Static and dynamic mechanical properties of expanded polystyrene

•Both static and dynamic tests on EPS as building material were carried out.•Dynamic tests in compression and tension were conducted by using INSTRON rig.•It is the first study to conduct the EPS dynamic tensile tests in literature.•Dynamic compressive test data at the strain rate of 0.1–3001/s are...

Full description

Saved in:
Bibliographic Details
Published inMaterials in engineering Vol. 69; pp. 170 - 180
Main Authors Chen, Wensu, Hao, Hong, Hughes, Dylan, Shi, Yanchao, Cui, Jian, Li, Zhong-Xian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2015
Subjects
Online AccessGet full text
ISSN0261-3069
DOI10.1016/j.matdes.2014.12.024

Cover

Loading…
Abstract •Both static and dynamic tests on EPS as building material were carried out.•Dynamic tests in compression and tension were conducted by using INSTRON rig.•It is the first study to conduct the EPS dynamic tensile tests in literature.•Dynamic compressive test data at the strain rate of 0.1–3001/s are first reported.•Empirical formulae of DIFs for compressive and tensile strength are suggested. Expanded polystyrene (EPS) is commonly used in a variety of applications because of its features of light weight, good thermal insulation, moisture resistance, durability, acoustic absorption and low thermal conductivity. It has been increasingly used in building constructions as core material of structural insulated panels (SIP). Some of those structures during their service life may be subjected to dynamic loads such as accidental or hostile explosion loads and windborne debris impacts. Understanding the dynamic material properties of EPS is essential for reliable predictions of the performances of the structural insulated panels with EPS foam core material. This paper presents static and dynamic compressive and tensile test data of EPS with density 13.5kg/m3 and 28kg/m3 at different strain rates. The dynamic strength, Young’s modulus and energy absorption capacities of the two EPS foams at different strain rates are obtained and presented in the paper. Based on the testing data, some empirical relations are derived, which can be used to model EPS properties in numerical simulations of dynamic responses of structural insulated panels with EPS foam core subjected to impact and blast loads.
AbstractList Expanded polystyrene (EPS) is commonly used in a variety of applications because of its features of light weight, good thermal insulation, moisture resistance, durability, acoustic absorption and low thermal conductivity. It has been increasingly used in building constructions as core material of structural insulated panels (SIP). Some of those structures during their service life may be subjected to dynamic loads such as accidental or hostile explosion loads and windborne debris impacts. Understanding the dynamic material properties of EPS is essential for reliable predictions of the performances of the structural insulated panels with EPS foam core material. This paper presents static and dynamic compressive and tensile test data of EPS with density 13.5kg/m3 and 28kg/m3 at different strain rates. The dynamic strength, Young's modulus and energy absorption capacities of the two EPS foams at different strain rates are obtained and presented in the paper. Based on the testing data, some empirical relations are derived, which can be used to model EPS properties in numerical simulations of dynamic responses of structural insulated panels with EPS foam core subjected to impact and blast loads.
•Both static and dynamic tests on EPS as building material were carried out.•Dynamic tests in compression and tension were conducted by using INSTRON rig.•It is the first study to conduct the EPS dynamic tensile tests in literature.•Dynamic compressive test data at the strain rate of 0.1–3001/s are first reported.•Empirical formulae of DIFs for compressive and tensile strength are suggested. Expanded polystyrene (EPS) is commonly used in a variety of applications because of its features of light weight, good thermal insulation, moisture resistance, durability, acoustic absorption and low thermal conductivity. It has been increasingly used in building constructions as core material of structural insulated panels (SIP). Some of those structures during their service life may be subjected to dynamic loads such as accidental or hostile explosion loads and windborne debris impacts. Understanding the dynamic material properties of EPS is essential for reliable predictions of the performances of the structural insulated panels with EPS foam core material. This paper presents static and dynamic compressive and tensile test data of EPS with density 13.5kg/m3 and 28kg/m3 at different strain rates. The dynamic strength, Young’s modulus and energy absorption capacities of the two EPS foams at different strain rates are obtained and presented in the paper. Based on the testing data, some empirical relations are derived, which can be used to model EPS properties in numerical simulations of dynamic responses of structural insulated panels with EPS foam core subjected to impact and blast loads.
Author Chen, Wensu
Hughes, Dylan
Cui, Jian
Li, Zhong-Xian
Hao, Hong
Shi, Yanchao
Author_xml – sequence: 1
  givenname: Wensu
  surname: Chen
  fullname: Chen, Wensu
  email: wensu.chen@curtin.edu.au, wensu.chen@hotmail.com
  organization: Tianjin University and Curtin University Joint Research Center of Structure Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia
– sequence: 2
  givenname: Hong
  surname: Hao
  fullname: Hao, Hong
  organization: Tianjin University and Curtin University Joint Research Center of Structure Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia
– sequence: 3
  givenname: Dylan
  surname: Hughes
  fullname: Hughes, Dylan
  organization: School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
– sequence: 4
  givenname: Yanchao
  surname: Shi
  fullname: Shi, Yanchao
  organization: Tianjin University and Curtin University Joint Research Center of Structure Monitoring and Protection, School of Civil Engineering, Tianjin University, China
– sequence: 5
  givenname: Jian
  surname: Cui
  fullname: Cui, Jian
  organization: Tianjin University and Curtin University Joint Research Center of Structure Monitoring and Protection, School of Civil Engineering, Tianjin University, China
– sequence: 6
  givenname: Zhong-Xian
  surname: Li
  fullname: Li, Zhong-Xian
  organization: Tianjin University and Curtin University Joint Research Center of Structure Monitoring and Protection, School of Civil Engineering, Tianjin University, China
BookMark eNqFkD1PwzAQQD0UiRb4BwwZWRrOjvPFgEAVX1IlBmC2HPsiXCVOsF1E_j2uwsQA093w3un0VmRhB4uEnFNIKdDicpf2Mmj0KQPKU8pSYHxBlsAKus6gqI_JyvsdAC0pZUty8xJkMCqRVid6srKPe4_qXVqjZJeMbhjRBYM-GdoEv8bIoU7GoZt8mBxaPCVHrew8nv3ME_J2f_e6eVxvnx-eNrfbteKQhzUCp1zyqmUVl4orYKqsmhwzgEoVTPO2AswayCuVN6g1UFpWWcNpjRHPWHZCLua78aWPPfogeuMVdp20OOy9oEVZ1nWdA48on1HlBu8dtmJ0ppduEhTEIZLYiTmSOEQSlIkYKWpXvzRlDnEGG5w03X_y9SxjbPBp0AmvDFqF2jhUQejB_H3gG2u2iYY
CitedBy_id crossref_primary_10_1016_j_jcomc_2023_100418
crossref_primary_10_1016_j_polymertesting_2016_04_018
crossref_primary_10_3389_fmars_2021_817707
crossref_primary_10_1080_10255842_2019_1709451
crossref_primary_10_1016_j_dibe_2023_100188
crossref_primary_10_1061__ASCE_MT_1943_5533_0002172
crossref_primary_10_2478_sjce_2023_0020
crossref_primary_10_1039_C9DT00113A
crossref_primary_10_1016_j_conbuildmat_2018_07_026
crossref_primary_10_1016_j_compositesb_2019_107032
crossref_primary_10_1016_j_istruc_2019_10_019
crossref_primary_10_1051_e3sconf_201912807006
crossref_primary_10_1061_JMCEE7_MTENG_16138
crossref_primary_10_18596_jotcsa_547471
crossref_primary_10_48175_IJARSCT_8889
crossref_primary_10_1680_jgein_21_00061
crossref_primary_10_1016_j_matdes_2020_108728
crossref_primary_10_1061__ASCE_ST_1943_541X_0003416
crossref_primary_10_3390_ma16041723
crossref_primary_10_3390_buildings10090155
crossref_primary_10_1016_j_ijimpeng_2020_103758
crossref_primary_10_1016_j_cemconres_2022_106825
crossref_primary_10_1016_j_ijmecsci_2021_106750
crossref_primary_10_21923_jesd_1049392
crossref_primary_10_59382_pro_intl_con_ibst_2023_ses3_12
crossref_primary_10_1016_j_compstruct_2018_05_109
crossref_primary_10_1007_s10706_020_01252_2
crossref_primary_10_3390_app6050120
crossref_primary_10_1016_j_conbuildmat_2016_03_190
crossref_primary_10_1088_1755_1315_795_1_012007
crossref_primary_10_1007_s40996_024_01416_7
crossref_primary_10_3390_aerospace11120977
crossref_primary_10_1515_rams_2021_0020
crossref_primary_10_1007_s10924_023_03181_6
crossref_primary_10_1016_j_conbuildmat_2019_07_310
crossref_primary_10_1016_j_conbuildmat_2018_05_142
crossref_primary_10_3390_ma13102371
crossref_primary_10_1016_j_compstruct_2017_02_097
crossref_primary_10_1016_j_ijimpeng_2019_103341
crossref_primary_10_1080_15376494_2022_2081749
crossref_primary_10_3390_pr11010012
crossref_primary_10_1007_s11029_024_10185_3
crossref_primary_10_1016_j_csite_2018_05_008
crossref_primary_10_1016_j_cscm_2022_e01147
crossref_primary_10_1021_acs_macromol_1c02332
crossref_primary_10_1515_hf_2021_0004
crossref_primary_10_1016_j_supflu_2019_03_022
crossref_primary_10_1016_j_ijimpeng_2022_104189
crossref_primary_10_1016_j_ijmecsci_2019_105030
crossref_primary_10_1016_j_conbuildmat_2023_131886
crossref_primary_10_1007_s10518_022_01412_0
crossref_primary_10_1021_acsomega_9b00321
crossref_primary_10_1016_j_compositesb_2019_107410
crossref_primary_10_1016_j_tust_2021_104186
crossref_primary_10_1016_j_compositesb_2018_05_057
crossref_primary_10_1016_j_conbuildmat_2020_119167
crossref_primary_10_1177_0021955X20965216
crossref_primary_10_1016_j_ijoes_2023_100383
crossref_primary_10_1177_0021955X20965215
crossref_primary_10_1016_j_memsci_2018_08_069
crossref_primary_10_1016_j_polymdegradstab_2022_110079
crossref_primary_10_1016_j_matdes_2015_04_014
crossref_primary_10_1002_aic_18499
crossref_primary_10_1016_j_nxsust_2024_100063
crossref_primary_10_1016_j_mtcomm_2018_07_001
crossref_primary_10_1021_acssuschemeng_2c01314
crossref_primary_10_1061__ASCE_MT_1943_5533_0003615
crossref_primary_10_56958_jesi_2018_3_2_93
crossref_primary_10_1016_j_jcsr_2021_106700
crossref_primary_10_1002_app_55455
crossref_primary_10_3139_120_111363
crossref_primary_10_1016_j_ijimpeng_2017_04_016
crossref_primary_10_1016_j_jmrt_2024_08_003
crossref_primary_10_1177_0021955X231224769
crossref_primary_10_1016_j_cemconcomp_2016_06_013
crossref_primary_10_4028_www_scientific_net_MSF_1048_387
crossref_primary_10_1002_pen_25502
crossref_primary_10_1007_s10965_021_02438_9
crossref_primary_10_1177_1464420718798168
crossref_primary_10_3390_polym16070911
crossref_primary_10_1016_j_compstruct_2017_11_007
crossref_primary_10_1016_j_jmrt_2019_06_046
crossref_primary_10_1016_j_mtcomm_2023_107653
crossref_primary_10_1016_j_jclepro_2019_06_319
crossref_primary_10_1007_s10853_023_08441_3
crossref_primary_10_1007_s11629_023_8403_0
crossref_primary_10_1016_j_polymertesting_2016_08_005
crossref_primary_10_1021_acsaenm_4c00263
crossref_primary_10_1051_epjconf_201818301009
crossref_primary_10_1016_j_asej_2022_101722
crossref_primary_10_1016_j_ijmecsci_2019_105039
crossref_primary_10_3390_su12093731
crossref_primary_10_1088_1755_1315_765_1_012101
crossref_primary_10_1016_j_ijimpeng_2021_104088
crossref_primary_10_1080_15376494_2020_1842948
crossref_primary_10_1016_j_jmrt_2025_03_135
crossref_primary_10_1680_jgein_22_00363
crossref_primary_10_1155_2016_8301517
crossref_primary_10_1142_S0219455418500888
crossref_primary_10_1016_j_engstruct_2018_09_073
crossref_primary_10_1007_s10518_022_01497_7
crossref_primary_10_1080_10889868_2024_2355187
crossref_primary_10_18311_jmmf_2022_31976
crossref_primary_10_3390_polym14132529
crossref_primary_10_1016_j_matdes_2016_03_080
crossref_primary_10_1007_s00226_020_01254_6
crossref_primary_10_1016_j_dt_2024_07_006
crossref_primary_10_1177_0731684416649787
crossref_primary_10_1103_PhysRevE_109_044901
crossref_primary_10_1515_epoly_2019_0036
crossref_primary_10_5030_jcigsjournal_35_103
crossref_primary_10_1016_j_matdes_2015_10_044
crossref_primary_10_1016_j_matdes_2022_111527
crossref_primary_10_1016_j_jmrt_2023_08_001
crossref_primary_10_1016_j_euromechsol_2023_105212
crossref_primary_10_1016_j_compositesb_2022_110439
crossref_primary_10_1177_1099636220961756
crossref_primary_10_1016_j_chemosphere_2022_135236
crossref_primary_10_1002_adem_202000794
crossref_primary_10_1016_j_conbuildmat_2025_139864
crossref_primary_10_1080_15376494_2022_2092797
crossref_primary_10_3390_ma16093530
crossref_primary_10_1007_s10570_023_05111_0
crossref_primary_10_1016_j_conbuildmat_2021_124258
crossref_primary_10_1016_j_eurpolymj_2018_04_002
crossref_primary_10_1021_acsabm_9b01047
crossref_primary_10_1002_jccs_202300220
crossref_primary_10_1016_j_ijadhadh_2020_102569
crossref_primary_10_1016_j_indcrop_2022_115288
crossref_primary_10_1016_j_asoc_2020_106632
crossref_primary_10_1016_j_trgeo_2021_100702
crossref_primary_10_3390_polym13193283
crossref_primary_10_1016_j_conbuildmat_2021_124310
crossref_primary_10_1021_acsbiomaterials_4c01986
crossref_primary_10_1177_0954406220971667
crossref_primary_10_1016_j_polymer_2020_122940
crossref_primary_10_3390_app9204289
crossref_primary_10_1016_j_geotexmem_2024_10_004
crossref_primary_10_1016_j_rineng_2024_102685
crossref_primary_10_3390_ma15196921
crossref_primary_10_1016_j_tws_2019_106361
crossref_primary_10_1002_app_44423
crossref_primary_10_1016_j_ijmecsci_2018_06_014
crossref_primary_10_1177_1369433217733762
crossref_primary_10_3390_polym15051267
crossref_primary_10_1016_j_ijmecsci_2018_06_015
crossref_primary_10_1016_j_jclepro_2022_132919
crossref_primary_10_1016_j_matpr_2019_03_113
crossref_primary_10_1016_j_clay_2017_06_010
crossref_primary_10_1016_j_conbuildmat_2020_118434
crossref_primary_10_3390_su14095521
crossref_primary_10_1002_app_49558
crossref_primary_10_1016_j_conbuildmat_2019_02_012
crossref_primary_10_1016_j_fpsl_2022_100908
crossref_primary_10_21833_ijaas_2017_010_007
crossref_primary_10_1016_j_geotexmem_2022_03_009
crossref_primary_10_1007_s41062_024_01454_0
crossref_primary_10_1016_j_jobe_2025_111890
crossref_primary_10_1590_s1983_41952025000800012
crossref_primary_10_3390_app10249061
crossref_primary_10_1016_j_conbuildmat_2017_03_074
crossref_primary_10_1016_j_diamond_2024_111167
crossref_primary_10_1016_j_ijsolstr_2020_07_007
crossref_primary_10_1038_s41598_024_80490_3
crossref_primary_10_1016_j_jclepro_2024_141304
crossref_primary_10_5937_fme2104962C
crossref_primary_10_1016_j_ijimpeng_2023_104676
crossref_primary_10_1016_j_ijimpeng_2024_104972
crossref_primary_10_1177_2041419617719295
crossref_primary_10_1007_s12046_022_02028_5
crossref_primary_10_1016_j_compositesa_2024_108515
crossref_primary_10_1016_j_cscm_2022_e01809
crossref_primary_10_1016_j_tust_2023_105261
crossref_primary_10_1016_j_compstruct_2020_112025
crossref_primary_10_1016_j_geotexmem_2020_09_004
crossref_primary_10_1007_s00107_020_01625_7
crossref_primary_10_1016_j_compositesb_2023_110513
crossref_primary_10_3390_ma16216886
crossref_primary_10_3390_buildings14092928
crossref_primary_10_1016_j_applthermaleng_2025_126129
crossref_primary_10_1016_j_compositesb_2017_05_069
crossref_primary_10_3390_polym11060985
crossref_primary_10_1016_j_colsurfa_2017_03_049
crossref_primary_10_1007_s10854_020_04223_8
crossref_primary_10_1016_j_compositesb_2021_108806
crossref_primary_10_1016_j_ast_2024_109171
Cites_doi 10.1016/S0734-743X(00)00060-9
10.1016/j.matdes.2014.04.038
10.4271/2007-01-0987
10.1016/0022-5096(75)90008-3
10.2172/875626
10.1016/j.conbuildmat.2012.12.058
10.1016/j.polymertesting.2007.09.010
10.1016/j.compositesb.2010.07.005
10.1016/j.ijimpeng.2004.02.003
10.1016/S0142-9418(01)00073-3
10.1016/j.polymertesting.2006.05.005
10.1007/978-1-4614-4238-7_4
10.1177/0021955X7401000306
10.1016/j.ijimpeng.2013.08.012
10.1006/jsvi.1993.1265
10.1016/j.matdes.2013.07.020
10.1016/S0734-743X(97)00087-0
10.1016/j.matdes.2013.09.032
10.1007/BF02472016
10.1016/S1359-6454(02)00541-4
10.1007/s11029-007-0009-z
10.1016/S0734-743X(98)00037-2
10.1016/0266-1144(94)90048-5
10.1016/j.ijimpeng.2013.01.004
10.1016/S0263-8223(01)00026-5
10.4028/www.scientific.net/KEM.141-143.501
10.1016/S0266-1144(97)00011-3
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.matdes.2014.12.024
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 180
ExternalDocumentID 10_1016_j_matdes_2014_12_024
S0261306914010085
GroupedDBID -~X
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACRLP
ADTZH
AEBSH
AECPX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FYGXN
M24
M41
OAUVE
Q38
SDF
SPC
SSM
SST
SSZ
T5K
4G.
5VS
7-5
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
AZFZN
CITATION
FGOYB
G-2
IHE
J1W
R2-
ROL
SMS
SSH
7SR
8BQ
8FD
AFXIZ
JG9
ID FETCH-LOGICAL-c405t-e0414a48f284ac4c02c78b5e3008c62d4f80e3b058c5bedd011783b419eac4323
IEDL.DBID AIKHN
ISSN 0261-3069
IngestDate Thu Jul 10 18:15:52 EDT 2025
Tue Jul 01 04:23:15 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Fri Feb 23 02:25:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic material properties
Expanded polystyrene
Experimental tests
Construction material
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-e0414a48f284ac4c02c78b5e3008c62d4f80e3b058c5bedd011783b419eac4323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1677999504
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1677999504
crossref_primary_10_1016_j_matdes_2014_12_024
crossref_citationtrail_10_1016_j_matdes_2014_12_024
elsevier_sciencedirect_doi_10_1016_j_matdes_2014_12_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-15
PublicationDateYYYYMMDD 2015-03-15
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Materials in engineering
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mohotti, Ali, Ngo, Lu, Mendis (b0065) 2014; 53
Shen, Xie, Huang, Zhou, Ruan (b0035) 2013; 57
Bischoff, Perry (b0170) 1991; 24
Tedesco, Ross, Kuennen (b0055) 1993; 165
Mines, Worrall, Gibson (b0025) 1998; 21
Chakravarty, Mahfuz, Saha, Jeelani (b0125) 2003; 51
Horvath (b0015) 1994; 13
AS 2498.4-1993. Methods of testing rigid cellular plastics: determination of cross-breaking strength. Standard Australian.
Song, Chen, Dou, Winfree, Kang (b0060) 2005; 31
Di Landro, Sala, Olivieri (b0100) 2002; 21
Eriksson, Trank (b0095) 1991
Properties, performance and design fundamentals of expanded polystyrene packaging. Alliance of foam packaging recyclers; 2000.
Chen, Hao (b0190) 2015
Duškov (b0115) 1997; 15
Ouellet, Cronin, Worswick (b0110) 2006; 25
Wood P, Schley C, Buckley M, Smith J. An improved test procedure for measurement of dynamic tensile mechanical properties of automotive sheet steels. SAE technical paper; 2007.
Vėjelis, Gnip, Vaitkus, Keršulis (b0195) 2008; 14
1/s. Sandia National Laboratories Report, SAND2005-5678; 2005. p. 1–16.
Lu, Yu (b0200) 2003
Nagy A, Ko W, Lindholm US. Mechanical behavior of foamed materials under dynamic compression. DTIC document; 1973.
Wen, Reddy, Reid, Soden (b0030) 1998; 141–143
Avalle, Belingardi, Montanini (b0130) 2001; 25
Xiao (b0080) 2008; 27
Boyce BL, Crenshaw TB. Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500
AS 2498.3-1993. Methods of testing rigid cellular plastics: determination of compressive stress. Standard Australian.
Chen, Hao (b0010) 2014; 60
Gibson, Ashby (b0155) 1997
Bertholf, Karnes (b0175) 1975; 23
Nickerson J, Trasborg P, Newberry C, Naito C, Davidson J. Use of Foam-Insulated Concrete Sandwich Panels for blast protection applications. In: 15th International symposium on interaction of the effects of munitions with structures (ISIEMS), Potsdam, Germany; 2013.
Chen, Hao (b0040) 2014; 63
Fatt, Park (b0185) 2001; 52
Croop B, Lobo H. Selecting material models for the simulation of foams in LS-DYNA. In: Proceedings of 7th European LS-DYNA conference, Salzburg; 2009.
Manalo (b0005) 2013; 41
Shen, Lu, Ruan (b0050) 2010; 41
Smakosz, Tejchman (b0140) 2014; 54
Ouellet S, Cronin D, Moulton J, Petel O. High rate characterization of polymeric closed-cell foams: challenges related to size effects. dynamic behavior of materials, volume 1, In: Proceedings of the 2012 annual conference on experimental and applied mechanics, conference proceedings of the society for experimental mechanics series; 2013.
Zhang, Kikuchi, Li, Yee, Nusholtz (b0165) 1998; 21
Gnip, Veyelis, Kersulis, Vaitkus (b0135) 2007; 43
Tedesco (10.1016/j.matdes.2014.12.024_b0055) 1993; 165
Manalo (10.1016/j.matdes.2014.12.024_b0005) 2013; 41
Vėjelis (10.1016/j.matdes.2014.12.024_b0195) 2008; 14
10.1016/j.matdes.2014.12.024_b0145
10.1016/j.matdes.2014.12.024_b0120
10.1016/j.matdes.2014.12.024_b0020
10.1016/j.matdes.2014.12.024_b0085
10.1016/j.matdes.2014.12.024_b0160
Bischoff (10.1016/j.matdes.2014.12.024_b0170) 1991; 24
10.1016/j.matdes.2014.12.024_b0180
Chen (10.1016/j.matdes.2014.12.024_b0040) 2014; 63
Shen (10.1016/j.matdes.2014.12.024_b0050) 2010; 41
Fatt (10.1016/j.matdes.2014.12.024_b0185) 2001; 52
Bertholf (10.1016/j.matdes.2014.12.024_b0175) 1975; 23
Chen (10.1016/j.matdes.2014.12.024_b0010) 2014; 60
Lu (10.1016/j.matdes.2014.12.024_b0200) 2003
Wen (10.1016/j.matdes.2014.12.024_b0030) 1998; 141–143
Gnip (10.1016/j.matdes.2014.12.024_b0135) 2007; 43
Shen (10.1016/j.matdes.2014.12.024_b0035) 2013; 57
Chen (10.1016/j.matdes.2014.12.024_b0190) 2015
Song (10.1016/j.matdes.2014.12.024_b0060) 2005; 31
Xiao (10.1016/j.matdes.2014.12.024_b0080) 2008; 27
Horvath (10.1016/j.matdes.2014.12.024_b0015) 1994; 13
10.1016/j.matdes.2014.12.024_b0075
10.1016/j.matdes.2014.12.024_b0070
Mohotti (10.1016/j.matdes.2014.12.024_b0065) 2014; 53
10.1016/j.matdes.2014.12.024_b0090
Eriksson (10.1016/j.matdes.2014.12.024_b0095) 1991
Avalle (10.1016/j.matdes.2014.12.024_b0130) 2001; 25
Smakosz (10.1016/j.matdes.2014.12.024_b0140) 2014; 54
Duškov (10.1016/j.matdes.2014.12.024_b0115) 1997; 15
Gibson (10.1016/j.matdes.2014.12.024_b0155) 1997
Di Landro (10.1016/j.matdes.2014.12.024_b0100) 2002; 21
Chakravarty (10.1016/j.matdes.2014.12.024_b0125) 2003; 51
Zhang (10.1016/j.matdes.2014.12.024_b0165) 1998; 21
Mines (10.1016/j.matdes.2014.12.024_b0025) 1998; 21
Ouellet (10.1016/j.matdes.2014.12.024_b0110) 2006; 25
References_xml – reference: 1/s. Sandia National Laboratories Report, SAND2005-5678; 2005. p. 1–16.
– volume: 27
  start-page: 164
  year: 2008
  end-page: 178
  ident: b0080
  article-title: Dynamic tensile testing of plastic materials
  publication-title: Polym Test
– volume: 25
  start-page: 455
  year: 2001
  end-page: 472
  ident: b0130
  article-title: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram
  publication-title: Int J Impact Eng
– reference: Boyce BL, Crenshaw TB. Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500
– volume: 54
  start-page: 1068
  year: 2014
  end-page: 1082
  ident: b0140
  article-title: Evaluation of strength, deformability and failure mode of composite structural insulated panels
  publication-title: Mater Des
– volume: 52
  start-page: 335
  year: 2001
  end-page: 351
  ident: b0185
  article-title: Dynamic models for low-velocity impact damage of composite sandwich panels – Part A: Deformation
  publication-title: Compos Struct
– reference: Wood P, Schley C, Buckley M, Smith J. An improved test procedure for measurement of dynamic tensile mechanical properties of automotive sheet steels. SAE technical paper; 2007.
– volume: 21
  start-page: 855
  year: 1998
  end-page: 879
  ident: b0025
  article-title: Low velocity perforation behaviour of polymer composite sandwich panels
  publication-title: Int J Impact Eng
– volume: 53
  start-page: 830
  year: 2014
  end-page: 837
  ident: b0065
  article-title: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading
  publication-title: Mater Des
– volume: 60
  start-page: 409
  year: 2014
  end-page: 423
  ident: b0010
  article-title: Experimental and numerical study of composite lightweight structural insulated panel with expanded polystyrene core against windborne debris impacts
  publication-title: Mater Des
– year: 1991
  ident: b0095
  article-title: Properties of expanded polystyrene, laboratory experiments
– volume: 25
  start-page: 731
  year: 2006
  end-page: 743
  ident: b0110
  article-title: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions
  publication-title: Polym Test
– volume: 21
  start-page: 217
  year: 2002
  end-page: 228
  ident: b0100
  article-title: Deformation mechanisms and energy absorption of polystyrene foams for protective helmets
  publication-title: Polym Test
– reference: Croop B, Lobo H. Selecting material models for the simulation of foams in LS-DYNA. In: Proceedings of 7th European LS-DYNA conference, Salzburg; 2009.
– reference: Ouellet S, Cronin D, Moulton J, Petel O. High rate characterization of polymeric closed-cell foams: challenges related to size effects. dynamic behavior of materials, volume 1, In: Proceedings of the 2012 annual conference on experimental and applied mechanics, conference proceedings of the society for experimental mechanics series; 2013.
– volume: 63
  start-page: 140
  year: 2014
  end-page: 157
  ident: b0040
  article-title: Experimental investigations and numerical simulations of multi-arch double-layered panels under uniform impulsive loadings
  publication-title: Int J Impact Eng
– reference: AS 2498.3-1993. Methods of testing rigid cellular plastics: determination of compressive stress. Standard Australian.
– volume: 43
  start-page: 85
  year: 2007
  end-page: 94
  ident: b0135
  article-title: Deformability and strength of expanded polystyrene (EPS) under short-term shear loading
  publication-title: Mech Compos Mater
– start-page: 68
  year: 2015
  end-page: 73
  ident: b0190
  article-title: A study of corrolink structural insulated panel (SIP) to windborne debris impacts
  publication-title: Key Eng Mater
– volume: 14
  year: 2008
  ident: b0195
  article-title: Shear strength and modulus of elasticity of expanded polystyrene (EPS)
  publication-title: Mater Sci (Medžiagotyra)
– volume: 24
  start-page: 425
  year: 1991
  end-page: 450
  ident: b0170
  article-title: Compressive behaviour of concrete at high strain rates
  publication-title: Mater Struct
– volume: 141–143
  start-page: 501
  year: 1998
  end-page: 552
  ident: b0030
  article-title: Indentation, penetration and perforation of composite laminates and sandwich panels under quasi-static and projectile loading
  publication-title: Key Eng Mater
– year: 1997
  ident: b0155
  article-title: Cellular solids: structure and properties
– volume: 41
  start-page: 642
  year: 2013
  end-page: 653
  ident: b0005
  article-title: Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and magnesium oxide board
  publication-title: Constr Build Mater
– volume: 57
  start-page: 17
  year: 2013
  end-page: 26
  ident: b0035
  article-title: Behaviour of luffa sponge material under dynamic loading
  publication-title: Int J Impact Eng
– reference: AS 2498.4-1993. Methods of testing rigid cellular plastics: determination of cross-breaking strength. Standard Australian.
– volume: 165
  start-page: 376
  year: 1993
  end-page: 384
  ident: b0055
  article-title: Strain rate effects on the compressive strength of shock-mitigating foams
  publication-title: J Sound Vibrat
– volume: 31
  start-page: 509
  year: 2005
  end-page: 521
  ident: b0060
  article-title: Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam
  publication-title: Int J Impact Eng
– volume: 41
  start-page: 678
  year: 2010
  end-page: 685
  ident: b0050
  article-title: Compressive behaviour of closed-cell aluminium foams at high strain rates
  publication-title: Compos Part B: Eng
– volume: 51
  start-page: 1469
  year: 2003
  end-page: 1479
  ident: b0125
  article-title: Strain rate effects on sandwich core materials: an experimental and analytical investigation
  publication-title: Acta Mater
– reference: Properties, performance and design fundamentals of expanded polystyrene packaging. Alliance of foam packaging recyclers; 2000.
– reference: Nickerson J, Trasborg P, Newberry C, Naito C, Davidson J. Use of Foam-Insulated Concrete Sandwich Panels for blast protection applications. In: 15th International symposium on interaction of the effects of munitions with structures (ISIEMS), Potsdam, Germany; 2013.
– volume: 15
  start-page: 147
  year: 1997
  end-page: 181
  ident: b0115
  article-title: Materials research on EPS20 and EPS15 under representative conditions in pavement structures
  publication-title: Geotext Geomembr
– reference: Nagy A, Ko W, Lindholm US. Mechanical behavior of foamed materials under dynamic compression. DTIC document; 1973.
– volume: 21
  start-page: 369
  year: 1998
  end-page: 386
  ident: b0165
  article-title: Constitutive modeling of polymeric foam material subjected to dynamic crash loading
  publication-title: Int J Impact Eng
– year: 2003
  ident: b0200
  article-title: Energy absorption of structures and materials
– volume: 13
  start-page: 263
  year: 1994
  end-page: 280
  ident: b0015
  article-title: Expanded polystyrene (EPS) geofoam: an introduction to material behavior
  publication-title: Geotext Geomembr
– volume: 23
  start-page: 1
  year: 1975
  end-page: 19
  ident: b0175
  article-title: Two-dimensional analysis of the split hopkinson pressure bar system
  publication-title: J Mech Phys Solids
– ident: 10.1016/j.matdes.2014.12.024_b0120
– volume: 25
  start-page: 455
  issue: 5
  year: 2001
  ident: 10.1016/j.matdes.2014.12.024_b0130
  article-title: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(00)00060-9
– volume: 60
  start-page: 409
  year: 2014
  ident: 10.1016/j.matdes.2014.12.024_b0010
  article-title: Experimental and numerical study of composite lightweight structural insulated panel with expanded polystyrene core against windborne debris impacts
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2014.04.038
– ident: 10.1016/j.matdes.2014.12.024_b0070
  doi: 10.4271/2007-01-0987
– volume: 23
  start-page: 1
  issue: 1
  year: 1975
  ident: 10.1016/j.matdes.2014.12.024_b0175
  article-title: Two-dimensional analysis of the split hopkinson pressure bar system
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(75)90008-3
– start-page: 68
  year: 2015
  ident: 10.1016/j.matdes.2014.12.024_b0190
  article-title: A study of corrolink structural insulated panel (SIP) to windborne debris impacts
  publication-title: Key Eng Mater
– ident: 10.1016/j.matdes.2014.12.024_b0145
  doi: 10.2172/875626
– year: 2003
  ident: 10.1016/j.matdes.2014.12.024_b0200
– year: 1997
  ident: 10.1016/j.matdes.2014.12.024_b0155
– volume: 41
  start-page: 642
  year: 2013
  ident: 10.1016/j.matdes.2014.12.024_b0005
  article-title: Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and magnesium oxide board
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2012.12.058
– volume: 27
  start-page: 164
  issue: 2
  year: 2008
  ident: 10.1016/j.matdes.2014.12.024_b0080
  article-title: Dynamic tensile testing of plastic materials
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2007.09.010
– ident: 10.1016/j.matdes.2014.12.024_b0020
– volume: 41
  start-page: 678
  year: 2010
  ident: 10.1016/j.matdes.2014.12.024_b0050
  article-title: Compressive behaviour of closed-cell aluminium foams at high strain rates
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2010.07.005
– volume: 31
  start-page: 509
  issue: 5
  year: 2005
  ident: 10.1016/j.matdes.2014.12.024_b0060
  article-title: Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2004.02.003
– volume: 21
  start-page: 217
  issue: 2
  year: 2002
  ident: 10.1016/j.matdes.2014.12.024_b0100
  article-title: Deformation mechanisms and energy absorption of polystyrene foams for protective helmets
  publication-title: Polym Test
  doi: 10.1016/S0142-9418(01)00073-3
– volume: 25
  start-page: 731
  issue: 6
  year: 2006
  ident: 10.1016/j.matdes.2014.12.024_b0110
  article-title: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2006.05.005
– ident: 10.1016/j.matdes.2014.12.024_b0075
  doi: 10.1007/978-1-4614-4238-7_4
– ident: 10.1016/j.matdes.2014.12.024_b0160
  doi: 10.1177/0021955X7401000306
– ident: 10.1016/j.matdes.2014.12.024_b0085
– volume: 63
  start-page: 140
  year: 2014
  ident: 10.1016/j.matdes.2014.12.024_b0040
  article-title: Experimental investigations and numerical simulations of multi-arch double-layered panels under uniform impulsive loadings
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2013.08.012
– volume: 165
  start-page: 376
  issue: 2
  year: 1993
  ident: 10.1016/j.matdes.2014.12.024_b0055
  article-title: Strain rate effects on the compressive strength of shock-mitigating foams
  publication-title: J Sound Vibrat
  doi: 10.1006/jsvi.1993.1265
– volume: 53
  start-page: 830
  year: 2014
  ident: 10.1016/j.matdes.2014.12.024_b0065
  article-title: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.07.020
– volume: 21
  start-page: 369
  issue: 5
  year: 1998
  ident: 10.1016/j.matdes.2014.12.024_b0165
  article-title: Constitutive modeling of polymeric foam material subjected to dynamic crash loading
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(97)00087-0
– volume: 54
  start-page: 1068
  year: 2014
  ident: 10.1016/j.matdes.2014.12.024_b0140
  article-title: Evaluation of strength, deformability and failure mode of composite structural insulated panels
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.09.032
– volume: 24
  start-page: 425
  issue: 6
  year: 1991
  ident: 10.1016/j.matdes.2014.12.024_b0170
  article-title: Compressive behaviour of concrete at high strain rates
  publication-title: Mater Struct
  doi: 10.1007/BF02472016
– volume: 51
  start-page: 1469
  issue: 5
  year: 2003
  ident: 10.1016/j.matdes.2014.12.024_b0125
  article-title: Strain rate effects on sandwich core materials: an experimental and analytical investigation
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(02)00541-4
– volume: 43
  start-page: 85
  issue: 1
  year: 2007
  ident: 10.1016/j.matdes.2014.12.024_b0135
  article-title: Deformability and strength of expanded polystyrene (EPS) under short-term shear loading
  publication-title: Mech Compos Mater
  doi: 10.1007/s11029-007-0009-z
– ident: 10.1016/j.matdes.2014.12.024_b0180
– volume: 21
  start-page: 855
  issue: 10
  year: 1998
  ident: 10.1016/j.matdes.2014.12.024_b0025
  article-title: Low velocity perforation behaviour of polymer composite sandwich panels
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(98)00037-2
– volume: 13
  start-page: 263
  issue: 4
  year: 1994
  ident: 10.1016/j.matdes.2014.12.024_b0015
  article-title: Expanded polystyrene (EPS) geofoam: an introduction to material behavior
  publication-title: Geotext Geomembr
  doi: 10.1016/0266-1144(94)90048-5
– volume: 57
  start-page: 17
  year: 2013
  ident: 10.1016/j.matdes.2014.12.024_b0035
  article-title: Behaviour of luffa sponge material under dynamic loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2013.01.004
– volume: 14
  issue: 3
  year: 2008
  ident: 10.1016/j.matdes.2014.12.024_b0195
  article-title: Shear strength and modulus of elasticity of expanded polystyrene (EPS)
  publication-title: Mater Sci (Medžiagotyra)
– volume: 52
  start-page: 335
  year: 2001
  ident: 10.1016/j.matdes.2014.12.024_b0185
  article-title: Dynamic models for low-velocity impact damage of composite sandwich panels – Part A: Deformation
  publication-title: Compos Struct
  doi: 10.1016/S0263-8223(01)00026-5
– volume: 141–143
  start-page: 501
  year: 1998
  ident: 10.1016/j.matdes.2014.12.024_b0030
  article-title: Indentation, penetration and perforation of composite laminates and sandwich panels under quasi-static and projectile loading
  publication-title: Key Eng Mater
  doi: 10.4028/www.scientific.net/KEM.141-143.501
– volume: 15
  start-page: 147
  issue: 1
  year: 1997
  ident: 10.1016/j.matdes.2014.12.024_b0115
  article-title: Materials research on EPS20 and EPS15 under representative conditions in pavement structures
  publication-title: Geotext Geomembr
  doi: 10.1016/S0266-1144(97)00011-3
– ident: 10.1016/j.matdes.2014.12.024_b0090
– year: 1991
  ident: 10.1016/j.matdes.2014.12.024_b0095
SSID ssj0017112
Score 2.5267322
Snippet •Both static and dynamic tests on EPS as building material were carried out.•Dynamic tests in compression and tension were conducted by using INSTRON rig.•It...
Expanded polystyrene (EPS) is commonly used in a variety of applications because of its features of light weight, good thermal insulation, moisture resistance,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 170
SubjectTerms Construction material
Construction materials
Dynamic material properties
Dynamic mechanical properties
Dynamics
EPS
Expanded polystyrene
Experimental tests
Foams
Mathematical models
Panels
Polystyrene resins
Strain rate
Title Static and dynamic mechanical properties of expanded polystyrene
URI https://dx.doi.org/10.1016/j.matdes.2014.12.024
https://www.proquest.com/docview/1677999504
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze9EH8YrzRgRfy5omaZs3x3BMxb3oYG8hTVKYzLbsAvrvzellqCADH1uaUk7S73w5ly8I3Yahjq1vuEch_-82ENpT2gaetoQr5VwQLRVvnsfhaMIep3zaQoOmFwbKKmvsrzC9ROv6Tq-2Zq-YzXovsHtwhFfAFgGYww7qBFSEcRt1-g9Po_EmmRCRMulZh1pC0XTQlWVejhcaC7rdhJVxwYD95aF-YXXpgIYHaL9mjrhffdwhatnsCO190xM8RndAHWcaq8xgUx01j98t9PbCVOACAu8LUFDFeYrtRwEBZIOLfP65hGB0Zk_QZHj_Ohh59REJnnZMa-VZnxGmWJw6L6M0036gozjhljqD6DAwLI19SxOfx5on1hhQgItpwohwgMtoQE9RO8sze4YwF4kOlBGp0MqxFC0ADfyU-MJE2oqwi2hjFqlr_XA4xmIum0KxN1kZU4IxJQmkM2YXeZtRRaWfseX5qLG4_LEOpIP4LSNvmgmS7heBvIfKbL5eShJGkePB3Gfn_377Bdp1Vxyqzwi_RO3VYm2vHB1ZJdf1cvsCOYLdxA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7ofFAfxCvOawRfy5o2aZs3hyjzthc38C2kSQqT2RbdQP-9Ob0MFUTwtW1KOUm_8-VcvgCcR5FOrG-4F2L-320gtKe0DTxtKVfKuaCwUrx5GEaDMbt94k9LcNn2wmBZZYP9NaZXaN1c6TXW7JWTSe8Rdw-O8ArcIiBzWIYVVKdiHVjp39wNhotkQkyrpGcTaolE20FXlXk5Xmgs6nZTVsUFA_abh_qB1ZUDut6EjYY5kn79cVuwZPNtWP-iJ7gDF0gdJ5qo3BBTHzVPXiz29uJUkBID76-ooEqKjNj3EgPIhpTF9OMNg9G53YXx9dXocuA1RyR42jGtmWd9RpliSea8jNJM-4GOk5Tb0BlER4FhWeLbMPV5onlqjUEFuCRMGRUOcFkYhHvQyYvc7gPhItWBMiITWjmWogWigZ9RX5hYWxF1IWzNInWjH47HWExlWyj2LGtjSjSmpIF0xuyCtxhV1voZfzwftxaX39aBdBD_x8izdoKk-0Uw76FyW8zfJI3i2PFg7rODf7_9FFYHo4d7eX8zvDuENXeHYyUa5UfQmb3O7bGjJrP0pFl6n7UL4Ko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+and+dynamic+mechanical+properties+of+expanded+polystyrene&rft.jtitle=Materials+in+engineering&rft.au=Chen%2C+Wensu&rft.au=Hao%2C+Hong&rft.au=Hughes%2C+Dylan&rft.au=Shi%2C+Yanchao&rft.date=2015-03-15&rft.issn=0261-3069&rft.volume=69&rft.spage=170&rft.epage=180&rft_id=info:doi/10.1016%2Fj.matdes.2014.12.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2014_12_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon