Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers
Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix compos...
Saved in:
Published in | Journal of membrane science Vol. 425-426; pp. 235 - 242 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30–35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO2, N2 and CH4. Both, permeability (PCO2 up to 145barrer) and gas selectivity (CO2/N2 up to 97 and CO2/CH4 up to 30) can be increased at low ZIF- loading. The CO2/CH4 selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO2 separation from methane and other gas streams. They are easy to fabricate, which makes them attractive for industrial scale gas separation.
► ZIF-7 nano-particles have been synthesized and dispersed in a polymer matrix. ► High performance ZIF-7 mixed matrix membranes for gas separation were manufactured. ► Excellent compatibility between filler and polymer was observed. ► Defect-free membranes could be prepared by a simple coating technique. ► The CO2/CH4 selectivity could be more than doubled by the ZIF-7 nano-fillers. |
---|---|
AbstractList | Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30–35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO₂, N₂ and CH₄. Both, permeability (PCO₂ up to 145barrer) and gas selectivity (CO₂/N₂ up to 97 and CO₂/CH₄ up to 30) can be increased at low ZIF- loading. The CO₂/CH₄ selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO₂ separation from methane and other gas streams. They are easy to fabricate, which makes them attractive for industrial scale gas separation. Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30–35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO2, N2 and CH4. Both, permeability (PCO2 up to 145barrer) and gas selectivity (CO2/N2 up to 97 and CO2/CH4 up to 30) can be increased at low ZIF- loading. The CO2/CH4 selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO2 separation from methane and other gas streams. They are easy to fabricate, which makes them attractive for industrial scale gas separation. ► ZIF-7 nano-particles have been synthesized and dispersed in a polymer matrix. ► High performance ZIF-7 mixed matrix membranes for gas separation were manufactured. ► Excellent compatibility between filler and polymer was observed. ► Defect-free membranes could be prepared by a simple coating technique. ► The CO2/CH4 selectivity could be more than doubled by the ZIF-7 nano-fillers. |
Author | Pan, Yichang Li, Tao Lai, Zhiping Peinemann, Klaus-Viktor |
Author_xml | – sequence: 1 givenname: Tao surname: Li fullname: Li, Tao – sequence: 2 givenname: Yichang surname: Pan fullname: Pan, Yichang – sequence: 3 givenname: Klaus-Viktor surname: Peinemann fullname: Peinemann, Klaus-Viktor – sequence: 4 givenname: Zhiping surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa |
BookMark | eNqFkD1PwzAQhj0UiRb4BwwZWRLO-XLCgIQqCpWQWICBxXLsC7oqsYsdqvLvMSoTA0wnnd7n1d2zYDPrLDJ2ziHjwOvLTTbiGDRlOfA8gzYDqGdsDoWoU1E0zTFbhLAB4AKads5elsp3ziaG3J4MJgEH1BPtMBlpjyYZ1eRpn2g3bl2gKa5x7LyyGFd2UmTJviWv61UqEqusS3saBvThlB31agh49jNP2PPq9ml5nz483q2XNw-pLqGa0p6rutJG9K2oq07zmmPVi6bsG6E18jI3XaNVnQP2nQHVtmXOeZ53AtGUhVLFCbs49G69e__AMMmRgsZhiBe6jyB5AwWHKi94jJaHqPYuBI-93Hoalf-UHOS3OrmRB3XyW52EVkZ1Ebv6hWma1ETxe69o-A--PsAYHewIvYwJtBoN-ahZGkd_F3wBBD-SOA |
CitedBy_id | crossref_primary_10_1021_acs_iecr_3c01648 crossref_primary_10_1016_j_cej_2021_128807 crossref_primary_10_1016_j_memsci_2016_03_050 crossref_primary_10_1016_j_jngse_2021_103947 crossref_primary_10_1021_acs_iecr_9b01466 crossref_primary_10_1002_app_53128 crossref_primary_10_1088_1757_899X_1059_1_012006 crossref_primary_10_3390_polym14071480 crossref_primary_10_1016_j_memsci_2016_02_022 crossref_primary_10_1080_10916466_2016_1273242 crossref_primary_10_1002_slct_202100055 crossref_primary_10_1016_j_jtice_2016_07_005 crossref_primary_10_1007_s12633_024_03214_2 crossref_primary_10_1016_j_jclepro_2018_03_099 crossref_primary_10_1016_j_jiec_2015_04_007 crossref_primary_10_1016_j_jcou_2022_102094 crossref_primary_10_1039_C7EE02820B crossref_primary_10_1016_j_seppur_2023_124073 crossref_primary_10_1016_j_apsusc_2025_162673 crossref_primary_10_1021_acs_nanolett_3c00004 crossref_primary_10_1016_j_clay_2018_09_025 crossref_primary_10_1016_j_memsci_2020_118826 crossref_primary_10_1016_j_jiec_2019_12_020 crossref_primary_10_1039_C4CC06491G crossref_primary_10_1002_cjce_24052 crossref_primary_10_1016_j_memsci_2023_121818 crossref_primary_10_1002_ghg_2039 crossref_primary_10_1039_C6RA23013J crossref_primary_10_1139_tcsme_2020_0080 crossref_primary_10_1080_00219592_2024_2350748 crossref_primary_10_1016_j_seppur_2019_02_036 crossref_primary_10_1039_c3ta01652h crossref_primary_10_1039_C6NJ02013E crossref_primary_10_3390_ma14175093 crossref_primary_10_1016_j_seppur_2020_116708 crossref_primary_10_54097_hset_v58i_10121 crossref_primary_10_1016_j_joule_2019_07_003 crossref_primary_10_1016_j_seppur_2021_120371 crossref_primary_10_1016_j_memsci_2017_12_033 crossref_primary_10_1021_jacs_8b09631 crossref_primary_10_1016_j_mtsust_2024_100812 crossref_primary_10_4028_www_scientific_net_SSP_307_258 crossref_primary_10_1016_j_seppur_2016_04_038 crossref_primary_10_1021_ie403437g crossref_primary_10_1016_j_memsci_2016_11_065 crossref_primary_10_1016_j_jngse_2020_103655 crossref_primary_10_1002_cssc_201402647 crossref_primary_10_1016_j_cherd_2016_10_018 crossref_primary_10_1016_j_memsci_2014_05_025 crossref_primary_10_1088_1361_6528_aaa80c crossref_primary_10_1016_j_jiec_2019_11_018 crossref_primary_10_1039_C9TA05401D crossref_primary_10_1016_j_jechem_2016_10_013 crossref_primary_10_1126_sciadv_adk5846 crossref_primary_10_1021_acssuschemeng_8b03789 crossref_primary_10_1039_C7TA03755D crossref_primary_10_1002_cplu_201300193 crossref_primary_10_9713_kcer_2014_52_3_340 crossref_primary_10_1021_acssuschemeng_1c03917 crossref_primary_10_1016_j_memsci_2015_09_045 crossref_primary_10_1016_j_seppur_2018_08_047 crossref_primary_10_1016_j_memsci_2016_02_059 crossref_primary_10_1016_j_ces_2016_11_037 crossref_primary_10_1016_j_memsci_2016_09_040 crossref_primary_10_1007_s11814_018_0081_1 crossref_primary_10_3390_ma14123366 crossref_primary_10_1016_j_seppur_2025_132201 crossref_primary_10_1126_science_abe0192 crossref_primary_10_1002_asia_202000013 crossref_primary_10_3390_membranes11060404 crossref_primary_10_1016_j_memsci_2020_117934 crossref_primary_10_1007_s11814_020_0650_y crossref_primary_10_1021_acsami_5b12541 crossref_primary_10_1021_acssuschemeng_9b06370 crossref_primary_10_1016_j_seppur_2015_03_033 crossref_primary_10_1039_C3CS60480B crossref_primary_10_7763_IJCEA_2014_V5_378 crossref_primary_10_1038_nmat4113 crossref_primary_10_1016_j_micromeso_2013_10_006 crossref_primary_10_1016_j_seppur_2017_07_051 crossref_primary_10_1016_j_memsci_2017_12_008 crossref_primary_10_1016_j_micromeso_2014_02_016 crossref_primary_10_1038_s41598_023_36051_1 crossref_primary_10_1016_j_cjche_2017_07_006 crossref_primary_10_1590_1980_5373_mr_2019_0022 crossref_primary_10_1016_j_seppur_2015_08_020 crossref_primary_10_1007_s10450_020_00255_y crossref_primary_10_3390_membranes11070463 crossref_primary_10_1002_cjce_23170 crossref_primary_10_1016_j_jngse_2016_09_036 crossref_primary_10_1039_C5NR00518C crossref_primary_10_3390_membranes13030337 crossref_primary_10_1016_j_memsci_2021_120184 crossref_primary_10_1016_j_memsci_2014_06_026 crossref_primary_10_1007_s00289_025_05696_5 crossref_primary_10_1016_j_cej_2022_139818 crossref_primary_10_1016_j_memsci_2021_119913 crossref_primary_10_1021_acsami_9b19960 crossref_primary_10_1007_s11814_021_0968_0 crossref_primary_10_1016_j_cherd_2015_03_026 crossref_primary_10_1016_j_reactfunctpolym_2017_09_002 crossref_primary_10_1016_j_colsurfa_2024_135162 crossref_primary_10_1002_app_55707 crossref_primary_10_1002_ceat_201800520 crossref_primary_10_1016_j_cej_2018_04_036 crossref_primary_10_1016_j_chemphys_2018_06_003 crossref_primary_10_1016_j_memsci_2019_117440 crossref_primary_10_1002_adma_201802401 crossref_primary_10_1016_j_jclepro_2017_02_069 crossref_primary_10_1016_j_matpr_2021_02_792 crossref_primary_10_1016_j_seppur_2023_124348 crossref_primary_10_1016_j_carbon_2019_04_031 crossref_primary_10_1016_j_seppur_2019_115900 crossref_primary_10_1016_j_seppur_2018_05_012 crossref_primary_10_1016_j_memsci_2015_07_065 crossref_primary_10_1016_j_rser_2021_111062 crossref_primary_10_1021_acsami_8b15269 crossref_primary_10_1021_acs_iecr_4c03086 crossref_primary_10_3390_polym14071408 crossref_primary_10_1039_D1CS00822F crossref_primary_10_1021_acsanm_8b00459 crossref_primary_10_1007_s11814_017_0215_x crossref_primary_10_1002_app_52203 crossref_primary_10_1016_j_seppur_2022_120930 crossref_primary_10_3390_molecules27175608 crossref_primary_10_1016_j_jngse_2016_08_042 crossref_primary_10_2139_ssrn_4171693 crossref_primary_10_3390_membranes13040444 crossref_primary_10_1002_adfm_202404785 crossref_primary_10_1039_D2TA03958C crossref_primary_10_1007_s10853_023_09269_7 crossref_primary_10_1002_cnma_201700086 crossref_primary_10_1021_acsami_8b16386 crossref_primary_10_1002_adfm_201505352 crossref_primary_10_1016_j_jclepro_2022_131468 crossref_primary_10_1007_s11814_020_0649_4 crossref_primary_10_1016_j_memsci_2016_09_064 crossref_primary_10_1080_01496395_2024_2387844 crossref_primary_10_1016_j_memsci_2020_118214 crossref_primary_10_1039_C5RA21073A crossref_primary_10_1007_s10965_016_1005_6 crossref_primary_10_1039_C9TA02962A crossref_primary_10_1016_j_memsci_2021_119708 crossref_primary_10_1016_j_cej_2023_143215 crossref_primary_10_1021_acs_iecr_6b01005 crossref_primary_10_1039_C5RA19331A crossref_primary_10_1021_acs_est_0c05377 crossref_primary_10_1016_j_jiec_2021_04_049 crossref_primary_10_1002_app_45302 crossref_primary_10_1016_j_memsci_2019_117792 crossref_primary_10_1021_acs_cgd_7b00595 crossref_primary_10_1002_adma_201603833 crossref_primary_10_1016_j_polymertesting_2020_106339 crossref_primary_10_3390_membranes13050487 crossref_primary_10_1016_j_memsci_2015_11_017 crossref_primary_10_1016_j_matpr_2021_11_025 crossref_primary_10_1002_cben_202100002 crossref_primary_10_3390_membranes12060589 crossref_primary_10_1002_app_44564 crossref_primary_10_1016_j_seppur_2024_128500 crossref_primary_10_1016_j_memsci_2017_08_003 crossref_primary_10_3390_membranes12060584 crossref_primary_10_1016_j_matpr_2022_10_211 crossref_primary_10_1016_j_egyr_2022_12_014 crossref_primary_10_3390_membranes10110335 crossref_primary_10_1016_j_ijhydene_2014_01_047 crossref_primary_10_1016_j_progpolymsci_2014_01_003 crossref_primary_10_1016_j_jngse_2019_103072 crossref_primary_10_1039_D0TA07154D crossref_primary_10_3389_fchem_2020_00534 crossref_primary_10_1016_j_memsci_2023_121373 crossref_primary_10_1021_acsnano_8b06811 crossref_primary_10_1080_03602559_2018_1482921 crossref_primary_10_1021_acs_chemrev_8b00091 crossref_primary_10_1016_j_seppur_2022_122919 crossref_primary_10_1016_j_micromeso_2023_112648 crossref_primary_10_1039_C9RA10594H crossref_primary_10_1016_j_jece_2022_108541 crossref_primary_10_1021_acs_chemrev_0c00119 crossref_primary_10_1080_01496395_2014_903281 crossref_primary_10_1016_j_ces_2018_06_008 crossref_primary_10_1021_acsomega_1c00493 crossref_primary_10_1016_j_molliq_2021_117435 crossref_primary_10_1039_C7TA01142C crossref_primary_10_1021_acs_cgd_7b00202 crossref_primary_10_1039_c3dt52103f crossref_primary_10_1002_cben_201600012 crossref_primary_10_1016_j_polymertesting_2019_106285 crossref_primary_10_1007_s11814_016_0269_1 crossref_primary_10_1016_j_memsci_2019_117348 crossref_primary_10_1098_rsos_201150 crossref_primary_10_1021_acsami_7b18475 crossref_primary_10_1021_acsomega_3c01666 crossref_primary_10_1021_acs_cgd_8b00307 crossref_primary_10_1007_s12221_018_8424_4 crossref_primary_10_1021_acsami_0c18861 crossref_primary_10_1002_app_45508 crossref_primary_10_1039_C4TA02984D crossref_primary_10_1155_2024_6697045 crossref_primary_10_1039_C8CC03656J crossref_primary_10_3390_separations9110344 crossref_primary_10_1039_D0TA02761H crossref_primary_10_1002_pi_5240 crossref_primary_10_1021_acsami_6b15803 crossref_primary_10_1021_acs_est_0c03589 crossref_primary_10_1007_s13369_016_2096_4 crossref_primary_10_1016_j_cherd_2018_03_028 crossref_primary_10_1016_j_cherd_2019_05_038 crossref_primary_10_1016_j_cjche_2016_11_007 crossref_primary_10_1007_s11356_022_19519_x crossref_primary_10_1016_j_chemosphere_2022_136913 crossref_primary_10_1016_j_cej_2018_10_152 crossref_primary_10_1016_j_memsci_2017_08_046 crossref_primary_10_1016_j_micromeso_2020_110030 crossref_primary_10_1016_j_inoche_2024_112576 crossref_primary_10_1016_j_memsci_2021_119642 crossref_primary_10_1021_acsami_2c12908 crossref_primary_10_1080_10916466_2018_1458120 crossref_primary_10_1016_j_ces_2019_04_032 crossref_primary_10_3390_membranes10010006 crossref_primary_10_1002_pat_5645 crossref_primary_10_1007_s13738_020_02087_7 crossref_primary_10_1016_j_gce_2020_11_009 crossref_primary_10_3390_membranes11090708 crossref_primary_10_1016_j_seppur_2014_03_017 crossref_primary_10_1002_jctb_5614 crossref_primary_10_1016_j_gce_2020_11_002 crossref_primary_10_1016_j_jngse_2021_104388 crossref_primary_10_1039_C9MH00409B crossref_primary_10_1080_15422119_2016_1146149 crossref_primary_10_1016_j_memsci_2016_06_015 crossref_primary_10_1016_j_seppur_2019_04_005 crossref_primary_10_1016_j_matchemphys_2017_11_018 crossref_primary_10_1016_j_memsci_2018_11_030 crossref_primary_10_1002_app_50553 crossref_primary_10_1039_C4RA13727B crossref_primary_10_1016_j_memsci_2021_119786 crossref_primary_10_1039_C8NJ04769C crossref_primary_10_1016_j_ces_2015_04_011 crossref_primary_10_1039_C9NA00170K crossref_primary_10_1002_er_6518 crossref_primary_10_1016_j_micromeso_2013_06_036 crossref_primary_10_1016_j_memsci_2020_118293 crossref_primary_10_1016_j_jtice_2022_104379 crossref_primary_10_1590_0104_6632_20180351s20150595 crossref_primary_10_1039_C7TA07512J crossref_primary_10_1016_j_apmt_2019_100491 crossref_primary_10_1016_j_cjche_2023_11_012 crossref_primary_10_1016_j_memsci_2016_06_025 crossref_primary_10_1016_j_matpr_2019_02_083 crossref_primary_10_1021_acs_iecr_0c01334 crossref_primary_10_1016_j_micromeso_2014_07_001 crossref_primary_10_1002_jctb_6963 crossref_primary_10_1007_s12274_020_3082_4 crossref_primary_10_1016_j_memsci_2016_05_029 crossref_primary_10_1016_j_memsci_2014_11_016 crossref_primary_10_1016_j_memsci_2018_10_051 crossref_primary_10_1007_s10965_017_1228_1 crossref_primary_10_1016_j_jngse_2014_09_021 crossref_primary_10_1039_C9NJ02789K crossref_primary_10_1016_j_memsci_2017_10_054 crossref_primary_10_2139_ssrn_4164468 crossref_primary_10_1016_j_coche_2015_03_003 crossref_primary_10_1016_j_advmem_2022_100027 crossref_primary_10_1002_app_55906 crossref_primary_10_1016_j_memsci_2015_04_069 crossref_primary_10_1126_sciadv_ads0583 crossref_primary_10_1016_j_memsci_2019_117404 crossref_primary_10_1080_10916466_2019_1587462 crossref_primary_10_1039_D0TA02587A crossref_primary_10_1002_advs_201800982 crossref_primary_10_1016_j_cherd_2023_07_028 crossref_primary_10_1021_acs_iecr_2c01402 crossref_primary_10_1016_j_memsci_2018_10_049 crossref_primary_10_1039_C6TA09990D crossref_primary_10_1557_s43577_022_00313_6 crossref_primary_10_1016_j_memsci_2018_10_047 crossref_primary_10_1002_cjce_22857 crossref_primary_10_1002_app_48513 crossref_primary_10_1039_C6TA05145F crossref_primary_10_1039_C5NR08840B crossref_primary_10_1007_s11164_016_2806_2 crossref_primary_10_1039_C7CE00102A crossref_primary_10_1016_j_seppur_2018_04_010 crossref_primary_10_1016_j_memsci_2021_119612 crossref_primary_10_1016_j_micromeso_2021_111674 crossref_primary_10_1002_jctb_6990 crossref_primary_10_1016_j_memsci_2018_04_040 crossref_primary_10_1039_D1TA04693D crossref_primary_10_1016_j_memsci_2020_118245 crossref_primary_10_1016_j_memsci_2017_06_010 crossref_primary_10_1002_asia_201300084 crossref_primary_10_1002_ange_201701109 crossref_primary_10_1016_j_mcat_2020_110965 crossref_primary_10_1021_acs_energyfuels_1c01638 crossref_primary_10_1016_j_jechem_2018_02_002 crossref_primary_10_1016_j_memsci_2018_08_023 crossref_primary_10_3390_polym9070219 crossref_primary_10_1002_aic_14496 crossref_primary_10_1002_app_48860 crossref_primary_10_1016_j_jiec_2021_07_034 crossref_primary_10_1016_j_memsci_2015_03_030 crossref_primary_10_1002_chem_201402287 crossref_primary_10_1016_j_memsci_2017_06_011 crossref_primary_10_1016_j_memsci_2018_08_026 crossref_primary_10_1021_acsami_0c07344 crossref_primary_10_1016_j_apmt_2020_100925 crossref_primary_10_1021_acs_energyfuels_2c01880 crossref_primary_10_1002_anie_201701109 crossref_primary_10_1016_j_memsci_2015_03_028 crossref_primary_10_1016_j_seppur_2024_127584 crossref_primary_10_1016_j_memsci_2016_01_054 crossref_primary_10_1021_ie504786x crossref_primary_10_1002_adfm_201402972 crossref_primary_10_1039_C5CS00292C crossref_primary_10_1016_j_ccst_2024_100347 crossref_primary_10_3390_membranes8030076 crossref_primary_10_1016_j_micromeso_2017_04_041 crossref_primary_10_1002_asia_201901433 crossref_primary_10_1016_j_mtcomm_2023_105460 crossref_primary_10_1016_j_seppur_2019_04_061 crossref_primary_10_1016_j_memsci_2016_04_029 crossref_primary_10_1002_ceat_201800087 crossref_primary_10_3389_fchem_2020_00058 crossref_primary_10_1002_ceat_201200734 crossref_primary_10_1080_00958972_2024_2433174 crossref_primary_10_1016_j_jiec_2016_01_032 crossref_primary_10_1002_cssc_201501063 crossref_primary_10_1016_j_ces_2018_04_067 crossref_primary_10_3390_membranes8030050 crossref_primary_10_1039_C6EE00811A crossref_primary_10_1016_j_cej_2022_137544 crossref_primary_10_1016_j_rser_2022_112527 crossref_primary_10_1016_j_seppur_2018_01_035 crossref_primary_10_1016_j_memsci_2021_119384 crossref_primary_10_1016_j_gee_2016_10_002 crossref_primary_10_1016_j_jiec_2014_12_039 crossref_primary_10_1016_j_seppur_2018_01_038 crossref_primary_10_1515_revce_2017_0001 crossref_primary_10_1039_C4RA15771K crossref_primary_10_1039_C6SC02411D crossref_primary_10_1039_C4CS00437J crossref_primary_10_1039_D0NR07042D crossref_primary_10_1007_s00289_018_2301_6 crossref_primary_10_1016_j_memsci_2017_05_011 crossref_primary_10_1016_j_seppur_2019_116101 crossref_primary_10_1016_j_jiec_2014_08_023 crossref_primary_10_1177_09673911211023303 crossref_primary_10_1007_s10965_020_02074_9 crossref_primary_10_1016_j_fuproc_2020_106464 crossref_primary_10_1016_j_memsci_2015_01_007 crossref_primary_10_1016_j_memsci_2022_120787 crossref_primary_10_1016_j_ccst_2024_100260 crossref_primary_10_1016_j_mtener_2019_100357 crossref_primary_10_1021_acs_jpclett_5b01602 crossref_primary_10_1002_jctb_6456 crossref_primary_10_1021_acs_chemmater_4c01815 crossref_primary_10_1016_j_matdes_2016_11_001 crossref_primary_10_1080_08927022_2019_1635694 crossref_primary_10_1016_j_seppur_2018_02_020 crossref_primary_10_1007_s13233_017_5130_9 crossref_primary_10_1016_j_memsci_2015_01_014 crossref_primary_10_1016_j_seppur_2021_119803 crossref_primary_10_1016_j_arabjc_2020_10_021 crossref_primary_10_1007_s00289_020_03467_y crossref_primary_10_1007_s11696_021_01744_2 crossref_primary_10_1039_C5CC04999G crossref_primary_10_1557_mre_2020_30 crossref_primary_10_1021_acs_iecr_4c01437 crossref_primary_10_1016_j_jngse_2016_03_067 crossref_primary_10_1021_acsami_3c16093 crossref_primary_10_1021_acsanm_2c01248 crossref_primary_10_1016_j_micromeso_2021_110897 crossref_primary_10_1038_srep15016 crossref_primary_10_1021_ja5016298 crossref_primary_10_1016_j_memsci_2021_119581 crossref_primary_10_1016_j_ces_2014_11_058 crossref_primary_10_1016_j_rser_2025_115524 crossref_primary_10_1002_pc_23702 crossref_primary_10_1016_j_polymer_2017_10_040 crossref_primary_10_1039_C5RA00567A crossref_primary_10_1016_j_memsci_2018_12_018 crossref_primary_10_1016_j_psep_2024_10_053 crossref_primary_10_1016_j_cej_2022_140883 crossref_primary_10_1080_03602559_2016_1233275 crossref_primary_10_14478_ace_2015_1041 |
Cites_doi | 10.1021/ja101415b 10.1016/j.memsci.2011.10.003 10.1021/cm3006953 10.1016/j.memsci.2012.01.044 10.1016/j.desal.2006.03.390 10.1016/0376-7388(92)80122-Z 10.1021/cm900166h 10.1016/j.memsci.2011.05.031 10.1002/anie.201006141 10.1073/pnas.0602439103 10.1016/j.memsci.2010.06.017 10.1016/S0376-7388(00)80684-5 10.1021/ie1014958 10.1039/c0cc05002d 10.1002/anie.201104383 10.1016/j.progpolymsci.2007.01.008 10.1016/j.seppur.2008.01.001 10.1002/anie.200905645 10.1021/ja1089765 10.1021/jp065711j 10.1021/ie071083w 10.1021/ie8019032 10.1039/C0NJ00836B 10.1021/ma00124a035 10.1021/ma9814548 10.1016/j.molstruc.2004.05.043 10.1016/j.seppur.2011.06.037 10.1002/aic.10029 10.1016/j.memsci.2011.11.024 10.1002/cphc.201100583 10.1016/j.memsci.2006.11.016 10.1016/j.memsci.2008.04.030 10.1039/c1ee01324f 10.1039/c1cc14051e 10.1021/ar900116g 10.1002/chem.201100958 10.1002/pola.1993.080311016 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. |
Copyright_xml | – notice: 2012 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.memsci.2012.09.006 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 242 |
ExternalDocumentID | 10_1016_j_memsci_2012_09_006 S0376738812006710 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ABXRA ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHPOS AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSH SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAQXK AAYXX ACNNM ACRPL ADMUD ADNMO AFJKZ AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c405t-f1a65cd7f9765bc161e5f784f87cce142db8ca620efbd0a99421122b7eed43aa3 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri Jul 11 09:08:44 EDT 2025 Thu Apr 24 23:00:36 EDT 2025 Tue Jul 01 03:37:48 EDT 2025 Thu Jul 17 02:00:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | mixed matrix membrane carbon dioxide separation composite membrane zeolitic imidazole framework gas separation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-f1a65cd7f9765bc161e5f784f87cce142db8ca620efbd0a99421122b7eed43aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1803105231 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1803105231 crossref_primary_10_1016_j_memsci_2012_09_006 crossref_citationtrail_10_1016_j_memsci_2012_09_006 elsevier_sciencedirect_doi_10_1016_j_memsci_2012_09_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 2013-1-00 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Park, Ni, Cote, Choi, Huang, Uribe-Romo, Chae, O'Keeffe, Yaghi (bib14) 2006; 103 S. Kulprathipanja, Richard W. Neuzil, Norman N. Li, Separation of fluids by means of mixed matrix membranes. US patent 4,740,219, 1988. Lu, Hupp (bib16) 2010; 132 Moore, Koros (bib26) 2005; 739 D. Fritsch, K.-V. Peinemann, D. Gomes, Composite material, in particular composite membrane, and process for the production of the same. US Patent 7,658,784, 2010. Okamoto, Fujii, Okamyo, Suzuki, Tanaka, Kita (bib25) 1995; 28 Husain, Koros (bib30) 2007; 288 Noble (bib6) 2011; 378 van den Bergh, Gucuyener, Pidko, Hensen, Gascon, Kapteijn (bib38) 2011; 17 Jia, Peinemann, Behling (bib32) 1992; 73 Jia, Peinemann, Behling (bib27) 1991; 57 Li, Liang, Bux, Feldhoff, Yang, Caro (bib20) 2010; 49 Dai, Johnson, Karvan, Sholl, Koros (bib31) 2012; 401 Cravillon, Munzer, Lohmeier, Feldhoff, Huber, Wiebcke (bib35) 2009; 21 Moore, Mahajan, Vu, Koros (bib5) 2004; 50 Hu, Cai, Ren, Wei, Xu, Liu, Hu (bib29) 2010; 49 Mizumoto, Masuda, Higashimura (bib39) 1993; 31 Ordonez, Balkus, Ferraris, Musselman (bib23) 2010; 361 Freeman (bib4) 1999; 32 Bae, Lee, Qiu, Koros, Jones, Nair (bib12) 2010; 49 Pan, Liu, Zeng, Zhao, Lai (bib19) 2011; 47 Shu, Husain, Koros (bib9) 2007; 111 Bernardo, Drioli, Golemme (bib2) 2009; 48 Car, Stropnik, Peinemann (bib13) 2006; 200 Zhang, Dai, Johnson, Karvan, Koros (bib11) 2012; 389 Thompson, Blad, Brunelli, Lydon, Lively, Jones, Nair (bib37) 2012; 24 Gucuyener, van den Bergh, Gascon, Kapteijn (bib34) 2010; 132 Aguado, Bergeret, Titus, Moizan, Nieto-Draghi, Bats, Farrusseng (bib36) 2011; 35 Pan, Lai (bib17) 2011; 47 Liu, Li, Zhu, Ban, Xu, Yang (bib21) 2011; 50 Yang, Xiao, Chung (bib10) 2011; 4 Zornoza, Seoane, Zamaro, Tellez, Coronas (bib22) 2011; 12 Baker, Lokhandwala (bib1) 2008; 47 Pan, Li, Lestari, Lai (bib18) 2012; 390 Basu, Cano-Odena, Vankelecom (bib28) 2011; 81 Car, Stropnik, Yave, Peinemann (bib24) 2008; 62 Chung, Jiang, Li, Kulprathipanja (bib8) 2007; 32 Robeson (bib3) 2008; 320 Phan, Doonan, Uribe-Romo, Knobler, O'Keeffe, Yaghi (bib15) 2010; 43 Pan (10.1016/j.memsci.2012.09.006_bib18) 2012; 390 Ordonez (10.1016/j.memsci.2012.09.006_bib23) 2010; 361 Baker (10.1016/j.memsci.2012.09.006_bib1) 2008; 47 Moore (10.1016/j.memsci.2012.09.006_bib5) 2004; 50 Mizumoto (10.1016/j.memsci.2012.09.006_bib39) 1993; 31 Dai (10.1016/j.memsci.2012.09.006_bib31) 2012; 401 Chung (10.1016/j.memsci.2012.09.006_bib8) 2007; 32 Jia (10.1016/j.memsci.2012.09.006_bib32) 1992; 73 Bernardo (10.1016/j.memsci.2012.09.006_bib2) 2009; 48 Phan (10.1016/j.memsci.2012.09.006_bib15) 2010; 43 Yang (10.1016/j.memsci.2012.09.006_bib10) 2011; 4 Li (10.1016/j.memsci.2012.09.006_bib20) 2010; 49 Car (10.1016/j.memsci.2012.09.006_bib13) 2006; 200 Car (10.1016/j.memsci.2012.09.006_bib24) 2008; 62 Bae (10.1016/j.memsci.2012.09.006_bib12) 2010; 49 Pan (10.1016/j.memsci.2012.09.006_bib19) 2011; 47 Hu (10.1016/j.memsci.2012.09.006_bib29) 2010; 49 Liu (10.1016/j.memsci.2012.09.006_bib21) 2011; 50 Noble (10.1016/j.memsci.2012.09.006_bib6) 2011; 378 Gucuyener (10.1016/j.memsci.2012.09.006_bib34) 2010; 132 Zhang (10.1016/j.memsci.2012.09.006_bib11) 2012; 389 Okamoto (10.1016/j.memsci.2012.09.006_bib25) 1995; 28 Zornoza (10.1016/j.memsci.2012.09.006_bib22) 2011; 12 Husain (10.1016/j.memsci.2012.09.006_bib30) 2007; 288 van den Bergh (10.1016/j.memsci.2012.09.006_bib38) 2011; 17 10.1016/j.memsci.2012.09.006_bib7 Pan (10.1016/j.memsci.2012.09.006_bib17) 2011; 47 Jia (10.1016/j.memsci.2012.09.006_bib27) 1991; 57 Shu (10.1016/j.memsci.2012.09.006_bib9) 2007; 111 Aguado (10.1016/j.memsci.2012.09.006_bib36) 2011; 35 Freeman (10.1016/j.memsci.2012.09.006_bib4) 1999; 32 Lu (10.1016/j.memsci.2012.09.006_bib16) 2010; 132 Moore (10.1016/j.memsci.2012.09.006_bib26) 2005; 739 10.1016/j.memsci.2012.09.006_bib33 Park (10.1016/j.memsci.2012.09.006_bib14) 2006; 103 Cravillon (10.1016/j.memsci.2012.09.006_bib35) 2009; 21 Robeson (10.1016/j.memsci.2012.09.006_bib3) 2008; 320 Basu (10.1016/j.memsci.2012.09.006_bib28) 2011; 81 Thompson (10.1016/j.memsci.2012.09.006_bib37) 2012; 24 |
References_xml | – volume: 361 start-page: 28 year: 2010 end-page: 37 ident: bib23 article-title: Molecular sieving realized with ZIF-8/Matrimid (R) mixed-matrix membranes publication-title: J. Membr. Sci. – volume: 43 start-page: 58 year: 2010 end-page: 67 ident: bib15 article-title: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks publication-title: Accounts Chem. Res. – volume: 21 start-page: 1410 year: 2009 end-page: 1412 ident: bib35 article-title: Rapid Room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework publication-title: Chem. Mater. – volume: 49 start-page: 548 year: 2010 end-page: 551 ident: bib20 article-title: Molecular Sieve Membrane: supported metal–organic framework with high hydrogen selectivity publication-title: Angew. Chem. Int. Edit. – reference: D. Fritsch, K.-V. Peinemann, D. Gomes, Composite material, in particular composite membrane, and process for the production of the same. US Patent 7,658,784, 2010. – volume: 320 start-page: 390 year: 2008 end-page: 400 ident: bib3 article-title: The upper bound revisited publication-title: J. Membr. Sci. – volume: 103 start-page: 10186 year: 2006 end-page: 10191 ident: bib14 article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks publication-title: P. Natl. Acad. Sci. USA – volume: 132 start-page: 7832 year: 2010 ident: bib16 article-title: Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 2071 year: 2011 end-page: 2073 ident: bib19 article-title: Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system publication-title: Chem. Commun. – volume: 4 start-page: 4171 year: 2011 end-page: 4180 ident: bib10 article-title: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification publication-title: Energ. Environ. Sci. – volume: 378 start-page: 393 year: 2011 end-page: 397 ident: bib6 article-title: Perspectives on mixed matrix membranes publication-title: J. Membr. Sci. – volume: 50 start-page: 10636 year: 2011 end-page: 10639 ident: bib21 article-title: An organophilic pervaporation membrane derived from metal–organic framework nanoparticles for efficient recovery of bio-alcohols publication-title: Angew. Chem. Int. Edit – volume: 31 start-page: 2555 year: 1993 end-page: 2561 ident: bib39 article-title: Polymerization of [O-(Trimethylgermyl)phenyl]acetylene and polymer characterization publication-title: J. Polym Sci. A: Polym. Chem. – volume: 47 start-page: 2109 year: 2008 end-page: 2121 ident: bib1 article-title: Natural gas processing with membranes: An overview publication-title: Ind. Eng. Chem. Res. – volume: 28 start-page: 6950 year: 1995 end-page: 6956 ident: bib25 article-title: Gas permeation properties of poly(ether imide) segmented copolymers publication-title: Macromolecules – volume: 739 start-page: 87 year: 2005 end-page: 98 ident: bib26 article-title: Non-ideal effects in organic-inorganic materials for gas separation membranes publication-title: J. Mol. Struct. – reference: S. Kulprathipanja, Richard W. Neuzil, Norman N. Li, Separation of fluids by means of mixed matrix membranes. US patent 4,740,219, 1988. – volume: 288 start-page: 195 year: 2007 end-page: 207 ident: bib30 article-title: Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation publication-title: J. Membr. Sci. – volume: 24 start-page: 1930 year: 2012 end-page: 1936 ident: bib37 article-title: Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis publication-title: Chem. Mater. – volume: 12 start-page: 2781 year: 2011 end-page: 2785 ident: bib22 article-title: Combination of MOFs and zeolites for mixed-matrix membranes publication-title: Chemphyschem – volume: 73 start-page: 119 year: 1992 end-page: 128 ident: bib32 article-title: Preparation and characterization of thin-film zeolite pdms composite membranes publication-title: J. Membr. Sci. – volume: 132 start-page: 17704 year: 2010 end-page: 17706 ident: bib34 article-title: Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal–organic framework ZIF-7 through a gate-opening mechanism publication-title: J. Am. Chem. Soc. – volume: 390 start-page: 93 year: 2012 end-page: 98 ident: bib18 article-title: Effective separation of propylene/propane binary mixtures by ZIF-8 membranes publication-title: J. Membr. Sci. – volume: 57 start-page: 289 year: 1991 end-page: 296 ident: bib27 article-title: Molecular-Sieving Effect of the Zeolite-Filled Silicone-Rubber Membranes in Gas Permeation publication-title: J. Membr. Sci. – volume: 81 start-page: 31 year: 2011 end-page: 40 ident: bib28 article-title: MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations publication-title: Sep. Purif. Technol. – volume: 17 start-page: 8832 year: 2011 end-page: 8840 ident: bib38 article-title: Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures publication-title: Chem-Eur. J. – volume: 35 start-page: 546 year: 2011 end-page: 550 ident: bib36 article-title: Guest-induced gate-opening of a zeolite imidazolate framework publication-title: New J. Chem. – volume: 62 start-page: 110 year: 2008 end-page: 117 ident: bib24 article-title: Pebax (R)/polyethylene glycol blend thin film composite membranes for CO publication-title: Sep. Purif. Technol. – volume: 49 start-page: 12605 year: 2010 end-page: 12612 ident: bib29 article-title: Mixed-Matrix membrane hollow fibers of Cu-3(BTC)(2) MOF and polyimide for gas separation and adsorption publication-title: Ind. Eng. Chem. Res. – volume: 111 start-page: 652 year: 2007 end-page: 657 ident: bib9 article-title: A general strategy for adhesion enhancement in polymeric composites by formation of nanostructured particle surfaces publication-title: J. Phys. Chem. C – volume: 49 start-page: 9863 year: 2010 end-page: 9866 ident: bib12 article-title: A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals publication-title: Angew. Chem. Int. Edit. – volume: 32 start-page: 375 year: 1999 end-page: 380 ident: bib4 article-title: Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes publication-title: Macromolecules – volume: 32 start-page: 483 year: 2007 end-page: 507 ident: bib8 article-title: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation publication-title: Prog. Polym. Sci. – volume: 401 start-page: 76 year: 2012 end-page: 82 ident: bib31 article-title: Ultem((R))/ZIF-8 mixed matrix hollow fiber membranes for CO publication-title: J. Membr. Sci. – volume: 200 start-page: 424 year: 2006 end-page: 426 ident: bib13 article-title: Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation publication-title: Desalination – volume: 48 start-page: 4638 year: 2009 end-page: 4663 ident: bib2 article-title: Membrane gas separation: A review/state of the art publication-title: Ind. Eng. Chem. Res. – volume: 50 start-page: 311 year: 2004 end-page: 321 ident: bib5 article-title: Hybrid membrane materials comprising organic polymers with rigid dispersed phases publication-title: Aiche J. – volume: 389 start-page: 34 year: 2012 end-page: 42 ident: bib11 article-title: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations publication-title: J. Membr. Sci. – volume: 47 start-page: 10275 year: 2011 end-page: 10277 ident: bib17 article-title: Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions publication-title: Chem. Commun. – volume: 132 start-page: 7832 year: 2010 ident: 10.1016/j.memsci.2012.09.006_bib16 article-title: Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101415b – volume: 389 start-page: 34 year: 2012 ident: 10.1016/j.memsci.2012.09.006_bib11 article-title: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.10.003 – ident: 10.1016/j.memsci.2012.09.006_bib33 – volume: 24 start-page: 1930 year: 2012 ident: 10.1016/j.memsci.2012.09.006_bib37 article-title: Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis publication-title: Chem. Mater. doi: 10.1021/cm3006953 – ident: 10.1016/j.memsci.2012.09.006_bib7 – volume: 401 start-page: 76 year: 2012 ident: 10.1016/j.memsci.2012.09.006_bib31 article-title: Ultem((R))/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.01.044 – volume: 200 start-page: 424 year: 2006 ident: 10.1016/j.memsci.2012.09.006_bib13 article-title: Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation publication-title: Desalination doi: 10.1016/j.desal.2006.03.390 – volume: 73 start-page: 119 year: 1992 ident: 10.1016/j.memsci.2012.09.006_bib32 article-title: Preparation and characterization of thin-film zeolite pdms composite membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(92)80122-Z – volume: 21 start-page: 1410 year: 2009 ident: 10.1016/j.memsci.2012.09.006_bib35 article-title: Rapid Room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework publication-title: Chem. Mater. doi: 10.1021/cm900166h – volume: 378 start-page: 393 year: 2011 ident: 10.1016/j.memsci.2012.09.006_bib6 article-title: Perspectives on mixed matrix membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.05.031 – volume: 49 start-page: 9863 year: 2010 ident: 10.1016/j.memsci.2012.09.006_bib12 article-title: A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201006141 – volume: 103 start-page: 10186 year: 2006 ident: 10.1016/j.memsci.2012.09.006_bib14 article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.0602439103 – volume: 361 start-page: 28 year: 2010 ident: 10.1016/j.memsci.2012.09.006_bib23 article-title: Molecular sieving realized with ZIF-8/Matrimid (R) mixed-matrix membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.06.017 – volume: 57 start-page: 289 year: 1991 ident: 10.1016/j.memsci.2012.09.006_bib27 article-title: Molecular-Sieving Effect of the Zeolite-Filled Silicone-Rubber Membranes in Gas Permeation publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)80684-5 – volume: 49 start-page: 12605 year: 2010 ident: 10.1016/j.memsci.2012.09.006_bib29 article-title: Mixed-Matrix membrane hollow fibers of Cu-3(BTC)(2) MOF and polyimide for gas separation and adsorption publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie1014958 – volume: 47 start-page: 2071 year: 2011 ident: 10.1016/j.memsci.2012.09.006_bib19 article-title: Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system publication-title: Chem. Commun. doi: 10.1039/c0cc05002d – volume: 50 start-page: 10636 year: 2011 ident: 10.1016/j.memsci.2012.09.006_bib21 article-title: An organophilic pervaporation membrane derived from metal–organic framework nanoparticles for efficient recovery of bio-alcohols publication-title: Angew. Chem. Int. Edit doi: 10.1002/anie.201104383 – volume: 32 start-page: 483 year: 2007 ident: 10.1016/j.memsci.2012.09.006_bib8 article-title: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2007.01.008 – volume: 62 start-page: 110 year: 2008 ident: 10.1016/j.memsci.2012.09.006_bib24 article-title: Pebax (R)/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2008.01.001 – volume: 49 start-page: 548 year: 2010 ident: 10.1016/j.memsci.2012.09.006_bib20 article-title: Molecular Sieve Membrane: supported metal–organic framework with high hydrogen selectivity publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.200905645 – volume: 132 start-page: 17704 year: 2010 ident: 10.1016/j.memsci.2012.09.006_bib34 article-title: Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal–organic framework ZIF-7 through a gate-opening mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1089765 – volume: 111 start-page: 652 year: 2007 ident: 10.1016/j.memsci.2012.09.006_bib9 article-title: A general strategy for adhesion enhancement in polymeric composites by formation of nanostructured particle surfaces publication-title: J. Phys. Chem. C doi: 10.1021/jp065711j – volume: 47 start-page: 2109 year: 2008 ident: 10.1016/j.memsci.2012.09.006_bib1 article-title: Natural gas processing with membranes: An overview publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie071083w – volume: 48 start-page: 4638 year: 2009 ident: 10.1016/j.memsci.2012.09.006_bib2 article-title: Membrane gas separation: A review/state of the art publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie8019032 – volume: 35 start-page: 546 year: 2011 ident: 10.1016/j.memsci.2012.09.006_bib36 article-title: Guest-induced gate-opening of a zeolite imidazolate framework publication-title: New J. Chem. doi: 10.1039/C0NJ00836B – volume: 28 start-page: 6950 year: 1995 ident: 10.1016/j.memsci.2012.09.006_bib25 article-title: Gas permeation properties of poly(ether imide) segmented copolymers publication-title: Macromolecules doi: 10.1021/ma00124a035 – volume: 32 start-page: 375 year: 1999 ident: 10.1016/j.memsci.2012.09.006_bib4 article-title: Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes publication-title: Macromolecules doi: 10.1021/ma9814548 – volume: 739 start-page: 87 year: 2005 ident: 10.1016/j.memsci.2012.09.006_bib26 article-title: Non-ideal effects in organic-inorganic materials for gas separation membranes publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2004.05.043 – volume: 81 start-page: 31 year: 2011 ident: 10.1016/j.memsci.2012.09.006_bib28 article-title: MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2011.06.037 – volume: 50 start-page: 311 year: 2004 ident: 10.1016/j.memsci.2012.09.006_bib5 article-title: Hybrid membrane materials comprising organic polymers with rigid dispersed phases publication-title: Aiche J. doi: 10.1002/aic.10029 – volume: 390 start-page: 93 year: 2012 ident: 10.1016/j.memsci.2012.09.006_bib18 article-title: Effective separation of propylene/propane binary mixtures by ZIF-8 membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.024 – volume: 12 start-page: 2781 year: 2011 ident: 10.1016/j.memsci.2012.09.006_bib22 article-title: Combination of MOFs and zeolites for mixed-matrix membranes publication-title: Chemphyschem doi: 10.1002/cphc.201100583 – volume: 288 start-page: 195 year: 2007 ident: 10.1016/j.memsci.2012.09.006_bib30 article-title: Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.11.016 – volume: 320 start-page: 390 year: 2008 ident: 10.1016/j.memsci.2012.09.006_bib3 article-title: The upper bound revisited publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.04.030 – volume: 4 start-page: 4171 year: 2011 ident: 10.1016/j.memsci.2012.09.006_bib10 article-title: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification publication-title: Energ. Environ. Sci. doi: 10.1039/c1ee01324f – volume: 47 start-page: 10275 year: 2011 ident: 10.1016/j.memsci.2012.09.006_bib17 article-title: Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions publication-title: Chem. Commun. doi: 10.1039/c1cc14051e – volume: 43 start-page: 58 year: 2010 ident: 10.1016/j.memsci.2012.09.006_bib15 article-title: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks publication-title: Accounts Chem. Res. doi: 10.1021/ar900116g – volume: 17 start-page: 8832 year: 2011 ident: 10.1016/j.memsci.2012.09.006_bib38 article-title: Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures publication-title: Chem-Eur. J. doi: 10.1002/chem.201100958 – volume: 31 start-page: 2555 year: 1993 ident: 10.1016/j.memsci.2012.09.006_bib39 article-title: Polymerization of [O-(Trimethylgermyl)phenyl]acetylene and polymer characterization publication-title: J. Polym Sci. A: Polym. Chem. doi: 10.1002/pola.1993.080311016 |
SSID | ssj0017089 |
Score | 2.5678287 |
Snippet | Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 235 |
SubjectTerms | adhesion artificial membranes carbon dioxide carbon dioxide separation coatings composite membrane gas separation manufacturing methane mixed matrix membrane mixing nanoparticles nitrogen permeability polyacrylonitrile scanning electron microscopy zeolitic imidazole framework |
Title | Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers |
URI | https://dx.doi.org/10.1016/j.memsci.2012.09.006 https://www.proquest.com/docview/1803105231 |
Volume | 425-426 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVLemkOoW0SkrQNKuSqrq2VV95jWLpsWrqXNiXkIvQxAofYDtkN7Km_vTOyHdoSCOQqJGFG8nzYb95j7CyP0gHJpEpVzISKAYTVCgQWLOCs0r7TBvy-mi4v1der4mrE5kMvDMEqe9_f-fTkrfuRcW_N8V1VjX9kREQyKTFCkctNbVZKabrln38_wjxynSUZPJosaPbQPpcwXjXUuDUBvGRiOyXdo6fD03-OOkWfxRu216eN_Lx7srdsBM07tvsXmeA--zW3965teKjabRWAr5PCDTozXldbCLwmMv4tJww5AbVwGGoslRvgBFfvhCL49cVCaN7YphUxdQmuD9jl4svP-VL0qgnCY_K1ETG308IHHTHRKJzHjA6KqEsVS-095EoGV3o7lRlEFzI7mymsAaV0GqOlmlg7OWQ7TdvAEeNu6jCw2RyUjKrEs8ZFGhMij0VfgJAds8lgLON7SnFStrg1A3bsxnQmNmRik80MmviYicdVdx2lxjPz9XAO5p-rYdDrP7Py03BsBt8a-hWCVm0f1iYviRIVi_D85MW7v2evZdLGoO8xH9jO5v4BPmKGsnGn6QqeslfnF9-Wqz8Z7OcH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFO0vIwER7OJ11lnDxxQYbVLHxdaVHExfoylIJJU3a26XPhT_EFmnKQChFQJqdcotpzPk3kkn-dj7GUepQOSSZWqmAoVAwirFQgsWMBZpX2nDbh_MJkfqQ_HxfEG-zmchSFaZe_7O5-evHV_ZdSjOTqpqtHHjBqRjEuMUORy86xnVu7C93Os25ZvFu9wk19JOXt_uDMXvbSA8JihrETM7aTwQUeMxoXzmPZAEXWpYqm9h1zJ4EpvJzKD6EJmp1OFhZKUTmNIUWNrxzjvNXZdobsg2YTXPy54JbnOku4erU7Q8obzeolUVkONz0KMMpnaq5LQ0r_j4V-RIYW72R12u89T-dsOirtsA5p77NZv3Qvvs0879tS1DQ9Vu64C8GWS1EHvyetqDYHX1P1_zYm0TswwvAw11uYNcOLHd8oU_PNiJjRvbNOKmI4lLh-woyvB8iHbbNoGHjHuJg4jqc1ByahKNC4cpDED81hlBgjZFhsPYBnf9zAnKY1vZiCrfTUdxIYgNtnUIMRbTFyMOul6eFxyvx72wfxhiwbDzCUjXwzbZvA1pX8viGp7tjR5ST1YserPt_979ufsxvxwf8_sLQ52H7ObMglz0MegJ2xzdXoGTzE9WrlnyRw5-3LV9v8L6Twj8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+dioxide+selective+mixed+matrix+composite+membrane+containing+ZIF-7+nano-fillers&rft.jtitle=Journal+of+membrane+science&rft.au=Li%2C+Tao&rft.au=Pan%2C+Yichang&rft.au=Peinemann%2C+Klaus-Viktor&rft.au=Lai%2C+Zhiping&rft.date=2013-01-01&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.volume=425-426&rft.spage=235&rft.epage=242&rft_id=info:doi/10.1016%2Fj.memsci.2012.09.006&rft.externalDocID=S0376738812006710 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |