Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty
In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in distribution networks. The optimization problem has objective functions of minimizing power losses, operation cost, and pollutant gas emissions as...
Saved in:
Published in | Energy (Oxford) Vol. 103; pp. 86 - 99 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in distribution networks. The optimization problem has objective functions of minimizing power losses, operation cost, and pollutant gas emissions as well as maximizing the voltage stability index subject to different power system constraints. The uncertainty of loads is modeled using the TFN (Triangular Fuzzy Number) technique. A novel solution method called MOHBB-BC (Multi-objective Hybrid Big Bang-Big Crunch) is implemented to solve the optimization problem. The MOHBB-BC derives a set of non-dominated Pareto solutions and accumulates them in a retention called Archive. The diversity of Pareto solutions conserved by applying a crowding distance operator and afterwards, the ‘best compromised’ Pareto solution is selected using a fuzzy decision maker. The proposed method is tested on two test systems of 33-bus and 25-bus in different cases including unbalanced three-phase loads. Results obtained from test cases elaborate that the MOHBB-BC results in more diversified Pareto solutions implying a better exploration capability even with a higher fitness. In addition, considering load uncertainty leads to a more realistic solution than deterministic loads but with higher level of power losses.
•Pareto solutions of MOHBB-BC have higher quality and more diversified than MOPSO.•Load uncertainty leads to more realistic solution but with 4.5% more losses.•Mutation in HBB-BC makes it have better exploration and speed than fuzzy BA and HAS. |
---|---|
AbstractList | In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in distribution networks. The optimization problem has objective functions of minimizing power losses, operation cost, and pollutant gas emissions as well as maximizing the voltage stability index subject to different power system constraints. The uncertainty of loads is modeled using the TFN (Triangular Fuzzy Number) technique. A novel solution method called MOHBB-BC (Multi-objective Hybrid Big Bang-Big Crunch) is implemented to solve the optimization problem. The MOHBB-BC derives a set of non-dominated Pareto solutions and accumulates them in a retention called Archive. The diversity of Pareto solutions conserved by applying a crowding distance operator and afterwards, the 'best compromised' Pareto solution is selected using a fuzzy decision maker. The proposed method is tested on two test systems of 33-bus and 25-bus in different cases including unbalanced three-phase loads. Results obtained from test cases elaborate that the MOHBB-BC results in more diversified Pareto solutions implying a better exploration capability even with a higher fitness. In addition, considering load uncertainty leads to a more realistic solution than deterministic loads but with higher level of power losses. In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in distribution networks. The optimization problem has objective functions of minimizing power losses, operation cost, and pollutant gas emissions as well as maximizing the voltage stability index subject to different power system constraints. The uncertainty of loads is modeled using the TFN (Triangular Fuzzy Number) technique. A novel solution method called MOHBB-BC (Multi-objective Hybrid Big Bang-Big Crunch) is implemented to solve the optimization problem. The MOHBB-BC derives a set of non-dominated Pareto solutions and accumulates them in a retention called Archive. The diversity of Pareto solutions conserved by applying a crowding distance operator and afterwards, the ‘best compromised’ Pareto solution is selected using a fuzzy decision maker. The proposed method is tested on two test systems of 33-bus and 25-bus in different cases including unbalanced three-phase loads. Results obtained from test cases elaborate that the MOHBB-BC results in more diversified Pareto solutions implying a better exploration capability even with a higher fitness. In addition, considering load uncertainty leads to a more realistic solution than deterministic loads but with higher level of power losses. •Pareto solutions of MOHBB-BC have higher quality and more diversified than MOPSO.•Load uncertainty leads to more realistic solution but with 4.5% more losses.•Mutation in HBB-BC makes it have better exploration and speed than fuzzy BA and HAS. |
Author | Sedighizadeh, Mostafa Esmaili, Masoud Esmaeili, Mobin |
Author_xml | – sequence: 1 givenname: Mobin surname: Esmaeili fullname: Esmaeili, Mobin organization: Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Evin, Tehran, Iran – sequence: 2 givenname: Mostafa surname: Sedighizadeh fullname: Sedighizadeh, Mostafa organization: Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Evin, Tehran, Iran – sequence: 3 givenname: Masoud orcidid: 0000-0002-1672-0139 surname: Esmaili fullname: Esmaili, Masoud email: msdesmaili@gmail.com, esmaili.m@wtiau.ac.ir organization: Department of Electrical Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran |
BookMark | eNqNUsFu1DAQzaFItIU_4OBjOSTYjpM4HJBgCwtSq17K2fLas-ksWXuxnVb7W3whTgMXDrSSLc9o3psZveez4sR5B0XxhtGKUda-21XgIAzHiuesorxiDT8pTmnd0rIRgr8szmLcUUob2fenxa_raUxY-s0OTMJ7IP6QcK9HEsB4t8VhCjqhd0Q7Sy7X5OISYwq4mRJYsp5HPZbfkoN_gED0OHqzENAR-xc75w7Sgw8_IpkiuoF8wny1G8o5WIXJmbvMHnzAdLcneXZEC2FGjl5bkusQkkaXjq-KF1s9Rnj95z0vvn_5fLv6Wl7drL-tPl6VRtAmlbar8wEhJBPMtptacGFaURvGbS06CU1jRGe5qbnRLe90ZyjvDe3kRtJO8Pq8uFj6HoL_OUFMao_RwDhqB36KirOaSSlZT5-EMsmbvAej_TOgVLZtS-m8wPsFaoKPMcBWGUyP4qagcVSMqtlytVOL5Wq2XFGusuWZLP4hH0I2Nhyfon1YaJCVvUcIKhqELL7F_COSsh7_3-A3cGTPKg |
CitedBy_id | crossref_primary_10_1016_j_rser_2018_07_056 crossref_primary_10_1049_rpg2_12648 crossref_primary_10_1093_ijlct_ctae231 crossref_primary_10_3390_computation11110214 crossref_primary_10_1016_j_energy_2018_01_111 crossref_primary_10_1016_j_rser_2016_09_063 crossref_primary_10_31590_ejosat_1051410 crossref_primary_10_1007_s00521_018_3907_1 crossref_primary_10_1007_s12667_019_00333_3 crossref_primary_10_1016_j_est_2019_04_024 crossref_primary_10_1016_j_est_2020_101301 crossref_primary_10_1016_j_asoc_2021_107395 crossref_primary_10_1049_smc2_12025 crossref_primary_10_1016_j_apenergy_2018_10_030 crossref_primary_10_1007_s12652_020_02322_2 crossref_primary_10_1016_j_est_2020_102089 crossref_primary_10_1109_ACCESS_2021_3134872 crossref_primary_10_1109_TII_2024_3409445 crossref_primary_10_1016_j_energy_2019_116644 crossref_primary_10_1080_02286203_2020_1829443 crossref_primary_10_1109_ACCESS_2024_3392911 crossref_primary_10_1016_j_scs_2018_05_027 crossref_primary_10_3390_en13143746 crossref_primary_10_1080_03772063_2023_2175049 crossref_primary_10_1155_2022_7886358 crossref_primary_10_1002_2050_7038_12100 crossref_primary_10_1016_j_ijepes_2025_110534 crossref_primary_10_1016_j_rser_2020_109777 crossref_primary_10_1016_j_energy_2021_122728 crossref_primary_10_1049_iet_gtd_2016_0013 crossref_primary_10_1049_iet_gtd_2019_1402 crossref_primary_10_1080_15325008_2019_1689449 crossref_primary_10_1049_rpg2_12949 crossref_primary_10_1109_ACCESS_2024_3505302 crossref_primary_10_1016_j_energy_2023_127778 crossref_primary_10_1080_15567249_2022_2038729 crossref_primary_10_1155_2020_5101387 crossref_primary_10_1016_j_epsr_2017_03_020 crossref_primary_10_1002_er_4864 crossref_primary_10_1016_j_asej_2020_09_024 crossref_primary_10_1016_j_jclepro_2020_121629 crossref_primary_10_1109_ACCESS_2020_3036898 crossref_primary_10_1007_s12667_022_00521_8 crossref_primary_10_1007_s41660_021_00200_8 crossref_primary_10_1016_j_heliyon_2024_e31675 crossref_primary_10_1002_er_5709 crossref_primary_10_1016_j_eswa_2024_123467 crossref_primary_10_1109_ACCESS_2020_3035791 crossref_primary_10_1016_j_renene_2017_12_106 crossref_primary_10_1016_j_energy_2017_02_069 crossref_primary_10_1016_j_energy_2018_03_030 crossref_primary_10_1016_j_energy_2019_116618 crossref_primary_10_1016_j_epsr_2020_106909 crossref_primary_10_1109_ACCESS_2020_3041398 crossref_primary_10_1016_j_apenergy_2019_01_211 crossref_primary_10_1016_j_seta_2021_101225 crossref_primary_10_1002_etep_2425 crossref_primary_10_1080_15325008_2022_2049661 crossref_primary_10_1002_er_6474 crossref_primary_10_1051_ro_2020075 crossref_primary_10_1007_s13198_019_00779_9 crossref_primary_10_1109_ACCESS_2017_2730850 crossref_primary_10_3390_su11236550 crossref_primary_10_1080_0305215X_2019_1695790 crossref_primary_10_2478_jee_2021_0044 crossref_primary_10_1016_j_aej_2021_11_035 crossref_primary_10_1007_s13369_020_04965_x crossref_primary_10_1049_iet_rpg_2019_0472 crossref_primary_10_1016_j_energy_2017_05_169 crossref_primary_10_1016_j_apenergy_2020_115407 crossref_primary_10_1016_j_energy_2023_127087 crossref_primary_10_1016_j_jclepro_2020_121562 crossref_primary_10_1016_j_est_2018_11_009 crossref_primary_10_1007_s12667_022_00507_6 crossref_primary_10_1016_j_rser_2024_114808 crossref_primary_10_1016_j_rser_2016_10_036 crossref_primary_10_3390_en13215800 crossref_primary_10_1016_j_energy_2017_07_102 crossref_primary_10_3390_su13063566 crossref_primary_10_1002_2050_7038_12302 crossref_primary_10_1016_j_ijepes_2021_107092 crossref_primary_10_1049_rpg2_12060 crossref_primary_10_3390_en16041595 crossref_primary_10_1016_j_asoc_2019_106012 crossref_primary_10_1016_j_rser_2017_09_028 crossref_primary_10_1016_j_epsr_2021_107633 crossref_primary_10_35378_gujs_1328300 crossref_primary_10_1007_s12065_021_00641_7 crossref_primary_10_2298_FUEE2201071P crossref_primary_10_3390_su12155966 crossref_primary_10_1080_00207721_2021_1942587 crossref_primary_10_1016_j_energy_2024_133463 crossref_primary_10_1016_j_eswa_2022_117590 crossref_primary_10_1002_jnm_2467 crossref_primary_10_1016_j_ref_2022_06_003 crossref_primary_10_1088_1755_1315_108_5_052022 crossref_primary_10_1016_j_jclepro_2020_125465 crossref_primary_10_1016_j_energy_2020_116968 crossref_primary_10_1155_2018_4790942 crossref_primary_10_1109_TPWRS_2018_2827240 crossref_primary_10_1002_etep_2585 crossref_primary_10_1002_2050_7038_12230 crossref_primary_10_1109_TSG_2022_3220796 crossref_primary_10_1080_01430750_2019_1583604 crossref_primary_10_1016_j_egyr_2024_07_050 crossref_primary_10_1016_j_epsr_2022_107965 crossref_primary_10_1109_ACCESS_2020_2997378 crossref_primary_10_61186_ieijqp_13_1_4 crossref_primary_10_1002_2050_7038_12246 crossref_primary_10_1016_j_rser_2017_10_060 crossref_primary_10_1016_j_jclepro_2018_12_281 crossref_primary_10_1016_j_aej_2022_01_056 crossref_primary_10_1016_j_segan_2023_101225 crossref_primary_10_1007_s12652_020_02511_z crossref_primary_10_1007_s42835_023_01457_4 crossref_primary_10_1016_j_energy_2022_123226 crossref_primary_10_1016_j_tsep_2021_101020 crossref_primary_10_1016_j_rser_2021_111848 crossref_primary_10_3390_su16031212 crossref_primary_10_1016_j_apenergy_2017_10_106 crossref_primary_10_1016_j_est_2023_107698 crossref_primary_10_1016_j_ref_2019_12_001 crossref_primary_10_1371_journal_pone_0264958 crossref_primary_10_1016_j_est_2021_103215 |
Cites_doi | 10.1016/j.energy.2014.09.004 10.1016/j.enconman.2011.09.014 10.1016/j.solener.2012.07.014 10.1016/j.energy.2013.08.060 10.1080/15325008.2012.732658 10.1016/j.epsr.2013.07.016 10.1109/TPWRS.2012.2200049 10.1016/j.energy.2013.12.037 10.1049/iet-gtd:20070046 10.1016/j.ijepes.2013.06.026 10.1080/00207543.2011.648280 10.1016/j.ijepes.2014.06.011 10.1016/j.epsr.2012.04.008 10.1016/j.ijepes.2014.04.064 10.1016/j.compstruc.2009.04.011 10.1049/iet-gtd.2010.0056 10.1016/j.solener.2010.10.001 10.1016/j.ijepes.2014.11.022 10.1016/j.amc.2007.12.053 10.1016/j.energy.2015.03.101 10.1109/IDAMS.2010.2076839 10.1109/TPWRD.2011.2179950 10.1016/j.epsr.2013.05.017 10.1016/j.energy.2014.04.099 10.1016/j.eswa.2014.04.025 10.1016/j.neucom.2012.08.033 10.1109/4235.996017 10.1109/TPWRS.2012.2197227 10.1016/j.advengsoft.2005.04.005 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7ST 7TV C1K SOI 7SP 7TB 8FD F28 FR3 KR7 L7M 7S9 L.6 |
DOI | 10.1016/j.energy.2016.02.152 |
DatabaseName | CrossRef Environment Abstracts Pollution Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Pollution Abstracts Environment Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts Pollution Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EndPage | 99 |
ExternalDocumentID | 10_1016_j_energy_2016_02_152 S0360544216302146 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7ST 7TV C1K SOI 7SP 7TB 8FD F28 FR3 KR7 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c405t-d73d73e448141d6b3424c643c12d3478e55c47d2c32ca627a7c029c078b807423 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Fri Jul 11 07:25:15 EDT 2025 Fri Jul 11 05:23:06 EDT 2025 Thu Jul 10 20:32:37 EDT 2025 Tue Jul 01 00:52:56 EDT 2025 Thu Apr 24 23:16:00 EDT 2025 Fri Feb 23 02:32:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Distribution system reconfiguration Multi-objective Hybrid Big Bang-Big Crunch algorithm Pareto optimal solution Distributed generation Multi-objective optimization Loads fuzzy modeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-d73d73e448141d6b3424c643c12d3478e55c47d2c32ca627a7c029c078b807423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1672-0139 |
PQID | 1808666002 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2131888190 proquest_miscellaneous_1825481109 proquest_miscellaneous_1808666002 crossref_citationtrail_10_1016_j_energy_2016_02_152 crossref_primary_10_1016_j_energy_2016_02_152 elsevier_sciencedirect_doi_10_1016_j_energy_2016_02_152 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-15 |
PublicationDateYYYYMMDD | 2016-05-15 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rao, Ravindra, Satish, Narasimham (bib13) 2013; 28 Mohamed Imran, Kowsalya, Kothari (bib16) 2014; 63 Vulasala, Sirigiri, Thiruveedula (bib29) 2009; 3 Niknam, Azadfarsani, Jabbari (bib10) 2012; 54 Aman, Jasmon, Bakar, Mokhlis (bib8) 2014; 54 Sedighizadeh, Esmaili, Esmaeili (bib11) 2014; 76 Al Abri, El-Saadany, Atwa (bib1) 2013; 28 Amanulla, Chakrabarti, Singh (bib6) 2012; 27 Srinivasa Rao, Narasimham, Ramalinga Raju, Srinivasa Rao (bib4) 2011; 26 Erol, Eksin (bib23) 2006; 37 Kavousi-Fard, Niknam (bib9) 2014; 64 Rabiee, Zandieh, Ramezani (bib30) 2012; 50 Nasiraghdam, Jadid (bib12) 2012; 86 Kucuktezcan, Genc (bib19) 2015; 67 Kornelakis (bib32) 2010; 84 Gupta, Swarnkar, Niazi, Bansal (bib27) 2010; 4 Kavousi-Fard, Akbari-Zadeh (bib7) 2013; 106 Zidan, Shaaban, El-Saadany (bib15) 2013; 105 Jazebi, Vahidi (bib5) 2012; 91 Teimourzadeh, Zare (bib3) 2014; 62 Man-Im, Ongsakul, Singh, Boonchuay (bib25) 2014 Kaveh, Talatahari (bib18) 2009; 87 Olamaei, Niknam, Gharehpetian (bib22) 2008; 201 Yang, Zhang, Xiao (bib2) 2015; 85 Deb, Pratap, Agarwal, Meyarivan (bib31) 2002; 6 Aman, Jasmon, Bakar, Mokhlis (bib21) 2014; 66 Haghifam, Falaghi, Malik (bib28) 2008; 2 Sedighizadeh, Ahmadi, Sarvi (bib20) 2013; 41 Alvarez-Benitez, Everson, Fieldsend (bib26) 2005 Rosseti, de Oliveira, de Oliveira, Silva, Peres (bib14) 2013; 103 Tolabi, Ali, Shahrin Bin Md, Rizwan (bib17) 2014; 71 Manzano-Agugliaro, Montoya, San-Antonio-Gómez, López-Márquez, Aguilera, Gil (bib24) 2014; 41 Haghifam (10.1016/j.energy.2016.02.152_bib28) 2008; 2 Rabiee (10.1016/j.energy.2016.02.152_bib30) 2012; 50 Tolabi (10.1016/j.energy.2016.02.152_bib17) 2014; 71 Mohamed Imran (10.1016/j.energy.2016.02.152_bib16) 2014; 63 Srinivasa Rao (10.1016/j.energy.2016.02.152_bib4) 2011; 26 Kavousi-Fard (10.1016/j.energy.2016.02.152_bib7) 2013; 106 Rosseti (10.1016/j.energy.2016.02.152_bib14) 2013; 103 Manzano-Agugliaro (10.1016/j.energy.2016.02.152_bib24) 2014; 41 Aman (10.1016/j.energy.2016.02.152_bib21) 2014; 66 Kucuktezcan (10.1016/j.energy.2016.02.152_bib19) 2015; 67 Alvarez-Benitez (10.1016/j.energy.2016.02.152_bib26) 2005 Teimourzadeh (10.1016/j.energy.2016.02.152_bib3) 2014; 62 Deb (10.1016/j.energy.2016.02.152_bib31) 2002; 6 Kavousi-Fard (10.1016/j.energy.2016.02.152_bib9) 2014; 64 Nasiraghdam (10.1016/j.energy.2016.02.152_bib12) 2012; 86 Sedighizadeh (10.1016/j.energy.2016.02.152_bib20) 2013; 41 Kaveh (10.1016/j.energy.2016.02.152_bib18) 2009; 87 Sedighizadeh (10.1016/j.energy.2016.02.152_bib11) 2014; 76 Amanulla (10.1016/j.energy.2016.02.152_bib6) 2012; 27 Olamaei (10.1016/j.energy.2016.02.152_bib22) 2008; 201 Rao (10.1016/j.energy.2016.02.152_bib13) 2013; 28 Yang (10.1016/j.energy.2016.02.152_bib2) 2015; 85 Vulasala (10.1016/j.energy.2016.02.152_bib29) 2009; 3 Zidan (10.1016/j.energy.2016.02.152_bib15) 2013; 105 Al Abri (10.1016/j.energy.2016.02.152_bib1) 2013; 28 Aman (10.1016/j.energy.2016.02.152_bib8) 2014; 54 Niknam (10.1016/j.energy.2016.02.152_bib10) 2012; 54 Gupta (10.1016/j.energy.2016.02.152_bib27) 2010; 4 Erol (10.1016/j.energy.2016.02.152_bib23) 2006; 37 Man-Im (10.1016/j.energy.2016.02.152_bib25) 2014 Kornelakis (10.1016/j.energy.2016.02.152_bib32) 2010; 84 Jazebi (10.1016/j.energy.2016.02.152_bib5) 2012; 91 |
References_xml | – volume: 105 start-page: 95 year: 2013 end-page: 104 ident: bib15 article-title: Long-term multi-objective distribution network planning by DG allocation and feeders' reconfiguration publication-title: Electr Power Syst Res – year: 2005 ident: bib26 article-title: A MOPSO algorithm based exclusively on Pareto dominance concepts – volume: 41 start-page: 75 year: 2013 end-page: 99 ident: bib20 article-title: An efficient Hybrid Big Bang–Big Crunch algorithm for multi-objective reconfiguration of balanced and unbalanced distribution systems in fuzzy framework publication-title: Electr Power Compon Syst – volume: 84 start-page: 2022 year: 2010 end-page: 2033 ident: bib32 article-title: Multiobjective particle swarm optimization for the optimal design of photovoltaic grid-connected systems publication-title: Sol Energy – volume: 2 start-page: 252 year: 2008 end-page: 260 ident: bib28 article-title: Risk-based distributed generation placement publication-title: IET Gener Transm Distrib – volume: 3 start-page: 754 year: 2009 end-page: 762 ident: bib29 article-title: Feeder reconfiguration for loss reduction in unbalanced distribution system using genetic algorithm publication-title: Int J Electr Power Energy Syst Eng – volume: 67 start-page: 114 year: 2015 end-page: 124 ident: bib19 article-title: Preventive and corrective control applications in power systems via Big Bang–Big Crunch optimization publication-title: Int J Electr Power Energy Syst – volume: 27 start-page: 918 year: 2012 end-page: 926 ident: bib6 article-title: Reconfiguration of power distribution systems considering reliability and power loss publication-title: IEEE Trans Power Deliv – volume: 103 start-page: 178 year: 2013 end-page: 183 ident: bib14 article-title: Optimal allocation of distributed generation with reconfiguration in electric distribution systems publication-title: Electr Power Syst Res – volume: 54 start-page: 123 year: 2014 end-page: 133 ident: bib8 article-title: Optimum network reconfiguration based on maximization of system loadability using continuation power flow theorem publication-title: Int J Electr Power Energy Syst – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: bib23 article-title: A new optimization method: Big Bang–Big Crunch publication-title: Adv Eng Softw – volume: 63 start-page: 461 year: 2014 end-page: 472 ident: bib16 article-title: A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks publication-title: Int J Electr Power Energy Syst – volume: 201 start-page: 575 year: 2008 end-page: 586 ident: bib22 article-title: Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators publication-title: Appl Math Comput – volume: 106 start-page: 1 year: 2013 end-page: 11 ident: bib7 article-title: Reliability enhancement using optimal distribution feeder reconfiguration publication-title: Neurocomputing – volume: 85 start-page: 433 year: 2015 end-page: 448 ident: bib2 article-title: Optimal design of distributed energy resource systems coupled with energy distribution networks publication-title: Energy – volume: 71 start-page: 507 year: 2014 end-page: 515 ident: bib17 article-title: Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation publication-title: Energy – volume: 28 start-page: 326 year: 2013 end-page: 334 ident: bib1 article-title: Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation publication-title: IEEE Trans Power Syst – start-page: 1 year: 2014 end-page: 6 ident: bib25 article-title: Multi-objective economic dispatch considering wind generation uncertainty using non-dominated sorting particle swarm optimization publication-title: International conference and utility exhibition on green energy for sustainable development (ICUE) 2014 – volume: 50 start-page: 7327 year: 2012 end-page: 7342 ident: bib30 article-title: Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches publication-title: Int J Prod Res – volume: 91 start-page: 9 year: 2012 end-page: 17 ident: bib5 article-title: Reconfiguration of distribution networks to mitigate utilities power quality disturbances publication-title: Electr Power Syst Res – volume: 87 start-page: 1129 year: 2009 end-page: 1140 ident: bib18 article-title: Size optimization of space trusses using Big Bang–Big Crunch algorithm publication-title: Comput Struct – volume: 86 start-page: 3057 year: 2012 end-page: 3071 ident: bib12 article-title: Optimal hybrid PV/WT/FC sizing and distribution system reconfiguration using multi-objective artificial bee colony (MOABC) algorithm publication-title: Sol Energy – volume: 41 start-page: 6346 year: 2014 end-page: 6360 ident: bib24 article-title: The assessment of evolutionary algorithms for analyzing the positional accuracy and uncertainty of maps publication-title: Expert Syst Appl – volume: 4 start-page: 1288 year: 2010 ident: bib27 article-title: Multi-objective reconfiguration of distribution systems using adaptive genetic algorithm in fuzzy framework publication-title: IET Gener Transm Distrib – volume: 54 start-page: 7 year: 2012 end-page: 16 ident: bib10 article-title: A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration publication-title: Energy Convers Manag – volume: 66 start-page: 202 year: 2014 end-page: 215 ident: bib21 article-title: A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm publication-title: Energy – volume: 64 start-page: 342 year: 2014 end-page: 354 ident: bib9 article-title: Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view publication-title: Energy – volume: 76 start-page: 920 year: 2014 end-page: 930 ident: bib11 article-title: Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems publication-title: Energy – volume: 26 start-page: 1080 year: 2011 end-page: 1088 ident: bib4 article-title: Optimal network reconfiguration of large-scale distribution system using Harmony search algorithm publication-title: IEEE Trans Power Syst – volume: 62 start-page: 461 year: 2014 end-page: 468 ident: bib3 article-title: Application of binary group search optimization to distribution network reconfiguration publication-title: Int J Electr Power Energy Syst – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib31 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – volume: 28 start-page: 317 year: 2013 end-page: 325 ident: bib13 article-title: Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation publication-title: IEEE Trans Power Syst – volume: 76 start-page: 920 year: 2014 ident: 10.1016/j.energy.2016.02.152_bib11 article-title: Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems publication-title: Energy doi: 10.1016/j.energy.2014.09.004 – volume: 54 start-page: 7 issue: 1 year: 2012 ident: 10.1016/j.energy.2016.02.152_bib10 article-title: A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2011.09.014 – volume: 86 start-page: 3057 issue: 10 year: 2012 ident: 10.1016/j.energy.2016.02.152_bib12 article-title: Optimal hybrid PV/WT/FC sizing and distribution system reconfiguration using multi-objective artificial bee colony (MOABC) algorithm publication-title: Sol Energy doi: 10.1016/j.solener.2012.07.014 – volume: 64 start-page: 342 year: 2014 ident: 10.1016/j.energy.2016.02.152_bib9 article-title: Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view publication-title: Energy doi: 10.1016/j.energy.2013.08.060 – volume: 41 start-page: 75 issue: 1 year: 2013 ident: 10.1016/j.energy.2016.02.152_bib20 article-title: An efficient Hybrid Big Bang–Big Crunch algorithm for multi-objective reconfiguration of balanced and unbalanced distribution systems in fuzzy framework publication-title: Electr Power Compon Syst doi: 10.1080/15325008.2012.732658 – volume: 105 start-page: 95 year: 2013 ident: 10.1016/j.energy.2016.02.152_bib15 article-title: Long-term multi-objective distribution network planning by DG allocation and feeders' reconfiguration publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2013.07.016 – volume: 28 start-page: 326 issue: 1 year: 2013 ident: 10.1016/j.energy.2016.02.152_bib1 article-title: Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2012.2200049 – volume: 66 start-page: 202 year: 2014 ident: 10.1016/j.energy.2016.02.152_bib21 article-title: A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm publication-title: Energy doi: 10.1016/j.energy.2013.12.037 – volume: 2 start-page: 252 issue: 2 year: 2008 ident: 10.1016/j.energy.2016.02.152_bib28 article-title: Risk-based distributed generation placement publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd:20070046 – volume: 54 start-page: 123 year: 2014 ident: 10.1016/j.energy.2016.02.152_bib8 article-title: Optimum network reconfiguration based on maximization of system loadability using continuation power flow theorem publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.06.026 – volume: 50 start-page: 7327 issue: 24 year: 2012 ident: 10.1016/j.energy.2016.02.152_bib30 article-title: Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches publication-title: Int J Prod Res doi: 10.1080/00207543.2011.648280 – volume: 63 start-page: 461 year: 2014 ident: 10.1016/j.energy.2016.02.152_bib16 article-title: A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.06.011 – volume: 3 start-page: 754 issue: 12 year: 2009 ident: 10.1016/j.energy.2016.02.152_bib29 article-title: Feeder reconfiguration for loss reduction in unbalanced distribution system using genetic algorithm publication-title: Int J Electr Power Energy Syst Eng – year: 2005 ident: 10.1016/j.energy.2016.02.152_bib26 – volume: 91 start-page: 9 year: 2012 ident: 10.1016/j.energy.2016.02.152_bib5 article-title: Reconfiguration of distribution networks to mitigate utilities power quality disturbances publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2012.04.008 – volume: 62 start-page: 461 year: 2014 ident: 10.1016/j.energy.2016.02.152_bib3 article-title: Application of binary group search optimization to distribution network reconfiguration publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.04.064 – volume: 87 start-page: 1129 issue: 17–18 year: 2009 ident: 10.1016/j.energy.2016.02.152_bib18 article-title: Size optimization of space trusses using Big Bang–Big Crunch algorithm publication-title: Comput Struct doi: 10.1016/j.compstruc.2009.04.011 – volume: 4 start-page: 1288 issue: 12 year: 2010 ident: 10.1016/j.energy.2016.02.152_bib27 article-title: Multi-objective reconfiguration of distribution systems using adaptive genetic algorithm in fuzzy framework publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2010.0056 – volume: 84 start-page: 2022 issue: 12 year: 2010 ident: 10.1016/j.energy.2016.02.152_bib32 article-title: Multiobjective particle swarm optimization for the optimal design of photovoltaic grid-connected systems publication-title: Sol Energy doi: 10.1016/j.solener.2010.10.001 – volume: 67 start-page: 114 year: 2015 ident: 10.1016/j.energy.2016.02.152_bib19 article-title: Preventive and corrective control applications in power systems via Big Bang–Big Crunch optimization publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.11.022 – volume: 201 start-page: 575 issue: 1–2 year: 2008 ident: 10.1016/j.energy.2016.02.152_bib22 article-title: Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators publication-title: Appl Math Comput doi: 10.1016/j.amc.2007.12.053 – volume: 85 start-page: 433 year: 2015 ident: 10.1016/j.energy.2016.02.152_bib2 article-title: Optimal design of distributed energy resource systems coupled with energy distribution networks publication-title: Energy doi: 10.1016/j.energy.2015.03.101 – volume: 26 start-page: 1080 issue: 3 year: 2011 ident: 10.1016/j.energy.2016.02.152_bib4 article-title: Optimal network reconfiguration of large-scale distribution system using Harmony search algorithm publication-title: IEEE Trans Power Syst doi: 10.1109/IDAMS.2010.2076839 – volume: 27 start-page: 918 issue: 2 year: 2012 ident: 10.1016/j.energy.2016.02.152_bib6 article-title: Reconfiguration of power distribution systems considering reliability and power loss publication-title: IEEE Trans Power Deliv doi: 10.1109/TPWRD.2011.2179950 – volume: 103 start-page: 178 year: 2013 ident: 10.1016/j.energy.2016.02.152_bib14 article-title: Optimal allocation of distributed generation with reconfiguration in electric distribution systems publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2013.05.017 – volume: 71 start-page: 507 year: 2014 ident: 10.1016/j.energy.2016.02.152_bib17 article-title: Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation publication-title: Energy doi: 10.1016/j.energy.2014.04.099 – volume: 41 start-page: 6346 issue: 14 year: 2014 ident: 10.1016/j.energy.2016.02.152_bib24 article-title: The assessment of evolutionary algorithms for analyzing the positional accuracy and uncertainty of maps publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.04.025 – start-page: 1 year: 2014 ident: 10.1016/j.energy.2016.02.152_bib25 article-title: Multi-objective economic dispatch considering wind generation uncertainty using non-dominated sorting particle swarm optimization – volume: 106 start-page: 1 year: 2013 ident: 10.1016/j.energy.2016.02.152_bib7 article-title: Reliability enhancement using optimal distribution feeder reconfiguration publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.033 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.energy.2016.02.152_bib31 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 28 start-page: 317 issue: 1 year: 2013 ident: 10.1016/j.energy.2016.02.152_bib13 article-title: Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2012.2197227 – volume: 37 start-page: 106 issue: 2 year: 2006 ident: 10.1016/j.energy.2016.02.152_bib23 article-title: A new optimization method: Big Bang–Big Crunch publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2005.04.005 |
SSID | ssj0005899 |
Score | 2.549272 |
Snippet | In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 86 |
SubjectTerms | algorithms Allocations decision making Distributed generation Distribution management Distribution system reconfiguration electric power gas emissions Loads fuzzy modeling Mathematical models Multi-objective Hybrid Big Bang-Big Crunch algorithm Multi-objective optimization Networks Optimization Pareto optimal solution Pareto optimality pollutants system optimization Uncertainty |
Title | Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty |
URI | https://dx.doi.org/10.1016/j.energy.2016.02.152 https://www.proquest.com/docview/1808666002 https://www.proquest.com/docview/1825481109 https://www.proquest.com/docview/2131888190 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALgkJFC1RG4gAHs4ntxMmxbFsWEL1Apd4sv7pN1Sar3eyBS39UfyEzdsJLKpWQEimPsRTt2J8_r2fmI-R1bVH-ta6ZA38zaVTJrCgzFvIzayqTKR5VS74cl7MT-em0ON0g0zEXBsMqB-xPmB7RengyGX7NyaJpJl8Be4FvSA6MIspTYwa7VNjL313_FuZRRQ1JNGZoPabPxRivEPPrMMCrxMqdecFvm57-Auo4-xw9Ig8H2kj305c9Jhuh3SL3x6zi1RbZPvyVsQaGw5BdPSE3McWWdfYiQRvtACSuwCQuhc-a-Tr1AWpaTw8-0DcHWEoXVbCCp6koNb5-Sxeop0Zxnz79y0eblvrRFu_bFFG-ohhLP6fvGzhNO2d4MV3C_HkOrefdsunPr6gbhELR8rIznsL7FJ3Qf39KTo4Ov01nbBBqYA74Xs-8EnAEWOnlMvelFZJLB1TH5dwLqapQFE4qz53gzpRcGeUyXjtgJxZr8XCxTTbbrg3PCAXsrUXppbVOSCuy2jojlAVeVsBwDsUOEaN_tBuqmKOYxqUew9UudPKqRq_qjGvw6g5hP1stUhWPO-zV6Hr9R2_UMNHc0fLV2FM0DFTcfTFt6NYrnVeweixxG_RfNrBer7AI7O02PAcYrpDI7f73Vz4nD_AOoyDy4gXZ7Jfr8BLIVW_34ujZI_f2P36eHf8AxDcnag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELVKOZQLagsVhVKMxAEOZhPbiZMjbFsWaHuhlXqzbMfdpmqT1W72wIWP4guZsZNSkEolpERK4mcpynjG43hmHiFvSov0r2XJHMibSaNyZkWeMJ-eW1OYRPHAWnJ0nE9O5Zez7GyFjIdcGAyr7G1_tOnBWvdPRv3XHM3qevQNbC_4G5KDRxHoqR-QhxLUF2kM3v-4FedRBBJJRDOED_lzIcjLhwQ7jPDKsXRnmvG75qe_LHWYfg7WyePeb6Qf4qttkBXfbJK1Ia14sUm29n-nrAGw19nFE_Iz5Niy1l5G20ZbsBLXAAlr4fN6uoyDgJqmonuf6Ns9rKWLNFi-orEqNTa_ozMkVKO4UR9_89G6odWAxfsmhpQvKAbTT-nHGk7TTBlejOcwgV5A72k7r7uLa-p6plBEXrWmotAewxO670_J6cH-yXjCeqYG5sDh61ilBBwelnqpTKvcCsmlA1_HpbwSUhU-y5xUFXeCO5NzZZRLeOnAPbFYjIeLLbLatI1_RigY31LklbTWCWlFUlpnhLLgmGWgzz7bJmKQj3Z9GXNk07jSQ7zapY5S1ShVnXANUt0m7KbXLJbxuAevBtHrP4ajhpnmnp6vh5GiQVNx-8U0vl0udFrA8jHHfdB_YWDBXmAV2LsxPAU7XKAn9_y_3_IVWZucHB3qw8_HX1-QR9iCIRFptkNWu_nSvwRPq7O7QZN-AUBQKPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimal+reconfiguration+and+DG+%28Distributed+Generation%29+power+allocation+in+distribution+networks+using+Big+Bang-Big+Crunch+algorithm+considering+load+uncertainty&rft.jtitle=Energy+%28Oxford%29&rft.au=Esmaeilia%2C+Mobin&rft.au=Sedighizadeha%2C+Mostafa&rft.au=Esmailib%2C+Masoud&rft.date=2016-05-15&rft.issn=0360-5442&rft.volume=103&rft.spage=86&rft.epage=99&rft_id=info:doi/10.1016%2Fj.energy.2016.02.152&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |