Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower
Hydropower is an important renewable resource, and is derived from the energy of falling, fast-running, and/or oscillating motions of water, including rainfall, tidal currents, waves, and river flows. Over the centuries, the kinetic energy of hydropower has generally been harvested for either replac...
Saved in:
Published in | Renewable & sustainable energy reviews Vol. 115; p. 109366 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydropower is an important renewable resource, and is derived from the energy of falling, fast-running, and/or oscillating motions of water, including rainfall, tidal currents, waves, and river flows. Over the centuries, the kinetic energy of hydropower has generally been harvested for either replacing labour directly, or for generating power with electromagnetic generators (EMG). However, it is possible to ignore another important energy source contained in water: the triboelectric energy. Following the first report of water-solid triboelectric nanogenerators (TENG), several types of interesting systems have been studied for harvesting the hydropower from rainfall, tides, waves, river flows, etc. TENG devices provide power differently from EMGs; EMGs generate electricity by a Lorenz force-driven electron flow, whereas TENG devices produce power by asymmetric screening of triboelectric charges in the form of displacement current. With this mechanism, power generation is achieved using water contact and separation motions with the TENG devices. In addition, the output performance of a water-solid TENG device is different from that of EMGs in terms of current, voltage, and frequency. The present study comprehensively reviews water-solid TENG devices for hydropower harvesting. This review first addresses the formation of tribo-charges on a solid surface, followed by the configuration, working principles, and parameters affecting the output performance, as well as applications for energy harvesting and self-powered sensors and actuators. Finally, this study provides an outlook of potential opportunities and challenges.
•This study reviews an alternative way for harvesting the hydro energy.•Types of hydro energy sources are comprehensively reviewed.•The reviewed techniques are summarized and suggestion for future study is raised. |
---|---|
AbstractList | Hydropower is an important renewable resource, and is derived from the energy of falling, fast-running, and/or oscillating motions of water, including rainfall, tidal currents, waves, and river flows. Over the centuries, the kinetic energy of hydropower has generally been harvested for either replacing labour directly, or for generating power with electromagnetic generators (EMG). However, it is possible to ignore another important energy source contained in water: the triboelectric energy. Following the first report of water-solid triboelectric nanogenerators (TENG), several types of interesting systems have been studied for harvesting the hydropower from rainfall, tides, waves, river flows, etc. TENG devices provide power differently from EMGs; EMGs generate electricity by a Lorenz force-driven electron flow, whereas TENG devices produce power by asymmetric screening of triboelectric charges in the form of displacement current. With this mechanism, power generation is achieved using water contact and separation motions with the TENG devices. In addition, the output performance of a water-solid TENG device is different from that of EMGs in terms of current, voltage, and frequency. The present study comprehensively reviews water-solid TENG devices for hydropower harvesting. This review first addresses the formation of tribo-charges on a solid surface, followed by the configuration, working principles, and parameters affecting the output performance, as well as applications for energy harvesting and self-powered sensors and actuators. Finally, this study provides an outlook of potential opportunities and challenges.
•This study reviews an alternative way for harvesting the hydro energy.•Types of hydro energy sources are comprehensively reviewed.•The reviewed techniques are summarized and suggestion for future study is raised. |
ArticleNumber | 109366 |
Author | Jiang, Dongyue Dong, Ming Liu, Xiaohua Guo, Fei Chen, Guijun Xu, Minyi Wang, Zhong Lin |
Author_xml | – sequence: 1 givenname: Dongyue surname: Jiang fullname: Jiang, Dongyue email: jiangdy@dlut.edu.cn organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Liaoning Province, 116024, China – sequence: 2 givenname: Minyi surname: Xu fullname: Xu, Minyi organization: Marine Engineering College, Dalian Maritime University, Liaoning Province, 116026, China – sequence: 3 givenname: Ming surname: Dong fullname: Dong, Ming organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Liaoning Province, 116024, China – sequence: 4 givenname: Fei surname: Guo fullname: Guo, Fei organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Liaoning Province, 116024, China – sequence: 5 givenname: Xiaohua surname: Liu fullname: Liu, Xiaohua organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Liaoning Province, 116024, China – sequence: 6 givenname: Guijun surname: Chen fullname: Chen, Guijun organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Liaoning Province, 116024, China – sequence: 7 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin email: zhong.wang@mse.gatech.edu organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China |
BookMark | eNp9kM9KAzEQh4Mo2FZfwFNeYGuy2exuxEsR_0HBi6K3kE0mbco2KUmo9O1NqScPnmaYmW_g903RuQ8eELqhZE4JbW8385ggzmtCRRkI1rZnaEL7TlSkFeS89KxtKsJqeommKW0Iobzv2AR9faoMsUphdAbn6IYAI-jSaOyVDyvwEFUOMd3hhcdqLMdeZbcHvAXlE7Yh4rWKe0jZ-RVeH0wMu_AN8QpdWDUmuP6tM_Tx9Pj-8FIt355fHxbLSjeE5wqIGgarBel62tOOMd0JohjhtSZM66GxRomWNNxwYbXilgvV1Ibz2vbGDprNUH36q2NIKYKVu-i2Kh4kJfLoRm7k0Y08upEnNwXq_0Da5RIr-ByVG_9H708olFB7V7ZJO_AajItFnDTB_Yf_ALaThLQ |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_0c01358 crossref_primary_10_3390_mi15030384 crossref_primary_10_1002_smll_202310023 crossref_primary_10_1515_ntrev_2020_0055 crossref_primary_10_1016_j_egyr_2020_09_009 crossref_primary_10_1016_j_nanoen_2020_104748 crossref_primary_10_1142_S1793292024300068 crossref_primary_10_1002_admt_202301588 crossref_primary_10_1021_acsami_1c20509 crossref_primary_10_1016_j_nanoen_2024_110075 crossref_primary_10_1016_j_energy_2024_132119 crossref_primary_10_1016_j_nanoen_2020_104795 crossref_primary_10_1016_j_nanoen_2021_106218 crossref_primary_10_1016_j_nanoen_2020_105204 crossref_primary_10_1016_j_nanoen_2020_105524 crossref_primary_10_1002_advs_202200822 crossref_primary_10_1016_j_ymssp_2023_110649 crossref_primary_10_1016_j_mtcomm_2023_105541 crossref_primary_10_1016_j_snr_2021_100027 crossref_primary_10_1016_j_nanoen_2021_105846 crossref_primary_10_1002_aisy_202100131 crossref_primary_10_1016_j_jmst_2023_07_055 crossref_primary_10_1016_j_jmst_2024_07_013 crossref_primary_10_1016_j_mtener_2021_100772 crossref_primary_10_1038_s44287_024_00029_6 crossref_primary_10_1016_j_nanoen_2023_108752 crossref_primary_10_1039_D0RA07982K crossref_primary_10_1002_aesr_202200051 crossref_primary_10_3390_app122412882 crossref_primary_10_1016_j_nanoen_2022_107050 crossref_primary_10_1021_acsami_2c16271 crossref_primary_10_1002_admt_202001199 crossref_primary_10_1002_adsu_202400678 crossref_primary_10_3390_mi13081219 crossref_primary_10_1016_j_mser_2023_100763 crossref_primary_10_1002_aenm_202201383 crossref_primary_10_1007_s11426_021_1089_6 crossref_primary_10_1007_s40435_023_01292_5 crossref_primary_10_1016_j_nanoen_2021_106304 crossref_primary_10_1016_j_nanoen_2023_108924 crossref_primary_10_3390_app12052724 crossref_primary_10_1021_acsenergylett_2c01908 crossref_primary_10_1002_er_7824 crossref_primary_10_1021_acsami_4c01168 crossref_primary_10_1002_aenm_202303298 crossref_primary_10_1007_s12274_023_5623_0 crossref_primary_10_1038_s41598_024_60823_y crossref_primary_10_1016_j_apenergy_2023_121509 crossref_primary_10_1016_j_nanoen_2020_104541 crossref_primary_10_1016_j_ymssp_2024_112050 crossref_primary_10_1016_j_nanoen_2024_109980 crossref_primary_10_1016_j_nanoen_2024_110456 crossref_primary_10_1016_j_oceaneng_2023_113700 crossref_primary_10_1088_1361_665X_ac50f5 crossref_primary_10_1038_s41378_022_00362_6 crossref_primary_10_1039_D4NR02973A crossref_primary_10_1016_j_jpowsour_2024_235693 crossref_primary_10_1016_j_mattod_2024_08_017 crossref_primary_10_1088_1361_665X_ad5bcf crossref_primary_10_1016_j_nanoen_2020_104809 crossref_primary_10_1016_j_enconman_2021_114668 crossref_primary_10_1002_aelm_202100277 crossref_primary_10_1016_j_nanoen_2020_104459 crossref_primary_10_1016_j_mtener_2024_101768 crossref_primary_10_1039_D1SE01661J crossref_primary_10_1002_adfm_201908252 crossref_primary_10_1016_j_nanoen_2021_106592 crossref_primary_10_1039_D0TA12073A crossref_primary_10_1016_j_nanoen_2022_107249 crossref_primary_10_1002_admt_202401183 crossref_primary_10_1016_j_device_2024_100566 crossref_primary_10_1016_j_nanoen_2022_108162 crossref_primary_10_1002_admt_202300802 crossref_primary_10_1021_acsanm_4c00022 crossref_primary_10_1039_D4TA08365B crossref_primary_10_1002_adfm_202424446 crossref_primary_10_3390_mi12020158 crossref_primary_10_1021_acsnano_1c02980 crossref_primary_10_1088_2051_672X_adbfaf crossref_primary_10_3390_electronics11101651 crossref_primary_10_1002_adma_202209661 crossref_primary_10_1007_s12274_021_3968_9 crossref_primary_10_3390_jmse10050566 crossref_primary_10_3390_mi15030314 crossref_primary_10_1039_D0NR04326E crossref_primary_10_3390_ma13214980 crossref_primary_10_1016_j_chphi_2025_100813 crossref_primary_10_1109_TEC_2024_3354122 crossref_primary_10_1016_j_apenergy_2021_117394 crossref_primary_10_1002_smll_202408929 crossref_primary_10_3390_s23135888 crossref_primary_10_1016_j_ymssp_2024_112034 |
Cites_doi | 10.1016/j.nanoen.2016.06.051 10.1016/j.jpowsour.2009.06.004 10.1021/nn406565k 10.1016/j.mattod.2019.05.016 10.1016/j.jcis.2015.09.026 10.1016/j.nanoen.2017.12.025 10.1016/j.nanoen.2014.07.006 10.1002/adma.201402428 10.1021/nl072838r 10.1007/s12274-018-1989-9 10.1038/srep09080 10.1039/C7LC01259D 10.1038/srep24092 10.3938/jkps.72.499 10.1016/j.nanoen.2017.04.053 10.1016/j.compscitech.2011.11.019 10.1021/acsnano.5b00534 10.1038/srep15695 10.1088/0964-1726/25/4/045007 10.1021/acsnano.6b06622 10.1016/j.nanoen.2017.04.026 10.1016/j.nanoen.2018.02.042 10.1021/nn4007708 10.1016/j.nanoen.2012.01.004 10.1039/C5SC00473J 10.1007/s10661-016-5454-5 10.1021/acsnano.6b03293 10.1039/C7EE00158D 10.1002/aenm.201501467 10.1016/j.nanoen.2018.06.075 10.1021/nl9040719 10.1126/science.1139366 10.1039/C4TA06168C 10.1039/C7LC01095H 10.1016/j.snb.2016.02.140 10.1016/j.orgel.2016.02.024 10.1039/C8TA03870H 10.1080/00218469508014354 10.1016/j.nanoen.2017.04.048 10.1021/acsnano.7b05626 10.1038/s41598-017-07867-5 10.1016/j.nanoen.2014.07.024 10.1007/s00162-015-0377-2 10.1016/j.nanoen.2014.10.034 10.1039/C4EE00588K 10.1016/j.nanoen.2015.01.039 10.1016/j.nanoen.2013.08.004 10.1021/jz502613s 10.1016/j.nanoen.2019.01.083 10.1038/s41467-019-09464-8 10.1002/aenm.201601048 10.1039/b801516c 10.1021/acsnano.7b08716 10.1038/ncomms1454 10.1002/aenm.201501152 10.1016/j.bios.2017.09.046 10.1016/j.nanoen.2014.11.049 10.1021/la503494c 10.1002/adma.201404291 10.1016/j.nanoen.2015.04.037 10.1016/j.nanoen.2017.08.010 10.1021/acsami.6b06916 10.1002/adma.201400207 10.1021/j100828a035 10.1038/ncomms2485 10.1016/j.rser.2017.01.133 10.1038/nature14543 10.1002/adma.201400373 10.1002/adma.201400021 10.1016/j.ijheatmasstransfer.2015.06.086 10.1016/j.nanoen.2018.12.041 10.1016/j.nanoen.2017.06.035 10.1063/1.1712751 10.1021/nn5012732 10.1002/adma.201803968 10.1016/j.geomorph.2006.03.018 10.1007/s00027-014-0377-0 10.1002/admt.201700229 10.1146/annurev.fluid.38.050304.092144 10.1038/srep02037 10.1002/adma.201402491 10.1021/la502500z 10.1016/j.mattod.2016.12.001 10.1021/acsnano.6b04440 10.1021/nn404614z 10.1021/nn501983s 10.1002/anie.201307249 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rser.2019.109366 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0690 |
ExternalDocumentID | 10_1016_j_rser_2019_109366 S136403211930574X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SSZ T5K Y6R ZCA ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c405t-e0abbfc9078181733c790a3052c03ccb4fda96045d59fca5f59a42d552f8dfbc3 |
IEDL.DBID | .~1 |
ISSN | 1364-0321 |
IngestDate | Thu Apr 24 23:01:34 EDT 2025 Tue Jul 01 03:18:02 EDT 2025 Fri Feb 23 02:49:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydropower Triboelectric nanogenerators Wave energy Energy harvesting Self-powered sensors Water-solid interface |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-e0abbfc9078181733c790a3052c03ccb4fda96045d59fca5f59a42d552f8dfbc3 |
ParticipantIDs | crossref_primary_10_1016_j_rser_2019_109366 crossref_citationtrail_10_1016_j_rser_2019_109366 elsevier_sciencedirect_doi_10_1016_j_rser_2019_109366 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Renewable & sustainable energy reviews |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kwon, Park, Kim, Yang, Lee, Han (bib15) 2014; 7 Xi, Wang, Zi, Li, Han, Cao (bib30) 2017; 38 Zhang, Yang, Su, Chen, Hu, Wu (bib75) 2013; 2 Cheng, Lin, Du, Wang (bib17) 2014; 8 Wu, Su, Bai, Zhu, Zhang, Li (bib56) 2016; 2016 Wang, Lin, Wang (bib94) 2015; 11 Yeong, Burton, Loth, Bayer (bib48) 2014; 30 Jin, Sui, Yang (bib59) 2015; 90 Krupenkin, Taylor (bib35) 2011; 2 Shen, Yu, Chen (bib49) 2015; 30 Zhang, Tang, Han, Fan, Wang (bib8) 2014; 26 Zhong (bib72) 2013; 7 Jawahar, Michael (bib2) 2017; 72 Abdelgawad, Freire, Yang, Wheeler (bib86) 2008; 8 Choi, Kim, Yoo, Cha, La, Dong (bib50) 2017; 36 Cho, Lee, Hong, Pak, Bo, Lee (bib68) 2018; 6 Nguyen, Zhu, Yang (bib33) 2015; 14 Su, Wen, Zhu, Yang, Chen, Bai (bib27) 2014; 9 Wang (bib10) 2017; 20 Fan, Tian, Wang (bib12) 2012; 1 Khaldi, Maziz, Alici, Spinks, Jager (bib82) 2016; 230 Xu, Wang, Zhang, Ding, Kien, Wang (bib76) 2019; 57 Zhang, Yu, Ma, Ouyang, Zou, Zhang (bib78) 2019 JCM (bib22) 1971; 23 Yun, Kim, Ko, Murillo, Jung (bib44) 2017; 36 Carre, Shanahan (bib87) 2006; 49 Li, Yin, Wang, Zhou, Wang, Luo (bib93) 2017; 11 Liu, Huang, Oh, Zhang, Ma, Yuen (bib40) 2012; 72 Ahmed, Hassan, Ibn-Mohammed, Mostafa, Reaney, Koh (bib97) 2017; 10 Wang, Niu, Yin, Yi, You, Wang (bib32) 2015; 5 Xu, Wang, Zou, Zhang, Zhang, Zi (bib21) 2018; 30 Liu, Jing, Jing, Xiang, Che, Wang (bib62) 2017; 7 Park, Kim, Hwang, Shin (bib71) 2018; 72 Zheng, Lin, Cheng, Wu, Wen, Lee (bib66) 2014; 9 Young, Harwood, Ward (bib95) 2018 Sun, Huang, Soh (bib89) 2015; 6 Chen, Tang, He, Jiang, Xu, Zhu (bib54) 2018; 3 Helseth, Guo (bib36) 2015; 31 Liang, Yan, Gu, Zhang, Liang, Lu (bib16) 2015; 5 Lin, Cheng, Wu, Pradel, Wang (bib37) 2014; 8 Li, Liu, Huang, Liu, Hu, Shao (bib85) 2016; 6 Lin, Gang, Li, Yang, Wen, Zhong (bib26) 2015; 15 Wang, Wen, Guo, Wu, He, Lin (bib90) 2016; 10 Chang, Tran, Wang, Fuh, Lin (bib7) 2010; 10 Chen, Liu, Li, Dong, Jiang (bib29) 2018; 18 Choi, Lee, Im, Kang, Lim, Dong (bib45) 2013; 3 Kwon, Kim, Park, Yang, Yoo, Han (bib64) 2016; 8 Lin, Cheng, Lin, Lee, Wang (bib57) 2013; 52 Chen, Chen, Xu, Zhao, Wei, Chen (bib4) 2007; 85 Zhao, Kuang, Wang, Zhu (bib51) 2018; 12 Qiao, Feng, Liu, Wang, Zhang, Zhu (bib55) 2016; 188 Zheng, Cheng, Chen, Lin, Wang, Liu (bib69) 2015; 5 Leclear, Leclear, Abhijeet, Park, Choi (bib61) 2016; 461 Yang, Park, Kwon, Kim (bib38) 2015; 5 Tavakoli, Rui, Lourenço, Tong, Majidi (bib80) 2017 Kim, Chung, Kim, Moon, Lee, Cho (bib70) 2016; 27 Han, Yu, Qiu, Chen, Su, Shi (bib74) 2015; 3 Zhu, Zhou, Bai, Meng, Jing, Chen (bib13) 2014; 26 Jiang, Lee, Bae, Park (bib88) 2018 Bai, Zhu, Lin, Jing, Chen, Zhang (bib9) 2013; 7 Jeon, Kim, Yoon, Yoon, Choi (bib65) 2015; 12 Bardeen (bib39) 1940; 11 Wang, Wang (bib20) 2019 Zarfl, Lumsdon, Berlekamp, Tydecks, Tockner (bib5) 2015; 77 Park, Yang, Kwon, Kim (bib43) 2015; 6 Altintas, Akgun, Kokturk, Uludag (bib96) 2018; 100 Helseth, Guo (bib28) 2016; 25 Liu, Wang, Wang, Liu, Chen, Pu (bib47) 2019; 10 Wen, Guo, Zi, Yeh, Wang, Deng (bib91) 2016; 10 Daniela, Tolley (bib79) 2015; 521 Jiang, Guo, Xu, Cai, Cong, Jia (bib52) 2019; 58 Yang, Chan, Wang, Daoud (bib63) 2018; 44 Zhang, Tang, Pang, Han, Wang (bib84) 2015; 27 Zhang, Zheng, Wang, Feng (bib73) 2017; 40 Owen, Miller, Milner, Cogan (bib58) 1961; 65 Wang, Wu, Pan, Gao, Zhang, Yang (bib25) 2019; 13 Zervos, Lins, Renewables (bib3) 2016 Chen, Yang, Li, Fan, Zi, Jing (bib92) 2015; 9 Wang, Song, Liu, Wang (bib6) 2007; 316 Xie, Wang, Niu, Lin, Jing, Yang (bib14) 2014; 26 Tang, Chen, Wang (bib19) 2019 Feng, Liu, Guo, Tang, Pu, Chen (bib31) 2018; 47 Wang, Linjie Zhi, Müllen (bib41) 2008; 8 Pan, Wang, Wang, Gao, Wang, Zhang (bib53) 2018; 11 Chen, Jiang, Wang (bib83) 2017; 110 Moon, Jeong, Lee, Pak (bib34) 2013; 4 Chen, Guo, Zheng, Huang, Liu, Hu (bib77) 2016; 10 Lin, Cheng, Lee, Pradel, Wang (bib24) 2014; 26 Yarin (bib60) 2006; 38 Ö (bib1) 2008 Pu, Song, Liu, Sun, Du, Jiang (bib67) 2016; 6 Wang, Jiang, Xu (bib23) 2017; 39 Yoon, Ryu, Kim (bib11) 2018; 51 Wang, Xie, Niu, Lin, Liu, Zhou (bib46) 2014; 26 Xin, Hui, Zhu, Kai, Wang, Kang (bib42) 2009; 194 Zhu, Su, Peng, Chen, Jing, Yang (bib18) 2014; 8 Zhang, Yu, Li, Li, Isikgor, Du (bib81) 2016; 32 Choi (10.1016/j.rser.2019.109366_bib45) 2013; 3 Abdelgawad (10.1016/j.rser.2019.109366_bib86) 2008; 8 Chen (10.1016/j.rser.2019.109366_bib92) 2015; 9 Ahmed (10.1016/j.rser.2019.109366_bib97) 2017; 10 Owen (10.1016/j.rser.2019.109366_bib58) 1961; 65 Daniela (10.1016/j.rser.2019.109366_bib79) 2015; 521 Su (10.1016/j.rser.2019.109366_bib27) 2014; 9 Cho (10.1016/j.rser.2019.109366_bib68) 2018; 6 Zhang (10.1016/j.rser.2019.109366_bib73) 2017; 40 Bardeen (10.1016/j.rser.2019.109366_bib39) 1940; 11 Wang (10.1016/j.rser.2019.109366_bib32) 2015; 5 Zarfl (10.1016/j.rser.2019.109366_bib5) 2015; 77 Xu (10.1016/j.rser.2019.109366_bib76) 2019; 57 Zhang (10.1016/j.rser.2019.109366_bib8) 2014; 26 Wang (10.1016/j.rser.2019.109366_bib23) 2017; 39 Jiang (10.1016/j.rser.2019.109366_bib88) 2018 Liu (10.1016/j.rser.2019.109366_bib47) 2019; 10 Fan (10.1016/j.rser.2019.109366_bib12) 2012; 1 Yarin (10.1016/j.rser.2019.109366_bib60) 2006; 38 Zhao (10.1016/j.rser.2019.109366_bib51) 2018; 12 Zhang (10.1016/j.rser.2019.109366_bib78) 2019 Park (10.1016/j.rser.2019.109366_bib71) 2018; 72 Sun (10.1016/j.rser.2019.109366_bib89) 2015; 6 Nguyen (10.1016/j.rser.2019.109366_bib33) 2015; 14 Kim (10.1016/j.rser.2019.109366_bib70) 2016; 27 Chen (10.1016/j.rser.2019.109366_bib77) 2016; 10 Yeong (10.1016/j.rser.2019.109366_bib48) 2014; 30 Zhang (10.1016/j.rser.2019.109366_bib75) 2013; 2 Lin (10.1016/j.rser.2019.109366_bib57) 2013; 52 Lin (10.1016/j.rser.2019.109366_bib24) 2014; 26 Chen (10.1016/j.rser.2019.109366_bib54) 2018; 3 Pan (10.1016/j.rser.2019.109366_bib53) 2018; 11 Chen (10.1016/j.rser.2019.109366_bib29) 2018; 18 Young (10.1016/j.rser.2019.109366_bib95) 2018 Wang (10.1016/j.rser.2019.109366_bib20) 2019 Zhong (10.1016/j.rser.2019.109366_bib72) 2013; 7 Wang (10.1016/j.rser.2019.109366_bib46) 2014; 26 Zheng (10.1016/j.rser.2019.109366_bib69) 2015; 5 Liu (10.1016/j.rser.2019.109366_bib40) 2012; 72 Yang (10.1016/j.rser.2019.109366_bib63) 2018; 44 Moon (10.1016/j.rser.2019.109366_bib34) 2013; 4 Chang (10.1016/j.rser.2019.109366_bib7) 2010; 10 Xin (10.1016/j.rser.2019.109366_bib42) 2009; 194 Krupenkin (10.1016/j.rser.2019.109366_bib35) 2011; 2 Carre (10.1016/j.rser.2019.109366_bib87) 2006; 49 Jawahar (10.1016/j.rser.2019.109366_bib2) 2017; 72 Wang (10.1016/j.rser.2019.109366_bib90) 2016; 10 Wang (10.1016/j.rser.2019.109366_bib25) 2019; 13 Feng (10.1016/j.rser.2019.109366_bib31) 2018; 47 Yang (10.1016/j.rser.2019.109366_bib38) 2015; 5 Jiang (10.1016/j.rser.2019.109366_bib52) 2019; 58 Zhu (10.1016/j.rser.2019.109366_bib18) 2014; 8 Xu (10.1016/j.rser.2019.109366_bib21) 2018; 30 Lin (10.1016/j.rser.2019.109366_bib26) 2015; 15 Pu (10.1016/j.rser.2019.109366_bib67) 2016; 6 Helseth (10.1016/j.rser.2019.109366_bib36) 2015; 31 Zervos (10.1016/j.rser.2019.109366_bib3) 2016 Kwon (10.1016/j.rser.2019.109366_bib15) 2014; 7 Wen (10.1016/j.rser.2019.109366_bib91) 2016; 10 Zhang (10.1016/j.rser.2019.109366_bib81) 2016; 32 Shen (10.1016/j.rser.2019.109366_bib49) 2015; 30 Choi (10.1016/j.rser.2019.109366_bib50) 2017; 36 Tang (10.1016/j.rser.2019.109366_bib19) 2019 Jeon (10.1016/j.rser.2019.109366_bib65) 2015; 12 Han (10.1016/j.rser.2019.109366_bib74) 2015; 3 Yoon (10.1016/j.rser.2019.109366_bib11) 2018; 51 Liang (10.1016/j.rser.2019.109366_bib16) 2015; 5 Kwon (10.1016/j.rser.2019.109366_bib64) 2016; 8 Khaldi (10.1016/j.rser.2019.109366_bib82) 2016; 230 Wang (10.1016/j.rser.2019.109366_bib10) 2017; 20 Cheng (10.1016/j.rser.2019.109366_bib17) 2014; 8 Li (10.1016/j.rser.2019.109366_bib93) 2017; 11 Ö (10.1016/j.rser.2019.109366_bib1) 2008 Xi (10.1016/j.rser.2019.109366_bib30) 2017; 38 Li (10.1016/j.rser.2019.109366_bib85) 2016; 6 Wang (10.1016/j.rser.2019.109366_bib41) 2008; 8 Park (10.1016/j.rser.2019.109366_bib43) 2015; 6 Xie (10.1016/j.rser.2019.109366_bib14) 2014; 26 Yun (10.1016/j.rser.2019.109366_bib44) 2017; 36 Wang (10.1016/j.rser.2019.109366_bib6) 2007; 316 Qiao (10.1016/j.rser.2019.109366_bib55) 2016; 188 JCM (10.1016/j.rser.2019.109366_bib22) 1971; 23 Leclear (10.1016/j.rser.2019.109366_bib61) 2016; 461 Chen (10.1016/j.rser.2019.109366_bib83) 2017; 110 Zhang (10.1016/j.rser.2019.109366_bib84) 2015; 27 Zhu (10.1016/j.rser.2019.109366_bib13) 2014; 26 Zheng (10.1016/j.rser.2019.109366_bib66) 2014; 9 Lin (10.1016/j.rser.2019.109366_bib37) 2014; 8 Jin (10.1016/j.rser.2019.109366_bib59) 2015; 90 Chen (10.1016/j.rser.2019.109366_bib4) 2007; 85 Altintas (10.1016/j.rser.2019.109366_bib96) 2018; 100 Wu (10.1016/j.rser.2019.109366_bib56) 2016; 2016 Helseth (10.1016/j.rser.2019.109366_bib28) 2016; 25 Liu (10.1016/j.rser.2019.109366_bib62) 2017; 7 Tavakoli (10.1016/j.rser.2019.109366_bib80) 2017 Wang (10.1016/j.rser.2019.109366_bib94) 2015; 11 Bai (10.1016/j.rser.2019.109366_bib9) 2013; 7 |
References_xml | – volume: 100 start-page: 541 year: 2018 end-page: 548 ident: bib96 article-title: A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection publication-title: Biosens Bioelectron – volume: 5 start-page: 9080 year: 2015 ident: bib16 article-title: Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating publication-title: Sci Rep – volume: 10 start-page: 1426 year: 2019 ident: bib47 article-title: Integrated charge excitation triboelectric nanogenerator publication-title: Nat Commun – volume: 7 start-page: 9533 year: 2013 ident: bib72 article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors publication-title: ACS Nano – volume: 12 start-page: 636 year: 2015 end-page: 645 ident: bib65 article-title: Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight publication-title: Nano Energy – volume: 26 start-page: 3788 year: 2014 end-page: 3796 ident: bib13 article-title: A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification publication-title: Adv Mater – volume: 26 start-page: 6599 year: 2014 end-page: 6607 ident: bib14 article-title: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency publication-title: Adv Maters – volume: 11 start-page: 436 year: 2015 end-page: 462 ident: bib94 article-title: Triboelectric nanogenerators as self-powered active sensors publication-title: Nano Energy – volume: 36 start-page: 250 year: 2017 end-page: 259 ident: bib50 article-title: Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf publication-title: Nano Energy – volume: 49 start-page: 177 year: 2006 end-page: 185 ident: bib87 article-title: Drop motion on an inclined plane and evaluation of hydrophobia treatments to glass publication-title: J Adhes – year: 2008 ident: bib1 article-title: Sources of energy and exploitation of power. The Oxford handbook of engineering and technology in the classical world – volume: 77 start-page: 161 year: 2015 end-page: 170 ident: bib5 article-title: A global boom in hydropower dam construction publication-title: Aquat Sci – volume: 316 start-page: 102 year: 2007 end-page: 105 ident: bib6 article-title: Direct-current nanogenerator driven by ultrasonic waves publication-title: Science – volume: 110 year: 2017 ident: bib83 article-title: Modeling a dielectric elastomer as driven by triboelectric nanogenerator publication-title: Appl Phys Lett – volume: 11 start-page: 10439 year: 2017 end-page: 10445 ident: bib93 article-title: Self-powered electrospinning system driven by a triboelectric nanogenerator publication-title: ACS Nano – volume: 8 start-page: 6031 year: 2014 ident: bib18 article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface publication-title: ACS Nano – volume: 6 start-page: 3347 year: 2015 end-page: 3353 ident: bib89 article-title: Using the gravitational energy of water to generate power by separation of charge at interfaces publication-title: Chem Sci – volume: 10 start-page: 6526 year: 2016 end-page: 6534 ident: bib91 article-title: Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator publication-title: ACS Nano – volume: 27 start-page: 719 year: 2015 end-page: 726 ident: bib84 article-title: Active micro‐actuators for optical modulation based on a planar sliding triboelectric nanogenerator publication-title: Adv Mater – volume: 2016 year: 2016 ident: bib56 article-title: A self-powered triboelectric nanosensor for PH detection publication-title: J Nanom – volume: 521 start-page: 467 year: 2015 end-page: 475 ident: bib79 article-title: Design, fabrication and control of soft robots publication-title: Nature – volume: 9 start-page: 3324 year: 2015 end-page: 3331 ident: bib92 article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy publication-title: ACS Nano – volume: 7 start-page: 3713 year: 2013 end-page: 3719 ident: bib9 article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions publication-title: ACS Nano – volume: 5 year: 2015 ident: bib32 article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy publication-title: Adv Energy Mater – volume: 8 start-page: 1932 year: 2014 end-page: 1939 ident: bib17 article-title: Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator publication-title: ACS Nano – volume: 5 start-page: 15695 year: 2015 ident: bib38 article-title: Fluidic active transducer for electricity generation publication-title: Sci Rep – volume: 14 start-page: 49 year: 2015 end-page: 61 ident: bib33 article-title: Environmental effects on nanogenerators publication-title: Nano Energy – volume: 39 start-page: 9 year: 2017 end-page: 23 ident: bib23 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy – volume: 85 start-page: 155 year: 2007 end-page: 165 ident: bib4 article-title: Acoustic Doppler current profiler surveys along the Yangtze River publication-title: Geomorphology – volume: 23 start-page: 13 year: 1971 ident: bib22 article-title: On physical lines of force publication-title: Philos Mag – volume: 10 start-page: 726 year: 2010 end-page: 731 ident: bib7 article-title: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency publication-title: Nano Lett – volume: 38 start-page: 101 year: 2017 end-page: 108 ident: bib30 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano Energy – volume: 90 start-page: 439 year: 2015 end-page: 453 ident: bib59 article-title: The impact, freezing, and melting processes of a water droplet on an inclined cold surface publication-title: Int J Heat Mass Transf – volume: 3 year: 2018 ident: bib54 article-title: Ultrafine capillary-tube triboelectric nanogenerator as active sensor for microliquid biological and chemical sensing publication-title: Adv Mater Tech – volume: 2 start-page: 448 year: 2011 ident: bib35 article-title: Reverse electrowetting as a new approach to high-power energy harvesting publication-title: Nat Commun – volume: 10 start-page: 8104 year: 2016 end-page: 8112 ident: bib77 article-title: Self-powered triboelectric micro liquid/gas flow sensor for microfluidics publication-title: ACS Nano – volume: 6 year: 2015 ident: bib43 article-title: Influences of surface and ionic properties on electricity generation of an active transducer driven by water motion publication-title: J Phys Chem Lett – volume: 65 start-page: 2065 year: 1961 end-page: 2070 ident: bib58 article-title: The dielectric constant of water as a function of temperature and pressure 1,2 publication-title: J Phys Chem – volume: 8 start-page: 323 year: 2008 ident: bib41 article-title: Transparent, conductive graphene electrodes for dye-sensitized solar cells publication-title: Nano Lett – start-page: 105981N year: 2018 ident: bib95 article-title: Sensing and control of flexible hydrodynamic lifting bodies in multiphase flows. Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2018 publication-title: Int Soc Opt Phot – volume: 7 start-page: 7552 year: 2017 ident: bib62 article-title: Long-range spontaneous droplet self-propulsion on wettability gradient surfaces publication-title: Sci Rep – volume: 72 start-page: 882 year: 2017 end-page: 887 ident: bib2 article-title: A review on turbines for micro hydro power plant publication-title: Renew Sustain Energy Rev – volume: 7 start-page: 3279 year: 2014 end-page: 3283 ident: bib15 article-title: An effective energy harvesting method from a natural water motion active transducer publication-title: Energy Environ Sci – volume: 72 start-page: 121 year: 2012 end-page: 144 ident: bib40 article-title: Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review publication-title: Compos Sci Technol – volume: 8 start-page: 24579 year: 2016 end-page: 24584 ident: bib64 article-title: Fabric active transducer stimulated by water motion for self-powered wearable device publication-title: ACS Appl Mater Interfaces – volume: 31 start-page: 3269 year: 2015 end-page: 3276 ident: bib36 article-title: Contact electrification and energy harvesting using periodically contacted and squeezed water droplets publication-title: Langm the Acs Journal of Surfaces & Colloids – volume: 11 start-page: 88 year: 1940 end-page: 111 ident: bib39 article-title: Electrical conductivity of metals publication-title: J Appl Phys – volume: 32 start-page: 149 year: 2016 end-page: 156 ident: bib81 article-title: Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate films with low conductivity and low acidity through a treatment of their solutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells publication-title: Org Electron – volume: 30 year: 2018 ident: bib21 article-title: Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification publication-title: Adv Mater – volume: 58 start-page: 842 year: 2019 end-page: 851 ident: bib52 article-title: Conformal fluorine coated carbon paper for an energy harvesting water wheel publication-title: Nano Energy – volume: 9 start-page: 291 year: 2014 end-page: 300 ident: bib66 article-title: Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy publication-title: Nano Energy – volume: 27 start-page: 340 year: 2016 end-page: 351 ident: bib70 article-title: Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia publication-title: Nano Energy – volume: 10 start-page: 11369 year: 2016 end-page: 11376 ident: bib90 article-title: Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator publication-title: ACS Nano – volume: 10 start-page: 653 year: 2017 end-page: 671 ident: bib97 article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators publication-title: Energy Environ Sci – volume: 72 start-page: 499 year: 2018 end-page: 503 ident: bib71 article-title: Water-through triboelectric nanogenerator based on Ti-mesh for harvesting liquid flow publication-title: J Korean Phys Soc – volume: 57 start-page: 574 year: 2019 end-page: 580 ident: bib76 article-title: A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment publication-title: Nano Energy – year: 2017 ident: bib80 article-title: Soft bionics hands with a sense of touch through an electronic skin. Soft robotics: trends, applications and challenges – year: 2019 ident: bib20 article-title: On the origin of contact-electrification publication-title: Mater Today – volume: 30 start-page: 12027 year: 2014 end-page: 12038 ident: bib48 article-title: Drop impact and rebound dynamics on an inclined superhydrophobic surface publication-title: Langmuir : the ACS journal of surfaces and colloids – volume: 8 start-page: 6440 year: 2014 end-page: 6448 ident: bib37 article-title: Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor publication-title: ACS Nano – volume: 40 year: 2017 ident: bib73 article-title: Solid-liquid triboelectrification in smart U-tube for multifunctional sensors publication-title: Nano Energy – volume: 230 start-page: 818 year: 2016 end-page: 824 ident: bib82 article-title: Bottom-up microfabrication process for individually controlled conjugated polymer actuators publication-title: Sens Actuators B Chem – volume: 8 start-page: 672 year: 2008 ident: bib86 article-title: All-terrain droplet actuation publication-title: Lab Chip – volume: 44 start-page: 388 year: 2018 end-page: 398 ident: bib63 article-title: Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range publication-title: Nano Energy – start-page: 532 year: 2018 end-page: 539 ident: bib88 article-title: Smartphone integrated optoelectrowetting (SiOEW) for on-chip sample processing and microscopic detection of water quality publication-title: Lab Chip – volume: 6 year: 2016 ident: bib67 article-title: Wearable power‐textiles by integrating fabric triboelectric nanogenerators and fiber‐shaped dye‐sensitized solar cells publication-title: Adv Energy Mater – year: 2019 ident: bib78 article-title: Self‐powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting publication-title: Adv Funct Mater – volume: 30 start-page: 237 year: 2015 end-page: 252 ident: bib49 article-title: Spreading dynamics of droplet on an inclined surface publication-title: Theor Comput Fluid Dyn – volume: 26 start-page: 4690 year: 2014 end-page: 4696 ident: bib24 article-title: Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process publication-title: Adv Mater – volume: 38 start-page: 159 year: 2006 end-page: 192 ident: bib60 article-title: Drop impact dynamics: splashing, spreading, receding, bouncing publication-title: Annu Rev Fluid Mech – volume: 9 start-page: 186 year: 2014 end-page: 195 ident: bib27 article-title: Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter publication-title: Nano Energy – year: 2016 ident: bib3 article-title: 2016 global status report – volume: 4 start-page: 1487 year: 2013 ident: bib34 article-title: Electrical power generation by mechanically modulating electrical double layers publication-title: Nat Commun – volume: 26 start-page: 3580 year: 2014 end-page: 3591 ident: bib8 article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy publication-title: Adv Mater – volume: 52 start-page: 12545 year: 2013 end-page: 12549 ident: bib57 article-title: Water-solid surface contact electrification and its use for harvesting liquid-wave energy publication-title: Angew Chem Int Ed – volume: 6 start-page: 24092 year: 2016 ident: bib85 article-title: Nanoporous-gold-based hybrid cantilevered actuator dealloyed and driven by A modified rotary triboelectric nanogenerator publication-title: Sci Rep – volume: 12 start-page: 4280 year: 2018 ident: bib51 article-title: Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy publication-title: ACS Nano – volume: 5 year: 2015 ident: bib69 article-title: A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock publication-title: Adv Energy Mater – volume: 18 start-page: 1026 year: 2018 ident: bib29 article-title: A droplet energy harvesting and actuation system for self-powered digital microfluidics publication-title: Lab Chip – volume: 3 start-page: 2037 year: 2013 ident: bib45 article-title: Spontaneous electrical charging of droplets by conventional pipetting publication-title: Sci Rep – volume: 47 start-page: 217 year: 2018 end-page: 223 ident: bib31 article-title: Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting publication-title: Nano Energy – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: bib12 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 26 start-page: 6720 year: 2014 end-page: 6728 ident: bib46 article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding publication-title: Adv Mater – volume: 6 year: 2018 ident: bib68 article-title: Sustainable hybrid energy harvester based on air stable quantum dot solar cells and triboelectric nanogenerator publication-title: J Mater Chem A – volume: 461 start-page: 114 year: 2016 end-page: 121 ident: bib61 article-title: Drop impact on inclined superhydrophobic surfaces publication-title: J Colloid Interface Sci – volume: 20 year: 2017 ident: bib10 article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater Today – volume: 2 start-page: 693 year: 2013 end-page: 701 ident: bib75 article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol publication-title: Nano Energy – volume: 15 start-page: 256 year: 2015 end-page: 265 ident: bib26 article-title: A multi-layered interdigitative-electrodes-based triboelectric nanogenerator for harvesting hydropower publication-title: Nano Energy – year: 2019 ident: bib19 article-title: Recent progress in power generation from water/liquid droplet interaction with solid surfaces publication-title: Adv Funct Mater – volume: 13 start-page: 2587 year: 2019 end-page: 2598 ident: bib25 article-title: Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis publication-title: ACS Nano – volume: 36 start-page: 233 year: 2017 end-page: 240 ident: bib44 article-title: Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water publication-title: Nano Energy – volume: 3 start-page: 7382 year: 2015 end-page: 7388 ident: bib74 article-title: Electrification based devices with encapsulated liquid for energy harvesting, multifunctional sensing, and self-powered visualized detection publication-title: J Mater Chem A – volume: 11 start-page: 4062 year: 2018 end-page: 4073 ident: bib53 article-title: Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy publication-title: Nano Res – volume: 25 year: 2016 ident: bib28 article-title: Hydrophobic polymer covered by a grating electrode for converting the mechanical energy of water droplets into electrical energy publication-title: Smart Mater Struct – volume: 194 start-page: 1208 year: 2009 end-page: 1212 ident: bib42 article-title: Carbon nanosheets as the electrode material in supercapacitors publication-title: J Power Sources – volume: 188 start-page: 443 year: 2016 ident: bib55 article-title: Surface water pH variations and trends in China from 2004 to 2014 publication-title: Environ Monit Assess – volume: 51 start-page: 270 year: 2018 end-page: 285 ident: bib11 article-title: Sustainable powering triboelectric nanogenerators: approaches and the path towards efficient use publication-title: Nano Energy – volume: 27 start-page: 340 year: 2016 ident: 10.1016/j.rser.2019.109366_bib70 article-title: Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.051 – volume: 194 start-page: 1208 year: 2009 ident: 10.1016/j.rser.2019.109366_bib42 article-title: Carbon nanosheets as the electrode material in supercapacitors publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.06.004 – volume: 8 start-page: 1932 year: 2014 ident: 10.1016/j.rser.2019.109366_bib17 article-title: Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/nn406565k – year: 2019 ident: 10.1016/j.rser.2019.109366_bib20 article-title: On the origin of contact-electrification publication-title: Mater Today doi: 10.1016/j.mattod.2019.05.016 – volume: 461 start-page: 114 year: 2016 ident: 10.1016/j.rser.2019.109366_bib61 article-title: Drop impact on inclined superhydrophobic surfaces publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2015.09.026 – volume: 44 start-page: 388 year: 2018 ident: 10.1016/j.rser.2019.109366_bib63 article-title: Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.025 – volume: 9 start-page: 186 year: 2014 ident: 10.1016/j.rser.2019.109366_bib27 article-title: Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.07.006 – volume: 26 start-page: 6599 year: 2014 ident: 10.1016/j.rser.2019.109366_bib14 article-title: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency publication-title: Adv Maters doi: 10.1002/adma.201402428 – volume: 8 start-page: 323 year: 2008 ident: 10.1016/j.rser.2019.109366_bib41 article-title: Transparent, conductive graphene electrodes for dye-sensitized solar cells publication-title: Nano Lett doi: 10.1021/nl072838r – volume: 11 start-page: 4062 year: 2018 ident: 10.1016/j.rser.2019.109366_bib53 article-title: Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy publication-title: Nano Res doi: 10.1007/s12274-018-1989-9 – volume: 5 start-page: 9080 year: 2015 ident: 10.1016/j.rser.2019.109366_bib16 article-title: Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating publication-title: Sci Rep doi: 10.1038/srep09080 – volume: 18 start-page: 1026 year: 2018 ident: 10.1016/j.rser.2019.109366_bib29 article-title: A droplet energy harvesting and actuation system for self-powered digital microfluidics publication-title: Lab Chip doi: 10.1039/C7LC01259D – volume: 6 start-page: 24092 year: 2016 ident: 10.1016/j.rser.2019.109366_bib85 article-title: Nanoporous-gold-based hybrid cantilevered actuator dealloyed and driven by A modified rotary triboelectric nanogenerator publication-title: Sci Rep doi: 10.1038/srep24092 – volume: 72 start-page: 499 year: 2018 ident: 10.1016/j.rser.2019.109366_bib71 article-title: Water-through triboelectric nanogenerator based on Ti-mesh for harvesting liquid flow publication-title: J Korean Phys Soc doi: 10.3938/jkps.72.499 – volume: 38 start-page: 101 year: 2017 ident: 10.1016/j.rser.2019.109366_bib30 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.053 – volume: 72 start-page: 121 year: 2012 ident: 10.1016/j.rser.2019.109366_bib40 article-title: Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2011.11.019 – volume: 23 start-page: 13 year: 1971 ident: 10.1016/j.rser.2019.109366_bib22 article-title: On physical lines of force publication-title: Philos Mag – year: 2016 ident: 10.1016/j.rser.2019.109366_bib3 – volume: 9 start-page: 3324 year: 2015 ident: 10.1016/j.rser.2019.109366_bib92 article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy publication-title: ACS Nano doi: 10.1021/acsnano.5b00534 – volume: 5 start-page: 15695 year: 2015 ident: 10.1016/j.rser.2019.109366_bib38 article-title: Fluidic active transducer for electricity generation publication-title: Sci Rep doi: 10.1038/srep15695 – volume: 25 year: 2016 ident: 10.1016/j.rser.2019.109366_bib28 article-title: Hydrophobic polymer covered by a grating electrode for converting the mechanical energy of water droplets into electrical energy publication-title: Smart Mater Struct doi: 10.1088/0964-1726/25/4/045007 – volume: 10 start-page: 11369 year: 2016 ident: 10.1016/j.rser.2019.109366_bib90 article-title: Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator publication-title: ACS Nano doi: 10.1021/acsnano.6b06622 – volume: 36 start-page: 250 year: 2017 ident: 10.1016/j.rser.2019.109366_bib50 article-title: Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.026 – volume: 47 start-page: 217 year: 2018 ident: 10.1016/j.rser.2019.109366_bib31 article-title: Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.042 – year: 2019 ident: 10.1016/j.rser.2019.109366_bib78 article-title: Self‐powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting publication-title: Adv Funct Mater – volume: 7 start-page: 3713 year: 2013 ident: 10.1016/j.rser.2019.109366_bib9 article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions publication-title: ACS Nano doi: 10.1021/nn4007708 – volume: 1 start-page: 328 year: 2012 ident: 10.1016/j.rser.2019.109366_bib12 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 6 start-page: 3347 year: 2015 ident: 10.1016/j.rser.2019.109366_bib89 article-title: Using the gravitational energy of water to generate power by separation of charge at interfaces publication-title: Chem Sci doi: 10.1039/C5SC00473J – volume: 188 start-page: 443 year: 2016 ident: 10.1016/j.rser.2019.109366_bib55 article-title: Surface water pH variations and trends in China from 2004 to 2014 publication-title: Environ Monit Assess doi: 10.1007/s10661-016-5454-5 – volume: 10 start-page: 6526 year: 2016 ident: 10.1016/j.rser.2019.109366_bib91 article-title: Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b03293 – volume: 10 start-page: 653 year: 2017 ident: 10.1016/j.rser.2019.109366_bib97 article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators publication-title: Energy Environ Sci doi: 10.1039/C7EE00158D – volume: 5 year: 2015 ident: 10.1016/j.rser.2019.109366_bib32 article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy publication-title: Adv Energy Mater doi: 10.1002/aenm.201501467 – volume: 51 start-page: 270 year: 2018 ident: 10.1016/j.rser.2019.109366_bib11 article-title: Sustainable powering triboelectric nanogenerators: approaches and the path towards efficient use publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.075 – volume: 10 start-page: 726 year: 2010 ident: 10.1016/j.rser.2019.109366_bib7 article-title: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency publication-title: Nano Lett doi: 10.1021/nl9040719 – volume: 316 start-page: 102 year: 2007 ident: 10.1016/j.rser.2019.109366_bib6 article-title: Direct-current nanogenerator driven by ultrasonic waves publication-title: Science doi: 10.1126/science.1139366 – volume: 3 start-page: 7382 year: 2015 ident: 10.1016/j.rser.2019.109366_bib74 article-title: Electrification based devices with encapsulated liquid for energy harvesting, multifunctional sensing, and self-powered visualized detection publication-title: J Mater Chem A doi: 10.1039/C4TA06168C – year: 2017 ident: 10.1016/j.rser.2019.109366_bib80 – start-page: 532 issue: 18 year: 2018 ident: 10.1016/j.rser.2019.109366_bib88 article-title: Smartphone integrated optoelectrowetting (SiOEW) for on-chip sample processing and microscopic detection of water quality publication-title: Lab Chip doi: 10.1039/C7LC01095H – volume: 230 start-page: 818 year: 2016 ident: 10.1016/j.rser.2019.109366_bib82 article-title: Bottom-up microfabrication process for individually controlled conjugated polymer actuators publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2016.02.140 – volume: 32 start-page: 149 year: 2016 ident: 10.1016/j.rser.2019.109366_bib81 publication-title: Org Electron doi: 10.1016/j.orgel.2016.02.024 – volume: 6 year: 2018 ident: 10.1016/j.rser.2019.109366_bib68 article-title: Sustainable hybrid energy harvester based on air stable quantum dot solar cells and triboelectric nanogenerator publication-title: J Mater Chem A doi: 10.1039/C8TA03870H – volume: 49 start-page: 177 year: 2006 ident: 10.1016/j.rser.2019.109366_bib87 article-title: Drop motion on an inclined plane and evaluation of hydrophobia treatments to glass publication-title: J Adhes doi: 10.1080/00218469508014354 – volume: 36 start-page: 233 year: 2017 ident: 10.1016/j.rser.2019.109366_bib44 article-title: Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.048 – volume: 11 start-page: 10439 year: 2017 ident: 10.1016/j.rser.2019.109366_bib93 article-title: Self-powered electrospinning system driven by a triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.7b05626 – year: 2008 ident: 10.1016/j.rser.2019.109366_bib1 – volume: 7 start-page: 7552 year: 2017 ident: 10.1016/j.rser.2019.109366_bib62 article-title: Long-range spontaneous droplet self-propulsion on wettability gradient surfaces publication-title: Sci Rep doi: 10.1038/s41598-017-07867-5 – start-page: 105981N year: 2018 ident: 10.1016/j.rser.2019.109366_bib95 article-title: Sensing and control of flexible hydrodynamic lifting bodies in multiphase flows. Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2018 publication-title: Int Soc Opt Phot – volume: 9 start-page: 291 year: 2014 ident: 10.1016/j.rser.2019.109366_bib66 article-title: Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.07.024 – volume: 30 start-page: 237 year: 2015 ident: 10.1016/j.rser.2019.109366_bib49 article-title: Spreading dynamics of droplet on an inclined surface publication-title: Theor Comput Fluid Dyn doi: 10.1007/s00162-015-0377-2 – volume: 11 start-page: 436 year: 2015 ident: 10.1016/j.rser.2019.109366_bib94 article-title: Triboelectric nanogenerators as self-powered active sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.034 – volume: 110 year: 2017 ident: 10.1016/j.rser.2019.109366_bib83 article-title: Modeling a dielectric elastomer as driven by triboelectric nanogenerator publication-title: Appl Phys Lett – volume: 7 start-page: 3279 year: 2014 ident: 10.1016/j.rser.2019.109366_bib15 article-title: An effective energy harvesting method from a natural water motion active transducer publication-title: Energy Environ Sci doi: 10.1039/C4EE00588K – volume: 12 start-page: 636 year: 2015 ident: 10.1016/j.rser.2019.109366_bib65 article-title: Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.039 – year: 2019 ident: 10.1016/j.rser.2019.109366_bib19 article-title: Recent progress in power generation from water/liquid droplet interaction with solid surfaces publication-title: Adv Funct Mater – volume: 2 start-page: 693 year: 2013 ident: 10.1016/j.rser.2019.109366_bib75 article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.08.004 – volume: 6 year: 2015 ident: 10.1016/j.rser.2019.109366_bib43 article-title: Influences of surface and ionic properties on electricity generation of an active transducer driven by water motion publication-title: J Phys Chem Lett doi: 10.1021/jz502613s – volume: 58 start-page: 842 year: 2019 ident: 10.1016/j.rser.2019.109366_bib52 article-title: Conformal fluorine coated carbon paper for an energy harvesting water wheel publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.083 – volume: 10 start-page: 1426 year: 2019 ident: 10.1016/j.rser.2019.109366_bib47 article-title: Integrated charge excitation triboelectric nanogenerator publication-title: Nat Commun doi: 10.1038/s41467-019-09464-8 – volume: 6 year: 2016 ident: 10.1016/j.rser.2019.109366_bib67 article-title: Wearable power‐textiles by integrating fabric triboelectric nanogenerators and fiber‐shaped dye‐sensitized solar cells publication-title: Adv Energy Mater doi: 10.1002/aenm.201601048 – volume: 8 start-page: 672 year: 2008 ident: 10.1016/j.rser.2019.109366_bib86 article-title: All-terrain droplet actuation publication-title: Lab Chip doi: 10.1039/b801516c – volume: 12 start-page: 4280 year: 2018 ident: 10.1016/j.rser.2019.109366_bib51 article-title: Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy publication-title: ACS Nano doi: 10.1021/acsnano.7b08716 – volume: 2 start-page: 448 year: 2011 ident: 10.1016/j.rser.2019.109366_bib35 article-title: Reverse electrowetting as a new approach to high-power energy harvesting publication-title: Nat Commun doi: 10.1038/ncomms1454 – volume: 5 year: 2015 ident: 10.1016/j.rser.2019.109366_bib69 article-title: A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock publication-title: Adv Energy Mater doi: 10.1002/aenm.201501152 – volume: 100 start-page: 541 year: 2018 ident: 10.1016/j.rser.2019.109366_bib96 article-title: A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2017.09.046 – volume: 14 start-page: 49 year: 2015 ident: 10.1016/j.rser.2019.109366_bib33 article-title: Environmental effects on nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.049 – volume: 31 start-page: 3269 year: 2015 ident: 10.1016/j.rser.2019.109366_bib36 article-title: Contact electrification and energy harvesting using periodically contacted and squeezed water droplets publication-title: Langm the Acs Journal of Surfaces & Colloids doi: 10.1021/la503494c – volume: 27 start-page: 719 year: 2015 ident: 10.1016/j.rser.2019.109366_bib84 article-title: Active micro‐actuators for optical modulation based on a planar sliding triboelectric nanogenerator publication-title: Adv Mater doi: 10.1002/adma.201404291 – volume: 15 start-page: 256 year: 2015 ident: 10.1016/j.rser.2019.109366_bib26 article-title: A multi-layered interdigitative-electrodes-based triboelectric nanogenerator for harvesting hydropower publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.04.037 – volume: 40 year: 2017 ident: 10.1016/j.rser.2019.109366_bib73 article-title: Solid-liquid triboelectrification in smart U-tube for multifunctional sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.010 – volume: 8 start-page: 24579 year: 2016 ident: 10.1016/j.rser.2019.109366_bib64 article-title: Fabric active transducer stimulated by water motion for self-powered wearable device publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b06916 – volume: 26 start-page: 3580 year: 2014 ident: 10.1016/j.rser.2019.109366_bib8 article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy publication-title: Adv Mater doi: 10.1002/adma.201400207 – volume: 65 start-page: 2065 year: 1961 ident: 10.1016/j.rser.2019.109366_bib58 article-title: The dielectric constant of water as a function of temperature and pressure 1,2 publication-title: J Phys Chem doi: 10.1021/j100828a035 – volume: 4 start-page: 1487 year: 2013 ident: 10.1016/j.rser.2019.109366_bib34 article-title: Electrical power generation by mechanically modulating electrical double layers publication-title: Nat Commun doi: 10.1038/ncomms2485 – volume: 72 start-page: 882 year: 2017 ident: 10.1016/j.rser.2019.109366_bib2 article-title: A review on turbines for micro hydro power plant publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.133 – volume: 521 start-page: 467 year: 2015 ident: 10.1016/j.rser.2019.109366_bib79 article-title: Design, fabrication and control of soft robots publication-title: Nature doi: 10.1038/nature14543 – volume: 26 start-page: 4690 year: 2014 ident: 10.1016/j.rser.2019.109366_bib24 article-title: Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process publication-title: Adv Mater doi: 10.1002/adma.201400373 – volume: 26 start-page: 3788 year: 2014 ident: 10.1016/j.rser.2019.109366_bib13 article-title: A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification publication-title: Adv Mater doi: 10.1002/adma.201400021 – volume: 90 start-page: 439 year: 2015 ident: 10.1016/j.rser.2019.109366_bib59 article-title: The impact, freezing, and melting processes of a water droplet on an inclined cold surface publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.06.086 – volume: 57 start-page: 574 year: 2019 ident: 10.1016/j.rser.2019.109366_bib76 article-title: A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.041 – volume: 39 start-page: 9 year: 2017 ident: 10.1016/j.rser.2019.109366_bib23 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – volume: 11 start-page: 88 year: 1940 ident: 10.1016/j.rser.2019.109366_bib39 article-title: Electrical conductivity of metals publication-title: J Appl Phys doi: 10.1063/1.1712751 – volume: 8 start-page: 6031 year: 2014 ident: 10.1016/j.rser.2019.109366_bib18 article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface publication-title: ACS Nano doi: 10.1021/nn5012732 – volume: 2016 issue: 2016–2-21 year: 2016 ident: 10.1016/j.rser.2019.109366_bib56 article-title: A self-powered triboelectric nanosensor for PH detection publication-title: J Nanom – volume: 30 year: 2018 ident: 10.1016/j.rser.2019.109366_bib21 article-title: Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification publication-title: Adv Mater doi: 10.1002/adma.201803968 – volume: 85 start-page: 155 year: 2007 ident: 10.1016/j.rser.2019.109366_bib4 article-title: Acoustic Doppler current profiler surveys along the Yangtze River publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.03.018 – volume: 77 start-page: 161 year: 2015 ident: 10.1016/j.rser.2019.109366_bib5 article-title: A global boom in hydropower dam construction publication-title: Aquat Sci doi: 10.1007/s00027-014-0377-0 – volume: 3 year: 2018 ident: 10.1016/j.rser.2019.109366_bib54 article-title: Ultrafine capillary-tube triboelectric nanogenerator as active sensor for microliquid biological and chemical sensing publication-title: Adv Mater Tech doi: 10.1002/admt.201700229 – volume: 38 start-page: 159 year: 2006 ident: 10.1016/j.rser.2019.109366_bib60 article-title: Drop impact dynamics: splashing, spreading, receding, bouncing publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.38.050304.092144 – volume: 3 start-page: 2037 year: 2013 ident: 10.1016/j.rser.2019.109366_bib45 article-title: Spontaneous electrical charging of droplets by conventional pipetting publication-title: Sci Rep doi: 10.1038/srep02037 – volume: 26 start-page: 6720 year: 2014 ident: 10.1016/j.rser.2019.109366_bib46 article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding publication-title: Adv Mater doi: 10.1002/adma.201402491 – volume: 30 start-page: 12027 year: 2014 ident: 10.1016/j.rser.2019.109366_bib48 article-title: Drop impact and rebound dynamics on an inclined superhydrophobic surface publication-title: Langmuir : the ACS journal of surfaces and colloids doi: 10.1021/la502500z – volume: 20 year: 2017 ident: 10.1016/j.rser.2019.109366_bib10 article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater Today doi: 10.1016/j.mattod.2016.12.001 – volume: 10 start-page: 8104 year: 2016 ident: 10.1016/j.rser.2019.109366_bib77 article-title: Self-powered triboelectric micro liquid/gas flow sensor for microfluidics publication-title: ACS Nano doi: 10.1021/acsnano.6b04440 – volume: 7 start-page: 9533 year: 2013 ident: 10.1016/j.rser.2019.109366_bib72 article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 13 start-page: 2587 year: 2019 ident: 10.1016/j.rser.2019.109366_bib25 article-title: Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis publication-title: ACS Nano – volume: 8 start-page: 6440 year: 2014 ident: 10.1016/j.rser.2019.109366_bib37 article-title: Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor publication-title: ACS Nano doi: 10.1021/nn501983s – volume: 52 start-page: 12545 year: 2013 ident: 10.1016/j.rser.2019.109366_bib57 article-title: Water-solid surface contact electrification and its use for harvesting liquid-wave energy publication-title: Angew Chem Int Ed doi: 10.1002/anie.201307249 |
SSID | ssj0015873 |
Score | 2.5830543 |
SecondaryResourceType | review_article |
Snippet | Hydropower is an important renewable resource, and is derived from the energy of falling, fast-running, and/or oscillating motions of water, including... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109366 |
SubjectTerms | Energy harvesting Hydropower Self-powered sensors Triboelectric nanogenerators Water-solid interface Wave energy |
Title | Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower |
URI | https://dx.doi.org/10.1016/j.rser.2019.109366 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGbrM0mu0nWWymW-iqiFnsLm82mjWhaQkW8-Nvd2SSlgvTgKSTMQPh2mG9gZ75B6IwppQM_VsTTlBPmh5RI4UtCdagM_SsW2JO-H_j9IbsZ8VEDdetZGGirrHJ_mdNttq6-tCs027Msaz9Rz2eOBwplJmYDNoIJdhZAlF98L9o8KA_tLTMYE7CuBmfKHq_CHDO0dwmrqmSVEv8gpyXC6W2hzapSxJ3yZ7ZRQ-c7aGNJP3AXjV5MpVgQEz5ZgmF11bTcapMpnMt8OraS0rBO5xJ3cmwvxnMr9I3ftaEobApWPJGFVdrIx3jylcDOhE9d7KFh7-q52yfVqgSiTMU1J9qRcZwqAdI9IQ08TwXCkQYXVzmeUjFLEwkyLDzhIlWSp1xI5iacu2mYpLHy9lEzn-b6AGHgfEZpLKSgLE4MfaWuCKlOtMulKQYOEa0xilSlIw7rLN6iumHsNQJcI8A1KnE9ROcLn1mporHSmtfQR79iITJpfoXf0T_9jtE6vJUThieoOS8-9KkpNeZxy8ZSC611uo93D_C8vu0PfgB6ctXC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7PsAJmdaJncRIHBCLCrS9AKK34DgOFEGKQhHiwk_xg4ydtAIJcUDimsSW8zyaeVHG7wFsca1NGCSa-oYJyoOIUSUDRZmJNJZ_zUO306120LjiZx3RGYGPwVkY21ZZ5f4yp7tsXV2pVWjWnrrd2gXzA173rUIZxmzIO1Vn5bl5e8Xvtuf90yPc5G3POzm-PGzQylqAamQofWrqKkkyLa3UTcRC39ehrCucx9N1X-uEZ6mysiUiFTLTSmRCKu6lQnhZlGaJ9nHeURjnmC6sbcLu-7CvhInI_da2q6N2edVJnbKprMC4sv1k0sk4OWnGH6rhlwp3MgPTFTUlB-Xbz8KIyedg6otg4Tx0rpGaFhTjtZsS65XVK210uprkKu_dOg1r69-zRw5y4v7E505ZnDwarIkEGTK5U4WT9shvyd1bak0aXk2xAFf_AuAijOW93CwBsSSDM5ZIJRlPUqyXmScjZlLjCYXsYxnYAKNYV8Ll1j_jIR50qN3HFtfY4hqXuC7DznDMUynb8evTYgB9_C34Yqwrv4xb-eO4TZhoXLaacfO0fb4Kk_ZOebxxDcb6xYtZR57TTzZcXBG4-e9A_gQyOxCu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water-solid+triboelectric+nanogenerators%3A+An+alternative+means+for+harvesting+hydropower&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Jiang%2C+Dongyue&rft.au=Xu%2C+Minyi&rft.au=Dong%2C+Ming&rft.au=Guo%2C+Fei&rft.date=2019-11-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=115&rft_id=info:doi/10.1016%2Fj.rser.2019.109366&rft.externalDocID=S136403211930574X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |