Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers

Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix compos...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 425-426; pp. 235 - 242
Main Authors Li, Tao, Pan, Yichang, Peinemann, Klaus-Viktor, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30–35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO2, N2 and CH4. Both, permeability (PCO2 up to 145barrer) and gas selectivity (CO2/N2 up to 97 and CO2/CH4 up to 30) can be increased at low ZIF- loading. The CO2/CH4 selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO2 separation from methane and other gas streams. They are easy to fabricate, which makes them attractive for industrial scale gas separation. ► ZIF-7 nano-particles have been synthesized and dispersed in a polymer matrix. ► High performance ZIF-7 mixed matrix membranes for gas separation were manufactured. ► Excellent compatibility between filler and polymer was observed. ► Defect-free membranes could be prepared by a simple coating technique. ► The CO2/CH4 selectivity could be more than doubled by the ZIF-7 nano-fillers.
AbstractList Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30–35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO₂, N₂ and CH₄. Both, permeability (PCO₂ up to 145barrer) and gas selectivity (CO₂/N₂ up to 97 and CO₂/CH₄ up to 30) can be increased at low ZIF- loading. The CO₂/CH₄ selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO₂ separation from methane and other gas streams. They are easy to fabricate, which makes them attractive for industrial scale gas separation.
Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30–35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO2, N2 and CH4. Both, permeability (PCO2 up to 145barrer) and gas selectivity (CO2/N2 up to 97 and CO2/CH4 up to 30) can be increased at low ZIF- loading. The CO2/CH4 selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO2 separation from methane and other gas streams. They are easy to fabricate, which makes them attractive for industrial scale gas separation. ► ZIF-7 nano-particles have been synthesized and dispersed in a polymer matrix. ► High performance ZIF-7 mixed matrix membranes for gas separation were manufactured. ► Excellent compatibility between filler and polymer was observed. ► Defect-free membranes could be prepared by a simple coating technique. ► The CO2/CH4 selectivity could be more than doubled by the ZIF-7 nano-fillers.
Author Pan, Yichang
Li, Tao
Lai, Zhiping
Peinemann, Klaus-Viktor
Author_xml – sequence: 1
  givenname: Tao
  surname: Li
  fullname: Li, Tao
– sequence: 2
  givenname: Yichang
  surname: Pan
  fullname: Pan, Yichang
– sequence: 3
  givenname: Klaus-Viktor
  surname: Peinemann
  fullname: Peinemann, Klaus-Viktor
– sequence: 4
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
BookMark eNqFkD1PwzAQhj0UiRb4BwwZWRLO-XLCgIQqCpWQWICBxXLsC7oqsYsdqvLvMSoTA0wnnd7n1d2zYDPrLDJ2ziHjwOvLTTbiGDRlOfA8gzYDqGdsDoWoU1E0zTFbhLAB4AKads5elsp3ziaG3J4MJgEH1BPtMBlpjyYZ1eRpn2g3bl2gKa5x7LyyGFd2UmTJviWv61UqEqusS3saBvThlB31agh49jNP2PPq9ml5nz483q2XNw-pLqGa0p6rutJG9K2oq07zmmPVi6bsG6E18jI3XaNVnQP2nQHVtmXOeZ53AtGUhVLFCbs49G69e__AMMmRgsZhiBe6jyB5AwWHKi94jJaHqPYuBI-93Hoalf-UHOS3OrmRB3XyW52EVkZ1Ebv6hWma1ETxe69o-A--PsAYHewIvYwJtBoN-ahZGkd_F3wBBD-SOA
CitedBy_id crossref_primary_10_1021_acs_iecr_3c01648
crossref_primary_10_1016_j_cej_2021_128807
crossref_primary_10_1016_j_memsci_2016_03_050
crossref_primary_10_1016_j_jngse_2021_103947
crossref_primary_10_1021_acs_iecr_9b01466
crossref_primary_10_1002_app_53128
crossref_primary_10_1088_1757_899X_1059_1_012006
crossref_primary_10_3390_polym14071480
crossref_primary_10_1016_j_memsci_2016_02_022
crossref_primary_10_1080_10916466_2016_1273242
crossref_primary_10_1002_slct_202100055
crossref_primary_10_1016_j_jtice_2016_07_005
crossref_primary_10_1007_s12633_024_03214_2
crossref_primary_10_1016_j_jclepro_2018_03_099
crossref_primary_10_1016_j_jiec_2015_04_007
crossref_primary_10_1016_j_jcou_2022_102094
crossref_primary_10_1039_C7EE02820B
crossref_primary_10_1016_j_seppur_2023_124073
crossref_primary_10_1016_j_apsusc_2025_162673
crossref_primary_10_1021_acs_nanolett_3c00004
crossref_primary_10_1016_j_clay_2018_09_025
crossref_primary_10_1016_j_memsci_2020_118826
crossref_primary_10_1016_j_jiec_2019_12_020
crossref_primary_10_1039_C4CC06491G
crossref_primary_10_1002_cjce_24052
crossref_primary_10_1016_j_memsci_2023_121818
crossref_primary_10_1002_ghg_2039
crossref_primary_10_1039_C6RA23013J
crossref_primary_10_1139_tcsme_2020_0080
crossref_primary_10_1080_00219592_2024_2350748
crossref_primary_10_1016_j_seppur_2019_02_036
crossref_primary_10_1039_c3ta01652h
crossref_primary_10_1039_C6NJ02013E
crossref_primary_10_3390_ma14175093
crossref_primary_10_1016_j_seppur_2020_116708
crossref_primary_10_54097_hset_v58i_10121
crossref_primary_10_1016_j_joule_2019_07_003
crossref_primary_10_1016_j_seppur_2021_120371
crossref_primary_10_1016_j_memsci_2017_12_033
crossref_primary_10_1021_jacs_8b09631
crossref_primary_10_1016_j_mtsust_2024_100812
crossref_primary_10_4028_www_scientific_net_SSP_307_258
crossref_primary_10_1016_j_seppur_2016_04_038
crossref_primary_10_1021_ie403437g
crossref_primary_10_1016_j_memsci_2016_11_065
crossref_primary_10_1016_j_jngse_2020_103655
