A Visual Detection Method for Foreign Objects in Power Lines Based on Mask R-CNN
The high-voltage power lines and transmission towers are large in volume, large in number, and wide in coverage, so they are easily attached to foreign objects, which may cause failure of the transmission line. The existing object detection methods are susceptible to weather and environmental factor...
Saved in:
Published in | International journal of ambient computing and intelligence Vol. 11; no. 1; pp. 34 - 47 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hershey
IGI Global
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1941-6237 1941-6245 |
DOI | 10.4018/IJACI.2020010102 |
Cover
Abstract | The high-voltage power lines and transmission towers are large in volume, large in number, and wide in coverage, so they are easily attached to foreign objects, which may cause failure of the transmission line. The existing object detection methods are susceptible to weather and environmental factors, and the use of neural networks for target detection can achieve good results. Therefore, this article uses MASK R-CNN as the basic network detection method for detecting foreign objects in the transmission network. The experimental results show that compared with the traditional target detection method, the method adopted in this article has achieved good results in the speed, efficiency, and recognition precision of foreign object detection. In the future, image processing operations can be performed for complex backgrounds of transmission lines to improve recognition effect. |
---|---|
AbstractList | The high-voltage power lines and transmission towers are large in volume, large in number, and wide in coverage, so they are easily attached to foreign objects, which may cause failure of the transmission line. The existing object detection methods are susceptible to weather and environmental factors, and the use of neural networks for target detection can achieve good results. Therefore, this article uses MASK R-CNN as the basic network detection method for detecting foreign objects in the transmission network. The experimental results show that compared with the traditional target detection method, the method adopted in this article has achieved good results in the speed, efficiency, and recognition precision of foreign object detection. In the future, image processing operations can be performed for complex backgrounds of transmission lines to improve recognition effect. |
Audience | Academic |
Author | Chen, Wenxiang Li, Yingna Li, Chuan |
AuthorAffiliation | Key Laboratory of Application of Computer Technology of the Yunnan Province, KMUST, China |
AuthorAffiliation_xml | – name: Key Laboratory of Application of Computer Technology of the Yunnan Province, KMUST, China |
Author_xml | – sequence: 1 givenname: Wenxiang surname: Chen fullname: Chen, Wenxiang organization: Key Laboratory of Application of Computer Technology of the Yunnan Province, KMUST, China – sequence: 2 givenname: Yingna surname: Li fullname: Li, Yingna organization: Key Laboratory of Application of Computer Technology of the Yunnan Province, KMUST, China – sequence: 3 givenname: Chuan surname: Li fullname: Li, Chuan organization: Key Laboratory of Application of Computer Technology of the Yunnan Province, KMUST, China |
BookMark | eNp9kV1P2zAYha2JSYNu97u0tBsuSGfHH0kuSzegU_nQNLi1HPd1cClxsRMh_j3OMlEJwWTJtuTzHL865wDttb4FhL5SMuWElt8Xv2bzxTQnOSE0rfwD2qcVp5nMudh7ubPiEzqIcU2IFEQU--hqhm9c7PUG_4AOTOd8i8-hu_UrbH3AJz6Aa1p8Wa_TY8SuxVf-EQJeuhYiPtYRVnhAdLzDv7P5xcVn9NHqTYQv_84Juj75-Wd-li0vTxfz2TIznIgusyCkKavScMMkNaaQlbairGpbUFkD4QwsMRxqJsscuLErUjFGZGEYlFAXbIK-jb7b4B96iJ1a-z606UuVi0LKSkgqkupoVDV6A6ru4zB22qJrbrvY6D5GNStExQTPJU9yMspN8DEGsGob3L0OT4oSNcSs_sasdjEnRL5CjOv0kGMXtNv8DzwdQde43exDFeqlCjVWoVIV7_lQmpwO33B6LVTblWXPKrOk4Q |
CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106775 crossref_primary_10_1109_TPWRD_2022_3213598 crossref_primary_10_3390_drones8080361 crossref_primary_10_3390_s22051737 crossref_primary_10_1109_ACCESS_2024_3484156 crossref_primary_10_1109_ACCESS_2023_3277954 crossref_primary_10_1080_08839514_2021_1998974 crossref_primary_10_3390_drones8080346 crossref_primary_10_1007_s42835_022_01124_0 crossref_primary_10_1088_1755_1315_791_1_012159 crossref_primary_10_1109_ACCESS_2020_3018160 crossref_primary_10_3390_math10122150 crossref_primary_10_3390_s22051892 crossref_primary_10_3390_app12104982 crossref_primary_10_1038_s41598_024_64991_9 crossref_primary_10_1109_ACCESS_2024_3452782 crossref_primary_10_3390_s22051886 |
Cites_doi | 10.1109/CVPRW.2018.00045 10.1109/LGRS.2018.2882551 10.1109/IVCNZ.2016.7804438 10.1109/TIP.2017.2756825 10.1016/j.aei.2018.12.005 10.1109/TII.2012.2187913 10.3390.10040415 10.1007/s00521-016-2645-5 10.1109/5.726791 10.1109/ICCV.2017.322 10.1109/CVPR.2014.81 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 IGI Global Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
Copyright_xml | – notice: COPYRIGHT 2020 IGI Global – notice: Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
DBID | AAYXX CITATION N95 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.4018/IJACI.2020010102 |
DatabaseName | CrossRef Gale Business: Insights Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1941-6245 |
EndPage | 47 |
ExternalDocumentID | A759354264 10_4018_IJACI_2020010102 sual_Detection_Method_for10_4018_IJACI_202001010211 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 0R ABEPT ADEKF ALMA_UNASSIGNED_HOLDINGS COVLG EBS HZ JRD MV1 NEEBM O9- RIF 0R~ 4.4 AAYVP AAYXX ABJCF ABPHS ACOJC AFKRA ARAPS BAAKF BENPR BGLVJ BTFVE BYHXH CBWLS CCPQU CDTDJ CIGCI CITATION CNQXE CTSEY EJD H13 HCIFZ HZ~ IAO ICD IMI ITC K7- M7S N95 PHGZM PHGZT PTHSS 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c405t-fe56c898c4c361cc769af589bf716be043ef0c4eb3682e4cfd0933067c3e8eb73 |
IEDL.DBID | 8FG |
ISSN | 1941-6237 |
IngestDate | Fri Jul 25 10:22:17 EDT 2025 Fri May 23 02:28:42 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Tue Jul 01 01:40:28 EDT 2025 Tue Jan 05 23:28:56 EST 2021 Fri Jan 15 00:04:31 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-fe56c898c4c361cc769af589bf716be043ef0c4eb3682e4cfd0933067c3e8eb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2576695615 |
PQPubID | 2045866 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_4018_IJACI_2020010102 gale_businessinsightsgauss_A759354264 proquest_journals_2576695615 crossref_citationtrail_10_4018_IJACI_2020010102 igi_journals_sual_Detection_Method_for10_4018_IJACI_202001010211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01T00:00:00 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01T00:00:00 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hershey |
PublicationPlace_xml | – name: Hershey |
PublicationTitle | International journal of ambient computing and intelligence |
PublicationYear | 2020 |
Publisher | IGI Global |
Publisher_xml | – name: IGI Global |
References | IJACI.2020010102-10 IJACI.2020010102-32 IJACI.2020010102-33 IJACI.2020010102-2 IJACI.2020010102-12 Q. C.Peng (IJACI.2020010102-31) 2019; 59 IJACI.2020010102-34 IJACI.2020010102-13 IJACI.2020010102-0 W.Bo (IJACI.2020010102-4) 2014 J. L.Wu (IJACI.2020010102-21) 2018; 48 J. P.Huang (IJACI.2020010102-28) 2019; 56 Y.LeCun (IJACI.2020010102-9) 1998; 86 IJACI.2020010102-18 Y. H.Zhu (IJACI.2020010102-7) 2017 Q.Gao (IJACI.2020010102-19) 2015; 52 X. F.Qi (IJACI.2020010102-1) 2017; 13 HCheng (IJACI.2020010102-30) 2019; 42 IJACI.2020010102-8 S. C.Satapathy (IJACI.2020010102-20) 2018; 29 R. H.Meng (IJACI.2020010102-26) 2018; 55 IJACI.2020010102-6 IJACI.2020010102-5 J. S.Yuan (IJACI.2020010102-17) 2014; 52 IJACI.2020010102-22 IJACI.2020010102-24 R.Girdhar (IJACI.2020010102-23) 2018 W.Liu (IJACI.2020010102-15) 2016 Q. G.Wu (IJACI.2020010102-16) 2012 Q.Wu (IJACI.2020010102-3) 2003 J. N.Li (IJACI.2020010102-25) 2018; 20 DWan (IJACI.2020010102-27) 2018; 42 G.Lin (IJACI.2020010102-29) 2019; 39 R.Girshick (IJACI.2020010102-11) 2015 J.Redmon (IJACI.2020010102-14) 2016 |
References_xml | – ident: IJACI.2020010102-24 doi: 10.1109/CVPRW.2018.00045 – year: 2017 ident: IJACI.2020010102-7 publication-title: Research on visual inspection method of patrol robot – volume: 52 start-page: 106 issue: 7 year: 2014 ident: IJACI.2020010102-17 article-title: Identification and Location of Insulator Video Image Based on ASIFT Algorithm. publication-title: Journal of Electric Measurement & Instrumentation – ident: IJACI.2020010102-32 doi: 10.1109/LGRS.2018.2882551 – year: 2003 ident: IJACI.2020010102-3 article-title: Analysis of transient grounding resistance under pulsed discharging current with parallel FDTD algorithm. publication-title: Proceedings of the International Symposium on Antennas IEEE – volume: 42 start-page: 111 issue: 1 year: 2018 ident: IJACI.2020010102-27 article-title: A method for detection of foreign objects in transmission lines based on visual saliency analysis. publication-title: Television Technology – volume: 13 start-page: 158 year: 2017 ident: IJACI.2020010102-1 article-title: Discussion on the inspection method of transmission lines. publication-title: Electronic World – year: 2014 ident: IJACI.2020010102-4 publication-title: Research and development of backstage management and inspection system based on transmission line inspection robot – volume: 39 start-page: 213 issue: 5 year: 2019 ident: IJACI.2020010102-29 article-title: Multi-target detection and location of transmission line inspection image based on improved Faster-RCNN. publication-title: Electric Power Automation Equipment – ident: IJACI.2020010102-6 doi: 10.1109/IVCNZ.2016.7804438 – ident: IJACI.2020010102-22 doi: 10.1109/TIP.2017.2756825 – ident: IJACI.2020010102-33 doi: 10.1016/j.aei.2018.12.005 – ident: IJACI.2020010102-8 – ident: IJACI.2020010102-12 – volume: 59 start-page: 53 issue: 2 year: 2019 ident: IJACI.2020010102-31 article-title: Object Recognition and Location Based on Mask R-CNN. publication-title: Qinghua Daxue Xuebao. Ziran Kexue Ban – ident: IJACI.2020010102-0 – ident: IJACI.2020010102-18 – volume: 20 start-page: 985 issue: 4 year: 2018 ident: IJACI.2020010102-25 article-title: Scale-Aware Fast R-CNN for Pedestrian Detection. publication-title: IEEE Transactions on Multimedia – year: 2012 ident: IJACI.2020010102-16 publication-title: Research on component edge extraction algorithm in complex background power line image – start-page: 350 year: 2018 ident: IJACI.2020010102-23 article-title: Detect-and-track: Efficient pose estimation in videos. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: IJACI.2020010102-2 doi: 10.1109/TII.2012.2187913 – ident: IJACI.2020010102-5 doi: 10.3390.10040415 – volume: 56 start-page: 319 issue: 2 year: 2019 ident: IJACI.2020010102-28 article-title: Multi-scale Faster-RCNN Detection Algorithm for Small Targets. publication-title: Jisuanji Yanjiu Yu Fazhan – start-page: 21 year: 2016 ident: IJACI.2020010102-15 article-title: Ssd: Single shot multibox detector. publication-title: Proceedings of the European conference on computer vision – volume: 29 start-page: 1285 issue: 12 year: 2018 ident: IJACI.2020010102-20 article-title: Multi-level image thresholding using Otsu and chaotic bat algorithm. publication-title: Neural Computing & Applications doi: 10.1007/s00521-016-2645-5 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: IJACI.2020010102-9 article-title: Gradient-based learning applied to document recognition. publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – volume: 55 start-page: 1 issue: 1 year: 2018 ident: IJACI.2020010102-26 article-title: A Fusion Steganographic Algorithm Based on Faster R-CNN. publication-title: Computers Materials & Continua – ident: IJACI.2020010102-13 doi: 10.1109/ICCV.2017.322 – volume: 52 start-page: 117 issue: 3 year: 2015 ident: IJACI.2020010102-19 article-title: Image Feature Description Based on Difference and Its Application in Insulator Identification. publication-title: Journal of Electric Measurement & Instrumentation – start-page: 779 year: 2016 ident: IJACI.2020010102-14 article-title: You only look once: Unified, real-time object detection. publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 42 start-page: 106 issue: 2 year: 2019 ident: IJACI.2020010102-30 article-title: Insulator Recognition in Aerial Images Based on Faster R-CNN. publication-title: Modern Electronic Technology – ident: IJACI.2020010102-10 doi: 10.1109/CVPR.2014.81 – start-page: 1440 year: 2015 ident: IJACI.2020010102-11 article-title: Fast r-cnn. publication-title: Proceedings of the IEEE international conference on computer vision – volume: 48 start-page: 39 issue: 11 year: 2018 ident: IJACI.2020010102-21 article-title: Research on Ship Target Detection Based on Mask R-CNN. publication-title: Wuxiandian Gongcheng – ident: IJACI.2020010102-34 |
SSID | ssj0065057 |
Score | 2.29524 |
Snippet | The high-voltage power lines and transmission towers are large in volume, large in number, and wide in coverage, so they are easily attached to foreign... |
SourceID | proquest gale crossref igi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 34 |
SubjectTerms | Equipment and supplies Image processing Methods Neural networks Power lines |
Title | A Visual Detection Method for Foreign Objects in Power Lines Based on Mask R-CNN |
URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.2020010102 https://www.proquest.com/docview/2576695615 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKXHpp6UvdliIjtYceot2sHSc-wbKwPFS2K1Qqblb8QiuqsK13_z8zjsOqQnDJJfYomZnM47Pjj5CvXHJtcoh-XmtoUHwtMsmZzZhzkhnD7FAjDnkxFadX_Py6uE6AW0jbKruYGAO1vTOIkfexMBb4F2axv_ibIWsUrq4mCo0NspVDpkE_ryYnXSQWWHzHVWWeZ5Dmy3aZEjqKqn92PhqfQXs4jIesJVClS0spOG_Mb-aPQnTMO5Nt8ioVjHTUWvgNeeGat-R1R8ZA07f5jsxG9Pc8rGDokVvG_VUNvYj00BTqUpooOOlPjcBLoPOGzpAgjf7Afe_0EJKZpTilDrf0MhtPp-_J1eT41_g0S3QJmYGqa5l5VwhTycpww0RuTClk7YtKag89kXYDzpwfGA7ds6iGjhtvI5ohSsNc5XTJPpDN5q5xHwllNcjSg9xaXnBnSzn0ptYst1KWzg3yHul32lImnSWOlBZ_FPQUqF8V9avW-u2R7w8zFu05Gs-M_YYGUImGEy4BgYpwU69CUKOykKzAQq5H9sBCKn104ZEctbC-Rw7-G4N2UA92UK0dFNjhqYfJ4WV3OhdYy1m746fnb38mL1FYi9rskM3lv5X7AnXMUu9GZ90lW4fH09nlPVgA7JE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB616QEuvBEpBRaJHjhYib3rxx4QpGmrpE1MVLWot6334SoCuSlOhPhT_EZm_GiEKnrrxRfvjuyZ3Zn5Zh8fwAchhTY-er9cawQoeRZ5UnDrceckN4bbQFMdcppGozNxdB6eb8Cf9iwMbatsfWLlqO2VoRp5jxLjiE5hhp8X1x6xRtHqakuhUQ-LY_f7F0K28tN4H-27GwSHB6fDkdewCngGk5Oll7swMolMjDA88o2JI5nlYSJ1jtBBu77gLu8bgSAzSgInTG4r0B_FhrvE6Zij3E3YEnSitQNbewfp7KT1_RGl-9U6tvA9TCziemEUMUzSGx8NhmMEpEF1rVtTxmkDYRMONueX81tBoYp0h0_gUZOiskE9pp7ChiueweOW_oE13uA5zAbs27xcYdN9t6x2dBVsWhFSM8yEWUP6yb5qKvWUbF6wGVGysQnttGd7GD4toy5Z-Z2deMM0fQFn96LKl9Aprgr3ChjPUJbu-9aKUDgbyyA3mea-lTJ2ru93oddqS5nm9nIi0fihEMWQflWlX7XWbxc-3vRY1Dd33NF2lwygGuJPfJRUGikvs1VZqkEcSh5S6tiF92gh1Uzz8pYctbB5F77804bsoG7soGo7KLTD_z7Gx5_daYfAWs56Amzf_fodPBidTidqMk6PX8NDElzXjHags_y5cm8wi1rqt83QZXBx37PlLxw8KhM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Visual+Detection+Method+for+Foreign+Objects+in+Power+Lines+Based+on+Mask+R-CNN&rft.jtitle=International+journal+of+ambient+computing+and+intelligence&rft.au=Chen%2C+Wenxiang&rft.au=Li%2C+Yingna&rft.au=Li%2C+Chuan&rft.date=2020-01-01&rft.issn=1941-6237&rft.eissn=1941-6245&rft.volume=11&rft.issue=1&rft.spage=34&rft.epage=47&rft_id=info:doi/10.4018%2FIJACI.2020010102&rft.externalDocID=sual_Detection_Method_for10_4018_IJACI_202001010211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-6237&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-6237&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-6237&client=summon |