lives. This project focuses on the development of a Bayesian approach to the classification of tweets (posts on Twitter) during Hurricane Sandy in order to distinguish “informational” from “conversational” tweets. We designed an effective set of features and used them as input to Naïve Bayes classifiers. In comparison to a “bag of words” approach, the new feature set provides similar results in the classification of tweets. However, the designed feature set contains only 9 features compared with more than 3000 features for “bag of words.” When the feature set is combined with “bag of words”, accuracy achieves 85.2914%. If integrated into disaster‐related systems, our approach can serve as a boon to any person or organization seeking to extract useful information in the midst of a natural disaster. |
---|---|
Bibliography: | istex:BDEAB94509E10766F8DABFD8030D334FEBA4ED43 ArticleID:MEET14505101162 ark:/67375/WNG-SLMKPMF3-K ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0044-7870 1550-8390 1550-8390 |
DOI: | 10.1002/meet.2014.14505101162 |