Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower

Hydropower is an important renewable resource, and is derived from the energy of falling, fast-running, and/or oscillating motions of water, including rainfall, tidal currents, waves, and river flows. Over the centuries, the kinetic energy of hydropower has generally been harvested for either replac...

Full description

Saved in:
Bibliographic Details
Published inRenewable & sustainable energy reviews Vol. 115; p. 109366
Main Authors Jiang, Dongyue, Xu, Minyi, Dong, Ming, Guo, Fei, Liu, Xiaohua, Chen, Guijun, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydropower is an important renewable resource, and is derived from the energy of falling, fast-running, and/or oscillating motions of water, including rainfall, tidal currents, waves, and river flows. Over the centuries, the kinetic energy of hydropower has generally been harvested for either replacing labour directly, or for generating power with electromagnetic generators (EMG). However, it is possible to ignore another important energy source contained in water: the triboelectric energy. Following the first report of water-solid triboelectric nanogenerators (TENG), several types of interesting systems have been studied for harvesting the hydropower from rainfall, tides, waves, river flows, etc. TENG devices provide power differently from EMGs; EMGs generate electricity by a Lorenz force-driven electron flow, whereas TENG devices produce power by asymmetric screening of triboelectric charges in the form of displacement current. With this mechanism, power generation is achieved using water contact and separation motions with the TENG devices. In addition, the output performance of a water-solid TENG device is different from that of EMGs in terms of current, voltage, and frequency. The present study comprehensively reviews water-solid TENG devices for hydropower harvesting. This review first addresses the formation of tribo-charges on a solid surface, followed by the configuration, working principles, and parameters affecting the output performance, as well as applications for energy harvesting and self-powered sensors and actuators. Finally, this study provides an outlook of potential opportunities and challenges. •This study reviews an alternative way for harvesting the hydro energy.•Types of hydro energy sources are comprehensively reviewed.•The reviewed techniques are summarized and suggestion for future study is raised.
AbstractList Hydropower is an important renewable resource, and is derived from the energy of falling, fast-running, and/or oscillating motions of water, including rainfall, tidal currents, waves, and river flows. Over the centuries, the kinetic energy of hydropower has generally been harvested for either replacing labour directly, or for generating power with electromagnetic generators (EMG). However, it is possible to ignore another important energy source contained in water: the triboelectric energy. Following the first report of water-solid triboelectric nanogenerators (TENG), several types of interesting systems have been studied for harvesting the hydropower from rainfall, tides, waves, river flows, etc. TENG devices provide power differently from EMGs; EMGs generate electricity by a Lorenz force-driven electron flow, whereas TENG devices produce power by asymmetric screening of triboelectric charges in the form of displacement current. With this mechanism, power generation is achieved using water contact and separation motions with the TENG devices. In addition, the output performance of a water-solid TENG device is different from that of EMGs in terms of current, voltage, and frequency. The present study comprehensively reviews water-solid TENG devices for hydropower harvesting. This review first addresses the formation of tribo-charges on a solid surface, followed by the configuration, working principles, and parameters affecting the output performance, as well as applications for energy harvesting and self-powered sensors and actuators. Finally, this study provides an outlook of potential opportunities and challenges. •This study reviews an alternative way for harvesting the hydro energy.•Types of hydro energy sources are comprehensively reviewed.•The reviewed techniques are summarized and suggestion for future study is raised.
ArticleNumber 109366
Author Jiang, Dongyue
Dong, Ming
Liu, Xiaohua
Guo, Fei
Chen, Guijun
Xu, Minyi
Wang, Zhong Lin
Author_xml – sequence: 1
  givenname: Dongyue
  surname: Jiang
  fullname: Jiang, Dongyue
  email: jiangdy@dlut.edu.cn
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Liaoning Province, 116024, China
– sequence: 2
  givenname: Minyi
  surname: Xu
  fullname: Xu, Minyi
  organization: Marine Engineering College, Dalian Maritime University, Liaoning Province, 116026, China
– sequence: 3
  givenname: Ming
  surname: Dong
  fullname: Dong, Ming
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Liaoning Province, 116024, China
– sequence: 4
  givenname: Fei
  surname: Guo
  fullname: Guo, Fei
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Liaoning Province, 116024, China
– sequence: 5
  givenname: Xiaohua
  surname: Liu
  fullname: Liu, Xiaohua
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Liaoning Province, 116024, China
– sequence: 6
  givenname: Guijun
  surname: Chen
  fullname: Chen, Guijun
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Liaoning Province, 116024, China
– sequence: 7
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zhong.wang@mse.gatech.edu
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
BookMark eNp9kM9KAzEQh4Mo2FZfwFNeYGuy2exuxEsR_0HBi6K3kE0mbco2KUmo9O1NqScPnmaYmW_g903RuQ8eELqhZE4JbW8385ggzmtCRRkI1rZnaEL7TlSkFeS89KxtKsJqeommKW0Iobzv2AR9faoMsUphdAbn6IYAI-jSaOyVDyvwEFUOMd3hhcdqLMdeZbcHvAXlE7Yh4rWKe0jZ-RVeH0wMu_AN8QpdWDUmuP6tM_Tx9Pj-8FIt355fHxbLSjeE5wqIGgarBel62tOOMd0JohjhtSZM66GxRomWNNxwYbXilgvV1Ibz2vbGDprNUH36q2NIKYKVu-i2Kh4kJfLoRm7k0Y08upEnNwXq_0Da5RIr-ByVG_9H708olFB7V7ZJO_AajItFnDTB_Yf_ALaThLQ
CitedBy_id crossref_primary_10_1021_acs_langmuir_0c01358
crossref_primary_10_3390_mi15030384
crossref_primary_10_1002_smll_202310023
crossref_primary_10_1515_ntrev_2020_0055
crossref_primary_10_1016_j_egyr_2020_09_009
crossref_primary_10_1016_j_nanoen_2020_104748
crossref_primary_10_1142_S1793292024300068
crossref_primary_10_1002_admt_202301588
crossref_primary_10_1021_acsami_1c20509
crossref_primary_10_1016_j_nanoen_2024_110075
crossref_primary_10_1016_j_energy_2024_132119
crossref_primary_10_1016_j_nanoen_2020_104795
crossref_primary_10_1016_j_nanoen_2021_106218
crossref_primary_10_1016_j_nanoen_2020_105204
crossref_primary_10_1016_j_nanoen_2020_105524
crossref_primary_10_1002_advs_202200822
crossref_primary_10_1016_j_ymssp_2023_110649
crossref_primary_10_1016_j_mtcomm_2023_105541
crossref_primary_10_1016_j_snr_2021_100027
crossref_primary_10_1016_j_nanoen_2021_105846
crossref_primary_10_1002_aisy_202100131
crossref_primary_10_1016_j_jmst_2023_07_055
crossref_primary_10_1016_j_jmst_2024_07_013
crossref_primary_10_1016_j_mtener_2021_100772
crossref_primary_10_1038_s44287_024_00029_6
crossref_primary_10_1016_j_nanoen_2023_108752
crossref_primary_10_1039_D0RA07982K
crossref_primary_10_1002_aesr_202200051
crossref_primary_10_3390_app122412882
crossref_primary_10_1016_j_nanoen_2022_107050
crossref_primary_10_1021_acsami_2c16271
crossref_primary_10_1002_admt_202001199
crossref_primary_10_1002_adsu_202400678
crossref_primary_10_3390_mi13081219
crossref_primary_10_1016_j_mser_2023_100763
crossref_primary_10_1002_aenm_202201383
crossref_primary_10_1007_s11426_021_1089_6
crossref_primary_10_1007_s40435_023_01292_5
crossref_primary_10_1016_j_nanoen_2021_106304
crossref_primary_10_1016_j_nanoen_2023_108924
crossref_primary_10_3390_app12052724
crossref_primary_10_1021_acsenergylett_2c01908
crossref_primary_10_1002_er_7824
crossref_primary_10_1021_acsami_4c01168
crossref_primary_10_1002_aenm_202303298
crossref_primary_10_1007_s12274_023_5623_0
crossref_primary_10_1038_s41598_024_60823_y
crossref_primary_10_1016_j_apenergy_2023_121509
crossref_primary_10_1016_j_nanoen_2020_104541
crossref_primary_10_1016_j_ymssp_2024_112050
crossref_primary_10_1016_j_nanoen_2024_109980
crossref_primary_10_1016_j_nanoen_2024_110456
crossref_primary_10_1016_j_oceaneng_2023_113700
crossref_primary_10_1088_1361_665X_ac50f5
crossref_primary_10_1038_s41378_022_00362_6
crossref_primary_10_1039_D4NR02973A
crossref_primary_10_1016_j_jpowsour_2024_235693
crossref_primary_10_1016_j_mattod_2024_08_017
crossref_primary_10_1088_1361_665X_ad5bcf
crossref_primary_10_1016_j_nanoen_2020_104809
crossref_primary_10_1016_j_enconman_2021_114668
crossref_primary_10_1002_aelm_202100277
crossref_primary_10_1016_j_nanoen_2020_104459
crossref_primary_10_1016_j_mtener_2024_101768
crossref_primary_10_1039_D1SE01661J
crossref_primary_10_1002_adfm_201908252
crossref_primary_10_1016_j_nanoen_2021_106592
crossref_primary_10_1039_D0TA12073A
crossref_primary_10_1016_j_nanoen_2022_107249
crossref_primary_10_1002_admt_202401183
crossref_primary_10_1016_j_device_2024_100566
crossref_primary_10_1016_j_nanoen_2022_108162
crossref_primary_10_1002_admt_202300802
crossref_primary_10_1021_acsanm_4c00022
crossref_primary_10_1039_D4TA08365B
crossref_primary_10_1002_adfm_202424446
crossref_primary_10_3390_mi12020158
crossref_primary_10_1021_acsnano_1c02980
crossref_primary_10_1088_2051_672X_adbfaf
crossref_primary_10_3390_electronics11101651
crossref_primary_10_1002_adma_202209661
crossref_primary_10_1007_s12274_021_3968_9
crossref_primary_10_3390_jmse10050566
crossref_primary_10_3390_mi15030314
crossref_primary_10_1039_D0NR04326E
crossref_primary_10_3390_ma13214980
crossref_primary_10_1016_j_chphi_2025_100813
crossref_primary_10_1109_TEC_2024_3354122
crossref_primary_10_1016_j_apenergy_2021_117394
crossref_primary_10_1002_smll_202408929
crossref_primary_10_3390_s23135888
crossref_primary_10_1016_j_ymssp_2024_112034
Cites_doi 10.1016/j.nanoen.2016.06.051
10.1016/j.jpowsour.2009.06.004
10.1021/nn406565k
10.1016/j.mattod.2019.05.016
10.1016/j.jcis.2015.09.026
10.1016/j.nanoen.2017.12.025
10.1016/j.nanoen.2014.07.006
10.1002/adma.201402428
10.1021/nl072838r
10.1007/s12274-018-1989-9
10.1038/srep09080
10.1039/C7LC01259D
10.1038/srep24092
10.3938/jkps.72.499
10.1016/j.nanoen.2017.04.053
10.1016/j.compscitech.2011.11.019
10.1021/acsnano.5b00534
10.1038/srep15695
10.1088/0964-1726/25/4/045007
10.1021/acsnano.6b06622
10.1016/j.nanoen.2017.04.026
10.1016/j.nanoen.2018.02.042
10.1021/nn4007708
10.1016/j.nanoen.2012.01.004
10.1039/C5SC00473J
10.1007/s10661-016-5454-5
10.1021/acsnano.6b03293
10.1039/C7EE00158D
10.1002/aenm.201501467
10.1016/j.nanoen.2018.06.075
10.1021/nl9040719
10.1126/science.1139366
10.1039/C4TA06168C
10.1039/C7LC01095H
10.1016/j.snb.2016.02.140
10.1016/j.orgel.2016.02.024
10.1039/C8TA03870H
10.1080/00218469508014354
10.1016/j.nanoen.2017.04.048
10.1021/acsnano.7b05626
10.1038/s41598-017-07867-5
10.1016/j.nanoen.2014.07.024
10.1007/s00162-015-0377-2
10.1016/j.nanoen.2014.10.034
10.1039/C4EE00588K
10.1016/j.nanoen.2015.01.039
10.1016/j.nanoen.2013.08.004
10.1021/jz502613s
10.1016/j.nanoen.2019.01.083
10.1038/s41467-019-09464-8
10.1002/aenm.201601048
10.1039/b801516c
10.1021/acsnano.7b08716
10.1038/ncomms1454
10.1002/aenm.201501152
10.1016/j.bios.2017.09.046
10.1016/j.nanoen.2014.11.049
10.1021/la503494c
10.1002/adma.201404291
10.1016/j.nanoen.2015.04.037
10.1016/j.nanoen.2017.08.010
10.1021/acsami.6b06916
10.1002/adma.201400207
10.1021/j100828a035
10.1038/ncomms2485
10.1016/j.rser.2017.01.133
10.1038/nature14543
10.1002/adma.201400373
10.1002/adma.201400021
10.1016/j.ijheatmasstransfer.2015.06.086
10.1016/j.nanoen.2018.12.041
10.1016/j.nanoen.2017.06.035
10.1063/1.1712751
10.1021/nn5012732
10.1002/adma.201803968
10.1016/j.geomorph.2006.03.018
10.1007/s00027-014-0377-0
10.1002/admt.201700229
10.1146/annurev.fluid.38.050304.092144
10.1038/srep02037
10.1002/adma.201402491
10.1021/la502500z
10.1016/j.mattod.2016.12.001
10.1021/acsnano.6b04440
10.1021/nn404614z
10.1021/nn501983s
10.1002/anie.201307249
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rser.2019.109366
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0690
ExternalDocumentID 10_1016_j_rser_2019_109366
S136403211930574X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
Y6R
ZCA
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c405t-e0abbfc9078181733c790a3052c03ccb4fda96045d59fca5f59a42d552f8dfbc3
IEDL.DBID .~1
ISSN 1364-0321
IngestDate Thu Apr 24 23:01:34 EDT 2025
Tue Jul 01 03:18:02 EDT 2025
Fri Feb 23 02:49:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydropower
Triboelectric nanogenerators
Wave energy
Energy harvesting
Self-powered sensors
Water-solid interface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-e0abbfc9078181733c790a3052c03ccb4fda96045d59fca5f59a42d552f8dfbc3
ParticipantIDs crossref_primary_10_1016_j_rser_2019_109366
crossref_citationtrail_10_1016_j_rser_2019_109366
elsevier_sciencedirect_doi_10_1016_j_rser_2019_109366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kwon, Park, Kim, Yang, Lee, Han (bib15) 2014; 7
Xi, Wang, Zi, Li, Han, Cao (bib30) 2017; 38
Zhang, Yang, Su, Chen, Hu, Wu (bib75) 2013; 2
Cheng, Lin, Du, Wang (bib17) 2014; 8
Wu, Su, Bai, Zhu, Zhang, Li (bib56) 2016; 2016
Wang, Lin, Wang (bib94) 2015; 11
Yeong, Burton, Loth, Bayer (bib48) 2014; 30
Jin, Sui, Yang (bib59) 2015; 90
Krupenkin, Taylor (bib35) 2011; 2
Shen, Yu, Chen (bib49) 2015; 30
Zhang, Tang, Han, Fan, Wang (bib8) 2014; 26
Zhong (bib72) 2013; 7
Jawahar, Michael (bib2) 2017; 72
Abdelgawad, Freire, Yang, Wheeler (bib86) 2008; 8
Choi, Kim, Yoo, Cha, La, Dong (bib50) 2017; 36
Cho, Lee, Hong, Pak, Bo, Lee (bib68) 2018; 6
Nguyen, Zhu, Yang (bib33) 2015; 14
Su, Wen, Zhu, Yang, Chen, Bai (bib27) 2014; 9
Wang (bib10) 2017; 20
Fan, Tian, Wang (bib12) 2012; 1
Khaldi, Maziz, Alici, Spinks, Jager (bib82) 2016; 230
Xu, Wang, Zhang, Ding, Kien, Wang (bib76) 2019; 57
Zhang, Yu, Ma, Ouyang, Zou, Zhang (bib78) 2019
JCM (bib22) 1971; 23
Yun, Kim, Ko, Murillo, Jung (bib44) 2017; 36
Carre, Shanahan (bib87) 2006; 49
Li, Yin, Wang, Zhou, Wang, Luo (bib93) 2017; 11
Liu, Huang, Oh, Zhang, Ma, Yuen (bib40) 2012; 72
Ahmed, Hassan, Ibn-Mohammed, Mostafa, Reaney, Koh (bib97) 2017; 10
Wang, Niu, Yin, Yi, You, Wang (bib32) 2015; 5
Xu, Wang, Zou, Zhang, Zhang, Zi (bib21) 2018; 30
Liu, Jing, Jing, Xiang, Che, Wang (bib62) 2017; 7
Park, Kim, Hwang, Shin (bib71) 2018; 72
Zheng, Lin, Cheng, Wu, Wen, Lee (bib66) 2014; 9
Young, Harwood, Ward (bib95) 2018
Sun, Huang, Soh (bib89) 2015; 6
Chen, Tang, He, Jiang, Xu, Zhu (bib54) 2018; 3
Helseth, Guo (bib36) 2015; 31
Liang, Yan, Gu, Zhang, Liang, Lu (bib16) 2015; 5
Lin, Cheng, Wu, Pradel, Wang (bib37) 2014; 8
Li, Liu, Huang, Liu, Hu, Shao (bib85) 2016; 6
Lin, Gang, Li, Yang, Wen, Zhong (bib26) 2015; 15
Wang, Wen, Guo, Wu, He, Lin (bib90) 2016; 10
Chang, Tran, Wang, Fuh, Lin (bib7) 2010; 10
Chen, Liu, Li, Dong, Jiang (bib29) 2018; 18
Choi, Lee, Im, Kang, Lim, Dong (bib45) 2013; 3
Kwon, Kim, Park, Yang, Yoo, Han (bib64) 2016; 8
Lin, Cheng, Lin, Lee, Wang (bib57) 2013; 52
Chen, Chen, Xu, Zhao, Wei, Chen (bib4) 2007; 85
Zhao, Kuang, Wang, Zhu (bib51) 2018; 12
Qiao, Feng, Liu, Wang, Zhang, Zhu (bib55) 2016; 188
Zheng, Cheng, Chen, Lin, Wang, Liu (bib69) 2015; 5
Leclear, Leclear, Abhijeet, Park, Choi (bib61) 2016; 461
Yang, Park, Kwon, Kim (bib38) 2015; 5
Tavakoli, Rui, Lourenço, Tong, Majidi (bib80) 2017
Kim, Chung, Kim, Moon, Lee, Cho (bib70) 2016; 27
Han, Yu, Qiu, Chen, Su, Shi (bib74) 2015; 3
Zhu, Zhou, Bai, Meng, Jing, Chen (bib13) 2014; 26
Jiang, Lee, Bae, Park (bib88) 2018
Bai, Zhu, Lin, Jing, Chen, Zhang (bib9) 2013; 7
Jeon, Kim, Yoon, Yoon, Choi (bib65) 2015; 12
Bardeen (bib39) 1940; 11
Wang, Wang (bib20) 2019
Zarfl, Lumsdon, Berlekamp, Tydecks, Tockner (bib5) 2015; 77
Park, Yang, Kwon, Kim (bib43) 2015; 6
Altintas, Akgun, Kokturk, Uludag (bib96) 2018; 100
Helseth, Guo (bib28) 2016; 25
Liu, Wang, Wang, Liu, Chen, Pu (bib47) 2019; 10
Wen, Guo, Zi, Yeh, Wang, Deng (bib91) 2016; 10
Daniela, Tolley (bib79) 2015; 521
Jiang, Guo, Xu, Cai, Cong, Jia (bib52) 2019; 58
Yang, Chan, Wang, Daoud (bib63) 2018; 44
Zhang, Tang, Pang, Han, Wang (bib84) 2015; 27
Zhang, Zheng, Wang, Feng (bib73) 2017; 40
Owen, Miller, Milner, Cogan (bib58) 1961; 65
Wang, Wu, Pan, Gao, Zhang, Yang (bib25) 2019; 13
Zervos, Lins, Renewables (bib3) 2016
Chen, Yang, Li, Fan, Zi, Jing (bib92) 2015; 9
Wang, Song, Liu, Wang (bib6) 2007; 316
Xie, Wang, Niu, Lin, Jing, Yang (bib14) 2014; 26
Tang, Chen, Wang (bib19) 2019
Feng, Liu, Guo, Tang, Pu, Chen (bib31) 2018; 47
Wang, Linjie Zhi, Müllen (bib41) 2008; 8
Pan, Wang, Wang, Gao, Wang, Zhang (bib53) 2018; 11
Chen, Jiang, Wang (bib83) 2017; 110
Moon, Jeong, Lee, Pak (bib34) 2013; 4
Chen, Guo, Zheng, Huang, Liu, Hu (bib77) 2016; 10
Lin, Cheng, Lee, Pradel, Wang (bib24) 2014; 26
Yarin (bib60) 2006; 38
Ö (bib1) 2008
Pu, Song, Liu, Sun, Du, Jiang (bib67) 2016; 6
Wang, Jiang, Xu (bib23) 2017; 39
Yoon, Ryu, Kim (bib11) 2018; 51
Wang, Xie, Niu, Lin, Liu, Zhou (bib46) 2014; 26
Xin, Hui, Zhu, Kai, Wang, Kang (bib42) 2009; 194
Zhu, Su, Peng, Chen, Jing, Yang (bib18) 2014; 8
Zhang, Yu, Li, Li, Isikgor, Du (bib81) 2016; 32
Choi (10.1016/j.rser.2019.109366_bib45) 2013; 3
Abdelgawad (10.1016/j.rser.2019.109366_bib86) 2008; 8
Chen (10.1016/j.rser.2019.109366_bib92) 2015; 9
Ahmed (10.1016/j.rser.2019.109366_bib97) 2017; 10
Owen (10.1016/j.rser.2019.109366_bib58) 1961; 65
Daniela (10.1016/j.rser.2019.109366_bib79) 2015; 521
Su (10.1016/j.rser.2019.109366_bib27) 2014; 9
Cho (10.1016/j.rser.2019.109366_bib68) 2018; 6
Zhang (10.1016/j.rser.2019.109366_bib73) 2017; 40
Bardeen (10.1016/j.rser.2019.109366_bib39) 1940; 11
Wang (10.1016/j.rser.2019.109366_bib32) 2015; 5
Zarfl (10.1016/j.rser.2019.109366_bib5) 2015; 77
Xu (10.1016/j.rser.2019.109366_bib76) 2019; 57
Zhang (10.1016/j.rser.2019.109366_bib8) 2014; 26
Wang (10.1016/j.rser.2019.109366_bib23) 2017; 39
Jiang (10.1016/j.rser.2019.109366_bib88) 2018
Liu (10.1016/j.rser.2019.109366_bib47) 2019; 10
Fan (10.1016/j.rser.2019.109366_bib12) 2012; 1
Yarin (10.1016/j.rser.2019.109366_bib60) 2006; 38
Zhao (10.1016/j.rser.2019.109366_bib51) 2018; 12
Zhang (10.1016/j.rser.2019.109366_bib78) 2019
Park (10.1016/j.rser.2019.109366_bib71) 2018; 72
Sun (10.1016/j.rser.2019.109366_bib89) 2015; 6
Nguyen (10.1016/j.rser.2019.109366_bib33) 2015; 14
Kim (10.1016/j.rser.2019.109366_bib70) 2016; 27
Chen (10.1016/j.rser.2019.109366_bib77) 2016; 10
Yeong (10.1016/j.rser.2019.109366_bib48) 2014; 30
Zhang (10.1016/j.rser.2019.109366_bib75) 2013; 2
Lin (10.1016/j.rser.2019.109366_bib57) 2013; 52
Lin (10.1016/j.rser.2019.109366_bib24) 2014; 26
Chen (10.1016/j.rser.2019.109366_bib54) 2018; 3
Pan (10.1016/j.rser.2019.109366_bib53) 2018; 11
Chen (10.1016/j.rser.2019.109366_bib29) 2018; 18
Young (10.1016/j.rser.2019.109366_bib95) 2018
Wang (10.1016/j.rser.2019.109366_bib20) 2019
Zhong (10.1016/j.rser.2019.109366_bib72) 2013; 7
Wang (10.1016/j.rser.2019.109366_bib46) 2014; 26
Zheng (10.1016/j.rser.2019.109366_bib69) 2015; 5
Liu (10.1016/j.rser.2019.109366_bib40) 2012; 72
Yang (10.1016/j.rser.2019.109366_bib63) 2018; 44
Moon (10.1016/j.rser.2019.109366_bib34) 2013; 4
Chang (10.1016/j.rser.2019.109366_bib7) 2010; 10
Xin (10.1016/j.rser.2019.109366_bib42) 2009; 194
Krupenkin (10.1016/j.rser.2019.109366_bib35) 2011; 2
Carre (10.1016/j.rser.2019.109366_bib87) 2006; 49
Jawahar (10.1016/j.rser.2019.109366_bib2) 2017; 72
Wang (10.1016/j.rser.2019.109366_bib90) 2016; 10
Wang (10.1016/j.rser.2019.109366_bib25) 2019; 13
Feng (10.1016/j.rser.2019.109366_bib31) 2018; 47
Yang (10.1016/j.rser.2019.109366_bib38) 2015; 5
Jiang (10.1016/j.rser.2019.109366_bib52) 2019; 58
Zhu (10.1016/j.rser.2019.109366_bib18) 2014; 8
Xu (10.1016/j.rser.2019.109366_bib21) 2018; 30
Lin (10.1016/j.rser.2019.109366_bib26) 2015; 15
Pu (10.1016/j.rser.2019.109366_bib67) 2016; 6
Helseth (10.1016/j.rser.2019.109366_bib36) 2015; 31
Zervos (10.1016/j.rser.2019.109366_bib3) 2016
Kwon (10.1016/j.rser.2019.109366_bib15) 2014; 7
Wen (10.1016/j.rser.2019.109366_bib91) 2016; 10
Zhang (10.1016/j.rser.2019.109366_bib81) 2016; 32
Shen (10.1016/j.rser.2019.109366_bib49) 2015; 30
Choi (10.1016/j.rser.2019.109366_bib50) 2017; 36
Tang (10.1016/j.rser.2019.109366_bib19) 2019
Jeon (10.1016/j.rser.2019.109366_bib65) 2015; 12
Han (10.1016/j.rser.2019.109366_bib74) 2015; 3
Yoon (10.1016/j.rser.2019.109366_bib11) 2018; 51
Liang (10.1016/j.rser.2019.109366_bib16) 2015; 5
Kwon (10.1016/j.rser.2019.109366_bib64) 2016; 8
Khaldi (10.1016/j.rser.2019.109366_bib82) 2016; 230
Wang (10.1016/j.rser.2019.109366_bib10) 2017; 20
Cheng (10.1016/j.rser.2019.109366_bib17) 2014; 8
Li (10.1016/j.rser.2019.109366_bib93) 2017; 11
Ö (10.1016/j.rser.2019.109366_bib1) 2008
Xi (10.1016/j.rser.2019.109366_bib30) 2017; 38
Li (10.1016/j.rser.2019.109366_bib85) 2016; 6
Wang (10.1016/j.rser.2019.109366_bib41) 2008; 8
Park (10.1016/j.rser.2019.109366_bib43) 2015; 6
Xie (10.1016/j.rser.2019.109366_bib14) 2014; 26
Yun (10.1016/j.rser.2019.109366_bib44) 2017; 36
Wang (10.1016/j.rser.2019.109366_bib6) 2007; 316
Qiao (10.1016/j.rser.2019.109366_bib55) 2016; 188
JCM (10.1016/j.rser.2019.109366_bib22) 1971; 23
Leclear (10.1016/j.rser.2019.109366_bib61) 2016; 461
Chen (10.1016/j.rser.2019.109366_bib83) 2017; 110
Zhang (10.1016/j.rser.2019.109366_bib84) 2015; 27
Zhu (10.1016/j.rser.2019.109366_bib13) 2014; 26
Zheng (10.1016/j.rser.2019.109366_bib66) 2014; 9
Lin (10.1016/j.rser.2019.109366_bib37) 2014; 8
Jin (10.1016/j.rser.2019.109366_bib59) 2015; 90
Chen (10.1016/j.rser.2019.109366_bib4) 2007; 85
Altintas (10.1016/j.rser.2019.109366_bib96) 2018; 100
Wu (10.1016/j.rser.2019.109366_bib56) 2016; 2016
Helseth (10.1016/j.rser.2019.109366_bib28) 2016; 25
Liu (10.1016/j.rser.2019.109366_bib62) 2017; 7
Tavakoli (10.1016/j.rser.2019.109366_bib80) 2017
Wang (10.1016/j.rser.2019.109366_bib94) 2015; 11
Bai (10.1016/j.rser.2019.109366_bib9) 2013; 7
References_xml – volume: 100
  start-page: 541
  year: 2018
  end-page: 548
  ident: bib96
  article-title: A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection
  publication-title: Biosens Bioelectron
– volume: 5
  start-page: 9080
  year: 2015
  ident: bib16
  article-title: Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating
  publication-title: Sci Rep
– volume: 10
  start-page: 1426
  year: 2019
  ident: bib47
  article-title: Integrated charge excitation triboelectric nanogenerator
  publication-title: Nat Commun
– volume: 7
  start-page: 9533
  year: 2013
  ident: bib72
  article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
– volume: 12
  start-page: 636
  year: 2015
  end-page: 645
  ident: bib65
  article-title: Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight
  publication-title: Nano Energy
– volume: 26
  start-page: 3788
  year: 2014
  end-page: 3796
  ident: bib13
  article-title: A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification
  publication-title: Adv Mater
– volume: 26
  start-page: 6599
  year: 2014
  end-page: 6607
  ident: bib14
  article-title: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
  publication-title: Adv Maters
– volume: 11
  start-page: 436
  year: 2015
  end-page: 462
  ident: bib94
  article-title: Triboelectric nanogenerators as self-powered active sensors
  publication-title: Nano Energy
– volume: 36
  start-page: 250
  year: 2017
  end-page: 259
  ident: bib50
  article-title: Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf
  publication-title: Nano Energy
– volume: 49
  start-page: 177
  year: 2006
  end-page: 185
  ident: bib87
  article-title: Drop motion on an inclined plane and evaluation of hydrophobia treatments to glass
  publication-title: J Adhes
– year: 2008
  ident: bib1
  article-title: Sources of energy and exploitation of power. The Oxford handbook of engineering and technology in the classical world
– volume: 77
  start-page: 161
  year: 2015
  end-page: 170
  ident: bib5
  article-title: A global boom in hydropower dam construction
  publication-title: Aquat Sci
– volume: 316
  start-page: 102
  year: 2007
  end-page: 105
  ident: bib6
  article-title: Direct-current nanogenerator driven by ultrasonic waves
  publication-title: Science
– volume: 110
  year: 2017
  ident: bib83
  article-title: Modeling a dielectric elastomer as driven by triboelectric nanogenerator
  publication-title: Appl Phys Lett
– volume: 11
  start-page: 10439
  year: 2017
  end-page: 10445
  ident: bib93
  article-title: Self-powered electrospinning system driven by a triboelectric nanogenerator
  publication-title: ACS Nano
– volume: 8
  start-page: 6031
  year: 2014
  ident: bib18
  article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface
  publication-title: ACS Nano
– volume: 6
  start-page: 3347
  year: 2015
  end-page: 3353
  ident: bib89
  article-title: Using the gravitational energy of water to generate power by separation of charge at interfaces
  publication-title: Chem Sci
– volume: 10
  start-page: 6526
  year: 2016
  end-page: 6534
  ident: bib91
  article-title: Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator
  publication-title: ACS Nano
– volume: 27
  start-page: 719
  year: 2015
  end-page: 726
  ident: bib84
  article-title: Active micro‐actuators for optical modulation based on a planar sliding triboelectric nanogenerator
  publication-title: Adv Mater
– volume: 2016
  year: 2016
  ident: bib56
  article-title: A self-powered triboelectric nanosensor for PH detection
  publication-title: J Nanom
– volume: 521
  start-page: 467
  year: 2015
  end-page: 475
  ident: bib79
  article-title: Design, fabrication and control of soft robots
  publication-title: Nature
– volume: 9
  start-page: 3324
  year: 2015
  end-page: 3331
  ident: bib92
  article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy
  publication-title: ACS Nano
– volume: 7
  start-page: 3713
  year: 2013
  end-page: 3719
  ident: bib9
  article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
  publication-title: ACS Nano
– volume: 5
  year: 2015
  ident: bib32
  article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy
  publication-title: Adv Energy Mater
– volume: 8
  start-page: 1932
  year: 2014
  end-page: 1939
  ident: bib17
  article-title: Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator
  publication-title: ACS Nano
– volume: 5
  start-page: 15695
  year: 2015
  ident: bib38
  article-title: Fluidic active transducer for electricity generation
  publication-title: Sci Rep
– volume: 14
  start-page: 49
  year: 2015
  end-page: 61
  ident: bib33
  article-title: Environmental effects on nanogenerators
  publication-title: Nano Energy
– volume: 39
  start-page: 9
  year: 2017
  end-page: 23
  ident: bib23
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
– volume: 85
  start-page: 155
  year: 2007
  end-page: 165
  ident: bib4
  article-title: Acoustic Doppler current profiler surveys along the Yangtze River
  publication-title: Geomorphology
– volume: 23
  start-page: 13
  year: 1971
  ident: bib22
  article-title: On physical lines of force
  publication-title: Philos Mag
– volume: 10
  start-page: 726
  year: 2010
  end-page: 731
  ident: bib7
  article-title: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency
  publication-title: Nano Lett
– volume: 38
  start-page: 101
  year: 2017
  end-page: 108
  ident: bib30
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 90
  start-page: 439
  year: 2015
  end-page: 453
  ident: bib59
  article-title: The impact, freezing, and melting processes of a water droplet on an inclined cold surface
  publication-title: Int J Heat Mass Transf
– volume: 3
  year: 2018
  ident: bib54
  article-title: Ultrafine capillary-tube triboelectric nanogenerator as active sensor for microliquid biological and chemical sensing
  publication-title: Adv Mater Tech
– volume: 2
  start-page: 448
  year: 2011
  ident: bib35
  article-title: Reverse electrowetting as a new approach to high-power energy harvesting
  publication-title: Nat Commun
– volume: 10
  start-page: 8104
  year: 2016
  end-page: 8112
  ident: bib77
  article-title: Self-powered triboelectric micro liquid/gas flow sensor for microfluidics
  publication-title: ACS Nano
– volume: 6
  year: 2015
  ident: bib43
  article-title: Influences of surface and ionic properties on electricity generation of an active transducer driven by water motion
  publication-title: J Phys Chem Lett
– volume: 65
  start-page: 2065
  year: 1961
  end-page: 2070
  ident: bib58
  article-title: The dielectric constant of water as a function of temperature and pressure 1,2
  publication-title: J Phys Chem
– volume: 8
  start-page: 323
  year: 2008
  ident: bib41
  article-title: Transparent, conductive graphene electrodes for dye-sensitized solar cells
  publication-title: Nano Lett
– start-page: 105981N
  year: 2018
  ident: bib95
  article-title: Sensing and control of flexible hydrodynamic lifting bodies in multiphase flows. Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2018
  publication-title: Int Soc Opt Phot
– volume: 7
  start-page: 7552
  year: 2017
  ident: bib62
  article-title: Long-range spontaneous droplet self-propulsion on wettability gradient surfaces
  publication-title: Sci Rep
– volume: 72
  start-page: 882
  year: 2017
  end-page: 887
  ident: bib2
  article-title: A review on turbines for micro hydro power plant
  publication-title: Renew Sustain Energy Rev
– volume: 7
  start-page: 3279
  year: 2014
  end-page: 3283
  ident: bib15
  article-title: An effective energy harvesting method from a natural water motion active transducer
  publication-title: Energy Environ Sci
– volume: 72
  start-page: 121
  year: 2012
  end-page: 144
  ident: bib40
  article-title: Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review
  publication-title: Compos Sci Technol
– volume: 8
  start-page: 24579
  year: 2016
  end-page: 24584
  ident: bib64
  article-title: Fabric active transducer stimulated by water motion for self-powered wearable device
  publication-title: ACS Appl Mater Interfaces
– volume: 31
  start-page: 3269
  year: 2015
  end-page: 3276
  ident: bib36
  article-title: Contact electrification and energy harvesting using periodically contacted and squeezed water droplets
  publication-title: Langm the Acs Journal of Surfaces & Colloids
– volume: 11
  start-page: 88
  year: 1940
  end-page: 111
  ident: bib39
  article-title: Electrical conductivity of metals
  publication-title: J Appl Phys
– volume: 32
  start-page: 149
  year: 2016
  end-page: 156
  ident: bib81
  article-title: Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate films with low conductivity and low acidity through a treatment of their solutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells
  publication-title: Org Electron
– volume: 30
  year: 2018
  ident: bib21
  article-title: Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification
  publication-title: Adv Mater
– volume: 58
  start-page: 842
  year: 2019
  end-page: 851
  ident: bib52
  article-title: Conformal fluorine coated carbon paper for an energy harvesting water wheel
  publication-title: Nano Energy
– volume: 9
  start-page: 291
  year: 2014
  end-page: 300
  ident: bib66
  article-title: Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy
  publication-title: Nano Energy
– volume: 27
  start-page: 340
  year: 2016
  end-page: 351
  ident: bib70
  article-title: Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia
  publication-title: Nano Energy
– volume: 10
  start-page: 11369
  year: 2016
  end-page: 11376
  ident: bib90
  article-title: Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator
  publication-title: ACS Nano
– volume: 10
  start-page: 653
  year: 2017
  end-page: 671
  ident: bib97
  article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators
  publication-title: Energy Environ Sci
– volume: 72
  start-page: 499
  year: 2018
  end-page: 503
  ident: bib71
  article-title: Water-through triboelectric nanogenerator based on Ti-mesh for harvesting liquid flow
  publication-title: J Korean Phys Soc
– volume: 57
  start-page: 574
  year: 2019
  end-page: 580
  ident: bib76
  article-title: A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment
  publication-title: Nano Energy
– year: 2017
  ident: bib80
  article-title: Soft bionics hands with a sense of touch through an electronic skin. Soft robotics: trends, applications and challenges
– year: 2019
  ident: bib20
  article-title: On the origin of contact-electrification
  publication-title: Mater Today
– volume: 30
  start-page: 12027
  year: 2014
  end-page: 12038
  ident: bib48
  article-title: Drop impact and rebound dynamics on an inclined superhydrophobic surface
  publication-title: Langmuir : the ACS journal of surfaces and colloids
– volume: 8
  start-page: 6440
  year: 2014
  end-page: 6448
  ident: bib37
  article-title: Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor
  publication-title: ACS Nano
– volume: 40
  year: 2017
  ident: bib73
  article-title: Solid-liquid triboelectrification in smart U-tube for multifunctional sensors
  publication-title: Nano Energy
– volume: 230
  start-page: 818
  year: 2016
  end-page: 824
  ident: bib82
  article-title: Bottom-up microfabrication process for individually controlled conjugated polymer actuators
  publication-title: Sens Actuators B Chem
– volume: 8
  start-page: 672
  year: 2008
  ident: bib86
  article-title: All-terrain droplet actuation
  publication-title: Lab Chip
– volume: 44
  start-page: 388
  year: 2018
  end-page: 398
  ident: bib63
  article-title: Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range
  publication-title: Nano Energy
– start-page: 532
  year: 2018
  end-page: 539
  ident: bib88
  article-title: Smartphone integrated optoelectrowetting (SiOEW) for on-chip sample processing and microscopic detection of water quality
  publication-title: Lab Chip
– volume: 6
  year: 2016
  ident: bib67
  article-title: Wearable power‐textiles by integrating fabric triboelectric nanogenerators and fiber‐shaped dye‐sensitized solar cells
  publication-title: Adv Energy Mater
– year: 2019
  ident: bib78
  article-title: Self‐powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting
  publication-title: Adv Funct Mater
– volume: 30
  start-page: 237
  year: 2015
  end-page: 252
  ident: bib49
  article-title: Spreading dynamics of droplet on an inclined surface
  publication-title: Theor Comput Fluid Dyn
– volume: 26
  start-page: 4690
  year: 2014
  end-page: 4696
  ident: bib24
  article-title: Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process
  publication-title: Adv Mater
– volume: 38
  start-page: 159
  year: 2006
  end-page: 192
  ident: bib60
  article-title: Drop impact dynamics: splashing, spreading, receding, bouncing
  publication-title: Annu Rev Fluid Mech
– volume: 9
  start-page: 186
  year: 2014
  end-page: 195
  ident: bib27
  article-title: Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter
  publication-title: Nano Energy
– year: 2016
  ident: bib3
  article-title: 2016 global status report
– volume: 4
  start-page: 1487
  year: 2013
  ident: bib34
  article-title: Electrical power generation by mechanically modulating electrical double layers
  publication-title: Nat Commun
– volume: 26
  start-page: 3580
  year: 2014
  end-page: 3591
  ident: bib8
  article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy
  publication-title: Adv Mater
– volume: 52
  start-page: 12545
  year: 2013
  end-page: 12549
  ident: bib57
  article-title: Water-solid surface contact electrification and its use for harvesting liquid-wave energy
  publication-title: Angew Chem Int Ed
– volume: 6
  start-page: 24092
  year: 2016
  ident: bib85
  article-title: Nanoporous-gold-based hybrid cantilevered actuator dealloyed and driven by A modified rotary triboelectric nanogenerator
  publication-title: Sci Rep
– volume: 12
  start-page: 4280
  year: 2018
  ident: bib51
  article-title: Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy
  publication-title: ACS Nano
– volume: 5
  year: 2015
  ident: bib69
  article-title: A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock
  publication-title: Adv Energy Mater
– volume: 18
  start-page: 1026
  year: 2018
  ident: bib29
  article-title: A droplet energy harvesting and actuation system for self-powered digital microfluidics
  publication-title: Lab Chip
– volume: 3
  start-page: 2037
  year: 2013
  ident: bib45
  article-title: Spontaneous electrical charging of droplets by conventional pipetting
  publication-title: Sci Rep
– volume: 47
  start-page: 217
  year: 2018
  end-page: 223
  ident: bib31
  article-title: Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting
  publication-title: Nano Energy
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: bib12
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 26
  start-page: 6720
  year: 2014
  end-page: 6728
  ident: bib46
  article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding
  publication-title: Adv Mater
– volume: 6
  year: 2018
  ident: bib68
  article-title: Sustainable hybrid energy harvester based on air stable quantum dot solar cells and triboelectric nanogenerator
  publication-title: J Mater Chem A
– volume: 461
  start-page: 114
  year: 2016
  end-page: 121
  ident: bib61
  article-title: Drop impact on inclined superhydrophobic surfaces
  publication-title: J Colloid Interface Sci
– volume: 20
  year: 2017
  ident: bib10
  article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater Today
– volume: 2
  start-page: 693
  year: 2013
  end-page: 701
  ident: bib75
  article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol
  publication-title: Nano Energy
– volume: 15
  start-page: 256
  year: 2015
  end-page: 265
  ident: bib26
  article-title: A multi-layered interdigitative-electrodes-based triboelectric nanogenerator for harvesting hydropower
  publication-title: Nano Energy
– year: 2019
  ident: bib19
  article-title: Recent progress in power generation from water/liquid droplet interaction with solid surfaces
  publication-title: Adv Funct Mater
– volume: 13
  start-page: 2587
  year: 2019
  end-page: 2598
  ident: bib25
  article-title: Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis
  publication-title: ACS Nano
– volume: 36
  start-page: 233
  year: 2017
  end-page: 240
  ident: bib44
  article-title: Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water
  publication-title: Nano Energy
– volume: 3
  start-page: 7382
  year: 2015
  end-page: 7388
  ident: bib74
  article-title: Electrification based devices with encapsulated liquid for energy harvesting, multifunctional sensing, and self-powered visualized detection
  publication-title: J Mater Chem A
– volume: 11
  start-page: 4062
  year: 2018
  end-page: 4073
  ident: bib53
  article-title: Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy
  publication-title: Nano Res
– volume: 25
  year: 2016
  ident: bib28
  article-title: Hydrophobic polymer covered by a grating electrode for converting the mechanical energy of water droplets into electrical energy
  publication-title: Smart Mater Struct
– volume: 194
  start-page: 1208
  year: 2009
  end-page: 1212
  ident: bib42
  article-title: Carbon nanosheets as the electrode material in supercapacitors
  publication-title: J Power Sources
– volume: 188
  start-page: 443
  year: 2016
  ident: bib55
  article-title: Surface water pH variations and trends in China from 2004 to 2014
  publication-title: Environ Monit Assess
– volume: 51
  start-page: 270
  year: 2018
  end-page: 285
  ident: bib11
  article-title: Sustainable powering triboelectric nanogenerators: approaches and the path towards efficient use
  publication-title: Nano Energy
– volume: 27
  start-page: 340
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib70
  article-title: Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.051
– volume: 194
  start-page: 1208
  year: 2009
  ident: 10.1016/j.rser.2019.109366_bib42
  article-title: Carbon nanosheets as the electrode material in supercapacitors
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.06.004
– volume: 8
  start-page: 1932
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib17
  article-title: Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/nn406565k
– year: 2019
  ident: 10.1016/j.rser.2019.109366_bib20
  article-title: On the origin of contact-electrification
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2019.05.016
– volume: 461
  start-page: 114
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib61
  article-title: Drop impact on inclined superhydrophobic surfaces
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2015.09.026
– volume: 44
  start-page: 388
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib63
  article-title: Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.025
– volume: 9
  start-page: 186
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib27
  article-title: Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.07.006
– volume: 26
  start-page: 6599
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib14
  article-title: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
  publication-title: Adv Maters
  doi: 10.1002/adma.201402428
– volume: 8
  start-page: 323
  year: 2008
  ident: 10.1016/j.rser.2019.109366_bib41
  article-title: Transparent, conductive graphene electrodes for dye-sensitized solar cells
  publication-title: Nano Lett
  doi: 10.1021/nl072838r
– volume: 11
  start-page: 4062
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib53
  article-title: Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy
  publication-title: Nano Res
  doi: 10.1007/s12274-018-1989-9
– volume: 5
  start-page: 9080
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib16
  article-title: Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating
  publication-title: Sci Rep
  doi: 10.1038/srep09080
– volume: 18
  start-page: 1026
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib29
  article-title: A droplet energy harvesting and actuation system for self-powered digital microfluidics
  publication-title: Lab Chip
  doi: 10.1039/C7LC01259D
– volume: 6
  start-page: 24092
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib85
  article-title: Nanoporous-gold-based hybrid cantilevered actuator dealloyed and driven by A modified rotary triboelectric nanogenerator
  publication-title: Sci Rep
  doi: 10.1038/srep24092
– volume: 72
  start-page: 499
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib71
  article-title: Water-through triboelectric nanogenerator based on Ti-mesh for harvesting liquid flow
  publication-title: J Korean Phys Soc
  doi: 10.3938/jkps.72.499
– volume: 38
  start-page: 101
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib30
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.053
– volume: 72
  start-page: 121
  year: 2012
  ident: 10.1016/j.rser.2019.109366_bib40
  article-title: Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2011.11.019
– volume: 23
  start-page: 13
  year: 1971
  ident: 10.1016/j.rser.2019.109366_bib22
  article-title: On physical lines of force
  publication-title: Philos Mag
– year: 2016
  ident: 10.1016/j.rser.2019.109366_bib3
– volume: 9
  start-page: 3324
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib92
  article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00534
– volume: 5
  start-page: 15695
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib38
  article-title: Fluidic active transducer for electricity generation
  publication-title: Sci Rep
  doi: 10.1038/srep15695
– volume: 25
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib28
  article-title: Hydrophobic polymer covered by a grating electrode for converting the mechanical energy of water droplets into electrical energy
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/25/4/045007
– volume: 10
  start-page: 11369
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib90
  article-title: Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06622
– volume: 36
  start-page: 250
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib50
  article-title: Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.026
– volume: 47
  start-page: 217
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib31
  article-title: Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.042
– year: 2019
  ident: 10.1016/j.rser.2019.109366_bib78
  article-title: Self‐powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting
  publication-title: Adv Funct Mater
– volume: 7
  start-page: 3713
  year: 2013
  ident: 10.1016/j.rser.2019.109366_bib9
  article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
  publication-title: ACS Nano
  doi: 10.1021/nn4007708
– volume: 1
  start-page: 328
  year: 2012
  ident: 10.1016/j.rser.2019.109366_bib12
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 6
  start-page: 3347
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib89
  article-title: Using the gravitational energy of water to generate power by separation of charge at interfaces
  publication-title: Chem Sci
  doi: 10.1039/C5SC00473J
– volume: 188
  start-page: 443
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib55
  article-title: Surface water pH variations and trends in China from 2004 to 2014
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-016-5454-5
– volume: 10
  start-page: 6526
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib91
  article-title: Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03293
– volume: 10
  start-page: 653
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib97
  article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE00158D
– volume: 5
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib32
  article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201501467
– volume: 51
  start-page: 270
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib11
  article-title: Sustainable powering triboelectric nanogenerators: approaches and the path towards efficient use
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.075
– volume: 10
  start-page: 726
  year: 2010
  ident: 10.1016/j.rser.2019.109366_bib7
  article-title: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency
  publication-title: Nano Lett
  doi: 10.1021/nl9040719
– volume: 316
  start-page: 102
  year: 2007
  ident: 10.1016/j.rser.2019.109366_bib6
  article-title: Direct-current nanogenerator driven by ultrasonic waves
  publication-title: Science
  doi: 10.1126/science.1139366
– volume: 3
  start-page: 7382
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib74
  article-title: Electrification based devices with encapsulated liquid for energy harvesting, multifunctional sensing, and self-powered visualized detection
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA06168C
– year: 2017
  ident: 10.1016/j.rser.2019.109366_bib80
– start-page: 532
  issue: 18
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib88
  article-title: Smartphone integrated optoelectrowetting (SiOEW) for on-chip sample processing and microscopic detection of water quality
  publication-title: Lab Chip
  doi: 10.1039/C7LC01095H
– volume: 230
  start-page: 818
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib82
  article-title: Bottom-up microfabrication process for individually controlled conjugated polymer actuators
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2016.02.140
– volume: 32
  start-page: 149
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib81
  publication-title: Org Electron
  doi: 10.1016/j.orgel.2016.02.024
– volume: 6
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib68
  article-title: Sustainable hybrid energy harvester based on air stable quantum dot solar cells and triboelectric nanogenerator
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA03870H
– volume: 49
  start-page: 177
  year: 2006
  ident: 10.1016/j.rser.2019.109366_bib87
  article-title: Drop motion on an inclined plane and evaluation of hydrophobia treatments to glass
  publication-title: J Adhes
  doi: 10.1080/00218469508014354
– volume: 36
  start-page: 233
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib44
  article-title: Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.048
– volume: 11
  start-page: 10439
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib93
  article-title: Self-powered electrospinning system driven by a triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05626
– year: 2008
  ident: 10.1016/j.rser.2019.109366_bib1
– volume: 7
  start-page: 7552
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib62
  article-title: Long-range spontaneous droplet self-propulsion on wettability gradient surfaces
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07867-5
– start-page: 105981N
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib95
  article-title: Sensing and control of flexible hydrodynamic lifting bodies in multiphase flows. Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2018
  publication-title: Int Soc Opt Phot
– volume: 9
  start-page: 291
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib66
  article-title: Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.07.024
– volume: 30
  start-page: 237
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib49
  article-title: Spreading dynamics of droplet on an inclined surface
  publication-title: Theor Comput Fluid Dyn
  doi: 10.1007/s00162-015-0377-2
– volume: 11
  start-page: 436
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib94
  article-title: Triboelectric nanogenerators as self-powered active sensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.034
– volume: 110
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib83
  article-title: Modeling a dielectric elastomer as driven by triboelectric nanogenerator
  publication-title: Appl Phys Lett
– volume: 7
  start-page: 3279
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib15
  article-title: An effective energy harvesting method from a natural water motion active transducer
  publication-title: Energy Environ Sci
  doi: 10.1039/C4EE00588K
– volume: 12
  start-page: 636
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib65
  article-title: Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.039
– year: 2019
  ident: 10.1016/j.rser.2019.109366_bib19
  article-title: Recent progress in power generation from water/liquid droplet interaction with solid surfaces
  publication-title: Adv Funct Mater
– volume: 2
  start-page: 693
  year: 2013
  ident: 10.1016/j.rser.2019.109366_bib75
  article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.08.004
– volume: 6
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib43
  article-title: Influences of surface and ionic properties on electricity generation of an active transducer driven by water motion
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz502613s
– volume: 58
  start-page: 842
  year: 2019
  ident: 10.1016/j.rser.2019.109366_bib52
  article-title: Conformal fluorine coated carbon paper for an energy harvesting water wheel
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.083
– volume: 10
  start-page: 1426
  year: 2019
  ident: 10.1016/j.rser.2019.109366_bib47
  article-title: Integrated charge excitation triboelectric nanogenerator
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09464-8
– volume: 6
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib67
  article-title: Wearable power‐textiles by integrating fabric triboelectric nanogenerators and fiber‐shaped dye‐sensitized solar cells
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201601048
– volume: 8
  start-page: 672
  year: 2008
  ident: 10.1016/j.rser.2019.109366_bib86
  article-title: All-terrain droplet actuation
  publication-title: Lab Chip
  doi: 10.1039/b801516c
– volume: 12
  start-page: 4280
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib51
  article-title: Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08716
– volume: 2
  start-page: 448
  year: 2011
  ident: 10.1016/j.rser.2019.109366_bib35
  article-title: Reverse electrowetting as a new approach to high-power energy harvesting
  publication-title: Nat Commun
  doi: 10.1038/ncomms1454
– volume: 5
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib69
  article-title: A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201501152
– volume: 100
  start-page: 541
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib96
  article-title: A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2017.09.046
– volume: 14
  start-page: 49
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib33
  article-title: Environmental effects on nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.049
– volume: 31
  start-page: 3269
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib36
  article-title: Contact electrification and energy harvesting using periodically contacted and squeezed water droplets
  publication-title: Langm the Acs Journal of Surfaces & Colloids
  doi: 10.1021/la503494c
– volume: 27
  start-page: 719
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib84
  article-title: Active micro‐actuators for optical modulation based on a planar sliding triboelectric nanogenerator
  publication-title: Adv Mater
  doi: 10.1002/adma.201404291
– volume: 15
  start-page: 256
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib26
  article-title: A multi-layered interdigitative-electrodes-based triboelectric nanogenerator for harvesting hydropower
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.04.037
– volume: 40
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib73
  article-title: Solid-liquid triboelectrification in smart U-tube for multifunctional sensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.010
– volume: 8
  start-page: 24579
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib64
  article-title: Fabric active transducer stimulated by water motion for self-powered wearable device
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b06916
– volume: 26
  start-page: 3580
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib8
  article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy
  publication-title: Adv Mater
  doi: 10.1002/adma.201400207
– volume: 65
  start-page: 2065
  year: 1961
  ident: 10.1016/j.rser.2019.109366_bib58
  article-title: The dielectric constant of water as a function of temperature and pressure 1,2
  publication-title: J Phys Chem
  doi: 10.1021/j100828a035
– volume: 4
  start-page: 1487
  year: 2013
  ident: 10.1016/j.rser.2019.109366_bib34
  article-title: Electrical power generation by mechanically modulating electrical double layers
  publication-title: Nat Commun
  doi: 10.1038/ncomms2485
– volume: 72
  start-page: 882
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib2
  article-title: A review on turbines for micro hydro power plant
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.133
– volume: 521
  start-page: 467
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib79
  article-title: Design, fabrication and control of soft robots
  publication-title: Nature
  doi: 10.1038/nature14543
– volume: 26
  start-page: 4690
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib24
  article-title: Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process
  publication-title: Adv Mater
  doi: 10.1002/adma.201400373
– volume: 26
  start-page: 3788
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib13
  article-title: A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification
  publication-title: Adv Mater
  doi: 10.1002/adma.201400021
– volume: 90
  start-page: 439
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib59
  article-title: The impact, freezing, and melting processes of a water droplet on an inclined cold surface
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.06.086
– volume: 57
  start-page: 574
  year: 2019
  ident: 10.1016/j.rser.2019.109366_bib76
  article-title: A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.041
– volume: 39
  start-page: 9
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib23
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 11
  start-page: 88
  year: 1940
  ident: 10.1016/j.rser.2019.109366_bib39
  article-title: Electrical conductivity of metals
  publication-title: J Appl Phys
  doi: 10.1063/1.1712751
– volume: 8
  start-page: 6031
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib18
  article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface
  publication-title: ACS Nano
  doi: 10.1021/nn5012732
– volume: 2016
  issue: 2016–2-21
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib56
  article-title: A self-powered triboelectric nanosensor for PH detection
  publication-title: J Nanom
– volume: 30
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib21
  article-title: Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification
  publication-title: Adv Mater
  doi: 10.1002/adma.201803968
– volume: 85
  start-page: 155
  year: 2007
  ident: 10.1016/j.rser.2019.109366_bib4
  article-title: Acoustic Doppler current profiler surveys along the Yangtze River
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.03.018
– volume: 77
  start-page: 161
  year: 2015
  ident: 10.1016/j.rser.2019.109366_bib5
  article-title: A global boom in hydropower dam construction
  publication-title: Aquat Sci
  doi: 10.1007/s00027-014-0377-0
– volume: 3
  year: 2018
  ident: 10.1016/j.rser.2019.109366_bib54
  article-title: Ultrafine capillary-tube triboelectric nanogenerator as active sensor for microliquid biological and chemical sensing
  publication-title: Adv Mater Tech
  doi: 10.1002/admt.201700229
– volume: 38
  start-page: 159
  year: 2006
  ident: 10.1016/j.rser.2019.109366_bib60
  article-title: Drop impact dynamics: splashing, spreading, receding, bouncing
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.38.050304.092144
– volume: 3
  start-page: 2037
  year: 2013
  ident: 10.1016/j.rser.2019.109366_bib45
  article-title: Spontaneous electrical charging of droplets by conventional pipetting
  publication-title: Sci Rep
  doi: 10.1038/srep02037
– volume: 26
  start-page: 6720
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib46
  article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding
  publication-title: Adv Mater
  doi: 10.1002/adma.201402491
– volume: 30
  start-page: 12027
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib48
  article-title: Drop impact and rebound dynamics on an inclined superhydrophobic surface
  publication-title: Langmuir : the ACS journal of surfaces and colloids
  doi: 10.1021/la502500z
– volume: 20
  year: 2017
  ident: 10.1016/j.rser.2019.109366_bib10
  article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 10
  start-page: 8104
  year: 2016
  ident: 10.1016/j.rser.2019.109366_bib77
  article-title: Self-powered triboelectric micro liquid/gas flow sensor for microfluidics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04440
– volume: 7
  start-page: 9533
  year: 2013
  ident: 10.1016/j.rser.2019.109366_bib72
  article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
  doi: 10.1021/nn404614z
– volume: 13
  start-page: 2587
  year: 2019
  ident: 10.1016/j.rser.2019.109366_bib25
  article-title: Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis
  publication-title: ACS Nano
– volume: 8
  start-page: 6440
  year: 2014
  ident: 10.1016/j.rser.2019.109366_bib37
  article-title: Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor
  publication-title: ACS Nano
  doi: 10.1021/nn501983s
– volume: 52
  start-page: 12545
  year: 2013
  ident: 10.1016/j.rser.2019.109366_bib57
  article-title: Water-solid surface contact electrification and its use for harvesting liquid-wave energy
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201307249
SSID ssj0015873
Score 2.5830543
SecondaryResourceType review_article
Snippet Hydropower is an important renewable resource, and is derived from the energy of falling, fast-running, and/or oscillating motions of water, including...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109366
SubjectTerms Energy harvesting
Hydropower
Self-powered sensors
Triboelectric nanogenerators
Water-solid interface
Wave energy
Title Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower
URI https://dx.doi.org/10.1016/j.rser.2019.109366
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGbrM0mu0nWWymW-iqiFnsLm82mjWhaQkW8-Nvd2SSlgvTgKSTMQPh2mG9gZ75B6IwppQM_VsTTlBPmh5RI4UtCdagM_SsW2JO-H_j9IbsZ8VEDdetZGGirrHJ_mdNttq6-tCs027Msaz9Rz2eOBwplJmYDNoIJdhZAlF98L9o8KA_tLTMYE7CuBmfKHq_CHDO0dwmrqmSVEv8gpyXC6W2hzapSxJ3yZ7ZRQ-c7aGNJP3AXjV5MpVgQEz5ZgmF11bTcapMpnMt8OraS0rBO5xJ3cmwvxnMr9I3ftaEobApWPJGFVdrIx3jylcDOhE9d7KFh7-q52yfVqgSiTMU1J9qRcZwqAdI9IQ08TwXCkQYXVzmeUjFLEwkyLDzhIlWSp1xI5iacu2mYpLHy9lEzn-b6AGHgfEZpLKSgLE4MfaWuCKlOtMulKQYOEa0xilSlIw7rLN6iumHsNQJcI8A1KnE9ROcLn1mporHSmtfQR79iITJpfoXf0T_9jtE6vJUThieoOS8-9KkpNeZxy8ZSC611uo93D_C8vu0PfgB6ctXC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7PsAJmdaJncRIHBCLCrS9AKK34DgOFEGKQhHiwk_xg4ydtAIJcUDimsSW8zyaeVHG7wFsca1NGCSa-oYJyoOIUSUDRZmJNJZ_zUO306120LjiZx3RGYGPwVkY21ZZ5f4yp7tsXV2pVWjWnrrd2gXzA173rUIZxmzIO1Vn5bl5e8Xvtuf90yPc5G3POzm-PGzQylqAamQofWrqKkkyLa3UTcRC39ehrCucx9N1X-uEZ6mysiUiFTLTSmRCKu6lQnhZlGaJ9nHeURjnmC6sbcLu-7CvhInI_da2q6N2edVJnbKprMC4sv1k0sk4OWnGH6rhlwp3MgPTFTUlB-Xbz8KIyedg6otg4Tx0rpGaFhTjtZsS65XVK210uprkKu_dOg1r69-zRw5y4v7E505ZnDwarIkEGTK5U4WT9shvyd1bak0aXk2xAFf_AuAijOW93CwBsSSDM5ZIJRlPUqyXmScjZlLjCYXsYxnYAKNYV8Ll1j_jIR50qN3HFtfY4hqXuC7DznDMUynb8evTYgB9_C34Yqwrv4xb-eO4TZhoXLaacfO0fb4Kk_ZOebxxDcb6xYtZR57TTzZcXBG4-e9A_gQyOxCu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water-solid+triboelectric+nanogenerators%3A+An+alternative+means+for+harvesting+hydropower&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Jiang%2C+Dongyue&rft.au=Xu%2C+Minyi&rft.au=Dong%2C+Ming&rft.au=Guo%2C+Fei&rft.date=2019-11-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=115&rft_id=info:doi/10.1016%2Fj.rser.2019.109366&rft.externalDocID=S136403211930574X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon