Static and dynamic mechanical properties of expanded polystyrene
•Both static and dynamic tests on EPS as building material were carried out.•Dynamic tests in compression and tension were conducted by using INSTRON rig.•It is the first study to conduct the EPS dynamic tensile tests in literature.•Dynamic compressive test data at the strain rate of 0.1–3001/s are...
Saved in:
Published in | Materials in engineering Vol. 69; pp. 170 - 180 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0261-3069 |
DOI | 10.1016/j.matdes.2014.12.024 |
Cover
Loading…
Abstract | •Both static and dynamic tests on EPS as building material were carried out.•Dynamic tests in compression and tension were conducted by using INSTRON rig.•It is the first study to conduct the EPS dynamic tensile tests in literature.•Dynamic compressive test data at the strain rate of 0.1–3001/s are first reported.•Empirical formulae of DIFs for compressive and tensile strength are suggested.
Expanded polystyrene (EPS) is commonly used in a variety of applications because of its features of light weight, good thermal insulation, moisture resistance, durability, acoustic absorption and low thermal conductivity. It has been increasingly used in building constructions as core material of structural insulated panels (SIP). Some of those structures during their service life may be subjected to dynamic loads such as accidental or hostile explosion loads and windborne debris impacts. Understanding the dynamic material properties of EPS is essential for reliable predictions of the performances of the structural insulated panels with EPS foam core material. This paper presents static and dynamic compressive and tensile test data of EPS with density 13.5kg/m3 and 28kg/m3 at different strain rates. The dynamic strength, Young’s modulus and energy absorption capacities of the two EPS foams at different strain rates are obtained and presented in the paper. Based on the testing data, some empirical relations are derived, which can be used to model EPS properties in numerical simulations of dynamic responses of structural insulated panels with EPS foam core subjected to impact and blast loads. |
---|---|
AbstractList | Expanded polystyrene (EPS) is commonly used in a variety of applications because of its features of light weight, good thermal insulation, moisture resistance, durability, acoustic absorption and low thermal conductivity. It has been increasingly used in building constructions as core material of structural insulated panels (SIP). Some of those structures during their service life may be subjected to dynamic loads such as accidental or hostile explosion loads and windborne debris impacts. Understanding the dynamic material properties of EPS is essential for reliable predictions of the performances of the structural insulated panels with EPS foam core material. This paper presents static and dynamic compressive and tensile test data of EPS with density 13.5kg/m3 and 28kg/m3 at different strain rates. The dynamic strength, Young's modulus and energy absorption capacities of the two EPS foams at different strain rates are obtained and presented in the paper. Based on the testing data, some empirical relations are derived, which can be used to model EPS properties in numerical simulations of dynamic responses of structural insulated panels with EPS foam core subjected to impact and blast loads. •Both static and dynamic tests on EPS as building material were carried out.•Dynamic tests in compression and tension were conducted by using INSTRON rig.•It is the first study to conduct the EPS dynamic tensile tests in literature.•Dynamic compressive test data at the strain rate of 0.1–3001/s are first reported.•Empirical formulae of DIFs for compressive and tensile strength are suggested. Expanded polystyrene (EPS) is commonly used in a variety of applications because of its features of light weight, good thermal insulation, moisture resistance, durability, acoustic absorption and low thermal conductivity. It has been increasingly used in building constructions as core material of structural insulated panels (SIP). Some of those structures during their service life may be subjected to dynamic loads such as accidental or hostile explosion loads and windborne debris impacts. Understanding the dynamic material properties of EPS is essential for reliable predictions of the performances of the structural insulated panels with EPS foam core material. This paper presents static and dynamic compressive and tensile test data of EPS with density 13.5kg/m3 and 28kg/m3 at different strain rates. The dynamic strength, Young’s modulus and energy absorption capacities of the two EPS foams at different strain rates are obtained and presented in the paper. Based on the testing data, some empirical relations are derived, which can be used to model EPS properties in numerical simulations of dynamic responses of structural insulated panels with EPS foam core subjected to impact and blast loads. |
Author | Chen, Wensu Hughes, Dylan Cui, Jian Li, Zhong-Xian Hao, Hong Shi, Yanchao |
Author_xml | – sequence: 1 givenname: Wensu surname: Chen fullname: Chen, Wensu email: wensu.chen@curtin.edu.au, wensu.chen@hotmail.com organization: Tianjin University and Curtin University Joint Research Center of Structure Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia – sequence: 2 givenname: Hong surname: Hao fullname: Hao, Hong organization: Tianjin University and Curtin University Joint Research Center of Structure Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia – sequence: 3 givenname: Dylan surname: Hughes fullname: Hughes, Dylan organization: School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia – sequence: 4 givenname: Yanchao surname: Shi fullname: Shi, Yanchao organization: Tianjin University and Curtin University Joint Research Center of Structure Monitoring and Protection, School of Civil Engineering, Tianjin University, China – sequence: 5 givenname: Jian surname: Cui fullname: Cui, Jian organization: Tianjin University and Curtin University Joint Research Center of Structure Monitoring and Protection, School of Civil Engineering, Tianjin University, China – sequence: 6 givenname: Zhong-Xian surname: Li fullname: Li, Zhong-Xian organization: Tianjin University and Curtin University Joint Research Center of Structure Monitoring and Protection, School of Civil Engineering, Tianjin University, China |
BookMark | eNqFkD1PwzAQQD0UiRb4BwwZWRrOjvPFgEAVX1IlBmC2HPsiXCVOsF1E_j2uwsQA093w3un0VmRhB4uEnFNIKdDicpf2Mmj0KQPKU8pSYHxBlsAKus6gqI_JyvsdAC0pZUty8xJkMCqRVid6srKPe4_qXVqjZJeMbhjRBYM-GdoEv8bIoU7GoZt8mBxaPCVHrew8nv3ME_J2f_e6eVxvnx-eNrfbteKQhzUCp1zyqmUVl4orYKqsmhwzgEoVTPO2AswayCuVN6g1UFpWWcNpjRHPWHZCLua78aWPPfogeuMVdp20OOy9oEVZ1nWdA48on1HlBu8dtmJ0ppduEhTEIZLYiTmSOEQSlIkYKWpXvzRlDnEGG5w03X_y9SxjbPBp0AmvDFqF2jhUQejB_H3gG2u2iYY |
CitedBy_id | crossref_primary_10_1016_j_jcomc_2023_100418 crossref_primary_10_1016_j_polymertesting_2016_04_018 crossref_primary_10_3389_fmars_2021_817707 crossref_primary_10_1080_10255842_2019_1709451 crossref_primary_10_1016_j_dibe_2023_100188 crossref_primary_10_1061__ASCE_MT_1943_5533_0002172 crossref_primary_10_2478_sjce_2023_0020 crossref_primary_10_1039_C9DT00113A crossref_primary_10_1016_j_conbuildmat_2018_07_026 crossref_primary_10_1016_j_compositesb_2019_107032 crossref_primary_10_1016_j_istruc_2019_10_019 crossref_primary_10_1051_e3sconf_201912807006 crossref_primary_10_1061_JMCEE7_MTENG_16138 crossref_primary_10_18596_jotcsa_547471 crossref_primary_10_48175_IJARSCT_8889 crossref_primary_10_1680_jgein_21_00061 crossref_primary_10_1016_j_matdes_2020_108728 crossref_primary_10_1061__ASCE_ST_1943_541X_0003416 crossref_primary_10_3390_ma16041723 crossref_primary_10_3390_buildings10090155 crossref_primary_10_1016_j_ijimpeng_2020_103758 crossref_primary_10_1016_j_cemconres_2022_106825 crossref_primary_10_1016_j_ijmecsci_2021_106750 crossref_primary_10_21923_jesd_1049392 crossref_primary_10_59382_pro_intl_con_ibst_2023_ses3_12 crossref_primary_10_1016_j_compstruct_2018_05_109 crossref_primary_10_1007_s10706_020_01252_2 crossref_primary_10_3390_app6050120 crossref_primary_10_1016_j_conbuildmat_2016_03_190 crossref_primary_10_1088_1755_1315_795_1_012007 crossref_primary_10_1007_s40996_024_01416_7 crossref_primary_10_3390_aerospace11120977 crossref_primary_10_1515_rams_2021_0020 crossref_primary_10_1007_s10924_023_03181_6 crossref_primary_10_1016_j_conbuildmat_2019_07_310 crossref_primary_10_1016_j_conbuildmat_2018_05_142 crossref_primary_10_3390_ma13102371 crossref_primary_10_1016_j_compstruct_2017_02_097 crossref_primary_10_1016_j_ijimpeng_2019_103341 crossref_primary_10_1080_15376494_2022_2081749 crossref_primary_10_3390_pr11010012 crossref_primary_10_1007_s11029_024_10185_3 crossref_primary_10_1016_j_csite_2018_05_008 crossref_primary_10_1016_j_cscm_2022_e01147 crossref_primary_10_1021_acs_macromol_1c02332 crossref_primary_10_1515_hf_2021_0004 crossref_primary_10_1016_j_supflu_2019_03_022 crossref_primary_10_1016_j_ijimpeng_2022_104189 crossref_primary_10_1016_j_ijmecsci_2019_105030 crossref_primary_10_1016_j_conbuildmat_2023_131886 crossref_primary_10_1007_s10518_022_01412_0 crossref_primary_10_1021_acsomega_9b00321 crossref_primary_10_1016_j_compositesb_2019_107410 crossref_primary_10_1016_j_tust_2021_104186 crossref_primary_10_1016_j_compositesb_2018_05_057 crossref_primary_10_1016_j_conbuildmat_2020_119167 crossref_primary_10_1177_0021955X20965216 crossref_primary_10_1016_j_ijoes_2023_100383 crossref_primary_10_1177_0021955X20965215 crossref_primary_10_1016_j_memsci_2018_08_069 crossref_primary_10_1016_j_polymdegradstab_2022_110079 crossref_primary_10_1016_j_matdes_2015_04_014 crossref_primary_10_1002_aic_18499 crossref_primary_10_1016_j_nxsust_2024_100063 crossref_primary_10_1016_j_mtcomm_2018_07_001 crossref_primary_10_1021_acssuschemeng_2c01314 crossref_primary_10_1061__ASCE_MT_1943_5533_0003615 crossref_primary_10_56958_jesi_2018_3_2_93 crossref_primary_10_1016_j_jcsr_2021_106700 crossref_primary_10_1002_app_55455 crossref_primary_10_3139_120_111363 crossref_primary_10_1016_j_ijimpeng_2017_04_016 crossref_primary_10_1016_j_jmrt_2024_08_003 crossref_primary_10_1177_0021955X231224769 crossref_primary_10_1016_j_cemconcomp_2016_06_013 crossref_primary_10_4028_www_scientific_net_MSF_1048_387 crossref_primary_10_1002_pen_25502 crossref_primary_10_1007_s10965_021_02438_9 crossref_primary_10_1177_1464420718798168 crossref_primary_10_3390_polym16070911 crossref_primary_10_1016_j_compstruct_2017_11_007 crossref_primary_10_1016_j_jmrt_2019_06_046 crossref_primary_10_1016_j_mtcomm_2023_107653 crossref_primary_10_1016_j_jclepro_2019_06_319 crossref_primary_10_1007_s10853_023_08441_3 crossref_primary_10_1007_s11629_023_8403_0 crossref_primary_10_1016_j_polymertesting_2016_08_005 crossref_primary_10_1021_acsaenm_4c00263 crossref_primary_10_1051_epjconf_201818301009 crossref_primary_10_1016_j_asej_2022_101722 crossref_primary_10_1016_j_ijmecsci_2019_105039 crossref_primary_10_3390_su12093731 crossref_primary_10_1088_1755_1315_765_1_012101 crossref_primary_10_1016_j_ijimpeng_2021_104088 crossref_primary_10_1080_15376494_2020_1842948 crossref_primary_10_1016_j_jmrt_2025_03_135 crossref_primary_10_1680_jgein_22_00363 crossref_primary_10_1155_2016_8301517 crossref_primary_10_1142_S0219455418500888 crossref_primary_10_1016_j_engstruct_2018_09_073 crossref_primary_10_1007_s10518_022_01497_7 crossref_primary_10_1080_10889868_2024_2355187 crossref_primary_10_18311_jmmf_2022_31976 crossref_primary_10_3390_polym14132529 crossref_primary_10_1016_j_matdes_2016_03_080 crossref_primary_10_1007_s00226_020_01254_6 crossref_primary_10_1016_j_dt_2024_07_006 crossref_primary_10_1177_0731684416649787 crossref_primary_10_1103_PhysRevE_109_044901 crossref_primary_10_1515_epoly_2019_0036 crossref_primary_10_5030_jcigsjournal_35_103 crossref_primary_10_1016_j_matdes_2015_10_044 crossref_primary_10_1016_j_matdes_2022_111527 crossref_primary_10_1016_j_jmrt_2023_08_001 crossref_primary_10_1016_j_euromechsol_2023_105212 crossref_primary_10_1016_j_compositesb_2022_110439 crossref_primary_10_1177_1099636220961756 crossref_primary_10_1016_j_chemosphere_2022_135236 crossref_primary_10_1002_adem_202000794 crossref_primary_10_1016_j_conbuildmat_2025_139864 crossref_primary_10_1080_15376494_2022_2092797 crossref_primary_10_3390_ma16093530 crossref_primary_10_1007_s10570_023_05111_0 crossref_primary_10_1016_j_conbuildmat_2021_124258 crossref_primary_10_1016_j_eurpolymj_2018_04_002 crossref_primary_10_1021_acsabm_9b01047 crossref_primary_10_1002_jccs_202300220 crossref_primary_10_1016_j_ijadhadh_2020_102569 crossref_primary_10_1016_j_indcrop_2022_115288 crossref_primary_10_1016_j_asoc_2020_106632 crossref_primary_10_1016_j_trgeo_2021_100702 crossref_primary_10_3390_polym13193283 crossref_primary_10_1016_j_conbuildmat_2021_124310 crossref_primary_10_1021_acsbiomaterials_4c01986 crossref_primary_10_1177_0954406220971667 crossref_primary_10_1016_j_polymer_2020_122940 crossref_primary_10_3390_app9204289 crossref_primary_10_1016_j_geotexmem_2024_10_004 crossref_primary_10_1016_j_rineng_2024_102685 crossref_primary_10_3390_ma15196921 crossref_primary_10_1016_j_tws_2019_106361 crossref_primary_10_1002_app_44423 crossref_primary_10_1016_j_ijmecsci_2018_06_014 crossref_primary_10_1177_1369433217733762 crossref_primary_10_3390_polym15051267 crossref_primary_10_1016_j_ijmecsci_2018_06_015 crossref_primary_10_1016_j_jclepro_2022_132919 crossref_primary_10_1016_j_matpr_2019_03_113 crossref_primary_10_1016_j_clay_2017_06_010 crossref_primary_10_1016_j_conbuildmat_2020_118434 crossref_primary_10_3390_su14095521 crossref_primary_10_1002_app_49558 crossref_primary_10_1016_j_conbuildmat_2019_02_012 crossref_primary_10_1016_j_fpsl_2022_100908 crossref_primary_10_21833_ijaas_2017_010_007 crossref_primary_10_1016_j_geotexmem_2022_03_009 crossref_primary_10_1007_s41062_024_01454_0 crossref_primary_10_1016_j_jobe_2025_111890 crossref_primary_10_1590_s1983_41952025000800012 crossref_primary_10_3390_app10249061 crossref_primary_10_1016_j_conbuildmat_2017_03_074 crossref_primary_10_1016_j_diamond_2024_111167 crossref_primary_10_1016_j_ijsolstr_2020_07_007 crossref_primary_10_1038_s41598_024_80490_3 crossref_primary_10_1016_j_jclepro_2024_141304 crossref_primary_10_5937_fme2104962C crossref_primary_10_1016_j_ijimpeng_2023_104676 crossref_primary_10_1016_j_ijimpeng_2024_104972 crossref_primary_10_1177_2041419617719295 crossref_primary_10_1007_s12046_022_02028_5 crossref_primary_10_1016_j_compositesa_2024_108515 crossref_primary_10_1016_j_cscm_2022_e01809 crossref_primary_10_1016_j_tust_2023_105261 crossref_primary_10_1016_j_compstruct_2020_112025 crossref_primary_10_1016_j_geotexmem_2020_09_004 crossref_primary_10_1007_s00107_020_01625_7 crossref_primary_10_1016_j_compositesb_2023_110513 crossref_primary_10_3390_ma16216886 crossref_primary_10_3390_buildings14092928 crossref_primary_10_1016_j_applthermaleng_2025_126129 crossref_primary_10_1016_j_compositesb_2017_05_069 crossref_primary_10_3390_polym11060985 crossref_primary_10_1016_j_colsurfa_2017_03_049 crossref_primary_10_1007_s10854_020_04223_8 crossref_primary_10_1016_j_compositesb_2021_108806 crossref_primary_10_1016_j_ast_2024_109171 |
Cites_doi | 10.1016/S0734-743X(00)00060-9 10.1016/j.matdes.2014.04.038 10.4271/2007-01-0987 10.1016/0022-5096(75)90008-3 10.2172/875626 10.1016/j.conbuildmat.2012.12.058 10.1016/j.polymertesting.2007.09.010 10.1016/j.compositesb.2010.07.005 10.1016/j.ijimpeng.2004.02.003 10.1016/S0142-9418(01)00073-3 10.1016/j.polymertesting.2006.05.005 10.1007/978-1-4614-4238-7_4 10.1177/0021955X7401000306 10.1016/j.ijimpeng.2013.08.012 10.1006/jsvi.1993.1265 10.1016/j.matdes.2013.07.020 10.1016/S0734-743X(97)00087-0 10.1016/j.matdes.2013.09.032 10.1007/BF02472016 10.1016/S1359-6454(02)00541-4 10.1007/s11029-007-0009-z 10.1016/S0734-743X(98)00037-2 10.1016/0266-1144(94)90048-5 10.1016/j.ijimpeng.2013.01.004 10.1016/S0263-8223(01)00026-5 10.4028/www.scientific.net/KEM.141-143.501 10.1016/S0266-1144(97)00011-3 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.matdes.2014.12.024 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 180 |
ExternalDocumentID | 10_1016_j_matdes_2014_12_024 S0261306914010085 |
GroupedDBID | -~X 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAKOC AALRI AAOAW AAXUO ABMAC ABXRA ABYKQ ACDAQ ACRLP ADTZH AEBSH AECPX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EFJIC EO8 EO9 EP2 EP3 FDB FIRID FYGXN M24 M41 OAUVE Q38 SDF SPC SSM SST SSZ T5K 4G. 5VS 7-5 AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU AZFZN CITATION FGOYB G-2 IHE J1W R2- ROL SMS SSH 7SR 8BQ 8FD AFXIZ JG9 |
ID | FETCH-LOGICAL-c405t-e0414a48f284ac4c02c78b5e3008c62d4f80e3b058c5bedd011783b419eac4323 |
IEDL.DBID | AIKHN |
ISSN | 0261-3069 |
IngestDate | Thu Jul 10 18:15:52 EDT 2025 Tue Jul 01 04:23:15 EDT 2025 Thu Apr 24 23:03:03 EDT 2025 Fri Feb 23 02:25:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic material properties Expanded polystyrene Experimental tests Construction material |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-e0414a48f284ac4c02c78b5e3008c62d4f80e3b058c5bedd011783b419eac4323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1677999504 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1677999504 crossref_primary_10_1016_j_matdes_2014_12_024 crossref_citationtrail_10_1016_j_matdes_2014_12_024 elsevier_sciencedirect_doi_10_1016_j_matdes_2014_12_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-15 |
PublicationDateYYYYMMDD | 2015-03-15 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Materials in engineering |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mohotti, Ali, Ngo, Lu, Mendis (b0065) 2014; 53 Shen, Xie, Huang, Zhou, Ruan (b0035) 2013; 57 Bischoff, Perry (b0170) 1991; 24 Tedesco, Ross, Kuennen (b0055) 1993; 165 Mines, Worrall, Gibson (b0025) 1998; 21 Chakravarty, Mahfuz, Saha, Jeelani (b0125) 2003; 51 Horvath (b0015) 1994; 13 AS 2498.4-1993. Methods of testing rigid cellular plastics: determination of cross-breaking strength. Standard Australian. Song, Chen, Dou, Winfree, Kang (b0060) 2005; 31 Di Landro, Sala, Olivieri (b0100) 2002; 21 Eriksson, Trank (b0095) 1991 Properties, performance and design fundamentals of expanded polystyrene packaging. Alliance of foam packaging recyclers; 2000. Chen, Hao (b0190) 2015 Duškov (b0115) 1997; 15 Ouellet, Cronin, Worswick (b0110) 2006; 25 Wood P, Schley C, Buckley M, Smith J. An improved test procedure for measurement of dynamic tensile mechanical properties of automotive sheet steels. SAE technical paper; 2007. Vėjelis, Gnip, Vaitkus, Keršulis (b0195) 2008; 14 1/s. Sandia National Laboratories Report, SAND2005-5678; 2005. p. 1–16. Lu, Yu (b0200) 2003 Nagy A, Ko W, Lindholm US. Mechanical behavior of foamed materials under dynamic compression. DTIC document; 1973. Wen, Reddy, Reid, Soden (b0030) 1998; 141–143 Avalle, Belingardi, Montanini (b0130) 2001; 25 Xiao (b0080) 2008; 27 Boyce BL, Crenshaw TB. Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500 AS 2498.3-1993. Methods of testing rigid cellular plastics: determination of compressive stress. Standard Australian. Chen, Hao (b0010) 2014; 60 Gibson, Ashby (b0155) 1997 Bertholf, Karnes (b0175) 1975; 23 Nickerson J, Trasborg P, Newberry C, Naito C, Davidson J. Use of Foam-Insulated Concrete Sandwich Panels for blast protection applications. In: 15th International symposium on interaction of the effects of munitions with structures (ISIEMS), Potsdam, Germany; 2013. Chen, Hao (b0040) 2014; 63 Fatt, Park (b0185) 2001; 52 Croop B, Lobo H. Selecting material models for the simulation of foams in LS-DYNA. In: Proceedings of 7th European LS-DYNA conference, Salzburg; 2009. Manalo (b0005) 2013; 41 Shen, Lu, Ruan (b0050) 2010; 41 Smakosz, Tejchman (b0140) 2014; 54 Ouellet S, Cronin D, Moulton J, Petel O. High rate characterization of polymeric closed-cell foams: challenges related to size effects. dynamic behavior of materials, volume 1, In: Proceedings of the 2012 annual conference on experimental and applied mechanics, conference proceedings of the society for experimental mechanics series; 2013. Zhang, Kikuchi, Li, Yee, Nusholtz (b0165) 1998; 21 Gnip, Veyelis, Kersulis, Vaitkus (b0135) 2007; 43 Tedesco (10.1016/j.matdes.2014.12.024_b0055) 1993; 165 Manalo (10.1016/j.matdes.2014.12.024_b0005) 2013; 41 Vėjelis (10.1016/j.matdes.2014.12.024_b0195) 2008; 14 10.1016/j.matdes.2014.12.024_b0145 10.1016/j.matdes.2014.12.024_b0120 10.1016/j.matdes.2014.12.024_b0020 10.1016/j.matdes.2014.12.024_b0085 10.1016/j.matdes.2014.12.024_b0160 Bischoff (10.1016/j.matdes.2014.12.024_b0170) 1991; 24 10.1016/j.matdes.2014.12.024_b0180 Chen (10.1016/j.matdes.2014.12.024_b0040) 2014; 63 Shen (10.1016/j.matdes.2014.12.024_b0050) 2010; 41 Fatt (10.1016/j.matdes.2014.12.024_b0185) 2001; 52 Bertholf (10.1016/j.matdes.2014.12.024_b0175) 1975; 23 Chen (10.1016/j.matdes.2014.12.024_b0010) 2014; 60 Lu (10.1016/j.matdes.2014.12.024_b0200) 2003 Wen (10.1016/j.matdes.2014.12.024_b0030) 1998; 141–143 Gnip (10.1016/j.matdes.2014.12.024_b0135) 2007; 43 Shen (10.1016/j.matdes.2014.12.024_b0035) 2013; 57 Chen (10.1016/j.matdes.2014.12.024_b0190) 2015 Song (10.1016/j.matdes.2014.12.024_b0060) 2005; 31 Xiao (10.1016/j.matdes.2014.12.024_b0080) 2008; 27 Horvath (10.1016/j.matdes.2014.12.024_b0015) 1994; 13 10.1016/j.matdes.2014.12.024_b0075 10.1016/j.matdes.2014.12.024_b0070 Mohotti (10.1016/j.matdes.2014.12.024_b0065) 2014; 53 10.1016/j.matdes.2014.12.024_b0090 Eriksson (10.1016/j.matdes.2014.12.024_b0095) 1991 Avalle (10.1016/j.matdes.2014.12.024_b0130) 2001; 25 Smakosz (10.1016/j.matdes.2014.12.024_b0140) 2014; 54 Duškov (10.1016/j.matdes.2014.12.024_b0115) 1997; 15 Gibson (10.1016/j.matdes.2014.12.024_b0155) 1997 Di Landro (10.1016/j.matdes.2014.12.024_b0100) 2002; 21 Chakravarty (10.1016/j.matdes.2014.12.024_b0125) 2003; 51 Zhang (10.1016/j.matdes.2014.12.024_b0165) 1998; 21 Mines (10.1016/j.matdes.2014.12.024_b0025) 1998; 21 Ouellet (10.1016/j.matdes.2014.12.024_b0110) 2006; 25 |
References_xml | – reference: 1/s. Sandia National Laboratories Report, SAND2005-5678; 2005. p. 1–16. – volume: 27 start-page: 164 year: 2008 end-page: 178 ident: b0080 article-title: Dynamic tensile testing of plastic materials publication-title: Polym Test – volume: 25 start-page: 455 year: 2001 end-page: 472 ident: b0130 article-title: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram publication-title: Int J Impact Eng – reference: Boyce BL, Crenshaw TB. Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500 – volume: 54 start-page: 1068 year: 2014 end-page: 1082 ident: b0140 article-title: Evaluation of strength, deformability and failure mode of composite structural insulated panels publication-title: Mater Des – volume: 52 start-page: 335 year: 2001 end-page: 351 ident: b0185 article-title: Dynamic models for low-velocity impact damage of composite sandwich panels – Part A: Deformation publication-title: Compos Struct – reference: Wood P, Schley C, Buckley M, Smith J. An improved test procedure for measurement of dynamic tensile mechanical properties of automotive sheet steels. SAE technical paper; 2007. – volume: 21 start-page: 855 year: 1998 end-page: 879 ident: b0025 article-title: Low velocity perforation behaviour of polymer composite sandwich panels publication-title: Int J Impact Eng – volume: 53 start-page: 830 year: 2014 end-page: 837 ident: b0065 article-title: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading publication-title: Mater Des – volume: 60 start-page: 409 year: 2014 end-page: 423 ident: b0010 article-title: Experimental and numerical study of composite lightweight structural insulated panel with expanded polystyrene core against windborne debris impacts publication-title: Mater Des – year: 1991 ident: b0095 article-title: Properties of expanded polystyrene, laboratory experiments – volume: 25 start-page: 731 year: 2006 end-page: 743 ident: b0110 article-title: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions publication-title: Polym Test – volume: 21 start-page: 217 year: 2002 end-page: 228 ident: b0100 article-title: Deformation mechanisms and energy absorption of polystyrene foams for protective helmets publication-title: Polym Test – reference: Croop B, Lobo H. Selecting material models for the simulation of foams in LS-DYNA. In: Proceedings of 7th European LS-DYNA conference, Salzburg; 2009. – reference: Ouellet S, Cronin D, Moulton J, Petel O. High rate characterization of polymeric closed-cell foams: challenges related to size effects. dynamic behavior of materials, volume 1, In: Proceedings of the 2012 annual conference on experimental and applied mechanics, conference proceedings of the society for experimental mechanics series; 2013. – volume: 63 start-page: 140 year: 2014 end-page: 157 ident: b0040 article-title: Experimental investigations and numerical simulations of multi-arch double-layered panels under uniform impulsive loadings publication-title: Int J Impact Eng – reference: AS 2498.3-1993. Methods of testing rigid cellular plastics: determination of compressive stress. Standard Australian. – volume: 43 start-page: 85 year: 2007 end-page: 94 ident: b0135 article-title: Deformability and strength of expanded polystyrene (EPS) under short-term shear loading publication-title: Mech Compos Mater – start-page: 68 year: 2015 end-page: 73 ident: b0190 article-title: A study of corrolink structural insulated panel (SIP) to windborne debris impacts publication-title: Key Eng Mater – volume: 14 year: 2008 ident: b0195 article-title: Shear strength and modulus of elasticity of expanded polystyrene (EPS) publication-title: Mater Sci (Medžiagotyra) – volume: 24 start-page: 425 year: 1991 end-page: 450 ident: b0170 article-title: Compressive behaviour of concrete at high strain rates publication-title: Mater Struct – volume: 141–143 start-page: 501 year: 1998 end-page: 552 ident: b0030 article-title: Indentation, penetration and perforation of composite laminates and sandwich panels under quasi-static and projectile loading publication-title: Key Eng Mater – year: 1997 ident: b0155 article-title: Cellular solids: structure and properties – volume: 41 start-page: 642 year: 2013 end-page: 653 ident: b0005 article-title: Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and magnesium oxide board publication-title: Constr Build Mater – volume: 57 start-page: 17 year: 2013 end-page: 26 ident: b0035 article-title: Behaviour of luffa sponge material under dynamic loading publication-title: Int J Impact Eng – reference: AS 2498.4-1993. Methods of testing rigid cellular plastics: determination of cross-breaking strength. Standard Australian. – volume: 165 start-page: 376 year: 1993 end-page: 384 ident: b0055 article-title: Strain rate effects on the compressive strength of shock-mitigating foams publication-title: J Sound Vibrat – volume: 31 start-page: 509 year: 2005 end-page: 521 ident: b0060 article-title: Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam publication-title: Int J Impact Eng – volume: 41 start-page: 678 year: 2010 end-page: 685 ident: b0050 article-title: Compressive behaviour of closed-cell aluminium foams at high strain rates publication-title: Compos Part B: Eng – volume: 51 start-page: 1469 year: 2003 end-page: 1479 ident: b0125 article-title: Strain rate effects on sandwich core materials: an experimental and analytical investigation publication-title: Acta Mater – reference: Properties, performance and design fundamentals of expanded polystyrene packaging. Alliance of foam packaging recyclers; 2000. – reference: Nickerson J, Trasborg P, Newberry C, Naito C, Davidson J. Use of Foam-Insulated Concrete Sandwich Panels for blast protection applications. In: 15th International symposium on interaction of the effects of munitions with structures (ISIEMS), Potsdam, Germany; 2013. – volume: 15 start-page: 147 year: 1997 end-page: 181 ident: b0115 article-title: Materials research on EPS20 and EPS15 under representative conditions in pavement structures publication-title: Geotext Geomembr – reference: Nagy A, Ko W, Lindholm US. Mechanical behavior of foamed materials under dynamic compression. DTIC document; 1973. – volume: 21 start-page: 369 year: 1998 end-page: 386 ident: b0165 article-title: Constitutive modeling of polymeric foam material subjected to dynamic crash loading publication-title: Int J Impact Eng – year: 2003 ident: b0200 article-title: Energy absorption of structures and materials – volume: 13 start-page: 263 year: 1994 end-page: 280 ident: b0015 article-title: Expanded polystyrene (EPS) geofoam: an introduction to material behavior publication-title: Geotext Geomembr – volume: 23 start-page: 1 year: 1975 end-page: 19 ident: b0175 article-title: Two-dimensional analysis of the split hopkinson pressure bar system publication-title: J Mech Phys Solids – ident: 10.1016/j.matdes.2014.12.024_b0120 – volume: 25 start-page: 455 issue: 5 year: 2001 ident: 10.1016/j.matdes.2014.12.024_b0130 article-title: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(00)00060-9 – volume: 60 start-page: 409 year: 2014 ident: 10.1016/j.matdes.2014.12.024_b0010 article-title: Experimental and numerical study of composite lightweight structural insulated panel with expanded polystyrene core against windborne debris impacts publication-title: Mater Des doi: 10.1016/j.matdes.2014.04.038 – ident: 10.1016/j.matdes.2014.12.024_b0070 doi: 10.4271/2007-01-0987 – volume: 23 start-page: 1 issue: 1 year: 1975 ident: 10.1016/j.matdes.2014.12.024_b0175 article-title: Two-dimensional analysis of the split hopkinson pressure bar system publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(75)90008-3 – start-page: 68 year: 2015 ident: 10.1016/j.matdes.2014.12.024_b0190 article-title: A study of corrolink structural insulated panel (SIP) to windborne debris impacts publication-title: Key Eng Mater – ident: 10.1016/j.matdes.2014.12.024_b0145 doi: 10.2172/875626 – year: 2003 ident: 10.1016/j.matdes.2014.12.024_b0200 – year: 1997 ident: 10.1016/j.matdes.2014.12.024_b0155 – volume: 41 start-page: 642 year: 2013 ident: 10.1016/j.matdes.2014.12.024_b0005 article-title: Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and magnesium oxide board publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2012.12.058 – volume: 27 start-page: 164 issue: 2 year: 2008 ident: 10.1016/j.matdes.2014.12.024_b0080 article-title: Dynamic tensile testing of plastic materials publication-title: Polym Test doi: 10.1016/j.polymertesting.2007.09.010 – ident: 10.1016/j.matdes.2014.12.024_b0020 – volume: 41 start-page: 678 year: 2010 ident: 10.1016/j.matdes.2014.12.024_b0050 article-title: Compressive behaviour of closed-cell aluminium foams at high strain rates publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2010.07.005 – volume: 31 start-page: 509 issue: 5 year: 2005 ident: 10.1016/j.matdes.2014.12.024_b0060 article-title: Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2004.02.003 – volume: 21 start-page: 217 issue: 2 year: 2002 ident: 10.1016/j.matdes.2014.12.024_b0100 article-title: Deformation mechanisms and energy absorption of polystyrene foams for protective helmets publication-title: Polym Test doi: 10.1016/S0142-9418(01)00073-3 – volume: 25 start-page: 731 issue: 6 year: 2006 ident: 10.1016/j.matdes.2014.12.024_b0110 article-title: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions publication-title: Polym Test doi: 10.1016/j.polymertesting.2006.05.005 – ident: 10.1016/j.matdes.2014.12.024_b0075 doi: 10.1007/978-1-4614-4238-7_4 – ident: 10.1016/j.matdes.2014.12.024_b0160 doi: 10.1177/0021955X7401000306 – ident: 10.1016/j.matdes.2014.12.024_b0085 – volume: 63 start-page: 140 year: 2014 ident: 10.1016/j.matdes.2014.12.024_b0040 article-title: Experimental investigations and numerical simulations of multi-arch double-layered panels under uniform impulsive loadings publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.08.012 – volume: 165 start-page: 376 issue: 2 year: 1993 ident: 10.1016/j.matdes.2014.12.024_b0055 article-title: Strain rate effects on the compressive strength of shock-mitigating foams publication-title: J Sound Vibrat doi: 10.1006/jsvi.1993.1265 – volume: 53 start-page: 830 year: 2014 ident: 10.1016/j.matdes.2014.12.024_b0065 article-title: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading publication-title: Mater Des doi: 10.1016/j.matdes.2013.07.020 – volume: 21 start-page: 369 issue: 5 year: 1998 ident: 10.1016/j.matdes.2014.12.024_b0165 article-title: Constitutive modeling of polymeric foam material subjected to dynamic crash loading publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(97)00087-0 – volume: 54 start-page: 1068 year: 2014 ident: 10.1016/j.matdes.2014.12.024_b0140 article-title: Evaluation of strength, deformability and failure mode of composite structural insulated panels publication-title: Mater Des doi: 10.1016/j.matdes.2013.09.032 – volume: 24 start-page: 425 issue: 6 year: 1991 ident: 10.1016/j.matdes.2014.12.024_b0170 article-title: Compressive behaviour of concrete at high strain rates publication-title: Mater Struct doi: 10.1007/BF02472016 – volume: 51 start-page: 1469 issue: 5 year: 2003 ident: 10.1016/j.matdes.2014.12.024_b0125 article-title: Strain rate effects on sandwich core materials: an experimental and analytical investigation publication-title: Acta Mater doi: 10.1016/S1359-6454(02)00541-4 – volume: 43 start-page: 85 issue: 1 year: 2007 ident: 10.1016/j.matdes.2014.12.024_b0135 article-title: Deformability and strength of expanded polystyrene (EPS) under short-term shear loading publication-title: Mech Compos Mater doi: 10.1007/s11029-007-0009-z – ident: 10.1016/j.matdes.2014.12.024_b0180 – volume: 21 start-page: 855 issue: 10 year: 1998 ident: 10.1016/j.matdes.2014.12.024_b0025 article-title: Low velocity perforation behaviour of polymer composite sandwich panels publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(98)00037-2 – volume: 13 start-page: 263 issue: 4 year: 1994 ident: 10.1016/j.matdes.2014.12.024_b0015 article-title: Expanded polystyrene (EPS) geofoam: an introduction to material behavior publication-title: Geotext Geomembr doi: 10.1016/0266-1144(94)90048-5 – volume: 57 start-page: 17 year: 2013 ident: 10.1016/j.matdes.2014.12.024_b0035 article-title: Behaviour of luffa sponge material under dynamic loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.01.004 – volume: 14 issue: 3 year: 2008 ident: 10.1016/j.matdes.2014.12.024_b0195 article-title: Shear strength and modulus of elasticity of expanded polystyrene (EPS) publication-title: Mater Sci (Medžiagotyra) – volume: 52 start-page: 335 year: 2001 ident: 10.1016/j.matdes.2014.12.024_b0185 article-title: Dynamic models for low-velocity impact damage of composite sandwich panels – Part A: Deformation publication-title: Compos Struct doi: 10.1016/S0263-8223(01)00026-5 – volume: 141–143 start-page: 501 year: 1998 ident: 10.1016/j.matdes.2014.12.024_b0030 article-title: Indentation, penetration and perforation of composite laminates and sandwich panels under quasi-static and projectile loading publication-title: Key Eng Mater doi: 10.4028/www.scientific.net/KEM.141-143.501 – volume: 15 start-page: 147 issue: 1 year: 1997 ident: 10.1016/j.matdes.2014.12.024_b0115 article-title: Materials research on EPS20 and EPS15 under representative conditions in pavement structures publication-title: Geotext Geomembr doi: 10.1016/S0266-1144(97)00011-3 – ident: 10.1016/j.matdes.2014.12.024_b0090 – year: 1991 ident: 10.1016/j.matdes.2014.12.024_b0095 |
SSID | ssj0017112 |
Score | 2.5267322 |
Snippet | •Both static and dynamic tests on EPS as building material were carried out.•Dynamic tests in compression and tension were conducted by using INSTRON rig.•It... Expanded polystyrene (EPS) is commonly used in a variety of applications because of its features of light weight, good thermal insulation, moisture resistance,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 170 |
SubjectTerms | Construction material Construction materials Dynamic material properties Dynamic mechanical properties Dynamics EPS Expanded polystyrene Experimental tests Foams Mathematical models Panels Polystyrene resins Strain rate |
Title | Static and dynamic mechanical properties of expanded polystyrene |
URI | https://dx.doi.org/10.1016/j.matdes.2014.12.024 https://www.proquest.com/docview/1677999504 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze9EH8YrzRgRfy5omaZs3x3BMxb3oYG8hTVKYzLbsAvrvzellqCADH1uaUk7S73w5ly8I3Yahjq1vuEch_-82ENpT2gaetoQr5VwQLRVvnsfhaMIep3zaQoOmFwbKKmvsrzC9ROv6Tq-2Zq-YzXovsHtwhFfAFgGYww7qBFSEcRt1-g9Po_EmmRCRMulZh1pC0XTQlWVejhcaC7rdhJVxwYD95aF-YXXpgIYHaL9mjrhffdwhatnsCO190xM8RndAHWcaq8xgUx01j98t9PbCVOACAu8LUFDFeYrtRwEBZIOLfP65hGB0Zk_QZHj_Ohh59REJnnZMa-VZnxGmWJw6L6M0036gozjhljqD6DAwLI19SxOfx5on1hhQgItpwohwgMtoQE9RO8sze4YwF4kOlBGp0MqxFC0ADfyU-MJE2oqwi2hjFqlr_XA4xmIum0KxN1kZU4IxJQmkM2YXeZtRRaWfseX5qLG4_LEOpIP4LSNvmgmS7heBvIfKbL5eShJGkePB3Gfn_377Bdp1Vxyqzwi_RO3VYm2vHB1ZJdf1cvsCOYLdxA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7ofFAfxCvOawRfy5o2aZs3hyjzthc38C2kSQqT2RbdQP-9Ob0MFUTwtW1KOUm_8-VcvgCcR5FOrG-4F2L-320gtKe0DTxtKVfKuaCwUrx5GEaDMbt94k9LcNn2wmBZZYP9NaZXaN1c6TXW7JWTSe8Rdw-O8ArcIiBzWIYVVKdiHVjp39wNhotkQkyrpGcTaolE20FXlXk5Xmgs6nZTVsUFA_abh_qB1ZUDut6EjYY5kn79cVuwZPNtWP-iJ7gDF0gdJ5qo3BBTHzVPXiz29uJUkBID76-ooEqKjNj3EgPIhpTF9OMNg9G53YXx9dXocuA1RyR42jGtmWd9RpliSea8jNJM-4GOk5Tb0BlER4FhWeLbMPV5onlqjUEFuCRMGRUOcFkYhHvQyYvc7gPhItWBMiITWjmWogWigZ9RX5hYWxF1IWzNInWjH47HWExlWyj2LGtjSjSmpIF0xuyCtxhV1voZfzwftxaX39aBdBD_x8izdoKk-0Uw76FyW8zfJI3i2PFg7rODf7_9FFYHo4d7eX8zvDuENXeHYyUa5UfQmb3O7bGjJrP0pFl6n7UL4Ko |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+and+dynamic+mechanical+properties+of+expanded+polystyrene&rft.jtitle=Materials+in+engineering&rft.au=Chen%2C+Wensu&rft.au=Hao%2C+Hong&rft.au=Hughes%2C+Dylan&rft.au=Shi%2C+Yanchao&rft.date=2015-03-15&rft.issn=0261-3069&rft.volume=69&rft.spage=170&rft.epage=180&rft_id=info:doi/10.1016%2Fj.matdes.2014.12.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2014_12_024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon |