Accurate Centerline Detection and Line Width Estimation of Thick Lines Using the Radon Transform

Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 16; no. 2; pp. 310 - 316
Main Authors Qiaoping Zhang, Couloigner, I.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noisy images. However, it usually fails to detect the centerline of a thick line due to the peak selection problem. In this paper, several key issues that affect the centerline detection using the radon transform are investigated. A mean filter is proposed to locate the true peak in the radon image and a profile analysis technique is used to further refine the line parameters. The thetas-boundary problem of the radon transform is also discussed and the erroneous line parameters are corrected. Intensive experiments have shown that the proposed methodology is effective in finding the centerline and estimating the line width of thick lines
AbstractList Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noisy images. However, it usually fails to detect the centerline of a thick line due to the peak selection problem. In this paper, several key issues that affect the centerline detection using the radon transform are investigated. A mean filter is proposed to locate the true peak in the radon image and a profile analysis technique is used to further refine the line parameters. The thetas-boundary problem of the radon transform is also discussed and the erroneous line parameters are corrected. Intensive experiments have shown that the proposed methodology is effective in finding the centerline and estimating the line width of thick lines
Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noisy images. However, it usually fails to detect the centerline of a thick line due to the peak selection problem. In this paper, several key issues that affect the centerline detection using the radon transform are investigated. A mean filter is proposed to locate the true peak in the radon image and a profile analysis technique is used to further refine the line parameters. The theta-boundary problem of the radon transform is also discussed and the erroneous line parameters are corrected. Intensive experiments have shown that the proposed methodology is effective in finding the centerline and estimating the line width of thick lines.
Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noisy images. However, it usually fails to detect the centerline of a thick line due to the peak selection problem. In this paper, several key issues that affect the centerline detection using the radon transform are investigated. A mean filter is proposed to locate the true peak in the radon image and a profile analysis technique is used to further refine the line parameters. The theta-boundary problem of the radon transform is also discussed and the erroneous line parameters are corrected. Intensive experiments have shown that the proposed methodology is effective in finding the centerline and estimating the line width of thick lines.Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noisy images. However, it usually fails to detect the centerline of a thick line due to the peak selection problem. In this paper, several key issues that affect the centerline detection using the radon transform are investigated. A mean filter is proposed to locate the true peak in the radon image and a profile analysis technique is used to further refine the line parameters. The theta-boundary problem of the radon transform is also discussed and the erroneous line parameters are corrected. Intensive experiments have shown that the proposed methodology is effective in finding the centerline and estimating the line width of thick lines.
Author Qiaoping Zhang
Couloigner, I.
Author_xml – sequence: 1
  surname: Qiaoping Zhang
  fullname: Qiaoping Zhang
  organization: Dept. of Geomatics Eng., Calgary Univ., Alta
– sequence: 2
  givenname: I.
  surname: Couloigner
  fullname: Couloigner, I.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18441937$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17269626$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1rFDEUxYNUbLv67IMgg6D4MtvcJJNMHstatbCgyBYfYzZzx02dzdQk8-B_b_bDCgV9Ssj5ncvNOefkJIwBCXkOdA5A9cXq-vOcUSrnbasUh0fkDLSAmlLBTsqdNqpWIPQpOU_pllIQDcgn5BQUk1oyeUa-XTo3RZuxWmDIGAcfsHqHGV32Y6hs6Krl7umr7_KmukrZb-1eGftqtfHux15O1U3y4XuVN1h9sV2RV9GG1I9x-5Q87u2Q8NnxnJGb91erxcd6-enD9eJyWTtBm1x3CpwF4VivOENYN10nG-pYg7TnTMBaM97atbacdb2SVmlEqmSLa1QtF5LPyJvD3Ls4_pwwZbP1yeEw2IDjlIxstZRa8AK-_S8IUgEv8ejdzFcP0NtxiqF8w7RlO05ZQWfk5RGa1lvszF0sEcVf5k_GBXh9BGxyduhLMs6nv1wrBGiuCtccOBfHlCL2xvm8DztH6wcD1Ow6N6Vzs-vcHDovvosHvvvR_3S8ODg8It7TgkqqG-C_AaGMs-A
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_ijdrr_2023_104212
crossref_primary_10_1007_s11042_018_6292_y
crossref_primary_10_1080_00207160_2024_2443498
crossref_primary_10_1080_01431161_2010_540587
crossref_primary_10_3390_rs13132506
crossref_primary_10_1109_JSEN_2020_3001972
crossref_primary_10_1109_TIM_2023_3318720
crossref_primary_10_1007_s00170_014_6771_x
crossref_primary_10_1016_j_ijleo_2011_09_047
crossref_primary_10_1007_s10845_024_02549_2
crossref_primary_10_1364_AO_53_006482
crossref_primary_10_1080_2150704X_2014_907935
crossref_primary_10_1371_journal_pone_0036973
crossref_primary_10_1080_01431160903283835
crossref_primary_10_3390_rs10081284
crossref_primary_10_1080_01431161_2015_1054049
crossref_primary_10_1103_PhysRevLett_116_108102
crossref_primary_10_1007_s11263_021_01430_6
crossref_primary_10_1049_ipr2_12180
crossref_primary_10_1016_j_rse_2010_12_018
crossref_primary_10_1109_JSTARS_2019_2949006
crossref_primary_10_1117_1_JMI_4_3_034006
crossref_primary_10_33793_acperpro_03_01_96
crossref_primary_10_3390_s90201237
crossref_primary_10_1016_j_neunet_2023_02_033
crossref_primary_10_1016_j_optlaseng_2013_06_018
crossref_primary_10_5589_m11_006
crossref_primary_10_1016_j_compeleceng_2015_05_014
crossref_primary_10_1016_j_neucom_2016_04_026
crossref_primary_10_1117_1_OE_57_1_013108
crossref_primary_10_1109_TIP_2021_3054464
crossref_primary_10_3390_rs10111804
crossref_primary_10_1016_j_compbiomed_2014_07_015
crossref_primary_10_1109_TGRS_2013_2272593
crossref_primary_10_1088_1361_6595_acb842
crossref_primary_10_1109_TIP_2017_2735182
crossref_primary_10_1515_HF_2011_127
crossref_primary_10_1049_iet_rsn_20080123
crossref_primary_10_1016_j_patcog_2015_10_022
crossref_primary_10_1051_epjap_2011110275
crossref_primary_10_1016_j_patcog_2015_07_004
crossref_primary_10_1109_JSTARS_2015_2443552
crossref_primary_10_3390_s20205759
crossref_primary_10_1016_j_procs_2020_03_418
crossref_primary_10_1109_LGRS_2024_3402362
crossref_primary_10_3389_fped_2022_792724
crossref_primary_10_1038_s41598_022_07048_z
crossref_primary_10_1109_JSTARS_2014_2309613
crossref_primary_10_1109_LGRS_2018_2868880
crossref_primary_10_1098_rspa_2010_0623
crossref_primary_10_1007_s11760_024_03071_x
crossref_primary_10_1080_01944363_2024_2368260
crossref_primary_10_1109_JSTARS_2010_2094181
crossref_primary_10_1109_TIP_2014_2363612
crossref_primary_10_1016_j_ijleo_2012_12_073
crossref_primary_10_1155_2015_784504
crossref_primary_10_1080_2150704X_2015_1040129
crossref_primary_10_1016_j_cviu_2009_01_003
crossref_primary_10_1016_j_compositesb_2018_05_007
crossref_primary_10_3724_SP_J_1146_2009_00257
crossref_primary_10_1049_ipr2_12119
crossref_primary_10_1016_j_patcog_2015_06_008
crossref_primary_10_1016_j_neucom_2016_03_095
crossref_primary_10_1080_19479832_2011_642413
Cites_doi 10.1109/36.368224
10.14358/PERS.70.12.1393
10.1080/07038992.2000.10855274
10.1109/TGRS.2004.833390
10.1016/j.patrec.2005.12.003
10.1080/0143116042000298243
10.14358/PERS.70.12.1365
10.1016/0167-8655(86)90009-7
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TIP.2006.887731
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 316
ExternalDocumentID 2339073231
17269626
18441937
10_1109_TIP_2006_887731
4060951
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c405t-d71ca14c2f732e1b5dd650c25e0f3241b9238ab9a32df76a79ee0768ebe783463
IEDL.DBID RIE
ISSN 1057-7149
IngestDate Fri Jul 11 14:37:23 EDT 2025
Fri Jul 11 04:07:54 EDT 2025
Mon Jun 30 07:12:34 EDT 2025
Wed Feb 19 01:42:05 EST 2025
Mon Jul 21 09:13:13 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Tue Jul 01 02:02:37 EDT 2025
Tue Aug 26 16:46:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Computer vision
Image line pattern analysis
High resolution
Road network
Shape detection
Remote sensing
Noisy image
Selection problem
Image analysis
Line width
Linear transformation
radon transforms
Computer applications
Object detection
Signal processing
Feature extraction
Robustness
Pattern analysis
Edge detection
Radon transformation
Target detection
Non contact measurement
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-d71ca14c2f732e1b5dd650c25e0f3241b9238ab9a32df76a79ee0768ebe783463
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 17269626
PQID 865030271
PQPubID 85429
PageCount 7
ParticipantIDs pascalfrancis_primary_18441937
proquest_miscellaneous_68966943
crossref_citationtrail_10_1109_TIP_2006_887731
proquest_miscellaneous_1671326996
pubmed_primary_17269626
crossref_primary_10_1109_TIP_2006_887731
ieee_primary_4060951
proquest_journals_865030271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-02-01
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2007
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
du (ref4) 2004
ref11
ref10
gruen (ref9) 1997; 63
ref2
manandhar (ref7) 2002
(ref8) 2005
ref3
ref5
clode (ref6) 2004
toft (ref1) 1996
References_xml – volume: 63
  start-page: 985
  year: 1997
  ident: ref9
  article-title: semi-automatic linear feature extraction by dynamic programming and lsb-snakes
  publication-title: Photogramm Eng Remote Sens
– year: 2005
  ident: ref8
  publication-title: Radon Transform Image Processing Toolbox User's Guide Matlab Help Document
– ident: ref3
  doi: 10.1109/36.368224
– ident: ref10
  doi: 10.14358/PERS.70.12.1393
– ident: ref11
  doi: 10.1080/07038992.2000.10855274
– year: 1996
  ident: ref1
  publication-title: The Radon TransformTheory and Implementation
– start-page: 3069
  year: 2004
  ident: ref4
  article-title: a novel radon transform-based method for ship wake detection
  publication-title: Proc IEEE Int Conf Geoscience and Remote Sensing Symp
– ident: ref5
  doi: 10.1109/TGRS.2004.833390
– ident: ref14
  doi: 10.1016/j.patrec.2005.12.003
– ident: ref12
  doi: 10.1080/0143116042000298243
– ident: ref13
  doi: 10.14358/PERS.70.12.1365
– start-page: 1147
  year: 2004
  ident: ref6
  article-title: a phase coded disk approach to thick curvilinear line detection
  publication-title: Proc VII European Signal Processing Conf
– year: 2002
  ident: ref7
  article-title: extraction of linear features from vehicle-borne laser data
  publication-title: Proc 22nd Asian Conf Remote Sensing
– ident: ref2
  doi: 10.1016/0167-8655(86)90009-7
SSID ssj0014516
Score 2.2322307
Snippet Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 310
SubjectTerms Algorithms
Application software
Applied sciences
Artificial Intelligence
Computer science; control theory; systems
Computer vision
Detectors
Displays
Exact sciences and technology
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image line pattern analysis
Image processing
Image resolution
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Information, signal and communications theory
Networks
Noise cancellation
object detection
Pattern recognition
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Radar detection
Radon
radon transforms
Remote sensing
Reproducibility of Results
Roads
Robustness
Sensitivity and Specificity
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Synthetic aperture radar
Telecommunications and information theory
Transforms
Title Accurate Centerline Detection and Line Width Estimation of Thick Lines Using the Radon Transform
URI https://ieeexplore.ieee.org/document/4060951
https://www.ncbi.nlm.nih.gov/pubmed/17269626
https://www.proquest.com/docview/865030271
https://www.proquest.com/docview/1671326996
https://www.proquest.com/docview/68966943
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9UwFD8BnvRBFFQGijXxwQd3WffV9ZEoBI0aYy6Rt9m1p4Fgdg3bXvjrOW13BxJu4tuytlvXc876Oz1fAO-yxHLdYEmCJF1IToOxlEUTc4kZ4VOrrPUOst_Lk9P8y1lxtgYfplgYRPTOZzhzl96WbxZ6cEdlB7T5OESwDuukuIVYrcli4ArOestmIWJBsH9M48MTeTD__CNYHUigROZrw4i0lKVLqHBnM_LVVZxvpOpoeWyoa7EaePoN6HgTvi2nHvxOLmdD38z09b2sjv_7bU_hyYhE2WFgnWewhu0WbI6olI0y323B4zspC7fh96HWg0svwdy5sM-VhewT9t6jq2WqNeyru_XrwvTn7Ih-ICE2ki0sm59f6Evf3DHvqsAIfbKfylDzfAmgn8Pp8dH840k8VmmINYG9PjaCa8VznVqRpcibwhhCfTotMLGE1nhDELJSjVRZaqwolZCIzvxH3OOKfJTZC9hoFy3uADM5WufTqkRmc1sUqkoqlerKaKM4yiqC2ZJctR5TmLtKGn9qr8oksiZSu8KaZR1IHcH7acDfkL1jdddtR5Sp20iPCPb_4Yfbx1QEJAnbRbC3ZJB6FP-urmgFnEGYhr-dWklunTFGtbgYupqXghN0JnUzgjcr-pQVKaMyzyJ4GTjv9u0jA-8-POs9eBTOoJ3bzSvY6K8GfE3gqW_2vdTcAGLcE0w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoeodAaiQMHso3zsONjBa22sK0QSkVvwfFDrYqyiCQXfj1jO5sWxErcothOHM9M5rPnBfAmSyxVjWEoSMKF5DQmFqJoYipMhvjUSmu9g-wZm5_nHy-Kiw14N8XCGGO885mZuUtvy9dLNbijsgNUPg4R3IG7qPeLNERrTTYDV3LW2zYLHnME_mMiH5qIg-rkc7A7oEjxzFeH4SkTzKVUuKWOfH0V5x0pO1wgGypbrIeeXgUdb8HpavLB8-R6NvTNTP36K6_j_37dI3g4YlFyGJjnMWyYdhu2RlxKRqnvtuHBraSFO_DtUKnBJZgg7mTYZ8sy5IPpvU9XS2SrycLd-nql-0tyhL-QEB1JlpZUl1fq2jd3xDsrEMSf5IvU2FytIPQTOD8-qt7P47FOQ6wQ7vWx5lRJmqvU8iw1tCm0Rtyn0sIkFvEabRBElrIRMku15UxyYYwzACL_uDIfLHsKm-2yNc-B6NxY59UqeWZzWxSyTEqZqlIrLakRZQSzFblqNSYxd7U0vtd-M5OIGkntSmuyOpA6grfTgB8hf8f6rjuOKFO3kR4R7P3BDzePKRFKIrqLYHfFIPX4A-jqElfAmYRx-OupFSXXmWNka5ZDV1PGKYJn3HBGsL-mDytxOyryLIJngfNu3j4y8It_z3of7s2r00W9ODn7tAv3w4m0c8J5CZv9z8G8QijVN3tegn4D4GsWlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+centerline+detection+and+line+width+estimation+of+thick+lines+using+the+radon+transform&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhang%2C+Qiaoping&rft.au=Couloigner%2C+Isabelle&rft.date=2007-02-01&rft.issn=1057-7149&rft.volume=16&rft.issue=2&rft.spage=310&rft_id=info:doi/10.1109%2FTIP.2006.887731&rft_id=info%3Apmid%2F17269626&rft.externalDocID=17269626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon