A Visual Detection Method for Foreign Objects in Power Lines Based on Mask R-CNN

The high-voltage power lines and transmission towers are large in volume, large in number, and wide in coverage, so they are easily attached to foreign objects, which may cause failure of the transmission line. The existing object detection methods are susceptible to weather and environmental factor...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of ambient computing and intelligence Vol. 11; no. 1; pp. 34 - 47
Main Authors Chen, Wenxiang, Li, Yingna, Li, Chuan
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.01.2020
Subjects
Online AccessGet full text
ISSN1941-6237
1941-6245
DOI10.4018/IJACI.2020010102

Cover

Abstract The high-voltage power lines and transmission towers are large in volume, large in number, and wide in coverage, so they are easily attached to foreign objects, which may cause failure of the transmission line. The existing object detection methods are susceptible to weather and environmental factors, and the use of neural networks for target detection can achieve good results. Therefore, this article uses MASK R-CNN as the basic network detection method for detecting foreign objects in the transmission network. The experimental results show that compared with the traditional target detection method, the method adopted in this article has achieved good results in the speed, efficiency, and recognition precision of foreign object detection. In the future, image processing operations can be performed for complex backgrounds of transmission lines to improve recognition effect.
AbstractList The high-voltage power lines and transmission towers are large in volume, large in number, and wide in coverage, so they are easily attached to foreign objects, which may cause failure of the transmission line. The existing object detection methods are susceptible to weather and environmental factors, and the use of neural networks for target detection can achieve good results. Therefore, this article uses MASK R-CNN as the basic network detection method for detecting foreign objects in the transmission network. The experimental results show that compared with the traditional target detection method, the method adopted in this article has achieved good results in the speed, efficiency, and recognition precision of foreign object detection. In the future, image processing operations can be performed for complex backgrounds of transmission lines to improve recognition effect.
Audience Academic
Author Chen, Wenxiang
Li, Yingna
Li, Chuan
AuthorAffiliation Key Laboratory of Application of Computer Technology of the Yunnan Province, KMUST, China
AuthorAffiliation_xml – name: Key Laboratory of Application of Computer Technology of the Yunnan Province, KMUST, China
Author_xml – sequence: 1
  givenname: Wenxiang
  surname: Chen
  fullname: Chen, Wenxiang
  organization: Key Laboratory of Application of Computer Technology of the Yunnan Province, KMUST, China
– sequence: 2
  givenname: Yingna
  surname: Li
  fullname: Li, Yingna
  organization: Key Laboratory of Application of Computer Technology of the Yunnan Province, KMUST, China
– sequence: 3
  givenname: Chuan
  surname: Li
  fullname: Li, Chuan
  organization: Key Laboratory of Application of Computer Technology of the Yunnan Province, KMUST, China
BookMark eNp9kV1P2zAYha2JSYNu97u0tBsuSGfHH0kuSzegU_nQNLi1HPd1cClxsRMh_j3OMlEJwWTJtuTzHL865wDttb4FhL5SMuWElt8Xv2bzxTQnOSE0rfwD2qcVp5nMudh7ubPiEzqIcU2IFEQU--hqhm9c7PUG_4AOTOd8i8-hu_UrbH3AJz6Aa1p8Wa_TY8SuxVf-EQJeuhYiPtYRVnhAdLzDv7P5xcVn9NHqTYQv_84Juj75-Wd-li0vTxfz2TIznIgusyCkKavScMMkNaaQlbairGpbUFkD4QwsMRxqJsscuLErUjFGZGEYlFAXbIK-jb7b4B96iJ1a-z606UuVi0LKSkgqkupoVDV6A6ru4zB22qJrbrvY6D5GNStExQTPJU9yMspN8DEGsGob3L0OT4oSNcSs_sasdjEnRL5CjOv0kGMXtNv8DzwdQde43exDFeqlCjVWoVIV7_lQmpwO33B6LVTblWXPKrOk4Q
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106775
crossref_primary_10_1109_TPWRD_2022_3213598
crossref_primary_10_3390_drones8080361
crossref_primary_10_3390_s22051737
crossref_primary_10_1109_ACCESS_2024_3484156
crossref_primary_10_1109_ACCESS_2023_3277954
crossref_primary_10_1080_08839514_2021_1998974
crossref_primary_10_3390_drones8080346
crossref_primary_10_1007_s42835_022_01124_0
crossref_primary_10_1088_1755_1315_791_1_012159
crossref_primary_10_1109_ACCESS_2020_3018160
crossref_primary_10_3390_math10122150
crossref_primary_10_3390_s22051892
crossref_primary_10_3390_app12104982
crossref_primary_10_1038_s41598_024_64991_9
crossref_primary_10_1109_ACCESS_2024_3452782
crossref_primary_10_3390_s22051886
Cites_doi 10.1109/CVPRW.2018.00045
10.1109/LGRS.2018.2882551
10.1109/IVCNZ.2016.7804438
10.1109/TIP.2017.2756825
10.1016/j.aei.2018.12.005
10.1109/TII.2012.2187913
10.3390.10040415
10.1007/s00521-016-2645-5
10.1109/5.726791
10.1109/ICCV.2017.322
10.1109/CVPR.2014.81
ContentType Journal Article
Copyright COPYRIGHT 2020 IGI Global
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: COPYRIGHT 2020 IGI Global
– notice: Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
N95
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.4018/IJACI.2020010102
DatabaseName CrossRef
Gale Business: Insights
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1941-6245
EndPage 47
ExternalDocumentID A759354264
10_4018_IJACI_2020010102
sual_Detection_Method_for10_4018_IJACI_202001010211
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0R
ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
COVLG
EBS
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
4.4
AAYVP
AAYXX
ABJCF
ABPHS
ACOJC
AFKRA
ARAPS
BAAKF
BENPR
BGLVJ
BTFVE
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CITATION
CNQXE
CTSEY
EJD
H13
HCIFZ
HZ~
IAO
ICD
IMI
ITC
K7-
M7S
N95
PHGZM
PHGZT
PTHSS
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c405t-fe56c898c4c361cc769af589bf716be043ef0c4eb3682e4cfd0933067c3e8eb73
IEDL.DBID 8FG
ISSN 1941-6237
IngestDate Fri Jul 25 10:22:17 EDT 2025
Fri May 23 02:28:42 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Tue Jul 01 01:40:28 EDT 2025
Tue Jan 05 23:28:56 EST 2021
Fri Jan 15 00:04:31 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-fe56c898c4c361cc769af589bf716be043ef0c4eb3682e4cfd0933067c3e8eb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2576695615
PQPubID 2045866
PageCount 14
ParticipantIDs crossref_primary_10_4018_IJACI_2020010102
gale_businessinsightsgauss_A759354264
proquest_journals_2576695615
crossref_citationtrail_10_4018_IJACI_2020010102
igi_journals_sual_Detection_Method_for10_4018_IJACI_202001010211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01T00:00:00
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01T00:00:00
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of ambient computing and intelligence
PublicationYear 2020
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJACI.2020010102-10
IJACI.2020010102-32
IJACI.2020010102-33
IJACI.2020010102-2
IJACI.2020010102-12
Q. C.Peng (IJACI.2020010102-31) 2019; 59
IJACI.2020010102-34
IJACI.2020010102-13
IJACI.2020010102-0
W.Bo (IJACI.2020010102-4) 2014
J. L.Wu (IJACI.2020010102-21) 2018; 48
J. P.Huang (IJACI.2020010102-28) 2019; 56
Y.LeCun (IJACI.2020010102-9) 1998; 86
IJACI.2020010102-18
Y. H.Zhu (IJACI.2020010102-7) 2017
Q.Gao (IJACI.2020010102-19) 2015; 52
X. F.Qi (IJACI.2020010102-1) 2017; 13
HCheng (IJACI.2020010102-30) 2019; 42
IJACI.2020010102-8
S. C.Satapathy (IJACI.2020010102-20) 2018; 29
R. H.Meng (IJACI.2020010102-26) 2018; 55
IJACI.2020010102-6
IJACI.2020010102-5
J. S.Yuan (IJACI.2020010102-17) 2014; 52
IJACI.2020010102-22
IJACI.2020010102-24
R.Girdhar (IJACI.2020010102-23) 2018
W.Liu (IJACI.2020010102-15) 2016
Q. G.Wu (IJACI.2020010102-16) 2012
Q.Wu (IJACI.2020010102-3) 2003
J. N.Li (IJACI.2020010102-25) 2018; 20
DWan (IJACI.2020010102-27) 2018; 42
G.Lin (IJACI.2020010102-29) 2019; 39
R.Girshick (IJACI.2020010102-11) 2015
J.Redmon (IJACI.2020010102-14) 2016
References_xml – ident: IJACI.2020010102-24
  doi: 10.1109/CVPRW.2018.00045
– year: 2017
  ident: IJACI.2020010102-7
  publication-title: Research on visual inspection method of patrol robot
– volume: 52
  start-page: 106
  issue: 7
  year: 2014
  ident: IJACI.2020010102-17
  article-title: Identification and Location of Insulator Video Image Based on ASIFT Algorithm.
  publication-title: Journal of Electric Measurement & Instrumentation
– ident: IJACI.2020010102-32
  doi: 10.1109/LGRS.2018.2882551
– year: 2003
  ident: IJACI.2020010102-3
  article-title: Analysis of transient grounding resistance under pulsed discharging current with parallel FDTD algorithm.
  publication-title: Proceedings of the International Symposium on Antennas IEEE
– volume: 42
  start-page: 111
  issue: 1
  year: 2018
  ident: IJACI.2020010102-27
  article-title: A method for detection of foreign objects in transmission lines based on visual saliency analysis.
  publication-title: Television Technology
– volume: 13
  start-page: 158
  year: 2017
  ident: IJACI.2020010102-1
  article-title: Discussion on the inspection method of transmission lines.
  publication-title: Electronic World
– year: 2014
  ident: IJACI.2020010102-4
  publication-title: Research and development of backstage management and inspection system based on transmission line inspection robot
– volume: 39
  start-page: 213
  issue: 5
  year: 2019
  ident: IJACI.2020010102-29
  article-title: Multi-target detection and location of transmission line inspection image based on improved Faster-RCNN.
  publication-title: Electric Power Automation Equipment
– ident: IJACI.2020010102-6
  doi: 10.1109/IVCNZ.2016.7804438
– ident: IJACI.2020010102-22
  doi: 10.1109/TIP.2017.2756825
– ident: IJACI.2020010102-33
  doi: 10.1016/j.aei.2018.12.005
– ident: IJACI.2020010102-8
– ident: IJACI.2020010102-12
– volume: 59
  start-page: 53
  issue: 2
  year: 2019
  ident: IJACI.2020010102-31
  article-title: Object Recognition and Location Based on Mask R-CNN.
  publication-title: Qinghua Daxue Xuebao. Ziran Kexue Ban
– ident: IJACI.2020010102-0
– ident: IJACI.2020010102-18
– volume: 20
  start-page: 985
  issue: 4
  year: 2018
  ident: IJACI.2020010102-25
  article-title: Scale-Aware Fast R-CNN for Pedestrian Detection.
  publication-title: IEEE Transactions on Multimedia
– year: 2012
  ident: IJACI.2020010102-16
  publication-title: Research on component edge extraction algorithm in complex background power line image
– start-page: 350
  year: 2018
  ident: IJACI.2020010102-23
  article-title: Detect-and-track: Efficient pose estimation in videos.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: IJACI.2020010102-2
  doi: 10.1109/TII.2012.2187913
– ident: IJACI.2020010102-5
  doi: 10.3390.10040415
– volume: 56
  start-page: 319
  issue: 2
  year: 2019
  ident: IJACI.2020010102-28
  article-title: Multi-scale Faster-RCNN Detection Algorithm for Small Targets.
  publication-title: Jisuanji Yanjiu Yu Fazhan
– start-page: 21
  year: 2016
  ident: IJACI.2020010102-15
  article-title: Ssd: Single shot multibox detector.
  publication-title: Proceedings of the European conference on computer vision
– volume: 29
  start-page: 1285
  issue: 12
  year: 2018
  ident: IJACI.2020010102-20
  article-title: Multi-level image thresholding using Otsu and chaotic bat algorithm.
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-016-2645-5
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: IJACI.2020010102-9
  article-title: Gradient-based learning applied to document recognition.
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– volume: 55
  start-page: 1
  issue: 1
  year: 2018
  ident: IJACI.2020010102-26
  article-title: A Fusion Steganographic Algorithm Based on Faster R-CNN.
  publication-title: Computers Materials & Continua
– ident: IJACI.2020010102-13
  doi: 10.1109/ICCV.2017.322
– volume: 52
  start-page: 117
  issue: 3
  year: 2015
  ident: IJACI.2020010102-19
  article-title: Image Feature Description Based on Difference and Its Application in Insulator Identification.
  publication-title: Journal of Electric Measurement & Instrumentation
– start-page: 779
  year: 2016
  ident: IJACI.2020010102-14
  article-title: You only look once: Unified, real-time object detection.
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 42
  start-page: 106
  issue: 2
  year: 2019
  ident: IJACI.2020010102-30
  article-title: Insulator Recognition in Aerial Images Based on Faster R-CNN.
  publication-title: Modern Electronic Technology
– ident: IJACI.2020010102-10
  doi: 10.1109/CVPR.2014.81
– start-page: 1440
  year: 2015
  ident: IJACI.2020010102-11
  article-title: Fast r-cnn.
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 48
  start-page: 39
  issue: 11
  year: 2018
  ident: IJACI.2020010102-21
  article-title: Research on Ship Target Detection Based on Mask R-CNN.
  publication-title: Wuxiandian Gongcheng
– ident: IJACI.2020010102-34
SSID ssj0065057
Score 2.29524
Snippet The high-voltage power lines and transmission towers are large in volume, large in number, and wide in coverage, so they are easily attached to foreign...
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 34
SubjectTerms Equipment and supplies
Image processing
Methods
Neural networks
Power lines
Title A Visual Detection Method for Foreign Objects in Power Lines Based on Mask R-CNN
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.2020010102
https://www.proquest.com/docview/2576695615
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKXHpp6UvdliIjtYceot2sHSc-wbKwPFS2K1Qqblb8QiuqsK13_z8zjsOqQnDJJfYomZnM47Pjj5CvXHJtcoh-XmtoUHwtMsmZzZhzkhnD7FAjDnkxFadX_Py6uE6AW0jbKruYGAO1vTOIkfexMBb4F2axv_ibIWsUrq4mCo0NspVDpkE_ryYnXSQWWHzHVWWeZ5Dmy3aZEjqKqn92PhqfQXs4jIesJVClS0spOG_Mb-aPQnTMO5Nt8ioVjHTUWvgNeeGat-R1R8ZA07f5jsxG9Pc8rGDokVvG_VUNvYj00BTqUpooOOlPjcBLoPOGzpAgjf7Afe_0EJKZpTilDrf0MhtPp-_J1eT41_g0S3QJmYGqa5l5VwhTycpww0RuTClk7YtKag89kXYDzpwfGA7ds6iGjhtvI5ohSsNc5XTJPpDN5q5xHwllNcjSg9xaXnBnSzn0ptYst1KWzg3yHul32lImnSWOlBZ_FPQUqF8V9avW-u2R7w8zFu05Gs-M_YYGUImGEy4BgYpwU69CUKOykKzAQq5H9sBCKn104ZEctbC-Rw7-G4N2UA92UK0dFNjhqYfJ4WV3OhdYy1m746fnb38mL1FYi9rskM3lv5X7AnXMUu9GZ90lW4fH09nlPVgA7JE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB616QEuvBEpBRaJHjhYib3rxx4QpGmrpE1MVLWot6334SoCuSlOhPhT_EZm_GiEKnrrxRfvjuyZ3Zn5Zh8fwAchhTY-er9cawQoeRZ5UnDrceckN4bbQFMdcppGozNxdB6eb8Cf9iwMbatsfWLlqO2VoRp5jxLjiE5hhp8X1x6xRtHqakuhUQ-LY_f7F0K28tN4H-27GwSHB6fDkdewCngGk5Oll7swMolMjDA88o2JI5nlYSJ1jtBBu77gLu8bgSAzSgInTG4r0B_FhrvE6Zij3E3YEnSitQNbewfp7KT1_RGl-9U6tvA9TCziemEUMUzSGx8NhmMEpEF1rVtTxmkDYRMONueX81tBoYp0h0_gUZOiskE9pp7ChiueweOW_oE13uA5zAbs27xcYdN9t6x2dBVsWhFSM8yEWUP6yb5qKvWUbF6wGVGysQnttGd7GD4toy5Z-Z2deMM0fQFn96LKl9Aprgr3ChjPUJbu-9aKUDgbyyA3mea-lTJ2ru93oddqS5nm9nIi0fihEMWQflWlX7XWbxc-3vRY1Dd33NF2lwygGuJPfJRUGikvs1VZqkEcSh5S6tiF92gh1Uzz8pYctbB5F77804bsoG7soGo7KLTD_z7Gx5_daYfAWs56Amzf_fodPBidTidqMk6PX8NDElzXjHags_y5cm8wi1rqt83QZXBx37PlLxw8KhM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Visual+Detection+Method+for+Foreign+Objects+in+Power+Lines+Based+on+Mask+R-CNN&rft.jtitle=International+journal+of+ambient+computing+and+intelligence&rft.au=Chen%2C+Wenxiang&rft.au=Li%2C+Yingna&rft.au=Li%2C+Chuan&rft.date=2020-01-01&rft.issn=1941-6237&rft.eissn=1941-6245&rft.volume=11&rft.issue=1&rft.spage=34&rft.epage=47&rft_id=info:doi/10.4018%2FIJACI.2020010102&rft.externalDocID=sual_Detection_Method_for10_4018_IJACI_202001010211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-6237&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-6237&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-6237&client=summon