crossref_primary_10_1002_cssc_201402647
crossref_primary_10_1016_j_cherd_2016_10_018
crossref_primary_10_1016_j_memsci_2014_05_025
crossref_primary_10_1088_1361_6528_aaa80c
crossref_primary_10_1016_j_jiec_2019_11_018
crossref_primary_10_1039_C9TA05401D
crossref_primary_10_1016_j_jechem_2016_10_013
crossref_primary_10_1126_sciadv_adk5846
crossref_primary_10_1021_acssuschemeng_8b03789
crossref_primary_10_1039_C7TA03755D
crossref_primary_10_1002_cplu_201300193
crossref_primary_10_9713_kcer_2014_52_3_340
crossref_primary_10_1021_acssuschemeng_1c03917
crossref_primary_10_1016_j_memsci_2015_09_045
crossref_primary_10_1016_j_seppur_2018_08_047
crossref_primary_10_1016_j_memsci_2016_02_059
crossref_primary_10_1016_j_ces_2016_11_037
crossref_primary_10_1016_j_memsci_2016_09_040
crossref_primary_10_1007_s11814_018_0081_1
crossref_primary_10_3390_ma14123366
crossref_primary_10_1016_j_seppur_2025_132201
crossref_primary_10_1126_science_abe0192
crossref_primary_10_1002_asia_202000013
crossref_primary_10_3390_membranes11060404
crossref_primary_10_1016_j_memsci_2020_117934
crossref_primary_10_1007_s11814_020_0650_y
crossref_primary_10_1021_acsami_5b12541
crossref_primary_10_1021_acssuschemeng_9b06370
crossref_primary_10_1016_j_seppur_2015_03_033
crossref_primary_10_1039_C3CS60480B
crossref_primary_10_7763_IJCEA_2014_V5_378
crossref_primary_10_1038_nmat4113
crossref_primary_10_1016_j_micromeso_2013_10_006
crossref_primary_10_1016_j_seppur_2017_07_051
crossref_primary_10_1016_j_memsci_2017_12_008
crossref_primary_10_1016_j_micromeso_2014_02_016
crossref_primary_10_1038_s41598_023_36051_1
crossref_primary_10_1016_j_cjche_2017_07_006
crossref_primary_10_1590_1980_5373_mr_2019_0022
crossref_primary_10_1016_j_seppur_2015_08_020
crossref_primary_10_1007_s10450_020_00255_y
crossref_primary_10_3390_membranes11070463
crossref_primary_10_1002_cjce_23170
crossref_primary_10_1016_j_jngse_2016_09_036
crossref_primary_10_1039_C5NR00518C
crossref_primary_10_3390_membranes13030337
crossref_primary_10_1016_j_memsci_2021_120184
crossref_primary_10_1016_j_memsci_2014_06_026
crossref_primary_10_1007_s00289_025_05696_5
crossref_primary_10_1016_j_cej_2022_139818
crossref_primary_10_1016_j_memsci_2021_119913
crossref_primary_10_1021_acsami_9b19960
crossref_primary_10_1007_s11814_021_0968_0
crossref_primary_10_1016_j_cherd_2015_03_026
crossref_primary_10_1016_j_reactfunctpolym_2017_09_002
crossref_primary_10_1016_j_colsurfa_2024_135162
crossref_primary_10_1002_app_55707
crossref_primary_10_1002_ceat_201800520
crossref_primary_10_1016_j_cej_2018_04_036
crossref_primary_10_1016_j_chemphys_2018_06_003
crossref_primary_10_1016_j_memsci_2019_117440
crossref_primary_10_1002_adma_201802401
crossref_primary_10_1016_j_jclepro_2017_02_069
crossref_primary_10_1016_j_matpr_2021_02_792
crossref_primary_10_1016_j_seppur_2023_124348
crossref_primary_10_1016_j_carbon_2019_04_031
crossref_primary_10_1016_j_seppur_2019_115900
crossref_primary_10_1016_j_seppur_2018_05_012
crossref_primary_10_1016_j_memsci_2015_07_065
crossref_primary_10_1016_j_rser_2021_111062
crossref_primary_10_1021_acsami_8b15269
crossref_primary_10_1021_acs_iecr_4c03086
crossref_primary_10_3390_polym14071408
crossref_primary_10_1039_D1CS00822F
crossref_primary_10_1021_acsanm_8b00459
crossref_primary_10_1007_s11814_017_0215_x
crossref_primary_10_1002_app_52203
crossref_primary_10_1016_j_seppur_2022_120930
crossref_primary_10_3390_molecules27175608
crossref_primary_10_1016_j_jngse_2016_08_042
crossref_primary_10_2139_ssrn_4171693
crossref_primary_10_3390_membranes13040444
crossref_primary_10_1002_adfm_202404785
crossref_primary_10_1039_D2TA03958C
crossref_primary_10_1007_s10853_023_09269_7
crossref_primary_10_1002_cnma_201700086
crossref_primary_10_1021_acsami_8b16386
crossref_primary_10_1002_adfm_201505352
crossref_primary_10_1016_j_jclepro_2022_131468
crossref_primary_10_1007_s11814_020_0649_4
crossref_primary_10_1016_j_memsci_2016_09_064
crossref_primary_10_1080_01496395_2024_2387844
crossref_primary_10_1016_j_memsci_2020_118214
crossref_primary_10_1039_C5RA21073A
crossref_primary_10_1007_s10965_016_1005_6
crossref_primary_10_1039_C9TA02962A
crossref_primary_10_1016_j_memsci_2021_119708
crossref_primary_10_1016_j_cej_2023_143215
crossref_primary_10_1021_acs_iecr_6b01005
crossref_primary_10_1039_C5RA19331A
crossref_primary_10_1021_acs_est_0c05377
crossref_primary_10_1016_j_jiec_2021_04_049
crossref_primary_10_1002_app_45302
crossref_primary_10_1016_j_memsci_2019_117792
crossref_primary_10_1021_acs_cgd_7b00595
crossref_primary_10_1002_adma_201603833
crossref_primary_10_1016_j_polymertesting_2020_106339
crossref_primary_10_3390_membranes13050487
crossref_primary_10_1016_j_memsci_2015_11_017
crossref_primary_10_1016_j_matpr_2021_11_025
crossref_primary_10_1002_cben_202100002
crossref_primary_10_3390_membranes12060589
crossref_primary_10_1002_app_44564
crossref_primary_10_1016_j_seppur_2024_128500
crossref_primary_10_1016_j_memsci_2017_08_003
crossref_primary_10_3390_membranes12060584
crossref_primary_10_1016_j_matpr_2022_10_211
crossref_primary_10_1016_j_egyr_2022_12_014
crossref_primary_10_3390_membranes10110335
crossref_primary_10_1016_j_ijhydene_2014_01_047
crossref_primary_10_1016_j_progpolymsci_2014_01_003
crossref_primary_10_1016_j_jngse_2019_103072
crossref_primary_10_1039_D0TA07154D
crossref_primary_10_3389_fchem_2020_00534
crossref_primary_10_1016_j_memsci_2023_121373
crossref_primary_10_1021_acsnano_8b06811
crossref_primary_10_1080_03602559_2018_1482921
crossref_primary_10_1021_acs_chemrev_8b00091
crossref_primary_10_1016_j_seppur_2022_122919
crossref_primary_10_1016_j_micromeso_2023_112648
crossref_primary_10_1039_C9RA10594H
crossref_primary_10_1016_j_jece_2022_108541
crossref_primary_10_1021_acs_chemrev_0c00119
crossref_primary_10_1080_01496395_2014_903281
crossref_primary_10_1016_j_ces_2018_06_008
crossref_primary_10_1021_acsomega_1c00493
crossref_primary_10_1016_j_molliq_2021_117435
crossref_primary_10_1039_C7TA01142C
crossref_primary_10_1021_acs_cgd_7b00202
crossref_primary_10_1039_c3dt52103f
crossref_primary_10_1002_cben_201600012
crossref_primary_10_1016_j_polymertesting_2019_106285
crossref_primary_10_1007_s11814_016_0269_1
crossref_primary_10_1016_j_memsci_2019_117348
crossref_primary_10_1098_rsos_201150
crossref_primary_10_1021_acsami_7b18475
crossref_primary_10_1021_acsomega_3c01666
crossref_primary_10_1021_acs_cgd_8b00307
crossref_primary_10_1007_s12221_018_8424_4
crossref_primary_10_1021_acsami_0c18861
crossref_primary_10_1002_app_45508
crossref_primary_10_1039_C4TA02984D
crossref_primary_10_1155_2024_6697045
crossref_primary_10_1039_C8CC03656J
crossref_primary_10_3390_separations9110344
crossref_primary_10_1039_D0TA02761H
crossref_primary_10_1002_pi_5240
crossref_primary_10_1021_acsami_6b15803
crossref_primary_10_1021_acs_est_0c03589
crossref_primary_10_1007_s13369_016_2096_4
crossref_primary_10_1016_j_cherd_2018_03_028
crossref_primary_10_1016_j_cherd_2019_05_038
crossref_primary_10_1016_j_cjche_2016_11_007
crossref_primary_10_1007_s11356_022_19519_x
crossref_primary_10_1016_j_chemosphere_2022_136913
crossref_primary_10_1016_j_cej_2018_10_152
crossref_primary_10_1016_j_memsci_2017_08_046
crossref_primary_10_1016_j_micromeso_2020_110030
crossref_primary_10_1016_j_inoche_2024_112576
crossref_primary_10_1016_j_memsci_2021_119642
crossref_primary_10_1021_acsami_2c12908
crossref_primary_10_1080_10916466_2018_1458120
crossref_primary_10_1016_j_ces_2019_04_032
crossref_primary_10_3390_membranes10010006
crossref_primary_10_1002_pat_5645
crossref_primary_10_1007_s13738_020_02087_7
crossref_primary_10_1016_j_gce_2020_11_009
crossref_primary_10_3390_membranes11090708
crossref_primary_10_1016_j_seppur_2014_03_017
crossref_primary_10_1002_jctb_5614
crossref_primary_10_1016_j_gce_2020_11_002
crossref_primary_10_1016_j_jngse_2021_104388
crossref_primary_10_1039_C9MH00409B
crossref_primary_10_1080_15422119_2016_1146149
crossref_primary_10_1016_j_memsci_2016_06_015
crossref_primary_10_1016_j_seppur_2019_04_005
crossref_primary_10_1016_j_matchemphys_2017_11_018
crossref_primary_10_1016_j_memsci_2018_11_030
crossref_primary_10_1002_app_50553
crossref_primary_10_1039_C4RA13727B
crossref_primary_10_1016_j_memsci_2021_119786
crossref_primary_10_1039_C8NJ04769C
crossref_primary_10_1016_j_ces_2015_04_011
crossref_primary_10_1039_C9NA00170K
crossref_primary_10_1002_er_6518
crossref_primary_10_1016_j_micromeso_2013_06_036
crossref_primary_10_1016_j_memsci_2020_118293
crossref_primary_10_1016_j_jtice_2022_104379
crossref_primary_10_1590_0104_6632_20180351s20150595
crossref_primary_10_1039_C7TA07512J
crossref_primary_10_1016_j_apmt_2019_100491
crossref_primary_10_1016_j_cjche_2023_11_012
crossref_primary_10_1016_j_memsci_2016_06_025
crossref_primary_10_1016_j_matpr_2019_02_083
crossref_primary_10_1021_acs_iecr_0c01334
crossref_primary_10_1016_j_micromeso_2014_07_001
crossref_primary_10_1002_jctb_6963
crossref_primary_10_1007_s12274_020_3082_4
crossref_primary_10_1016_j_memsci_2016_05_029
crossref_primary_10_1016_j_memsci_2014_11_016
crossref_primary_10_1016_j_memsci_2018_10_051
crossref_primary_10_1007_s10965_017_1228_1
crossref_primary_10_1016_j_jngse_2014_09_021
crossref_primary_10_1039_C9NJ02789K
crossref_primary_10_1016_j_memsci_2017_10_054
crossref_primary_10_2139_ssrn_4164468
crossref_primary_10_1016_j_coche_2015_03_003
crossref_primary_10_1016_j_advmem_2022_100027
crossref_primary_10_1002_app_55906
crossref_primary_10_1016_j_memsci_2015_04_069
crossref_primary_10_1126_sciadv_ads0583
crossref_primary_10_1016_j_memsci_2019_117404
crossref_primary_10_1080_10916466_2019_1587462
crossref_primary_10_1039_D0TA02587A
crossref_primary_10_1002_advs_201800982
crossref_primary_10_1016_j_cherd_2023_07_028
crossref_primary_10_1021_acs_iecr_2c01402
crossref_primary_10_1016_j_memsci_2018_10_049
crossref_primary_10_1039_C6TA09990D
crossref_primary_10_1557_s43577_022_00313_6
crossref_primary_10_1016_j_memsci_2018_10_047
crossref_primary_10_1002_cjce_22857
crossref_primary_10_1002_app_48513
crossref_primary_10_1039_C6TA05145F
crossref_primary_10_1039_C5NR08840B
crossref_primary_10_1007_s11164_016_2806_2
crossref_primary_10_1039_C7CE00102A
crossref_primary_10_1016_j_seppur_2018_04_010
crossref_primary_10_1016_j_memsci_2021_119612
crossref_primary_10_1016_j_micromeso_2021_111674
crossref_primary_10_1002_jctb_6990
crossref_primary_10_1016_j_memsci_2018_04_040
crossref_primary_10_1039_D1TA04693D
crossref_primary_10_1016_j_memsci_2020_118245
crossref_primary_10_1016_j_memsci_2017_06_010
crossref_primary_10_1002_asia_201300084
crossref_primary_10_1002_ange_201701109
crossref_primary_10_1016_j_mcat_2020_110965
crossref_primary_10_1021_acs_energyfuels_1c01638
crossref_primary_10_1016_j_jechem_2018_02_002
crossref_primary_10_1016_j_memsci_2018_08_023
crossref_primary_10_3390_polym9070219
crossref_primary_10_1002_aic_14496
crossref_primary_10_1002_app_48860
crossref_primary_10_1016_j_jiec_2021_07_034
crossref_primary_10_1016_j_memsci_2015_03_030
crossref_primary_10_1002_chem_201402287
crossref_primary_10_1016_j_memsci_2017_06_011
crossref_primary_10_1016_j_memsci_2018_08_026
crossref_primary_10_1021_acsami_0c07344
crossref_primary_10_1016_j_apmt_2020_100925
crossref_primary_10_1021_acs_energyfuels_2c01880
crossref_primary_10_1002_anie_201701109
crossref_primary_10_1016_j_memsci_2015_03_028
crossref_primary_10_1016_j_seppur_2024_127584
crossref_primary_10_1016_j_memsci_2016_01_054
crossref_primary_10_1021_ie504786x
crossref_primary_10_1002_adfm_201402972
crossref_primary_10_1039_C5CS00292C
crossref_primary_10_1016_j_ccst_2024_100347
crossref_primary_10_3390_membranes8030076
crossref_primary_10_1016_j_micromeso_2017_04_041
crossref_primary_10_1002_asia_201901433
crossref_primary_10_1016_j_mtcomm_2023_105460
crossref_primary_10_1016_j_seppur_2019_04_061
crossref_primary_10_1016_j_memsci_2016_04_029
crossref_primary_10_1002_ceat_201800087
crossref_primary_10_3389_fchem_2020_00058
crossref_primary_10_1002_ceat_201200734
crossref_primary_10_1080_00958972_2024_2433174
crossref_primary_10_1016_j_jiec_2016_01_032
crossref_primary_10_1002_cssc_201501063
crossref_primary_10_1016_j_ces_2018_04_067
crossref_primary_10_3390_membranes8030050
crossref_primary_10_1039_C6EE00811A
crossref_primary_10_1016_j_cej_2022_137544
crossref_primary_10_1016_j_rser_2022_112527
crossref_primary_10_1016_j_seppur_2018_01_035
crossref_primary_10_1016_j_memsci_2021_119384
crossref_primary_10_1016_j_gee_2016_10_002
crossref_primary_10_1016_j_jiec_2014_12_039
crossref_primary_10_1016_j_seppur_2018_01_038
crossref_primary_10_1515_revce_2017_0001
crossref_primary_10_1039_C4RA15771K
crossref_primary_10_1039_C6SC02411D
crossref_primary_10_1039_C4CS00437J
crossref_primary_10_1039_D0NR07042D
crossref_primary_10_1007_s00289_018_2301_6
crossref_primary_10_1016_j_memsci_2017_05_011
crossref_primary_10_1016_j_seppur_2019_116101
crossref_primary_10_1016_j_jiec_2014_08_023
crossref_primary_10_1177_09673911211023303
crossref_primary_10_1007_s10965_020_02074_9
crossref_primary_10_1016_j_fuproc_2020_106464
crossref_primary_10_1016_j_memsci_2015_01_007
crossref_primary_10_1016_j_memsci_2022_120787
crossref_primary_10_1016_j_ccst_2024_100260
crossref_primary_10_1016_j_mtener_2019_100357
crossref_primary_10_1021_acs_jpclett_5b01602
crossref_primary_10_1002_jctb_6456
crossref_primary_10_1021_acs_chemmater_4c01815
crossref_primary_10_1016_j_matdes_2016_11_001
crossref_primary_10_1080_08927022_2019_1635694
crossref_primary_10_1016_j_seppur_2018_02_020
crossref_primary_10_1007_s13233_017_5130_9
crossref_primary_10_1016_j_memsci_2015_01_014
crossref_primary_10_1016_j_seppur_2021_119803
crossref_primary_10_1016_j_arabjc_2020_10_021
crossref_primary_10_1007_s00289_020_03467_y
crossref_primary_10_1007_s11696_021_01744_2
crossref_primary_10_1039_C5CC04999G
crossref_primary_10_1557_mre_2020_30
crossref_primary_10_1021_acs_iecr_4c01437
crossref_primary_10_1016_j_jngse_2016_03_067
crossref_primary_10_1021_acsami_3c16093
crossref_primary_10_1021_acsanm_2c01248
crossref_primary_10_1016_j_micromeso_2021_110897
crossref_primary_10_1038_srep15016
crossref_primary_10_1021_ja5016298
crossref_primary_10_1016_j_memsci_2021_119581
crossref_primary_10_1016_j_ces_2014_11_058
crossref_primary_10_1016_j_rser_2025_115524
crossref_primary_10_1002_pc_23702
crossref_primary_10_1016_j_polymer_2017_10_040
crossref_primary_10_1039_C5RA00567A
crossref_primary_10_1016_j_memsci_2018_12_018
crossref_primary_10_1016_j_psep_2024_10_053
crossref_primary_10_1016_j_cej_2022_140883
crossref_primary_10_1080_03602559_2016_1233275
crossref_primary_10_14478_ace_2015_1041
Cites_doi 10.1021/ja101415b
10.1016/j.memsci.2011.10.003
10.1021/cm3006953
10.1016/j.memsci.2012.01.044
10.1016/j.desal.2006.03.390
10.1016/0376-7388(92)80122-Z
10.1021/cm900166h
10.1016/j.memsci.2011.05.031
10.1002/anie.201006141
10.1073/pnas.0602439103
10.1016/j.memsci.2010.06.017
10.1016/S0376-7388(00)80684-5
10.1021/ie1014958
10.1039/c0cc05002d
10.1002/anie.201104383
10.1016/j.progpolymsci.2007.01.008
10.1016/j.seppur.2008.01.001
10.1002/anie.200905645
10.1021/ja1089765
10.1021/jp065711j
10.1021/ie071083w
10.1021/ie8019032
10.1039/C0NJ00836B
10.1021/ma00124a035
10.1021/ma9814548
10.1016/j.molstruc.2004.05.043
10.1016/j.seppur.2011.06.037
10.1002/aic.10029
10.1016/j.memsci.2011.11.024
10.1002/cphc.201100583
10.1016/j.memsci.2006.11.016
10.1016/j.memsci.2008.04.030
10.1039/c1ee01324f
10.1039/c1cc14051e
10.1021/ar900116g
10.1002/chem.201100958
10.1002/pola.1993.080311016
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.memsci.2012.09.006
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 242
ExternalDocumentID 10_1016_j_memsci_2012_09_006
S0376738812006710
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSH
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAQXK
AAYXX
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGQPQ
AI.
AIGII
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
7S9
L.6
ID FETCH-LOGICAL-c405t-f1a65cd7f9765bc161e5f784f87cce142db8ca620efbd0a99421122b7eed43aa3
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Fri Jul 11 09:08:44 EDT 2025
Thu Apr 24 23:00:36 EDT 2025
Tue Jul 01 03:37:48 EDT 2025
Thu Jul 17 02:00:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords mixed matrix membrane
carbon dioxide separation
composite membrane
zeolitic imidazole framework
gas separation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-f1a65cd7f9765bc161e5f784f87cce142db8ca620efbd0a99421122b7eed43aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1803105231
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_1803105231
crossref_primary_10_1016_j_memsci_2012_09_006
crossref_citationtrail_10_1016_j_memsci_2012_09_006
elsevier_sciencedirect_doi_10_1016_j_memsci_2012_09_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
2013-1-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of membrane science
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Park, Ni, Cote, Choi, Huang, Uribe-Romo, Chae, O'Keeffe, Yaghi (bib14) 2006; 103
S. Kulprathipanja, Richard W. Neuzil, Norman N. Li, Separation of fluids by means of mixed matrix membranes. US patent 4,740,219, 1988.
Lu, Hupp (bib16) 2010; 132
Moore, Koros (bib26) 2005; 739
D. Fritsch, K.-V. Peinemann, D. Gomes, Composite material, in particular composite membrane, and process for the production of the same. US Patent 7,658,784, 2010.
Okamoto, Fujii, Okamyo, Suzuki, Tanaka, Kita (bib25) 1995; 28
Husain, Koros (bib30) 2007; 288
Noble (bib6) 2011; 378
van den Bergh, Gucuyener, Pidko, Hensen, Gascon, Kapteijn (bib38) 2011; 17
Jia, Peinemann, Behling (bib32) 1992; 73
Jia, Peinemann, Behling (bib27) 1991; 57
Li, Liang, Bux, Feldhoff, Yang, Caro (bib20) 2010; 49
Dai, Johnson, Karvan, Sholl, Koros (bib31) 2012; 401
Cravillon, Munzer, Lohmeier, Feldhoff, Huber, Wiebcke (bib35) 2009; 21
Moore, Mahajan, Vu, Koros (bib5) 2004; 50
Hu, Cai, Ren, Wei, Xu, Liu, Hu (bib29) 2010; 49
Mizumoto, Masuda, Higashimura (bib39) 1993; 31
Ordonez, Balkus, Ferraris, Musselman (bib23) 2010; 361
Freeman (bib4) 1999; 32
Bae, Lee, Qiu, Koros, Jones, Nair (bib12) 2010; 49
Pan, Liu, Zeng, Zhao, Lai (bib19) 2011; 47
Shu, Husain, Koros (bib9) 2007; 111
Bernardo, Drioli, Golemme (bib2) 2009; 48
Car, Stropnik, Peinemann (bib13) 2006; 200
Zhang, Dai, Johnson, Karvan, Koros (bib11) 2012; 389
Thompson, Blad, Brunelli, Lydon, Lively, Jones, Nair (bib37) 2012; 24
Gucuyener, van den Bergh, Gascon, Kapteijn (bib34) 2010; 132
Aguado, Bergeret, Titus, Moizan, Nieto-Draghi, Bats, Farrusseng (bib36) 2011; 35
Pan, Lai (bib17) 2011; 47
Liu, Li, Zhu, Ban, Xu, Yang (bib21) 2011; 50
Yang, Xiao, Chung (bib10) 2011; 4
Zornoza, Seoane, Zamaro, Tellez, Coronas (bib22) 2011; 12
Baker, Lokhandwala (bib1) 2008; 47
Pan, Li, Lestari, Lai (bib18) 2012; 390
Basu, Cano-Odena, Vankelecom (bib28) 2011; 81
Car, Stropnik, Yave, Peinemann (bib24) 2008; 62
Chung, Jiang, Li, Kulprathipanja (bib8) 2007; 32
Robeson (bib3) 2008; 320
Phan, Doonan, Uribe-Romo, Knobler, O'Keeffe, Yaghi (bib15) 2010; 43
Pan (10.1016/j.memsci.2012.09.006_bib18) 2012; 390
Ordonez (10.1016/j.memsci.2012.09.006_bib23) 2010; 361
Baker (10.1016/j.memsci.2012.09.006_bib1) 2008; 47
Moore (10.1016/j.memsci.2012.09.006_bib5) 2004; 50
Mizumoto (10.1016/j.memsci.2012.09.006_bib39) 1993; 31
Dai (10.1016/j.memsci.2012.09.006_bib31) 2012; 401
Chung (10.1016/j.memsci.2012.09.006_bib8) 2007; 32
Jia (10.1016/j.memsci.2012.09.006_bib32) 1992; 73
Bernardo (10.1016/j.memsci.2012.09.006_bib2) 2009; 48
Phan (10.1016/j.memsci.2012.09.006_bib15) 2010; 43
Yang (10.1016/j.memsci.2012.09.006_bib10) 2011; 4
Li (10.1016/j.memsci.2012.09.006_bib20) 2010; 49
Car (10.1016/j.memsci.2012.09.006_bib13) 2006; 200
Car (10.1016/j.memsci.2012.09.006_bib24) 2008; 62
Bae (10.1016/j.memsci.2012.09.006_bib12) 2010; 49
Pan (10.1016/j.memsci.2012.09.006_bib19) 2011; 47
Hu (10.1016/j.memsci.2012.09.006_bib29) 2010; 49
Liu (10.1016/j.memsci.2012.09.006_bib21) 2011; 50
Noble (10.1016/j.memsci.2012.09.006_bib6) 2011; 378
Gucuyener (10.1016/j.memsci.2012.09.006_bib34) 2010; 132
Zhang (10.1016/j.memsci.2012.09.006_bib11) 2012; 389
Okamoto (10.1016/j.memsci.2012.09.006_bib25) 1995; 28
Zornoza (10.1016/j.memsci.2012.09.006_bib22) 2011; 12
Husain (10.1016/j.memsci.2012.09.006_bib30) 2007; 288
van den Bergh (10.1016/j.memsci.2012.09.006_bib38) 2011; 17
10.1016/j.memsci.2012.09.006_bib7
Pan (10.1016/j.memsci.2012.09.006_bib17) 2011; 47
Jia (10.1016/j.memsci.2012.09.006_bib27) 1991; 57
Shu (10.1016/j.memsci.2012.09.006_bib9) 2007; 111
Aguado (10.1016/j.memsci.2012.09.006_bib36) 2011; 35
Freeman (10.1016/j.memsci.2012.09.006_bib4) 1999; 32
Lu (10.1016/j.memsci.2012.09.006_bib16) 2010; 132
Moore (10.1016/j.memsci.2012.09.006_bib26) 2005; 739
10.1016/j.memsci.2012.09.006_bib33
Park (10.1016/j.memsci.2012.09.006_bib14) 2006; 103
Cravillon (10.1016/j.memsci.2012.09.006_bib35) 2009; 21
Robeson (10.1016/j.memsci.2012.09.006_bib3) 2008; 320
Basu (10.1016/j.memsci.2012.09.006_bib28) 2011; 81
Thompson (10.1016/j.memsci.2012.09.006_bib37) 2012; 24
References_xml – volume: 361
  start-page: 28
  year: 2010
  end-page: 37
  ident: bib23
  article-title: Molecular sieving realized with ZIF-8/Matrimid (R) mixed-matrix membranes
  publication-title: J. Membr. Sci.
– volume: 43
  start-page: 58
  year: 2010
  end-page: 67
  ident: bib15
  article-title: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks
  publication-title: Accounts Chem. Res.
– volume: 21
  start-page: 1410
  year: 2009
  end-page: 1412
  ident: bib35
  article-title: Rapid Room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework
  publication-title: Chem. Mater.
– volume: 49
  start-page: 548
  year: 2010
  end-page: 551
  ident: bib20
  article-title: Molecular Sieve Membrane: supported metal–organic framework with high hydrogen selectivity
  publication-title: Angew. Chem. Int. Edit.
– reference: D. Fritsch, K.-V. Peinemann, D. Gomes, Composite material, in particular composite membrane, and process for the production of the same. US Patent 7,658,784, 2010.
– volume: 320
  start-page: 390
  year: 2008
  end-page: 400
  ident: bib3
  article-title: The upper bound revisited
  publication-title: J. Membr. Sci.
– volume: 103
  start-page: 10186
  year: 2006
  end-page: 10191
  ident: bib14
  article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
  publication-title: P. Natl. Acad. Sci. USA
– volume: 132
  start-page: 7832
  year: 2010
  ident: bib16
  article-title: Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 2071
  year: 2011
  end-page: 2073
  ident: bib19
  article-title: Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system
  publication-title: Chem. Commun.
– volume: 4
  start-page: 4171
  year: 2011
  end-page: 4180
  ident: bib10
  article-title: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification
  publication-title: Energ. Environ. Sci.
– volume: 378
  start-page: 393
  year: 2011
  end-page: 397
  ident: bib6
  article-title: Perspectives on mixed matrix membranes
  publication-title: J. Membr. Sci.
– volume: 50
  start-page: 10636
  year: 2011
  end-page: 10639
  ident: bib21
  article-title: An organophilic pervaporation membrane derived from metal–organic framework nanoparticles for efficient recovery of bio-alcohols
  publication-title: Angew. Chem. Int. Edit
– volume: 31
  start-page: 2555
  year: 1993
  end-page: 2561
  ident: bib39
  article-title: Polymerization of [O-(Trimethylgermyl)phenyl]acetylene and polymer characterization
  publication-title: J. Polym Sci. A: Polym. Chem.
– volume: 47
  start-page: 2109
  year: 2008
  end-page: 2121
  ident: bib1
  article-title: Natural gas processing with membranes: An overview
  publication-title: Ind. Eng. Chem. Res.
– volume: 28
  start-page: 6950
  year: 1995
  end-page: 6956
  ident: bib25
  article-title: Gas permeation properties of poly(ether imide) segmented copolymers
  publication-title: Macromolecules
– volume: 739
  start-page: 87
  year: 2005
  end-page: 98
  ident: bib26
  article-title: Non-ideal effects in organic-inorganic materials for gas separation membranes
  publication-title: J. Mol. Struct.
– reference: S. Kulprathipanja, Richard W. Neuzil, Norman N. Li, Separation of fluids by means of mixed matrix membranes. US patent 4,740,219, 1988.
– volume: 288
  start-page: 195
  year: 2007
  end-page: 207
  ident: bib30
  article-title: Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation
  publication-title: J. Membr. Sci.
– volume: 24
  start-page: 1930
  year: 2012
  end-page: 1936
  ident: bib37
  article-title: Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis
  publication-title: Chem. Mater.
– volume: 12
  start-page: 2781
  year: 2011
  end-page: 2785
  ident: bib22
  article-title: Combination of MOFs and zeolites for mixed-matrix membranes
  publication-title: Chemphyschem
– volume: 73
  start-page: 119
  year: 1992
  end-page: 128
  ident: bib32
  article-title: Preparation and characterization of thin-film zeolite pdms composite membranes
  publication-title: J. Membr. Sci.
– volume: 132
  start-page: 17704
  year: 2010
  end-page: 17706
  ident: bib34
  article-title: Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal–organic framework ZIF-7 through a gate-opening mechanism
  publication-title: J. Am. Chem. Soc.
– volume: 390
  start-page: 93
  year: 2012
  end-page: 98
  ident: bib18
  article-title: Effective separation of propylene/propane binary mixtures by ZIF-8 membranes
  publication-title: J. Membr. Sci.
– volume: 57
  start-page: 289
  year: 1991
  end-page: 296
  ident: bib27
  article-title: Molecular-Sieving Effect of the Zeolite-Filled Silicone-Rubber Membranes in Gas Permeation
  publication-title: J. Membr. Sci.
– volume: 81
  start-page: 31
  year: 2011
  end-page: 40
  ident: bib28
  article-title: MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations
  publication-title: Sep. Purif. Technol.
– volume: 17
  start-page: 8832
  year: 2011
  end-page: 8840
  ident: bib38
  article-title: Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures
  publication-title: Chem-Eur. J.
– volume: 35
  start-page: 546
  year: 2011
  end-page: 550
  ident: bib36
  article-title: Guest-induced gate-opening of a zeolite imidazolate framework
  publication-title: New J. Chem.
– volume: 62
  start-page: 110
  year: 2008
  end-page: 117
  ident: bib24
  article-title: Pebax (R)/polyethylene glycol blend thin film composite membranes for CO
  publication-title: Sep. Purif. Technol.
– volume: 49
  start-page: 12605
  year: 2010
  end-page: 12612
  ident: bib29
  article-title: Mixed-Matrix membrane hollow fibers of Cu-3(BTC)(2) MOF and polyimide for gas separation and adsorption
  publication-title: Ind. Eng. Chem. Res.
– volume: 111
  start-page: 652
  year: 2007
  end-page: 657
  ident: bib9
  article-title: A general strategy for adhesion enhancement in polymeric composites by formation of nanostructured particle surfaces
  publication-title: J. Phys. Chem. C
– volume: 49
  start-page: 9863
  year: 2010
  end-page: 9866
  ident: bib12
  article-title: A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals
  publication-title: Angew. Chem. Int. Edit.
– volume: 32
  start-page: 375
  year: 1999
  end-page: 380
  ident: bib4
  article-title: Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes
  publication-title: Macromolecules
– volume: 32
  start-page: 483
  year: 2007
  end-page: 507
  ident: bib8
  article-title: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation
  publication-title: Prog. Polym. Sci.
– volume: 401
  start-page: 76
  year: 2012
  end-page: 82
  ident: bib31
  article-title: Ultem((R))/ZIF-8 mixed matrix hollow fiber membranes for CO
  publication-title: J. Membr. Sci.
– volume: 200
  start-page: 424
  year: 2006
  end-page: 426
  ident: bib13
  article-title: Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation
  publication-title: Desalination
– volume: 48
  start-page: 4638
  year: 2009
  end-page: 4663
  ident: bib2
  article-title: Membrane gas separation: A review/state of the art
  publication-title: Ind. Eng. Chem. Res.
– volume: 50
  start-page: 311
  year: 2004
  end-page: 321
  ident: bib5
  article-title: Hybrid membrane materials comprising organic polymers with rigid dispersed phases
  publication-title: Aiche J.
– volume: 389
  start-page: 34
  year: 2012
  end-page: 42
  ident: bib11
  article-title: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations
  publication-title: J. Membr. Sci.
– volume: 47
  start-page: 10275
  year: 2011
  end-page: 10277
  ident: bib17
  article-title: Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions
  publication-title: Chem. Commun.
– volume: 132
  start-page: 7832
  year: 2010
  ident: 10.1016/j.memsci.2012.09.006_bib16
  article-title: Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101415b
– volume: 389
  start-page: 34
  year: 2012
  ident: 10.1016/j.memsci.2012.09.006_bib11
  article-title: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.10.003
– ident: 10.1016/j.memsci.2012.09.006_bib33
– volume: 24
  start-page: 1930
  year: 2012
  ident: 10.1016/j.memsci.2012.09.006_bib37
  article-title: Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis
  publication-title: Chem. Mater.
  doi: 10.1021/cm3006953
– ident: 10.1016/j.memsci.2012.09.006_bib7
– volume: 401
  start-page: 76
  year: 2012
  ident: 10.1016/j.memsci.2012.09.006_bib31
  article-title: Ultem((R))/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.01.044
– volume: 200
  start-page: 424
  year: 2006
  ident: 10.1016/j.memsci.2012.09.006_bib13
  article-title: Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.03.390
– volume: 73
  start-page: 119
  year: 1992
  ident: 10.1016/j.memsci.2012.09.006_bib32
  article-title: Preparation and characterization of thin-film zeolite pdms composite membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(92)80122-Z
– volume: 21
  start-page: 1410
  year: 2009
  ident: 10.1016/j.memsci.2012.09.006_bib35
  article-title: Rapid Room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework
  publication-title: Chem. Mater.
  doi: 10.1021/cm900166h
– volume: 378
  start-page: 393
  year: 2011
  ident: 10.1016/j.memsci.2012.09.006_bib6
  article-title: Perspectives on mixed matrix membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.05.031
– volume: 49
  start-page: 9863
  year: 2010
  ident: 10.1016/j.memsci.2012.09.006_bib12
  article-title: A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201006141
– volume: 103
  start-page: 10186
  year: 2006
  ident: 10.1016/j.memsci.2012.09.006_bib14
  article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
  publication-title: P. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602439103
– volume: 361
  start-page: 28
  year: 2010
  ident: 10.1016/j.memsci.2012.09.006_bib23
  article-title: Molecular sieving realized with ZIF-8/Matrimid (R) mixed-matrix membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.06.017
– volume: 57
  start-page: 289
  year: 1991
  ident: 10.1016/j.memsci.2012.09.006_bib27
  article-title: Molecular-Sieving Effect of the Zeolite-Filled Silicone-Rubber Membranes in Gas Permeation
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)80684-5
– volume: 49
  start-page: 12605
  year: 2010
  ident: 10.1016/j.memsci.2012.09.006_bib29
  article-title: Mixed-Matrix membrane hollow fibers of Cu-3(BTC)(2) MOF and polyimide for gas separation and adsorption
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie1014958
– volume: 47
  start-page: 2071
  year: 2011
  ident: 10.1016/j.memsci.2012.09.006_bib19
  article-title: Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05002d
– volume: 50
  start-page: 10636
  year: 2011
  ident: 10.1016/j.memsci.2012.09.006_bib21
  article-title: An organophilic pervaporation membrane derived from metal–organic framework nanoparticles for efficient recovery of bio-alcohols
  publication-title: Angew. Chem. Int. Edit
  doi: 10.1002/anie.201104383
– volume: 32
  start-page: 483
  year: 2007
  ident: 10.1016/j.memsci.2012.09.006_bib8
  article-title: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2007.01.008
– volume: 62
  start-page: 110
  year: 2008
  ident: 10.1016/j.memsci.2012.09.006_bib24
  article-title: Pebax (R)/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2008.01.001
– volume: 49
  start-page: 548
  year: 2010
  ident: 10.1016/j.memsci.2012.09.006_bib20
  article-title: Molecular Sieve Membrane: supported metal–organic framework with high hydrogen selectivity
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.200905645
– volume: 132
  start-page: 17704
  year: 2010
  ident: 10.1016/j.memsci.2012.09.006_bib34
  article-title: Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal–organic framework ZIF-7 through a gate-opening mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1089765
– volume: 111
  start-page: 652
  year: 2007
  ident: 10.1016/j.memsci.2012.09.006_bib9
  article-title: A general strategy for adhesion enhancement in polymeric composites by formation of nanostructured particle surfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp065711j
– volume: 47
  start-page: 2109
  year: 2008
  ident: 10.1016/j.memsci.2012.09.006_bib1
  article-title: Natural gas processing with membranes: An overview
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie071083w
– volume: 48
  start-page: 4638
  year: 2009
  ident: 10.1016/j.memsci.2012.09.006_bib2
  article-title: Membrane gas separation: A review/state of the art
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie8019032
– volume: 35
  start-page: 546
  year: 2011
  ident: 10.1016/j.memsci.2012.09.006_bib36
  article-title: Guest-induced gate-opening of a zeolite imidazolate framework
  publication-title: New J. Chem.
  doi: 10.1039/C0NJ00836B
– volume: 28
  start-page: 6950
  year: 1995
  ident: 10.1016/j.memsci.2012.09.006_bib25
  article-title: Gas permeation properties of poly(ether imide) segmented copolymers
  publication-title: Macromolecules
  doi: 10.1021/ma00124a035
– volume: 32
  start-page: 375
  year: 1999
  ident: 10.1016/j.memsci.2012.09.006_bib4
  article-title: Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes
  publication-title: Macromolecules
  doi: 10.1021/ma9814548
– volume: 739
  start-page: 87
  year: 2005
  ident: 10.1016/j.memsci.2012.09.006_bib26
  article-title: Non-ideal effects in organic-inorganic materials for gas separation membranes
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2004.05.043
– volume: 81
  start-page: 31
  year: 2011
  ident: 10.1016/j.memsci.2012.09.006_bib28
  article-title: MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2011.06.037
– volume: 50
  start-page: 311
  year: 2004
  ident: 10.1016/j.memsci.2012.09.006_bib5
  article-title: Hybrid membrane materials comprising organic polymers with rigid dispersed phases
  publication-title: Aiche J.
  doi: 10.1002/aic.10029
– volume: 390
  start-page: 93
  year: 2012
  ident: 10.1016/j.memsci.2012.09.006_bib18
  article-title: Effective separation of propylene/propane binary mixtures by ZIF-8 membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.11.024
– volume: 12
  start-page: 2781
  year: 2011
  ident: 10.1016/j.memsci.2012.09.006_bib22
  article-title: Combination of MOFs and zeolites for mixed-matrix membranes
  publication-title: Chemphyschem
  doi: 10.1002/cphc.201100583
– volume: 288
  start-page: 195
  year: 2007
  ident: 10.1016/j.memsci.2012.09.006_bib30
  article-title: Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.11.016
– volume: 320
  start-page: 390
  year: 2008
  ident: 10.1016/j.memsci.2012.09.006_bib3
  article-title: The upper bound revisited
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.04.030
– volume: 4
  start-page: 4171
  year: 2011
  ident: 10.1016/j.memsci.2012.09.006_bib10
  article-title: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/c1ee01324f
– volume: 47
  start-page: 10275
  year: 2011
  ident: 10.1016/j.memsci.2012.09.006_bib17
  article-title: Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc14051e
– volume: 43
  start-page: 58
  year: 2010
  ident: 10.1016/j.memsci.2012.09.006_bib15
  article-title: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks
  publication-title: Accounts Chem. Res.
  doi: 10.1021/ar900116g
– volume: 17
  start-page: 8832
  year: 2011
  ident: 10.1016/j.memsci.2012.09.006_bib38
  article-title: Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures
  publication-title: Chem-Eur. J.
  doi: 10.1002/chem.201100958
– volume: 31
  start-page: 2555
  year: 1993
  ident: 10.1016/j.memsci.2012.09.006_bib39
  article-title: Polymerization of [O-(Trimethylgermyl)phenyl]acetylene and polymer characterization
  publication-title: J. Polym Sci. A: Polym. Chem.
  doi: 10.1002/pola.1993.080311016
SSID ssj0017089
Score 2.5678287
Snippet Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 235
SubjectTerms adhesion
artificial membranes
carbon dioxide
carbon dioxide separation
coatings
composite membrane
gas separation
manufacturing
methane
mixed matrix membrane
mixing
nanoparticles
nitrogen
permeability
polyacrylonitrile
scanning electron microscopy
zeolitic imidazole framework
Title Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers
URI https://dx.doi.org/10.1016/j.memsci.2012.09.006
https://www.proquest.com/docview/1803105231
Volume 425-426
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVLemkOoW0SkrQNKuSqrq2VV95jWLpsWrqXNiXkIvQxAofYDtkN7Km_vTOyHdoSCOQqJGFG8nzYb95j7CyP0gHJpEpVzISKAYTVCgQWLOCs0r7TBvy-mi4v1der4mrE5kMvDMEqe9_f-fTkrfuRcW_N8V1VjX9kREQyKTFCkctNbVZKabrln38_wjxynSUZPJosaPbQPpcwXjXUuDUBvGRiOyXdo6fD03-OOkWfxRu216eN_Lx7srdsBM07tvsXmeA--zW3965teKjabRWAr5PCDTozXldbCLwmMv4tJww5AbVwGGoslRvgBFfvhCL49cVCaN7YphUxdQmuD9jl4svP-VL0qgnCY_K1ETG308IHHTHRKJzHjA6KqEsVS-095EoGV3o7lRlEFzI7mymsAaV0GqOlmlg7OWQ7TdvAEeNu6jCw2RyUjKrEs8ZFGhMij0VfgJAds8lgLON7SnFStrg1A3bsxnQmNmRik80MmviYicdVdx2lxjPz9XAO5p-rYdDrP7Py03BsBt8a-hWCVm0f1iYviRIVi_D85MW7v2evZdLGoO8xH9jO5v4BPmKGsnGn6QqeslfnF9-Wqz8Z7OcH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFO0vIwER7OJ11lnDxxQYbVLHxdaVHExfoylIJJU3a26XPhT_EFmnKQChFQJqdcotpzPk3kkn-dj7GUepQOSSZWqmAoVAwirFQgsWMBZpX2nDbh_MJkfqQ_HxfEG-zmchSFaZe_7O5-evHV_ZdSjOTqpqtHHjBqRjEuMUORy86xnVu7C93Os25ZvFu9wk19JOXt_uDMXvbSA8JihrETM7aTwQUeMxoXzmPZAEXWpYqm9h1zJ4EpvJzKD6EJmp1OFhZKUTmNIUWNrxzjvNXZdobsg2YTXPy54JbnOku4erU7Q8obzeolUVkONz0KMMpnaq5LQ0r_j4V-RIYW72R12u89T-dsOirtsA5p77NZv3Qvvs0879tS1DQ9Vu64C8GWS1EHvyetqDYHX1P1_zYm0TswwvAw11uYNcOLHd8oU_PNiJjRvbNOKmI4lLh-woyvB8iHbbNoGHjHuJg4jqc1ByahKNC4cpDED81hlBgjZFhsPYBnf9zAnKY1vZiCrfTUdxIYgNtnUIMRbTFyMOul6eFxyvx72wfxhiwbDzCUjXwzbZvA1pX8viGp7tjR5ST1YserPt_979ufsxvxwf8_sLQ52H7ObMglz0MegJ2xzdXoGTzE9WrlnyRw5-3LV9v8L6Twj8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+dioxide+selective+mixed+matrix+composite+membrane+containing+ZIF-7+nano-fillers&rft.jtitle=Journal+of+membrane+science&rft.au=Li%2C+Tao&rft.au=Pan%2C+Yichang&rft.au=Peinemann%2C+Klaus-Viktor&rft.au=Lai%2C+Zhiping&rft.date=2013-01-01&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.volume=425-426&rft.spage=235&rft.epage=242&rft_id=info:doi/10.1016%2Fj.memsci.2012.09.006&rft.externalDocID=S0376738812006710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon