Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine max (L.) grown in copper, lead and zinc contaminated soils

There are few reports on the use of arbuscular mycorrhizal fungi (AMF) to promote growth and stress tolerance of soybean (Glycine max L.) in agricultural soils contaminated with heavy metals. The present study evaluated the role of AMF in promoting tolerance and growth, as well as uptake of heavy me...

Full description

Saved in:
Bibliographic Details
Published inRhizosphere Vol. 18; p. 100325
Main Authors Adeyemi, Nurudeen Olatunbosun, Atayese, Mufutau Olaoye, Sakariyawo, Olalekan Suleiman, Azeez, Jamiu Oladipupo, Abayomi Sobowale, Soremi Paul, Olubode, Adebanke, Mudathir, Ridwan, Adebayo, Rukayat, Adeoye, Samuel
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are few reports on the use of arbuscular mycorrhizal fungi (AMF) to promote growth and stress tolerance of soybean (Glycine max L.) in agricultural soils contaminated with heavy metals. The present study evaluated the role of AMF in promoting tolerance and growth, as well as uptake of heavy metals in shoots of soybean plants. Soybean plants were inoculated with AMF (Funneliformis mosseae) in a pot experiment polluted with different concentrations of heavy metals [copper (Cu), lead (Pb) and zinc (Zn)] as well as their combination. The tested AMF inoculum promoted the soybean growth and seed yield. Increased colonization of the soybean roots improved the soybean growth through increased phosphorus uptake and accumulation in the plant tissues by 68.8%. The results showed that soybean grown in the contaminated soils inoculated with AMF were more tolerant in alleviating the metals toxicity by retaining the heavy metals in the roots, thereby reducing translocation of Cu, Pb and Zn by 21.8, 57.6 and 67.3% respectively in the aerial part of the plant and improving the overall plant productivity by 59.1%. The findings provide evidence of the potential of AMF in phytoremediation of agricultural soils contaminated with toxic metals.
AbstractList There are few reports on the use of arbuscular mycorrhizal fungi (AMF) to promote growth and stress tolerance of soybean (Glycine max L.) in agricultural soils contaminated with heavy metals. The present study evaluated the role of AMF in promoting tolerance and growth, as well as uptake of heavy metals in shoots of soybean plants. Soybean plants were inoculated with AMF (Funneliformis mosseae) in a pot experiment polluted with different concentrations of heavy metals [copper (Cu), lead (Pb) and zinc (Zn)] as well as their combination. The tested AMF inoculum promoted the soybean growth and seed yield. Increased colonization of the soybean roots improved the soybean growth through increased phosphorus uptake and accumulation in the plant tissues by 68.8%. The results showed that soybean grown in the contaminated soils inoculated with AMF were more tolerant in alleviating the metals toxicity by retaining the heavy metals in the roots, thereby reducing translocation of Cu, Pb and Zn by 21.8, 57.6 and 67.3% respectively in the aerial part of the plant and improving the overall plant productivity by 59.1%. The findings provide evidence of the potential of AMF in phytoremediation of agricultural soils contaminated with toxic metals.
ArticleNumber 100325
Author Azeez, Jamiu Oladipupo
Adebayo, Rukayat
Mudathir, Ridwan
Atayese, Mufutau Olaoye
Olubode, Adebanke
Adeoye, Samuel
Adeyemi, Nurudeen Olatunbosun
Abayomi Sobowale, Soremi Paul
Sakariyawo, Olalekan Suleiman
Author_xml – sequence: 1
  givenname: Nurudeen Olatunbosun
  orcidid: 0000-0001-6341-775X
  surname: Adeyemi
  fullname: Adeyemi, Nurudeen Olatunbosun
  email: adeyemisworld@gmail.com, adeyemino@funaab.edu.ng
  organization: Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, P.M.B.2240, Alabata, Ogun State, Nigeria
– sequence: 2
  givenname: Mufutau Olaoye
  surname: Atayese
  fullname: Atayese, Mufutau Olaoye
  organization: Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, P.M.B.2240, Alabata, Ogun State, Nigeria
– sequence: 3
  givenname: Olalekan Suleiman
  surname: Sakariyawo
  fullname: Sakariyawo, Olalekan Suleiman
  organization: Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, P.M.B.2240, Alabata, Ogun State, Nigeria
– sequence: 4
  givenname: Jamiu Oladipupo
  surname: Azeez
  fullname: Azeez, Jamiu Oladipupo
  organization: Department of Soil Science and Land Management, Federal University of Agriculture, Abeokuta, P.M.B.2240, Alabata, Ogun State, Nigeria
– sequence: 5
  givenname: Soremi Paul
  surname: Abayomi Sobowale
  fullname: Abayomi Sobowale, Soremi Paul
  organization: Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, P.M.B.2240, Alabata, Ogun State, Nigeria
– sequence: 6
  givenname: Adebanke
  surname: Olubode
  fullname: Olubode, Adebanke
  organization: Department of Soil Science and Land Management, Federal University of Agriculture, Abeokuta, P.M.B.2240, Alabata, Ogun State, Nigeria
– sequence: 7
  givenname: Ridwan
  surname: Mudathir
  fullname: Mudathir, Ridwan
  organization: Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, P.M.B.2240, Alabata, Ogun State, Nigeria
– sequence: 8
  givenname: Rukayat
  surname: Adebayo
  fullname: Adebayo, Rukayat
  organization: Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, P.M.B.2240, Alabata, Ogun State, Nigeria
– sequence: 9
  givenname: Samuel
  surname: Adeoye
  fullname: Adeoye, Samuel
  organization: Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, P.M.B.2240, Alabata, Ogun State, Nigeria
BookMark eNqFUcGO0zAQtdAisSz7Bxx8XCRabCeuGw5IqxUsSJW4wNmaOBPqyrGDxy1kf4GfJiUcEAc4zejNe2-k956yi5giMvZcirUUcvPqsM57T-N-rYSSMyQqpR-xS1VrtVKy2V78sT9h10QHIYQ0m0pvqkv24zYEPHkoPkWeer5HOE18wAKBU8lIxNuJQ26P5I4BMh8ml_L88eFMmIbWJ_LEfeT3YXI-Ih_gO7_ZrV_wLzl9i-eLS-OI-SUPCB2H2PEHH92MxgKDj1Cw45R8oGfscQ-B8Pr3vGKf3739dPd-tft4_-HudrdytdBlhUIYUwvV9tpIoxrR6r7VrjEKGye2roG2NwKcUl2vwDSuaaHSYACF3EJnqit2s_iOOX09IhU7eHIYAkRMR7JKq7oSzVbWM_X1QnU5EWXsrfPlV1glgw9WCnsuwR7sUoI9l2CXEmZx_Zd4zH6APP1P9maR4ZzByWO25DxGh53P6Irtkv-3wU9oeqdN
CitedBy_id crossref_primary_10_1016_j_plaphy_2025_109488
crossref_primary_10_1080_01904167_2021_1994593
crossref_primary_10_3390_ijms23095031
crossref_primary_10_3390_biology11010041
crossref_primary_10_1016_j_ibiod_2024_105872
crossref_primary_10_1038_s41598_025_90595_y
crossref_primary_10_3390_plants11192554
crossref_primary_10_1007_s10646_021_02492_5
crossref_primary_10_1016_j_heliyon_2022_e08995
crossref_primary_10_1186_s12870_024_05359_z
crossref_primary_10_3389_fenvs_2024_1397850
crossref_primary_10_3389_fpls_2022_1052464
crossref_primary_10_1080_15226514_2023_2212792
crossref_primary_10_1016_j_rhisph_2023_100753
crossref_primary_10_1016_j_chemosphere_2021_132952
crossref_primary_10_1186_s12870_024_05330_y
crossref_primary_10_3390_f13071106
crossref_primary_10_3390_plants12030547
crossref_primary_10_1016_j_chemosphere_2024_141595
crossref_primary_10_1007_s00374_022_01683_4
crossref_primary_10_3390_su15054352
crossref_primary_10_1016_j_plaphy_2024_108808
crossref_primary_10_3390_biology14010058
crossref_primary_10_1038_s41598_024_79628_0
crossref_primary_10_1038_s41598_024_71565_2
crossref_primary_10_1016_j_plaphy_2023_108148
crossref_primary_10_1016_j_rhisph_2023_100723
crossref_primary_10_14720_aas_2021_117_3_1999
crossref_primary_10_1080_15226514_2022_2092060
crossref_primary_10_1007_s11356_023_27126_7
crossref_primary_10_1021_acssuschemeng_3c01614
crossref_primary_10_1080_10643389_2023_2183700
crossref_primary_10_1007_s11356_022_21564_5
crossref_primary_10_1007_s11356_023_28757_6
crossref_primary_10_1007_s10725_021_00791_9
crossref_primary_10_3390_su151914643
crossref_primary_10_1186_s12870_024_05552_0
crossref_primary_10_1016_j_scienta_2024_113722
crossref_primary_10_3390_plants13020175
crossref_primary_10_1007_s42729_024_01662_8
crossref_primary_10_1002_uar2_70009
crossref_primary_10_1016_j_sajb_2024_09_002
crossref_primary_10_1007_s11368_024_03874_y
crossref_primary_10_1186_s12870_024_05044_1
crossref_primary_10_1080_00207233_2024_2333667
crossref_primary_10_1080_01140671_2024_2355966
crossref_primary_10_3390_jof9050596
crossref_primary_10_1080_01904167_2023_2191638
crossref_primary_10_2139_ssrn_3999115
crossref_primary_10_3389_fbioe_2023_1258483
crossref_primary_10_1016_j_ecoenv_2024_116181
crossref_primary_10_3390_plants13060826
Cites_doi 10.1002/jsfa.2740120105
10.1002/lno.10604
10.1016/j.envexpbot.2015.08.006
10.1038/srep05823
10.1080/15226514.2017.1284751
10.1080/15226514.2019.1577355
10.1080/15226510208500083
10.1016/j.chemosphere.2017.12.025
10.1016/S0045-6535(02)00229-1
10.1080/01904167.2019.1685101
10.1093/jxb/erw403
10.1007/s10661-016-5309-0
10.1039/C7MT00072C
10.1016/j.apsoil.2003.11.002
10.1002/etc.3380
10.1007/s11356-014-3849-9
10.3389/fpls.2017.00684
10.1046/j.1469-8137.1997.00633.x
10.1080/15226514.2018.1438360
10.1016/j.still.2019.05.001
10.1097/00010694-194501000-00006
10.1002/eap.1573
10.1080/02757540.2018.1437150
10.1371/journal.pone.0145726
10.1016/j.chemosphere.2013.03.055
10.1016/j.apsoil.2015.11.004
10.1016/j.ecoenv.2017.11.011
10.1016/j.chemosphere.2017.08.021
10.2134/agronj1975.00021962006700010007x
10.1080/15226514.2015.1131242
10.1007/s00572-014-0594-3
10.1080/15226514.2018.1438358
10.1080/01904167.2021.1871748
10.1111/pce.13471
10.1016/S0007-1536(70)80110-3
10.1007/s11356-015-5697-7
10.4314/as.v15i2.5
10.1080/15226514.2014.898023
10.1080/10643389.2017.1400853
10.1264/jsme2.ME13093
10.1016/S0003-2670(00)88444-5
10.1016/j.scitotenv.2018.10.031
10.1016/S0045-6535(00)00126-0
10.1016/j.envint.2015.12.017
10.1371/journal.pone.0132347
10.1007/s005720050174
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rhisph.2021.100325
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2452-2198
ExternalDocumentID 10_1016_j_rhisph_2021_100325
S2452219821000215
GroupedDBID --M
0R~
AACTN
AAEDT
AAEDW
AAHBH
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
ABGRD
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEIPS
AFJKZ
AFTJW
AFXIZ
AGUBO
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPCBC
SSA
SSH
SSZ
T5K
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c405t-e0077402bf5717290b5fb5c972e9c08c9abf70ac22df2a79c9ba35a7ae018ad73
IEDL.DBID AIKHN
ISSN 2452-2198
IngestDate Fri Jul 11 03:25:02 EDT 2025
Tue Jul 01 03:12:55 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Sun Apr 06 06:53:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Soybean
Mycoremediation
Seed yield
Funneliformis mosseae
Heavy metals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-e0077402bf5717290b5fb5c972e9c08c9abf70ac22df2a79c9ba35a7ae018ad73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6341-775X
PQID 2524309814
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524309814
crossref_citationtrail_10_1016_j_rhisph_2021_100325
crossref_primary_10_1016_j_rhisph_2021_100325
elsevier_sciencedirect_doi_10_1016_j_rhisph_2021_100325
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Rhizosphere
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References González -Chávez, Carrillo -González, Cuellar -Sánchez, Delgado -Alvarado, Suárez -Espinosa, Ríos -Leal, Solis -Dominguez, Maldonado -Mendoza (bib14) 2019; 650
Alongi (bib3) 2017; 62
Liao, Lin, Cao, Shi, Wong (bib27) 2003; 50
Nelson, Sommers (bib32) 1982
Anjum, Singh, Khan, Masood, Per, Negi (bib5) 2015; 22
Bahraminia, Zarei, Ronaghi, Ghasemi-Fasaei (bib6) 2016; 18
Rafique, Tariq (bib36) 2016; 188
Murphy, Riley (bib29) 1962; 27
Bremner, Mulvaney (bib9) 1982
Zhan, He, Yue, Qin, Xia (bib54) 2016; 25
Doubková, Sudová (bib12) 2016; 99
Wang (bib48) 2017; 47
Adeyemi, Atayese, Olubode, Akan (bib2) 2020; 43
Joner, Leyval (bib21) 1997; 135
Phillips, Hayman (bib34) 1970; 55
Weirsma, Bailey (bib49) 1975; 67
Barcos-Arias, Pena-Cabriales, Alarc ~ on, Maldonado-Vega (bib7) 2015; 17
Jamal, Ayub, Usman, Khan (bib20) 2002; 4
Adeyemi, Atayese, Sakariyawo, Azeez, Ridwan (bib1) 2021
Leyval, Turnau, Haselwandter (bib22) 1997; 7
Nafady, Elgharably (bib30) 2018; 20
Nayuki, Chen, Ohtomo, Kuga (bib31) 2014; 29
Zhou, Fu, Xia, Zheng, Chen, Shen, Chen (bib56) 2017; 9
Bray, Kurtz (bib8) 1945; 59
Zhou, Zhang, Zhang, Wei, Jiang (bib55) 2018; 13
Houben, Evrard, Sonnet (bib16) 2013; 92
Versieren, Evers, De Schamphelaere, Blust, Smolders (bib46) 2016; 35
Li, Christie (bib26) 2000; 42
Moss (bib28) 1961; 12
Dietterich, Gonneau, Casper (bib11) 2017; 27
Huang, Wang, Zhu, Ho, Wu, Kalita, Ma (bib19) 2018; 149
Sarkar, Asaeda, Wang, Kaneko, Rashid (bib40) 2018; 34
Ferrol, Tamayo, Vargas (bib13) 2016; 67
Wu, Cao, Zou, He (bib52) 2014; 4
Liu, Li, Yue, Yan, Wang, Bloszies, Wang (bib25) 2018; 194
Pourrut, Shahid, Dumat, Winterton, Pinelli (bib35) 2011; 213
Toth, Hermann, Da Silva, Montanarella (bib45) 2016; 88
Chaturvedi, Paulo, Pratas, Varun, Paul (bib10) 2018; 20
Rizwan, Ali, Qayyum, Ibrahim, Rehman, Abbas, Ok (bib38) 2016; 23
Yang, Han, Liang, Ghosh, Chen, Tang (bib53) 2015; 10
Li, Zhou, Yang, Yang, Sun, Yang (bib23) 2015; 10
Hu, Zhou, Jing, Li, Yan, Lei, Lu, Zhang, Jing (bib17) 2019; 21
Andrade, Abreu, De Abreu, Silveira (bib4) 2004; 26
Gu, Zhou, Gao, Yuan, Ai, Zhang, Zu, Taylor, Nan, Li (bib15) 2017; 19
Tan, Jiang, Zhuo, Liu, Wang, Li, Ye, Jing (bib43) 2015; 10
Huang, Wang, Ma (bib18) 2017; 187
Shi, Zhang, Chen, Polle, Rennenberg, Luo (bib41) 2019; 42
Thioub, Ewusi-Mensah, Sarkodie, Adjei-Gyapong (bib44) 2019; 192
Page, Miller, Keeney (bib33) 1982
Smith, Read (bib42) 2010
Sakariyawo, Adeyemi, Atayese, Aderibigbe (bib39) 2016; 15
Wang, Hoffland, Feng, Kuyper (bib47) 2017; 8
Wu, Zhang, Chen, Wu, Li, Hu, Sun, Wang (bib50) 2016; 122
Wu, Li, Zou, He (bib51) 2015; 25
Phillips (10.1016/j.rhisph.2021.100325_bib34) 1970; 55
Huang (10.1016/j.rhisph.2021.100325_bib19) 2018; 149
Joner (10.1016/j.rhisph.2021.100325_bib21) 1997; 135
Page (10.1016/j.rhisph.2021.100325_bib33) 1982
Wu (10.1016/j.rhisph.2021.100325_bib51) 2015; 25
Tan (10.1016/j.rhisph.2021.100325_bib43) 2015; 10
Toth (10.1016/j.rhisph.2021.100325_bib45) 2016; 88
Weirsma (10.1016/j.rhisph.2021.100325_bib49) 1975; 67
Rafique (10.1016/j.rhisph.2021.100325_bib36) 2016; 188
Bremner (10.1016/j.rhisph.2021.100325_bib9) 1982
Adeyemi (10.1016/j.rhisph.2021.100325_bib1) 2021
Sarkar (10.1016/j.rhisph.2021.100325_bib40) 2018; 34
Hu (10.1016/j.rhisph.2021.100325_bib17) 2019; 21
Versieren (10.1016/j.rhisph.2021.100325_bib46) 2016; 35
Yang (10.1016/j.rhisph.2021.100325_bib53) 2015; 10
Jamal (10.1016/j.rhisph.2021.100325_bib20) 2002; 4
Li (10.1016/j.rhisph.2021.100325_bib26) 2000; 42
Chaturvedi (10.1016/j.rhisph.2021.100325_bib10) 2018; 20
Nelson (10.1016/j.rhisph.2021.100325_bib32) 1982
Rizwan (10.1016/j.rhisph.2021.100325_bib38) 2016; 23
Wang (10.1016/j.rhisph.2021.100325_bib48) 2017; 47
Bahraminia (10.1016/j.rhisph.2021.100325_bib6) 2016; 18
Barcos-Arias (10.1016/j.rhisph.2021.100325_bib7) 2015; 17
Houben (10.1016/j.rhisph.2021.100325_bib16) 2013; 92
Adeyemi (10.1016/j.rhisph.2021.100325_bib2) 2020; 43
Gu (10.1016/j.rhisph.2021.100325_bib15) 2017; 19
Zhan (10.1016/j.rhisph.2021.100325_bib54) 2016; 25
Wu (10.1016/j.rhisph.2021.100325_bib50) 2016; 122
Andrade (10.1016/j.rhisph.2021.100325_bib4) 2004; 26
Nafady (10.1016/j.rhisph.2021.100325_bib30) 2018; 20
Shi (10.1016/j.rhisph.2021.100325_bib41) 2019; 42
Anjum (10.1016/j.rhisph.2021.100325_bib5) 2015; 22
Li (10.1016/j.rhisph.2021.100325_bib23) 2015; 10
Moss (10.1016/j.rhisph.2021.100325_bib28) 1961; 12
Liao (10.1016/j.rhisph.2021.100325_bib27) 2003; 50
Zhou (10.1016/j.rhisph.2021.100325_bib55) 2018; 13
Ferrol (10.1016/j.rhisph.2021.100325_bib13) 2016; 67
Sakariyawo (10.1016/j.rhisph.2021.100325_bib39) 2016; 15
Pourrut (10.1016/j.rhisph.2021.100325_bib35) 2011; 213
Huang (10.1016/j.rhisph.2021.100325_bib18) 2017; 187
Doubková (10.1016/j.rhisph.2021.100325_bib12) 2016; 99
Smith (10.1016/j.rhisph.2021.100325_bib42) 2010
González -Chávez (10.1016/j.rhisph.2021.100325_bib14) 2019; 650
Bray (10.1016/j.rhisph.2021.100325_bib8) 1945; 59
Murphy (10.1016/j.rhisph.2021.100325_bib29) 1962; 27
Leyval (10.1016/j.rhisph.2021.100325_bib22) 1997; 7
Wu (10.1016/j.rhisph.2021.100325_bib52) 2014; 4
Dietterich (10.1016/j.rhisph.2021.100325_bib11) 2017; 27
Thioub (10.1016/j.rhisph.2021.100325_bib44) 2019; 192
Alongi (10.1016/j.rhisph.2021.100325_bib3) 2017; 62
Nayuki (10.1016/j.rhisph.2021.100325_bib31) 2014; 29
Wang (10.1016/j.rhisph.2021.100325_bib47) 2017; 8
Zhou (10.1016/j.rhisph.2021.100325_bib56) 2017; 9
Liu (10.1016/j.rhisph.2021.100325_bib25) 2018; 194
References_xml – volume: 99
  start-page: 78
  year: 2016
  end-page: 88
  ident: bib12
  article-title: Limited impact of arbuscular mycorrhizal fungi on clones of
  publication-title: Appl. Soil Ecol.
– volume: 22
  start-page: 3361
  year: 2015
  end-page: 3382
  ident: bib5
  article-title: Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 55
  start-page: 158
  year: 1970
  end-page: 161
  ident: bib34
  article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection
  publication-title: Trans. Br. Mycol. Soc.
– volume: 21
  start-page: 857
  year: 2019
  end-page: 865
  ident: bib17
  article-title: Combined application of arbuscular mycorrhizal fungi and steel slag improves plant growth and reduces Cd, Pb accumulation in Zea mays
  publication-title: Int. J. Phytoremediation
– volume: 15
  start-page: 29
  year: 2016
  end-page: 40
  ident: bib39
  article-title: Growth, assimilate partitioning and grain yield response of soybean (
  publication-title: Agro-Science
– volume: 135
  start-page: 353
  year: 1997
  end-page: 360
  ident: bib21
  article-title: Uptake of 109Cd by roots and hypae of a
  publication-title: New Phytol.
– volume: 25
  start-page: 121
  year: 2015
  ident: bib51
  article-title: Arbuscular mycorrhiza mediates glomalin -related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels
  publication-title: Mycorrhiza
– volume: 27
  start-page: 1862
  year: 2017
  end-page: 1875
  ident: bib11
  article-title: Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils
  publication-title: Ecol. Appl.
– volume: 13
  start-page: 1
  year: 2018
  end-page: 17
  ident: bib55
  article-title: Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings
  publication-title: PloS One
– volume: 62
  start-page: 2759
  year: 2017
  end-page: 2772
  ident: bib3
  article-title: Micronutrients and mangroves: experimental evidence for copper limitation
  publication-title: Limnol. Oceanogr.
– volume: 19
  start-page: 739
  year: 2017
  end-page: 745
  ident: bib15
  article-title: The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species
  publication-title: Int. J. Phytoremediation
– volume: 192
  start-page: 174
  year: 2019
  end-page: 186
  ident: bib44
  article-title: Arbuscular mycorrhizal fungi inoculation enhances phosphorus use efficiency and soybean productivity on a Haplic Acrisol
  publication-title: Soil Tillage Res.
– volume: 67
  start-page: 26
  year: 1975
  end-page: 30
  ident: bib49
  article-title: Estimation of leaflet, trifoliate and total leaf areas of soybean
  publication-title: Agron. J.
– volume: 67
  start-page: 6253
  year: 2016
  end-page: 6265
  ident: bib13
  article-title: The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications
  publication-title: J. Exp. Bot.
– volume: 20
  start-page: 869
  year: 2018
  end-page: 875
  ident: bib30
  article-title: Mycorrhizal symbiosis and phosphorus fertilization effects on Zea mays growth and heavy metals uptake
  publication-title: Int. J. Phytoremediation
– volume: 4
  start-page: 203
  year: 2002
  end-page: 221
  ident: bib20
  article-title: Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil
  publication-title: Int. J. Phytoremediation
– volume: 149
  start-page: 43
  year: 2018
  end-page: 50
  ident: bib19
  article-title: Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in
  publication-title: Trin. ex Steud. Ecotox Environ Safe.
– volume: 25
  start-page: 1760
  year: 2016
  end-page: 1767
  ident: bib54
  article-title: Effect of mycorrhizal inoculation on plant growth, nutrients and heavy metals uptake by
  publication-title: Fresenius Environ. Bull.
– volume: 18
  start-page: 730
  year: 2016
  end-page: 737
  ident: bib6
  article-title: Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass
  publication-title: Int. J. Phytoremediation
– volume: 7
  start-page: 139
  year: 1997
  end-page: 153
  ident: bib22
  article-title: Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological, and applied aspects
  publication-title: Mycorrhiza
– volume: 50
  start-page: 847
  year: 2003
  end-page: 853
  ident: bib27
  article-title: Interaction between arbuscular mycorrhizae and heavy metals under sand culture experiment
  publication-title: Chemosphere
– volume: 650
  start-page: 3134
  year: 2019
  end-page: 3144
  ident: bib14
  article-title: Phytoremediation assisted by mycorrhizal fungi of a Mexican defunct lead - acid battery recycling site
  publication-title: Sci. Total Environ.
– volume: 10
  year: 2015
  ident: bib23
  article-title: Physiological and proteomics analyses reveal the mechanism of
  publication-title: PloS One
– volume: 26
  start-page: 123
  year: 2004
  end-page: 131
  ident: bib4
  article-title: Influence of lead addition on arbuscular mycorrhizae and Rhizobium symbioses under soybean plants
  publication-title: Appl. Soil Ecol.
– volume: 34
  start-page: 454
  year: 2018
  end-page: 469
  ident: bib40
  article-title: Arbuscular mycorrhiza confers lead tolerance and uptake in
  publication-title: Chem. Ecol.
– volume: 187
  start-page: 221
  year: 2017
  end-page: 229
  ident: bib18
  article-title: Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of
  publication-title: Chemosphere
– volume: 213
  start-page: 113
  year: 2011
  end-page: 136
  ident: bib35
  article-title: Lead uptake, toxicity, and detoxification in plants
– volume: 9
  start-page: 936
  year: 2017
  end-page: 948
  ident: bib56
  article-title: Arbuscular mycorrhizal fungi enhance the copper tolerance of
  publication-title: Metall
– year: 1982
  ident: bib33
  article-title: Method of Soil Analysis, Part 2 Agronomy Monograph 9, Part 2 Agr
– volume: 59
  start-page: 39
  year: 1945
  end-page: 46
  ident: bib8
  article-title: Determination of total, organic, and available forms of phosphorus in soils
  publication-title: Soil Sci.
– volume: 10
  year: 2015
  ident: bib53
  article-title: The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in
  publication-title: PloS One
– volume: 42
  start-page: 1087
  year: 2019
  end-page: 1103
  ident: bib41
  article-title: Physiological and molecular mechanisms of heavy metal accumulation in non-mycorrhizal versus mycorrhizal plants
  publication-title: Plant Cell Environ.
– volume: 8
  start-page: 684
  year: 2017
  ident: bib47
  article-title: Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize
  publication-title: Front. Plant Sci.
– volume: 92
  start-page: 1450
  year: 2013
  end-page: 1457
  ident: bib16
  article-title: Mobility, bioavailability and pH dependent leaching of cadmium, zinc and lead in a contaminated soils amended with biochar
  publication-title: Chemosphere
– year: 2010
  ident: bib42
  article-title: Mycorrhizal Symbiosis
– start-page: 595
  year: 1982
  end-page: 624
  ident: bib9
  article-title: Nitrogen – total
  publication-title: Methods of Soil Analysis
– volume: 12
  start-page: 30
  year: 1961
  end-page: 33
  ident: bib28
  article-title: Limits of interference by iron, manganese, aluminium and phosphate in the EDTA determination of calcium in the presence of magnesium using Cal-red as indicator
  publication-title: J. Sci. Food Agric.
– volume: 10
  year: 2015
  ident: bib43
  article-title: Effect of inoculation with Glomus versiforme on cadmium accumulation, antioxidant activities and phytochelatins of
  publication-title: PloS One
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  ident: bib29
  article-title: Modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chim. Acta
– year: 1982
  ident: bib32
  article-title: Total carbon and organic matter
  publication-title: Methods of Soil Analysis
– volume: 4
  year: 2014
  ident: bib52
  article-title: Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange
  publication-title: Sci. Rep.
– volume: 29
  start-page: 60
  year: 2014
  end-page: 66
  ident: bib31
  article-title: Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence
  publication-title: Microb. Environ.
– volume: 35
  start-page: 2483
  year: 2016
  end-page: 2492
  ident: bib46
  article-title: Mixture toxicity and interactions of copper, nickel, cadmium, and zinc to barley at low effect levels: something from nothing?
  publication-title: Environ. Toxicol. Chem.
– volume: 17
  start-page: 405
  year: 2015
  end-page: 413
  ident: bib7
  article-title: Enhanced Pb absorption by Hordeum vulgare L. and Helianthus annuus L. plants inoculated with an arbuscular mycorrhizal fungi consortium
  publication-title: Int. J. Phytoremediation
– volume: 188
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib36
  article-title: Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields
  publication-title: Environ. Monit. Assess.
– volume: 122
  start-page: 10
  year: 2016
  end-page: 18
  ident: bib50
  article-title: Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance
  publication-title: Environ. Exp. Bot.
– volume: 88
  start-page: 299
  year: 2016
  end-page: 330
  ident: bib45
  article-title: Heavy metals in agricultural soils of the European Union with implications for food safety
  publication-title: Environ. Int.
– year: 2021
  ident: bib1
  article-title: Arbuscular mycorrhizal fungi species differentially regulate plant growth, phosphorus uptake and stress tolerance of soybean in lead contaminated soil
  publication-title: J. Plant Nutr.
– volume: 194
  start-page: 495
  year: 2018
  ident: bib25
  article-title: Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd -contaminated soil
  publication-title: Chemosphere
– volume: 42
  start-page: 201
  year: 2000
  end-page: 207
  ident: bib26
  article-title: Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil
  publication-title: Chemosphere
– volume: 20
  start-page: 885
  year: 2018
  end-page: 894
  ident: bib10
  article-title: Effect of
  publication-title: Int. J. Phytoremediation
– volume: 43
  start-page: 487
  year: 2020
  end-page: 499
  ident: bib2
  article-title: Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions
  publication-title: J. Plant Nutr.
– volume: 23
  start-page: 2230
  year: 2016
  end-page: 2248
  ident: bib38
  article-title: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review
  publication-title: Environ. Sci. Pollut. Res.
– volume: 47
  start-page: 1901
  year: 2017
  ident: bib48
  article-title: Occurrence of arbuscular mycorrhizal fungi in mining -impacted sites and their contribution to ecological restoration: mechanisms and applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 12
  start-page: 30
  year: 1961
  ident: 10.1016/j.rhisph.2021.100325_bib28
  article-title: Limits of interference by iron, manganese, aluminium and phosphate in the EDTA determination of calcium in the presence of magnesium using Cal-red as indicator
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.2740120105
– volume: 25
  start-page: 1760
  year: 2016
  ident: 10.1016/j.rhisph.2021.100325_bib54
  article-title: Effect of mycorrhizal inoculation on plant growth, nutrients and heavy metals uptake by Leucaena leucocephala
  publication-title: Fresenius Environ. Bull.
– volume: 62
  start-page: 2759
  issue: 6
  year: 2017
  ident: 10.1016/j.rhisph.2021.100325_bib3
  article-title: Micronutrients and mangroves: experimental evidence for copper limitation
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10604
– volume: 122
  start-page: 10
  year: 2016
  ident: 10.1016/j.rhisph.2021.100325_bib50
  article-title: Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2015.08.006
– volume: 4
  year: 2014
  ident: 10.1016/j.rhisph.2021.100325_bib52
  article-title: Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange
  publication-title: Sci. Rep.
  doi: 10.1038/srep05823
– volume: 19
  start-page: 739
  year: 2017
  ident: 10.1016/j.rhisph.2021.100325_bib15
  article-title: The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2017.1284751
– volume: 21
  start-page: 857
  year: 2019
  ident: 10.1016/j.rhisph.2021.100325_bib17
  article-title: Combined application of arbuscular mycorrhizal fungi and steel slag improves plant growth and reduces Cd, Pb accumulation in Zea mays
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2019.1577355
– volume: 4
  start-page: 203
  year: 2002
  ident: 10.1016/j.rhisph.2021.100325_bib20
  article-title: Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226510208500083
– volume: 194
  start-page: 495
  year: 2018
  ident: 10.1016/j.rhisph.2021.100325_bib25
  article-title: Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd -contaminated soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.025
– volume: 50
  start-page: 847
  year: 2003
  ident: 10.1016/j.rhisph.2021.100325_bib27
  article-title: Interaction between arbuscular mycorrhizae and heavy metals under sand culture experiment
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00229-1
– year: 1982
  ident: 10.1016/j.rhisph.2021.100325_bib33
– volume: 43
  start-page: 487
  issue: 4
  year: 2020
  ident: 10.1016/j.rhisph.2021.100325_bib2
  article-title: Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2019.1685101
– volume: 67
  start-page: 6253
  year: 2016
  ident: 10.1016/j.rhisph.2021.100325_bib13
  article-title: The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw403
– volume: 188
  start-page: 1
  issue: 5
  year: 2016
  ident: 10.1016/j.rhisph.2021.100325_bib36
  article-title: Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5309-0
– volume: 9
  start-page: 936
  year: 2017
  ident: 10.1016/j.rhisph.2021.100325_bib56
  article-title: Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae
  publication-title: Metall
  doi: 10.1039/C7MT00072C
– volume: 26
  start-page: 123
  year: 2004
  ident: 10.1016/j.rhisph.2021.100325_bib4
  article-title: Influence of lead addition on arbuscular mycorrhizae and Rhizobium symbioses under soybean plants
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2003.11.002
– volume: 35
  start-page: 2483
  issue: 10
  year: 2016
  ident: 10.1016/j.rhisph.2021.100325_bib46
  article-title: Mixture toxicity and interactions of copper, nickel, cadmium, and zinc to barley at low effect levels: something from nothing?
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.3380
– volume: 22
  start-page: 3361
  issue: 5
  year: 2015
  ident: 10.1016/j.rhisph.2021.100325_bib5
  article-title: Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-014-3849-9
– volume: 8
  start-page: 684
  year: 2017
  ident: 10.1016/j.rhisph.2021.100325_bib47
  article-title: Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00684
– volume: 135
  start-page: 353
  year: 1997
  ident: 10.1016/j.rhisph.2021.100325_bib21
  article-title: Uptake of 109Cd by roots and hypae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1997.00633.x
– volume: 20
  start-page: 885
  issue: 9
  year: 2018
  ident: 10.1016/j.rhisph.2021.100325_bib10
  article-title: Effect of Glomus mossae on accumulation efficiency, hazard index and antioxidant defense mechanisms in tomato under metal(loid) Stress
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2018.1438360
– volume: 192
  start-page: 174
  year: 2019
  ident: 10.1016/j.rhisph.2021.100325_bib44
  article-title: Arbuscular mycorrhizal fungi inoculation enhances phosphorus use efficiency and soybean productivity on a Haplic Acrisol
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.05.001
– volume: 59
  start-page: 39
  year: 1945
  ident: 10.1016/j.rhisph.2021.100325_bib8
  article-title: Determination of total, organic, and available forms of phosphorus in soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-194501000-00006
– volume: 27
  start-page: 1862
  issue: 6
  year: 2017
  ident: 10.1016/j.rhisph.2021.100325_bib11
  article-title: Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.1573
– volume: 34
  start-page: 454
  issue: 5
  year: 2018
  ident: 10.1016/j.rhisph.2021.100325_bib40
  article-title: Arbuscular mycorrhiza confers lead tolerance and uptake in Miscanthus sacchariflorus
  publication-title: Chem. Ecol.
  doi: 10.1080/02757540.2018.1437150
– volume: 10
  issue: 12
  year: 2015
  ident: 10.1016/j.rhisph.2021.100325_bib53
  article-title: The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L
  publication-title: PloS One
  doi: 10.1371/journal.pone.0145726
– volume: 92
  start-page: 1450
  year: 2013
  ident: 10.1016/j.rhisph.2021.100325_bib16
  article-title: Mobility, bioavailability and pH dependent leaching of cadmium, zinc and lead in a contaminated soils amended with biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.03.055
– volume: 99
  start-page: 78
  year: 2016
  ident: 10.1016/j.rhisph.2021.100325_bib12
  article-title: Limited impact of arbuscular mycorrhizal fungi on clones of Agrostis capillaris with different heavy metal tolerance
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.11.004
– volume: 213
  start-page: 113
  year: 2011
  ident: 10.1016/j.rhisph.2021.100325_bib35
– year: 1982
  ident: 10.1016/j.rhisph.2021.100325_bib32
  article-title: Total carbon and organic matter
– volume: 149
  start-page: 43
  year: 2018
  ident: 10.1016/j.rhisph.2021.100325_bib19
  article-title: Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in Phragmites australis (Cav.)
  publication-title: Trin. ex Steud. Ecotox Environ Safe.
  doi: 10.1016/j.ecoenv.2017.11.011
– volume: 187
  start-page: 221
  year: 2017
  ident: 10.1016/j.rhisph.2021.100325_bib18
  article-title: Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.08.021
– volume: 67
  start-page: 26
  year: 1975
  ident: 10.1016/j.rhisph.2021.100325_bib49
  article-title: Estimation of leaflet, trifoliate and total leaf areas of soybean
  publication-title: Agron. J.
  doi: 10.2134/agronj1975.00021962006700010007x
– volume: 18
  start-page: 730
  issue: 7
  year: 2016
  ident: 10.1016/j.rhisph.2021.100325_bib6
  article-title: Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2015.1131242
– year: 2010
  ident: 10.1016/j.rhisph.2021.100325_bib42
– volume: 25
  start-page: 121
  issue: 2
  year: 2015
  ident: 10.1016/j.rhisph.2021.100325_bib51
  article-title: Arbuscular mycorrhiza mediates glomalin -related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-014-0594-3
– volume: 20
  start-page: 869
  year: 2018
  ident: 10.1016/j.rhisph.2021.100325_bib30
  article-title: Mycorrhizal symbiosis and phosphorus fertilization effects on Zea mays growth and heavy metals uptake
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2018.1438358
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.rhisph.2021.100325_bib55
  article-title: Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings
  publication-title: PloS One
– year: 2021
  ident: 10.1016/j.rhisph.2021.100325_bib1
  article-title: Arbuscular mycorrhizal fungi species differentially regulate plant growth, phosphorus uptake and stress tolerance of soybean in lead contaminated soil
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2021.1871748
– start-page: 595
  year: 1982
  ident: 10.1016/j.rhisph.2021.100325_bib9
  article-title: Nitrogen – total
– volume: 10
  issue: 4
  year: 2015
  ident: 10.1016/j.rhisph.2021.100325_bib23
  article-title: Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes
  publication-title: PloS One
– volume: 42
  start-page: 1087
  year: 2019
  ident: 10.1016/j.rhisph.2021.100325_bib41
  article-title: Physiological and molecular mechanisms of heavy metal accumulation in non-mycorrhizal versus mycorrhizal plants
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13471
– volume: 55
  start-page: 158
  issue: 1
  year: 1970
  ident: 10.1016/j.rhisph.2021.100325_bib34
  article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection
  publication-title: Trans. Br. Mycol. Soc.
  doi: 10.1016/S0007-1536(70)80110-3
– volume: 23
  start-page: 2230
  year: 2016
  ident: 10.1016/j.rhisph.2021.100325_bib38
  article-title: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-5697-7
– volume: 15
  start-page: 29
  year: 2016
  ident: 10.1016/j.rhisph.2021.100325_bib39
  article-title: Growth, assimilate partitioning and grain yield response of soybean (Glycine max L. Merrrill) varieties to carbon dioxide enrichment and arbuscular mycorrhizal fungi in the humid rainforest
  publication-title: Agro-Science
  doi: 10.4314/as.v15i2.5
– volume: 17
  start-page: 405
  issue: 1–6
  year: 2015
  ident: 10.1016/j.rhisph.2021.100325_bib7
  article-title: Enhanced Pb absorption by Hordeum vulgare L. and Helianthus annuus L. plants inoculated with an arbuscular mycorrhizal fungi consortium
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2014.898023
– volume: 47
  start-page: 1901
  issue: 20
  year: 2017
  ident: 10.1016/j.rhisph.2021.100325_bib48
  article-title: Occurrence of arbuscular mycorrhizal fungi in mining -impacted sites and their contribution to ecological restoration: mechanisms and applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2017.1400853
– volume: 29
  start-page: 60
  issue: 1
  year: 2014
  ident: 10.1016/j.rhisph.2021.100325_bib31
  article-title: Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence
  publication-title: Microb. Environ.
  doi: 10.1264/jsme2.ME13093
– volume: 27
  start-page: 31
  year: 1962
  ident: 10.1016/j.rhisph.2021.100325_bib29
  article-title: Modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 650
  start-page: 3134
  year: 2019
  ident: 10.1016/j.rhisph.2021.100325_bib14
  article-title: Phytoremediation assisted by mycorrhizal fungi of a Mexican defunct lead - acid battery recycling site
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.031
– volume: 42
  start-page: 201
  year: 2000
  ident: 10.1016/j.rhisph.2021.100325_bib26
  article-title: Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(00)00126-0
– volume: 88
  start-page: 299
  year: 2016
  ident: 10.1016/j.rhisph.2021.100325_bib45
  article-title: Heavy metals in agricultural soils of the European Union with implications for food safety
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.12.017
– volume: 10
  issue: 7
  year: 2015
  ident: 10.1016/j.rhisph.2021.100325_bib43
  article-title: Effect of inoculation with Glomus versiforme on cadmium accumulation, antioxidant activities and phytochelatins of Solanum photeinocarpum
  publication-title: PloS One
  doi: 10.1371/journal.pone.0132347
– volume: 7
  start-page: 139
  year: 1997
  ident: 10.1016/j.rhisph.2021.100325_bib22
  article-title: Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological, and applied aspects
  publication-title: Mycorrhiza
  doi: 10.1007/s005720050174
SSID ssj0001763563
Score 2.4169486
Snippet There are few reports on the use of arbuscular mycorrhizal fungi (AMF) to promote growth and stress tolerance of soybean (Glycine max L.) in agricultural soils...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100325
SubjectTerms aerial parts
copper
Funneliformis mosseae
Glomus mosseae
Glycine max
Heavy metals
inoculum
lead
Mycoremediation
phosphorus
phytoremediation
rhizosphere
Seed yield
Soybean
soybeans
stress tolerance
toxicity
vesicular arbuscular mycorrhizae
zinc
Title Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine max (L.) grown in copper, lead and zinc contaminated soils
URI https://dx.doi.org/10.1016/j.rhisph.2021.100325
https://www.proquest.com/docview/2524309814
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7aUXBCqI8tIgcQAJs4mTbOLjqmpZ6OMClXqzxo4NqbJJtNki0r_QP11PHiAQUiWOSTyRNWPPw_PNmLE30qXOZSbkFhcZj-3Cch1Kya1eRDrxJiw2dKB_dr5YXcSfL5PLHXY41cIQrHLU_YNO77X1-GY-cnPeFMX8C-UM_X7LBB1RCyo03xXeugYztrv8dLI6_33U0jdho1wzkXCimYroeqTX5nvRNpSYECGBBiK6NvvfRuovdd3boOOH7MHoPMJymN8jtmOrfXa7LKlEvOcw1A68dv3Rwdp6rxqGShDQHaDn3oA5hXXnI04_mxsa0K11UbdFC0UFH8uO0uywxp_w9vTDO_hGMTp9MXXT2M17KP2KAKxyuCkqAwRzR4LSeK8V2roo28fs4vjo6-GKj1cscOM9tS231M7Hh5DaJT6uEzLQidOJkamw0gSZkahdGqARIncCU2mkxijBFG0QZpin0RM2q-rKPmWALqdON4EmEUcxolddeZhLkWHqAicPWDTxVJmx_zhdg1GqCWh2pQZJKJKEGiRxwPgvqmbov3HP-HQSl_pjHSlvIu6hfD1JV_ktRnkTrGx93SqRiDgKZBbGz_7778_ZHj0NILMXbLbdXNuX3p3Z6lfjcr0DdW_1fw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKe4ALAgGi_A4SSCARNnGSTXzgsALKLrvdC63Um7EdG4KyyWqzBdJX4HF4QWbyAwIhVULqNY4taz57ZjzzeczYY-ES51ITeFaNUy-yY-vpQAjP6nGoYzRhkaGA_uFyPD2O3p3EJzvsx3AXhmiVve7vdHqrrfsvo16ao3Wej95TzhD3W8opRI2Wq2dWzm3zFc9t9cvZawT5CecHb45eTb3-aQHPoIey9SyVscGjk3Yxnme48HXsdGxEwq0wfmqE0i7xleE8c1wlwgitwlglyvpBqrIkxHEvsT2qhoXbam8ym0-Xv0M7bdE3ym3TFD2a43Bpr2WWbT7l9ZoSITwgkkJIz3T_2yj-ZR5am3dwjV3tnVWYdPK4znZseYN9nxR0Jb1FFCoHqM2_NLCy6MVDd_MEdAMK0eo4rrBq8ISLszmjH5qVzqs6ryEv4W3RUFofVuobPF28eAYfKSZALaZar-3mORS4AkGVGZzlpQGi1Sui7qCXDHWVF_VNdnwhcr_FdsuqtLcZKJdRZR1f05IKI6VQVWZBJniqEuc7sc_CQabS9PXO6dmNQg7Ets-yQ0ISErJDYp95v3qtu3of5_yfDHDJP9atRJN0Ts9HA7oStzTlaVRpq9Na8phHoS_SILrz36M_ZJenR4cLuZgt53fZFWrpCG732O52c2rvoyu11Q_6pQvsw0Xvlp8vrzL_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alleviation+of+heavy+metal+stress+by+arbuscular+mycorrhizal+symbiosis+in+Glycine+max+%28L.%29+grown+in+copper%2C+lead+and+zinc+contaminated+soils&rft.jtitle=Rhizosphere&rft.au=Adeyemi%2C+Nurudeen+Olatunbosun&rft.au=Atayese%2C+Mufutau+Olaoye&rft.au=Sakariyawo%2C+Olalekan+Suleiman&rft.au=Azeez%2C+Jamiu+Oladipupo&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=18&rft_id=info:doi/10.1016%2Fj.rhisph.2021.100325&rft.externalDocID=S2452219821000215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon