Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty

In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in distribution networks. The optimization problem has objective functions of minimizing power losses, operation cost, and pollutant gas emissions as...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 103; pp. 86 - 99
Main Authors Esmaeili, Mobin, Sedighizadeh, Mostafa, Esmaili, Masoud
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in distribution networks. The optimization problem has objective functions of minimizing power losses, operation cost, and pollutant gas emissions as well as maximizing the voltage stability index subject to different power system constraints. The uncertainty of loads is modeled using the TFN (Triangular Fuzzy Number) technique. A novel solution method called MOHBB-BC (Multi-objective Hybrid Big Bang-Big Crunch) is implemented to solve the optimization problem. The MOHBB-BC derives a set of non-dominated Pareto solutions and accumulates them in a retention called Archive. The diversity of Pareto solutions conserved by applying a crowding distance operator and afterwards, the ‘best compromised’ Pareto solution is selected using a fuzzy decision maker. The proposed method is tested on two test systems of 33-bus and 25-bus in different cases including unbalanced three-phase loads. Results obtained from test cases elaborate that the MOHBB-BC results in more diversified Pareto solutions implying a better exploration capability even with a higher fitness. In addition, considering load uncertainty leads to a more realistic solution than deterministic loads but with higher level of power losses. •Pareto solutions of MOHBB-BC have higher quality and more diversified than MOPSO.•Load uncertainty leads to more realistic solution but with 4.5% more losses.•Mutation in HBB-BC makes it have better exploration and speed than fuzzy BA and HAS.
AbstractList In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in distribution networks. The optimization problem has objective functions of minimizing power losses, operation cost, and pollutant gas emissions as well as maximizing the voltage stability index subject to different power system constraints. The uncertainty of loads is modeled using the TFN (Triangular Fuzzy Number) technique. A novel solution method called MOHBB-BC (Multi-objective Hybrid Big Bang-Big Crunch) is implemented to solve the optimization problem. The MOHBB-BC derives a set of non-dominated Pareto solutions and accumulates them in a retention called Archive. The diversity of Pareto solutions conserved by applying a crowding distance operator and afterwards, the 'best compromised' Pareto solution is selected using a fuzzy decision maker. The proposed method is tested on two test systems of 33-bus and 25-bus in different cases including unbalanced three-phase loads. Results obtained from test cases elaborate that the MOHBB-BC results in more diversified Pareto solutions implying a better exploration capability even with a higher fitness. In addition, considering load uncertainty leads to a more realistic solution than deterministic loads but with higher level of power losses.
In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in distribution networks. The optimization problem has objective functions of minimizing power losses, operation cost, and pollutant gas emissions as well as maximizing the voltage stability index subject to different power system constraints. The uncertainty of loads is modeled using the TFN (Triangular Fuzzy Number) technique. A novel solution method called MOHBB-BC (Multi-objective Hybrid Big Bang-Big Crunch) is implemented to solve the optimization problem. The MOHBB-BC derives a set of non-dominated Pareto solutions and accumulates them in a retention called Archive. The diversity of Pareto solutions conserved by applying a crowding distance operator and afterwards, the ‘best compromised’ Pareto solution is selected using a fuzzy decision maker. The proposed method is tested on two test systems of 33-bus and 25-bus in different cases including unbalanced three-phase loads. Results obtained from test cases elaborate that the MOHBB-BC results in more diversified Pareto solutions implying a better exploration capability even with a higher fitness. In addition, considering load uncertainty leads to a more realistic solution than deterministic loads but with higher level of power losses. •Pareto solutions of MOHBB-BC have higher quality and more diversified than MOPSO.•Load uncertainty leads to more realistic solution but with 4.5% more losses.•Mutation in HBB-BC makes it have better exploration and speed than fuzzy BA and HAS.
Author Sedighizadeh, Mostafa
Esmaili, Masoud
Esmaeili, Mobin
Author_xml – sequence: 1
  givenname: Mobin
  surname: Esmaeili
  fullname: Esmaeili, Mobin
  organization: Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Evin, Tehran, Iran
– sequence: 2
  givenname: Mostafa
  surname: Sedighizadeh
  fullname: Sedighizadeh, Mostafa
  organization: Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Evin, Tehran, Iran
– sequence: 3
  givenname: Masoud
  orcidid: 0000-0002-1672-0139
  surname: Esmaili
  fullname: Esmaili, Masoud
  email: msdesmaili@gmail.com, esmaili.m@wtiau.ac.ir
  organization: Department of Electrical Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
BookMark eNqNUsFu1DAQzaFItIU_4OBjOSTYjpM4HJBgCwtSq17K2fLas-ksWXuxnVb7W3whTgMXDrSSLc9o3psZveez4sR5B0XxhtGKUda-21XgIAzHiuesorxiDT8pTmnd0rIRgr8szmLcUUob2fenxa_raUxY-s0OTMJ7IP6QcK9HEsB4t8VhCjqhd0Q7Sy7X5OISYwq4mRJYsp5HPZbfkoN_gED0OHqzENAR-xc75w7Sgw8_IpkiuoF8wny1G8o5WIXJmbvMHnzAdLcneXZEC2FGjl5bkusQkkaXjq-KF1s9Rnj95z0vvn_5fLv6Wl7drL-tPl6VRtAmlbar8wEhJBPMtptacGFaURvGbS06CU1jRGe5qbnRLe90ZyjvDe3kRtJO8Pq8uFj6HoL_OUFMao_RwDhqB36KirOaSSlZT5-EMsmbvAej_TOgVLZtS-m8wPsFaoKPMcBWGUyP4qagcVSMqtlytVOL5Wq2XFGusuWZLP4hH0I2Nhyfon1YaJCVvUcIKhqELL7F_COSsh7_3-A3cGTPKg
CitedBy_id crossref_primary_10_1016_j_rser_2018_07_056
crossref_primary_10_1049_rpg2_12648
crossref_primary_10_1093_ijlct_ctae231
crossref_primary_10_3390_computation11110214
crossref_primary_10_1016_j_energy_2018_01_111
crossref_primary_10_1016_j_rser_2016_09_063
crossref_primary_10_31590_ejosat_1051410
crossref_primary_10_1007_s00521_018_3907_1
crossref_primary_10_1007_s12667_019_00333_3
crossref_primary_10_1016_j_est_2019_04_024
crossref_primary_10_1016_j_est_2020_101301
crossref_primary_10_1016_j_asoc_2021_107395
crossref_primary_10_1049_smc2_12025
crossref_primary_10_1016_j_apenergy_2018_10_030
crossref_primary_10_1007_s12652_020_02322_2
crossref_primary_10_1016_j_est_2020_102089
crossref_primary_10_1109_ACCESS_2021_3134872
crossref_primary_10_1109_TII_2024_3409445
crossref_primary_10_1016_j_energy_2019_116644
crossref_primary_10_1080_02286203_2020_1829443
crossref_primary_10_1109_ACCESS_2024_3392911
crossref_primary_10_1016_j_scs_2018_05_027
crossref_primary_10_3390_en13143746
crossref_primary_10_1080_03772063_2023_2175049
crossref_primary_10_1155_2022_7886358
crossref_primary_10_1002_2050_7038_12100
crossref_primary_10_1016_j_ijepes_2025_110534
crossref_primary_10_1016_j_rser_2020_109777
crossref_primary_10_1016_j_energy_2021_122728
crossref_primary_10_1049_iet_gtd_2016_0013
crossref_primary_10_1049_iet_gtd_2019_1402
crossref_primary_10_1080_15325008_2019_1689449
crossref_primary_10_1049_rpg2_12949
crossref_primary_10_1109_ACCESS_2024_3505302
crossref_primary_10_1016_j_energy_2023_127778
crossref_primary_10_1080_15567249_2022_2038729
crossref_primary_10_1155_2020_5101387
crossref_primary_10_1016_j_epsr_2017_03_020
crossref_primary_10_1002_er_4864
crossref_primary_10_1016_j_asej_2020_09_024
crossref_primary_10_1016_j_jclepro_2020_121629
crossref_primary_10_1109_ACCESS_2020_3036898
crossref_primary_10_1007_s12667_022_00521_8
crossref_primary_10_1007_s41660_021_00200_8
crossref_primary_10_1016_j_heliyon_2024_e31675
crossref_primary_10_1002_er_5709
crossref_primary_10_1016_j_eswa_2024_123467
crossref_primary_10_1109_ACCESS_2020_3035791
crossref_primary_10_1016_j_renene_2017_12_106
crossref_primary_10_1016_j_energy_2017_02_069
crossref_primary_10_1016_j_energy_2018_03_030
crossref_primary_10_1016_j_energy_2019_116618
crossref_primary_10_1016_j_epsr_2020_106909
crossref_primary_10_1109_ACCESS_2020_3041398
crossref_primary_10_1016_j_apenergy_2019_01_211
crossref_primary_10_1016_j_seta_2021_101225
crossref_primary_10_1002_etep_2425
crossref_primary_10_1080_15325008_2022_2049661
crossref_primary_10_1002_er_6474
crossref_primary_10_1051_ro_2020075
crossref_primary_10_1007_s13198_019_00779_9
crossref_primary_10_1109_ACCESS_2017_2730850
crossref_primary_10_3390_su11236550
crossref_primary_10_1080_0305215X_2019_1695790
crossref_primary_10_2478_jee_2021_0044
crossref_primary_10_1016_j_aej_2021_11_035
crossref_primary_10_1007_s13369_020_04965_x
crossref_primary_10_1049_iet_rpg_2019_0472
crossref_primary_10_1016_j_energy_2017_05_169
crossref_primary_10_1016_j_apenergy_2020_115407
crossref_primary_10_1016_j_energy_2023_127087
crossref_primary_10_1016_j_jclepro_2020_121562
crossref_primary_10_1016_j_est_2018_11_009
crossref_primary_10_1007_s12667_022_00507_6
crossref_primary_10_1016_j_rser_2024_114808
crossref_primary_10_1016_j_rser_2016_10_036
crossref_primary_10_3390_en13215800
crossref_primary_10_1016_j_energy_2017_07_102
crossref_primary_10_3390_su13063566
crossref_primary_10_1002_2050_7038_12302
crossref_primary_10_1016_j_ijepes_2021_107092
crossref_primary_10_1049_rpg2_12060
crossref_primary_10_3390_en16041595
crossref_primary_10_1016_j_asoc_2019_106012
crossref_primary_10_1016_j_rser_2017_09_028
crossref_primary_10_1016_j_epsr_2021_107633
crossref_primary_10_35378_gujs_1328300
crossref_primary_10_1007_s12065_021_00641_7
crossref_primary_10_2298_FUEE2201071P
crossref_primary_10_3390_su12155966
crossref_primary_10_1080_00207721_2021_1942587
crossref_primary_10_1016_j_energy_2024_133463
crossref_primary_10_1016_j_eswa_2022_117590
crossref_primary_10_1002_jnm_2467
crossref_primary_10_1016_j_ref_2022_06_003
crossref_primary_10_1088_1755_1315_108_5_052022
crossref_primary_10_1016_j_jclepro_2020_125465
crossref_primary_10_1016_j_energy_2020_116968
crossref_primary_10_1155_2018_4790942
crossref_primary_10_1109_TPWRS_2018_2827240
crossref_primary_10_1002_etep_2585
crossref_primary_10_1002_2050_7038_12230
crossref_primary_10_1109_TSG_2022_3220796
crossref_primary_10_1080_01430750_2019_1583604
crossref_primary_10_1016_j_egyr_2024_07_050
crossref_primary_10_1016_j_epsr_2022_107965
crossref_primary_10_1109_ACCESS_2020_2997378
crossref_primary_10_61186_ieijqp_13_1_4
crossref_primary_10_1002_2050_7038_12246
crossref_primary_10_1016_j_rser_2017_10_060
crossref_primary_10_1016_j_jclepro_2018_12_281
crossref_primary_10_1016_j_aej_2022_01_056
crossref_primary_10_1016_j_segan_2023_101225
crossref_primary_10_1007_s12652_020_02511_z
crossref_primary_10_1007_s42835_023_01457_4
crossref_primary_10_1016_j_energy_2022_123226
crossref_primary_10_1016_j_tsep_2021_101020
crossref_primary_10_1016_j_rser_2021_111848
crossref_primary_10_3390_su16031212
crossref_primary_10_1016_j_apenergy_2017_10_106
crossref_primary_10_1016_j_est_2023_107698
crossref_primary_10_1016_j_ref_2019_12_001
crossref_primary_10_1371_journal_pone_0264958
crossref_primary_10_1016_j_est_2021_103215
Cites_doi 10.1016/j.energy.2014.09.004
10.1016/j.enconman.2011.09.014
10.1016/j.solener.2012.07.014
10.1016/j.energy.2013.08.060
10.1080/15325008.2012.732658
10.1016/j.epsr.2013.07.016
10.1109/TPWRS.2012.2200049
10.1016/j.energy.2013.12.037
10.1049/iet-gtd:20070046
10.1016/j.ijepes.2013.06.026
10.1080/00207543.2011.648280
10.1016/j.ijepes.2014.06.011
10.1016/j.epsr.2012.04.008
10.1016/j.ijepes.2014.04.064
10.1016/j.compstruc.2009.04.011
10.1049/iet-gtd.2010.0056
10.1016/j.solener.2010.10.001
10.1016/j.ijepes.2014.11.022
10.1016/j.amc.2007.12.053
10.1016/j.energy.2015.03.101
10.1109/IDAMS.2010.2076839
10.1109/TPWRD.2011.2179950
10.1016/j.epsr.2013.05.017
10.1016/j.energy.2014.04.099
10.1016/j.eswa.2014.04.025
10.1016/j.neucom.2012.08.033
10.1109/4235.996017
10.1109/TPWRS.2012.2197227
10.1016/j.advengsoft.2005.04.005
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7ST
7TV
C1K
SOI
7SP
7TB
8FD
F28
FR3
KR7
L7M
7S9
L.6
DOI 10.1016/j.energy.2016.02.152
DatabaseName CrossRef
Environment Abstracts
Pollution Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Pollution Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
Pollution Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 99
ExternalDocumentID 10_1016_j_energy_2016_02_152
S0360544216302146
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7ST
7TV
C1K
SOI
7SP
7TB
8FD
F28
FR3
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c405t-d73d73e448141d6b3424c643c12d3478e55c47d2c32ca627a7c029c078b807423
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Fri Jul 11 07:25:15 EDT 2025
Fri Jul 11 05:23:06 EDT 2025
Thu Jul 10 20:32:37 EDT 2025
Tue Jul 01 00:52:56 EDT 2025
Thu Apr 24 23:16:00 EDT 2025
Fri Feb 23 02:32:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distribution system reconfiguration
Multi-objective Hybrid Big Bang-Big Crunch algorithm
Pareto optimal solution
Distributed generation
Multi-objective optimization
Loads fuzzy modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-d73d73e448141d6b3424c643c12d3478e55c47d2c32ca627a7c029c078b807423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1672-0139
PQID 1808666002
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_2131888190
proquest_miscellaneous_1825481109
proquest_miscellaneous_1808666002
crossref_citationtrail_10_1016_j_energy_2016_02_152
crossref_primary_10_1016_j_energy_2016_02_152
elsevier_sciencedirect_doi_10_1016_j_energy_2016_02_152
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-15
PublicationDateYYYYMMDD 2016-05-15
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-15
  day: 15
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rao, Ravindra, Satish, Narasimham (bib13) 2013; 28
Mohamed Imran, Kowsalya, Kothari (bib16) 2014; 63
Vulasala, Sirigiri, Thiruveedula (bib29) 2009; 3
Niknam, Azadfarsani, Jabbari (bib10) 2012; 54
Aman, Jasmon, Bakar, Mokhlis (bib8) 2014; 54
Sedighizadeh, Esmaili, Esmaeili (bib11) 2014; 76
Al Abri, El-Saadany, Atwa (bib1) 2013; 28
Amanulla, Chakrabarti, Singh (bib6) 2012; 27
Srinivasa Rao, Narasimham, Ramalinga Raju, Srinivasa Rao (bib4) 2011; 26
Erol, Eksin (bib23) 2006; 37
Kavousi-Fard, Niknam (bib9) 2014; 64
Rabiee, Zandieh, Ramezani (bib30) 2012; 50
Nasiraghdam, Jadid (bib12) 2012; 86
Kucuktezcan, Genc (bib19) 2015; 67
Kornelakis (bib32) 2010; 84
Gupta, Swarnkar, Niazi, Bansal (bib27) 2010; 4
Kavousi-Fard, Akbari-Zadeh (bib7) 2013; 106
Zidan, Shaaban, El-Saadany (bib15) 2013; 105
Jazebi, Vahidi (bib5) 2012; 91
Teimourzadeh, Zare (bib3) 2014; 62
Man-Im, Ongsakul, Singh, Boonchuay (bib25) 2014
Kaveh, Talatahari (bib18) 2009; 87
Olamaei, Niknam, Gharehpetian (bib22) 2008; 201
Yang, Zhang, Xiao (bib2) 2015; 85
Deb, Pratap, Agarwal, Meyarivan (bib31) 2002; 6
Aman, Jasmon, Bakar, Mokhlis (bib21) 2014; 66
Haghifam, Falaghi, Malik (bib28) 2008; 2
Sedighizadeh, Ahmadi, Sarvi (bib20) 2013; 41
Alvarez-Benitez, Everson, Fieldsend (bib26) 2005
Rosseti, de Oliveira, de Oliveira, Silva, Peres (bib14) 2013; 103
Tolabi, Ali, Shahrin Bin Md, Rizwan (bib17) 2014; 71
Manzano-Agugliaro, Montoya, San-Antonio-Gómez, López-Márquez, Aguilera, Gil (bib24) 2014; 41
Haghifam (10.1016/j.energy.2016.02.152_bib28) 2008; 2
Rabiee (10.1016/j.energy.2016.02.152_bib30) 2012; 50
Tolabi (10.1016/j.energy.2016.02.152_bib17) 2014; 71
Mohamed Imran (10.1016/j.energy.2016.02.152_bib16) 2014; 63
Srinivasa Rao (10.1016/j.energy.2016.02.152_bib4) 2011; 26
Kavousi-Fard (10.1016/j.energy.2016.02.152_bib7) 2013; 106
Rosseti (10.1016/j.energy.2016.02.152_bib14) 2013; 103
Manzano-Agugliaro (10.1016/j.energy.2016.02.152_bib24) 2014; 41
Aman (10.1016/j.energy.2016.02.152_bib21) 2014; 66
Kucuktezcan (10.1016/j.energy.2016.02.152_bib19) 2015; 67
Alvarez-Benitez (10.1016/j.energy.2016.02.152_bib26) 2005
Teimourzadeh (10.1016/j.energy.2016.02.152_bib3) 2014; 62
Deb (10.1016/j.energy.2016.02.152_bib31) 2002; 6
Kavousi-Fard (10.1016/j.energy.2016.02.152_bib9) 2014; 64
Nasiraghdam (10.1016/j.energy.2016.02.152_bib12) 2012; 86
Sedighizadeh (10.1016/j.energy.2016.02.152_bib20) 2013; 41
Kaveh (10.1016/j.energy.2016.02.152_bib18) 2009; 87
Sedighizadeh (10.1016/j.energy.2016.02.152_bib11) 2014; 76
Amanulla (10.1016/j.energy.2016.02.152_bib6) 2012; 27
Olamaei (10.1016/j.energy.2016.02.152_bib22) 2008; 201
Rao (10.1016/j.energy.2016.02.152_bib13) 2013; 28
Yang (10.1016/j.energy.2016.02.152_bib2) 2015; 85
Vulasala (10.1016/j.energy.2016.02.152_bib29) 2009; 3
Zidan (10.1016/j.energy.2016.02.152_bib15) 2013; 105
Al Abri (10.1016/j.energy.2016.02.152_bib1) 2013; 28
Aman (10.1016/j.energy.2016.02.152_bib8) 2014; 54
Niknam (10.1016/j.energy.2016.02.152_bib10) 2012; 54
Gupta (10.1016/j.energy.2016.02.152_bib27) 2010; 4
Erol (10.1016/j.energy.2016.02.152_bib23) 2006; 37
Man-Im (10.1016/j.energy.2016.02.152_bib25) 2014
Kornelakis (10.1016/j.energy.2016.02.152_bib32) 2010; 84
Jazebi (10.1016/j.energy.2016.02.152_bib5) 2012; 91
References_xml – volume: 105
  start-page: 95
  year: 2013
  end-page: 104
  ident: bib15
  article-title: Long-term multi-objective distribution network planning by DG allocation and feeders' reconfiguration
  publication-title: Electr Power Syst Res
– year: 2005
  ident: bib26
  article-title: A MOPSO algorithm based exclusively on Pareto dominance concepts
– volume: 41
  start-page: 75
  year: 2013
  end-page: 99
  ident: bib20
  article-title: An efficient Hybrid Big Bang–Big Crunch algorithm for multi-objective reconfiguration of balanced and unbalanced distribution systems in fuzzy framework
  publication-title: Electr Power Compon Syst
– volume: 84
  start-page: 2022
  year: 2010
  end-page: 2033
  ident: bib32
  article-title: Multiobjective particle swarm optimization for the optimal design of photovoltaic grid-connected systems
  publication-title: Sol Energy
– volume: 2
  start-page: 252
  year: 2008
  end-page: 260
  ident: bib28
  article-title: Risk-based distributed generation placement
  publication-title: IET Gener Transm Distrib
– volume: 3
  start-page: 754
  year: 2009
  end-page: 762
  ident: bib29
  article-title: Feeder reconfiguration for loss reduction in unbalanced distribution system using genetic algorithm
  publication-title: Int J Electr Power Energy Syst Eng
– volume: 67
  start-page: 114
  year: 2015
  end-page: 124
  ident: bib19
  article-title: Preventive and corrective control applications in power systems via Big Bang–Big Crunch optimization
  publication-title: Int J Electr Power Energy Syst
– volume: 27
  start-page: 918
  year: 2012
  end-page: 926
  ident: bib6
  article-title: Reconfiguration of power distribution systems considering reliability and power loss
  publication-title: IEEE Trans Power Deliv
– volume: 103
  start-page: 178
  year: 2013
  end-page: 183
  ident: bib14
  article-title: Optimal allocation of distributed generation with reconfiguration in electric distribution systems
  publication-title: Electr Power Syst Res
– volume: 54
  start-page: 123
  year: 2014
  end-page: 133
  ident: bib8
  article-title: Optimum network reconfiguration based on maximization of system loadability using continuation power flow theorem
  publication-title: Int J Electr Power Energy Syst
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: bib23
  article-title: A new optimization method: Big Bang–Big Crunch
  publication-title: Adv Eng Softw
– volume: 63
  start-page: 461
  year: 2014
  end-page: 472
  ident: bib16
  article-title: A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks
  publication-title: Int J Electr Power Energy Syst
– volume: 201
  start-page: 575
  year: 2008
  end-page: 586
  ident: bib22
  article-title: Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators
  publication-title: Appl Math Comput
– volume: 106
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib7
  article-title: Reliability enhancement using optimal distribution feeder reconfiguration
  publication-title: Neurocomputing
– volume: 85
  start-page: 433
  year: 2015
  end-page: 448
  ident: bib2
  article-title: Optimal design of distributed energy resource systems coupled with energy distribution networks
  publication-title: Energy
– volume: 71
  start-page: 507
  year: 2014
  end-page: 515
  ident: bib17
  article-title: Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation
  publication-title: Energy
– volume: 28
  start-page: 326
  year: 2013
  end-page: 334
  ident: bib1
  article-title: Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation
  publication-title: IEEE Trans Power Syst
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib25
  article-title: Multi-objective economic dispatch considering wind generation uncertainty using non-dominated sorting particle swarm optimization
  publication-title: International conference and utility exhibition on green energy for sustainable development (ICUE) 2014
– volume: 50
  start-page: 7327
  year: 2012
  end-page: 7342
  ident: bib30
  article-title: Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches
  publication-title: Int J Prod Res
– volume: 91
  start-page: 9
  year: 2012
  end-page: 17
  ident: bib5
  article-title: Reconfiguration of distribution networks to mitigate utilities power quality disturbances
  publication-title: Electr Power Syst Res
– volume: 87
  start-page: 1129
  year: 2009
  end-page: 1140
  ident: bib18
  article-title: Size optimization of space trusses using Big Bang–Big Crunch algorithm
  publication-title: Comput Struct
– volume: 86
  start-page: 3057
  year: 2012
  end-page: 3071
  ident: bib12
  article-title: Optimal hybrid PV/WT/FC sizing and distribution system reconfiguration using multi-objective artificial bee colony (MOABC) algorithm
  publication-title: Sol Energy
– volume: 41
  start-page: 6346
  year: 2014
  end-page: 6360
  ident: bib24
  article-title: The assessment of evolutionary algorithms for analyzing the positional accuracy and uncertainty of maps
  publication-title: Expert Syst Appl
– volume: 4
  start-page: 1288
  year: 2010
  ident: bib27
  article-title: Multi-objective reconfiguration of distribution systems using adaptive genetic algorithm in fuzzy framework
  publication-title: IET Gener Transm Distrib
– volume: 54
  start-page: 7
  year: 2012
  end-page: 16
  ident: bib10
  article-title: A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration
  publication-title: Energy Convers Manag
– volume: 66
  start-page: 202
  year: 2014
  end-page: 215
  ident: bib21
  article-title: A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm
  publication-title: Energy
– volume: 64
  start-page: 342
  year: 2014
  end-page: 354
  ident: bib9
  article-title: Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view
  publication-title: Energy
– volume: 76
  start-page: 920
  year: 2014
  end-page: 930
  ident: bib11
  article-title: Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems
  publication-title: Energy
– volume: 26
  start-page: 1080
  year: 2011
  end-page: 1088
  ident: bib4
  article-title: Optimal network reconfiguration of large-scale distribution system using Harmony search algorithm
  publication-title: IEEE Trans Power Syst
– volume: 62
  start-page: 461
  year: 2014
  end-page: 468
  ident: bib3
  article-title: Application of binary group search optimization to distribution network reconfiguration
  publication-title: Int J Electr Power Energy Syst
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib31
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– volume: 28
  start-page: 317
  year: 2013
  end-page: 325
  ident: bib13
  article-title: Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation
  publication-title: IEEE Trans Power Syst
– volume: 76
  start-page: 920
  year: 2014
  ident: 10.1016/j.energy.2016.02.152_bib11
  article-title: Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.004
– volume: 54
  start-page: 7
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2016.02.152_bib10
  article-title: A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2011.09.014
– volume: 86
  start-page: 3057
  issue: 10
  year: 2012
  ident: 10.1016/j.energy.2016.02.152_bib12
  article-title: Optimal hybrid PV/WT/FC sizing and distribution system reconfiguration using multi-objective artificial bee colony (MOABC) algorithm
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2012.07.014
– volume: 64
  start-page: 342
  year: 2014
  ident: 10.1016/j.energy.2016.02.152_bib9
  article-title: Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.060
– volume: 41
  start-page: 75
  issue: 1
  year: 2013
  ident: 10.1016/j.energy.2016.02.152_bib20
  article-title: An efficient Hybrid Big Bang–Big Crunch algorithm for multi-objective reconfiguration of balanced and unbalanced distribution systems in fuzzy framework
  publication-title: Electr Power Compon Syst
  doi: 10.1080/15325008.2012.732658
– volume: 105
  start-page: 95
  year: 2013
  ident: 10.1016/j.energy.2016.02.152_bib15
  article-title: Long-term multi-objective distribution network planning by DG allocation and feeders' reconfiguration
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2013.07.016
– volume: 28
  start-page: 326
  issue: 1
  year: 2013
  ident: 10.1016/j.energy.2016.02.152_bib1
  article-title: Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2200049
– volume: 66
  start-page: 202
  year: 2014
  ident: 10.1016/j.energy.2016.02.152_bib21
  article-title: A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2013.12.037
– volume: 2
  start-page: 252
  issue: 2
  year: 2008
  ident: 10.1016/j.energy.2016.02.152_bib28
  article-title: Risk-based distributed generation placement
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd:20070046
– volume: 54
  start-page: 123
  year: 2014
  ident: 10.1016/j.energy.2016.02.152_bib8
  article-title: Optimum network reconfiguration based on maximization of system loadability using continuation power flow theorem
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.06.026
– volume: 50
  start-page: 7327
  issue: 24
  year: 2012
  ident: 10.1016/j.energy.2016.02.152_bib30
  article-title: Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2011.648280
– volume: 63
  start-page: 461
  year: 2014
  ident: 10.1016/j.energy.2016.02.152_bib16
  article-title: A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.06.011
– volume: 3
  start-page: 754
  issue: 12
  year: 2009
  ident: 10.1016/j.energy.2016.02.152_bib29
  article-title: Feeder reconfiguration for loss reduction in unbalanced distribution system using genetic algorithm
  publication-title: Int J Electr Power Energy Syst Eng
– year: 2005
  ident: 10.1016/j.energy.2016.02.152_bib26
– volume: 91
  start-page: 9
  year: 2012
  ident: 10.1016/j.energy.2016.02.152_bib5
  article-title: Reconfiguration of distribution networks to mitigate utilities power quality disturbances
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2012.04.008
– volume: 62
  start-page: 461
  year: 2014
  ident: 10.1016/j.energy.2016.02.152_bib3
  article-title: Application of binary group search optimization to distribution network reconfiguration
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.04.064
– volume: 87
  start-page: 1129
  issue: 17–18
  year: 2009
  ident: 10.1016/j.energy.2016.02.152_bib18
  article-title: Size optimization of space trusses using Big Bang–Big Crunch algorithm
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2009.04.011
– volume: 4
  start-page: 1288
  issue: 12
  year: 2010
  ident: 10.1016/j.energy.2016.02.152_bib27
  article-title: Multi-objective reconfiguration of distribution systems using adaptive genetic algorithm in fuzzy framework
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2010.0056
– volume: 84
  start-page: 2022
  issue: 12
  year: 2010
  ident: 10.1016/j.energy.2016.02.152_bib32
  article-title: Multiobjective particle swarm optimization for the optimal design of photovoltaic grid-connected systems
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2010.10.001
– volume: 67
  start-page: 114
  year: 2015
  ident: 10.1016/j.energy.2016.02.152_bib19
  article-title: Preventive and corrective control applications in power systems via Big Bang–Big Crunch optimization
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.11.022
– volume: 201
  start-page: 575
  issue: 1–2
  year: 2008
  ident: 10.1016/j.energy.2016.02.152_bib22
  article-title: Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2007.12.053
– volume: 85
  start-page: 433
  year: 2015
  ident: 10.1016/j.energy.2016.02.152_bib2
  article-title: Optimal design of distributed energy resource systems coupled with energy distribution networks
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.101
– volume: 26
  start-page: 1080
  issue: 3
  year: 2011
  ident: 10.1016/j.energy.2016.02.152_bib4
  article-title: Optimal network reconfiguration of large-scale distribution system using Harmony search algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/IDAMS.2010.2076839
– volume: 27
  start-page: 918
  issue: 2
  year: 2012
  ident: 10.1016/j.energy.2016.02.152_bib6
  article-title: Reconfiguration of power distribution systems considering reliability and power loss
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.2011.2179950
– volume: 103
  start-page: 178
  year: 2013
  ident: 10.1016/j.energy.2016.02.152_bib14
  article-title: Optimal allocation of distributed generation with reconfiguration in electric distribution systems
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2013.05.017
– volume: 71
  start-page: 507
  year: 2014
  ident: 10.1016/j.energy.2016.02.152_bib17
  article-title: Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation
  publication-title: Energy
  doi: 10.1016/j.energy.2014.04.099
– volume: 41
  start-page: 6346
  issue: 14
  year: 2014
  ident: 10.1016/j.energy.2016.02.152_bib24
  article-title: The assessment of evolutionary algorithms for analyzing the positional accuracy and uncertainty of maps
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.04.025
– start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2016.02.152_bib25
  article-title: Multi-objective economic dispatch considering wind generation uncertainty using non-dominated sorting particle swarm optimization
– volume: 106
  start-page: 1
  year: 2013
  ident: 10.1016/j.energy.2016.02.152_bib7
  article-title: Reliability enhancement using optimal distribution feeder reconfiguration
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.033
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.energy.2016.02.152_bib31
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 28
  start-page: 317
  issue: 1
  year: 2013
  ident: 10.1016/j.energy.2016.02.152_bib13
  article-title: Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2197227
– volume: 37
  start-page: 106
  issue: 2
  year: 2006
  ident: 10.1016/j.energy.2016.02.152_bib23
  article-title: A new optimization method: Big Bang–Big Crunch
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2005.04.005
SSID ssj0005899
Score 2.549272
Snippet In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 86
SubjectTerms algorithms
Allocations
decision making
Distributed generation
Distribution management
Distribution system reconfiguration
electric power
gas emissions
Loads fuzzy modeling
Mathematical models
Multi-objective Hybrid Big Bang-Big Crunch algorithm
Multi-objective optimization
Networks
Optimization
Pareto optimal solution
Pareto optimality
pollutants
system optimization
Uncertainty
Title Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty
URI https://dx.doi.org/10.1016/j.energy.2016.02.152
https://www.proquest.com/docview/1808666002
https://www.proquest.com/docview/1825481109
https://www.proquest.com/docview/2131888190
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALgkJFC1RG4gAHs4ntxMmxbFsWEL1Apd4sv7pN1Sar3eyBS39UfyEzdsJLKpWQEimPsRTt2J8_r2fmI-R1bVH-ta6ZA38zaVTJrCgzFvIzayqTKR5VS74cl7MT-em0ON0g0zEXBsMqB-xPmB7RengyGX7NyaJpJl8Be4FvSA6MIspTYwa7VNjL313_FuZRRQ1JNGZoPabPxRivEPPrMMCrxMqdecFvm57-Auo4-xw9Ig8H2kj305c9Jhuh3SL3x6zi1RbZPvyVsQaGw5BdPSE3McWWdfYiQRvtACSuwCQuhc-a-Tr1AWpaTw8-0DcHWEoXVbCCp6koNb5-Sxeop0Zxnz79y0eblvrRFu_bFFG-ohhLP6fvGzhNO2d4MV3C_HkOrefdsunPr6gbhELR8rIznsL7FJ3Qf39KTo4Ov01nbBBqYA74Xs-8EnAEWOnlMvelFZJLB1TH5dwLqapQFE4qz53gzpRcGeUyXjtgJxZr8XCxTTbbrg3PCAXsrUXppbVOSCuy2jojlAVeVsBwDsUOEaN_tBuqmKOYxqUew9UudPKqRq_qjGvw6g5hP1stUhWPO-zV6Hr9R2_UMNHc0fLV2FM0DFTcfTFt6NYrnVeweixxG_RfNrBer7AI7O02PAcYrpDI7f73Vz4nD_AOoyDy4gXZ7Jfr8BLIVW_34ujZI_f2P36eHf8AxDcnag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELVKOZQLagsVhVKMxAEOZhPbiZMjbFsWaHuhlXqzbMfdpmqT1W72wIWP4guZsZNSkEolpERK4mcpynjG43hmHiFvSov0r2XJHMibSaNyZkWeMJ-eW1OYRPHAWnJ0nE9O5Zez7GyFjIdcGAyr7G1_tOnBWvdPRv3XHM3qevQNbC_4G5KDRxHoqR-QhxLUF2kM3v-4FedRBBJJRDOED_lzIcjLhwQ7jPDKsXRnmvG75qe_LHWYfg7WyePeb6Qf4qttkBXfbJK1Ia14sUm29n-nrAGw19nFE_Iz5Niy1l5G20ZbsBLXAAlr4fN6uoyDgJqmonuf6Ns9rKWLNFi-orEqNTa_ozMkVKO4UR9_89G6odWAxfsmhpQvKAbTT-nHGk7TTBlejOcwgV5A72k7r7uLa-p6plBEXrWmotAewxO670_J6cH-yXjCeqYG5sDh61ilBBwelnqpTKvcCsmlA1_HpbwSUhU-y5xUFXeCO5NzZZRLeOnAPbFYjIeLLbLatI1_RigY31LklbTWCWlFUlpnhLLgmGWgzz7bJmKQj3Z9GXNk07jSQ7zapY5S1ShVnXANUt0m7KbXLJbxuAevBtHrP4ajhpnmnp6vh5GiQVNx-8U0vl0udFrA8jHHfdB_YWDBXmAV2LsxPAU7XKAn9_y_3_IVWZucHB3qw8_HX1-QR9iCIRFptkNWu_nSvwRPq7O7QZN-AUBQKPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimal+reconfiguration+and+DG+%28Distributed+Generation%29+power+allocation+in+distribution+networks+using+Big+Bang-Big+Crunch+algorithm+considering+load+uncertainty&rft.jtitle=Energy+%28Oxford%29&rft.au=Esmaeilia%2C+Mobin&rft.au=Sedighizadeha%2C+Mostafa&rft.au=Esmailib%2C+Masoud&rft.date=2016-05-15&rft.issn=0360-5442&rft.volume=103&rft.spage=86&rft.epage=99&rft_id=info:doi/10.1016%2Fj.energy.2016.02.152&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon