Accurate Centerline Detection and Line Width Estimation of Thick Lines Using the Radon Transform
Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noi...
Saved in:
Published in | IEEE transactions on image processing Vol. 16; no. 2; pp. 310 - 316 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.02.2007
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noisy images. However, it usually fails to detect the centerline of a thick line due to the peak selection problem. In this paper, several key issues that affect the centerline detection using the radon transform are investigated. A mean filter is proposed to locate the true peak in the radon image and a profile analysis technique is used to further refine the line parameters. The thetas-boundary problem of the radon transform is also discussed and the erroneous line parameters are corrected. Intensive experiments have shown that the proposed methodology is effective in finding the centerline and estimating the line width of thick lines |
---|---|
AbstractList | Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noisy images. However, it usually fails to detect the centerline of a thick line due to the peak selection problem. In this paper, several key issues that affect the centerline detection using the radon transform are investigated. A mean filter is proposed to locate the true peak in the radon image and a profile analysis technique is used to further refine the line parameters. The thetas-boundary problem of the radon transform is also discussed and the erroneous line parameters are corrected. Intensive experiments have shown that the proposed methodology is effective in finding the centerline and estimating the line width of thick lines Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noisy images. However, it usually fails to detect the centerline of a thick line due to the peak selection problem. In this paper, several key issues that affect the centerline detection using the radon transform are investigated. A mean filter is proposed to locate the true peak in the radon image and a profile analysis technique is used to further refine the line parameters. The theta-boundary problem of the radon transform is also discussed and the erroneous line parameters are corrected. Intensive experiments have shown that the proposed methodology is effective in finding the centerline and estimating the line width of thick lines. Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noisy images. However, it usually fails to detect the centerline of a thick line due to the peak selection problem. In this paper, several key issues that affect the centerline detection using the radon transform are investigated. A mean filter is proposed to locate the true peak in the radon image and a profile analysis technique is used to further refine the line parameters. The theta-boundary problem of the radon transform is also discussed and the erroneous line parameters are corrected. Intensive experiments have shown that the proposed methodology is effective in finding the centerline and estimating the line width of thick lines.Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely sensed imagery. Radon transform-based linear feature detection has many advantages over other approaches: for example, its robustness in noisy images. However, it usually fails to detect the centerline of a thick line due to the peak selection problem. In this paper, several key issues that affect the centerline detection using the radon transform are investigated. A mean filter is proposed to locate the true peak in the radon image and a profile analysis technique is used to further refine the line parameters. The theta-boundary problem of the radon transform is also discussed and the erroneous line parameters are corrected. Intensive experiments have shown that the proposed methodology is effective in finding the centerline and estimating the line width of thick lines. |
Author | Qiaoping Zhang Couloigner, I. |
Author_xml | – sequence: 1 surname: Qiaoping Zhang fullname: Qiaoping Zhang organization: Dept. of Geomatics Eng., Calgary Univ., Alta – sequence: 2 givenname: I. surname: Couloigner fullname: Couloigner, I. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18441937$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17269626$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1rFDEUxYNUbLv67IMgg6D4MtvcJJNMHstatbCgyBYfYzZzx02dzdQk8-B_b_bDCgV9Ssj5ncvNOefkJIwBCXkOdA5A9cXq-vOcUSrnbasUh0fkDLSAmlLBTsqdNqpWIPQpOU_pllIQDcgn5BQUk1oyeUa-XTo3RZuxWmDIGAcfsHqHGV32Y6hs6Krl7umr7_KmukrZb-1eGftqtfHux15O1U3y4XuVN1h9sV2RV9GG1I9x-5Q87u2Q8NnxnJGb91erxcd6-enD9eJyWTtBm1x3CpwF4VivOENYN10nG-pYg7TnTMBaM97atbacdb2SVmlEqmSLa1QtF5LPyJvD3Ls4_pwwZbP1yeEw2IDjlIxstZRa8AK-_S8IUgEv8ejdzFcP0NtxiqF8w7RlO05ZQWfk5RGa1lvszF0sEcVf5k_GBXh9BGxyduhLMs6nv1wrBGiuCtccOBfHlCL2xvm8DztH6wcD1Ow6N6Vzs-vcHDovvosHvvvR_3S8ODg8It7TgkqqG-C_AaGMs-A |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1016_j_ijdrr_2023_104212 crossref_primary_10_1007_s11042_018_6292_y crossref_primary_10_1080_00207160_2024_2443498 crossref_primary_10_1080_01431161_2010_540587 crossref_primary_10_3390_rs13132506 crossref_primary_10_1109_JSEN_2020_3001972 crossref_primary_10_1109_TIM_2023_3318720 crossref_primary_10_1007_s00170_014_6771_x crossref_primary_10_1016_j_ijleo_2011_09_047 crossref_primary_10_1007_s10845_024_02549_2 crossref_primary_10_1364_AO_53_006482 crossref_primary_10_1080_2150704X_2014_907935 crossref_primary_10_1371_journal_pone_0036973 crossref_primary_10_1080_01431160903283835 crossref_primary_10_3390_rs10081284 crossref_primary_10_1080_01431161_2015_1054049 crossref_primary_10_1103_PhysRevLett_116_108102 crossref_primary_10_1007_s11263_021_01430_6 crossref_primary_10_1049_ipr2_12180 crossref_primary_10_1016_j_rse_2010_12_018 crossref_primary_10_1109_JSTARS_2019_2949006 crossref_primary_10_1117_1_JMI_4_3_034006 crossref_primary_10_33793_acperpro_03_01_96 crossref_primary_10_3390_s90201237 crossref_primary_10_1016_j_neunet_2023_02_033 crossref_primary_10_1016_j_optlaseng_2013_06_018 crossref_primary_10_5589_m11_006 crossref_primary_10_1016_j_compeleceng_2015_05_014 crossref_primary_10_1016_j_neucom_2016_04_026 crossref_primary_10_1117_1_OE_57_1_013108 crossref_primary_10_1109_TIP_2021_3054464 crossref_primary_10_3390_rs10111804 crossref_primary_10_1016_j_compbiomed_2014_07_015 crossref_primary_10_1109_TGRS_2013_2272593 crossref_primary_10_1088_1361_6595_acb842 crossref_primary_10_1109_TIP_2017_2735182 crossref_primary_10_1515_HF_2011_127 crossref_primary_10_1049_iet_rsn_20080123 crossref_primary_10_1016_j_patcog_2015_10_022 crossref_primary_10_1051_epjap_2011110275 crossref_primary_10_1016_j_patcog_2015_07_004 crossref_primary_10_1109_JSTARS_2015_2443552 crossref_primary_10_3390_s20205759 crossref_primary_10_1016_j_procs_2020_03_418 crossref_primary_10_1109_LGRS_2024_3402362 crossref_primary_10_3389_fped_2022_792724 crossref_primary_10_1038_s41598_022_07048_z crossref_primary_10_1109_JSTARS_2014_2309613 crossref_primary_10_1109_LGRS_2018_2868880 crossref_primary_10_1098_rspa_2010_0623 crossref_primary_10_1007_s11760_024_03071_x crossref_primary_10_1080_01944363_2024_2368260 crossref_primary_10_1109_JSTARS_2010_2094181 crossref_primary_10_1109_TIP_2014_2363612 crossref_primary_10_1016_j_ijleo_2012_12_073 crossref_primary_10_1155_2015_784504 crossref_primary_10_1080_2150704X_2015_1040129 crossref_primary_10_1016_j_cviu_2009_01_003 crossref_primary_10_1016_j_compositesb_2018_05_007 crossref_primary_10_3724_SP_J_1146_2009_00257 crossref_primary_10_1049_ipr2_12119 crossref_primary_10_1016_j_patcog_2015_06_008 crossref_primary_10_1016_j_neucom_2016_03_095 crossref_primary_10_1080_19479832_2011_642413 |
Cites_doi | 10.1109/36.368224 10.14358/PERS.70.12.1393 10.1080/07038992.2000.10855274 10.1109/TGRS.2004.833390 10.1016/j.patrec.2005.12.003 10.1080/0143116042000298243 10.14358/PERS.70.12.1365 10.1016/0167-8655(86)90009-7 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
DOI | 10.1109/TIP.2006.887731 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 316 |
ExternalDocumentID | 2339073231 17269626 18441937 10_1109_TIP_2006_887731 4060951 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM PKN Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
ID | FETCH-LOGICAL-c405t-d71ca14c2f732e1b5dd650c25e0f3241b9238ab9a32df76a79ee0768ebe783463 |
IEDL.DBID | RIE |
ISSN | 1057-7149 |
IngestDate | Fri Jul 11 14:37:23 EDT 2025 Fri Jul 11 04:07:54 EDT 2025 Mon Jun 30 07:12:34 EDT 2025 Wed Feb 19 01:42:05 EST 2025 Mon Jul 21 09:13:13 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Tue Jul 01 02:02:37 EDT 2025 Tue Aug 26 16:46:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Computer vision Image line pattern analysis High resolution Road network Shape detection Remote sensing Noisy image Selection problem Image analysis Line width Linear transformation radon transforms Computer applications Object detection Signal processing Feature extraction Robustness Pattern analysis Edge detection Radon transformation Target detection Non contact measurement |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-d71ca14c2f732e1b5dd650c25e0f3241b9238ab9a32df76a79ee0768ebe783463 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 17269626 |
PQID | 865030271 |
PQPubID | 85429 |
PageCount | 7 |
ParticipantIDs | pascalfrancis_primary_18441937 proquest_miscellaneous_68966943 crossref_citationtrail_10_1109_TIP_2006_887731 proquest_miscellaneous_1671326996 pubmed_primary_17269626 crossref_primary_10_1109_TIP_2006_887731 ieee_primary_4060951 proquest_journals_865030271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-02-01 |
PublicationDateYYYYMMDD | 2007-02-01 |
PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2007 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 du (ref4) 2004 ref11 ref10 gruen (ref9) 1997; 63 ref2 manandhar (ref7) 2002 (ref8) 2005 ref3 ref5 clode (ref6) 2004 toft (ref1) 1996 |
References_xml | – volume: 63 start-page: 985 year: 1997 ident: ref9 article-title: semi-automatic linear feature extraction by dynamic programming and lsb-snakes publication-title: Photogramm Eng Remote Sens – year: 2005 ident: ref8 publication-title: Radon Transform Image Processing Toolbox User's Guide Matlab Help Document – ident: ref3 doi: 10.1109/36.368224 – ident: ref10 doi: 10.14358/PERS.70.12.1393 – ident: ref11 doi: 10.1080/07038992.2000.10855274 – year: 1996 ident: ref1 publication-title: The Radon TransformTheory and Implementation – start-page: 3069 year: 2004 ident: ref4 article-title: a novel radon transform-based method for ship wake detection publication-title: Proc IEEE Int Conf Geoscience and Remote Sensing Symp – ident: ref5 doi: 10.1109/TGRS.2004.833390 – ident: ref14 doi: 10.1016/j.patrec.2005.12.003 – ident: ref12 doi: 10.1080/0143116042000298243 – ident: ref13 doi: 10.14358/PERS.70.12.1365 – start-page: 1147 year: 2004 ident: ref6 article-title: a phase coded disk approach to thick curvilinear line detection publication-title: Proc VII European Signal Processing Conf – year: 2002 ident: ref7 article-title: extraction of linear features from vehicle-borne laser data publication-title: Proc 22nd Asian Conf Remote Sensing – ident: ref2 doi: 10.1016/0167-8655(86)90009-7 |
SSID | ssj0014516 |
Score | 2.2322307 |
Snippet | Centerline detection and line width estimation are important for many computer vision applications, e.g., road network extraction from high resolution remotely... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 310 |
SubjectTerms | Algorithms Application software Applied sciences Artificial Intelligence Computer science; control theory; systems Computer vision Detectors Displays Exact sciences and technology Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image line pattern analysis Image processing Image resolution Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Information, signal and communications theory Networks Noise cancellation object detection Pattern recognition Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Radar detection Radon radon transforms Remote sensing Reproducibility of Results Roads Robustness Sensitivity and Specificity Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Synthetic aperture radar Telecommunications and information theory Transforms |
Title | Accurate Centerline Detection and Line Width Estimation of Thick Lines Using the Radon Transform |
URI | https://ieeexplore.ieee.org/document/4060951 https://www.ncbi.nlm.nih.gov/pubmed/17269626 https://www.proquest.com/docview/865030271 https://www.proquest.com/docview/1671326996 https://www.proquest.com/docview/68966943 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9UwFD8BnvRBFFQGijXxwQd3WffV9ZEoBI0aYy6Rt9m1p4Fgdg3bXvjrOW13BxJu4tuytlvXc876Oz1fAO-yxHLdYEmCJF1IToOxlEUTc4kZ4VOrrPUOst_Lk9P8y1lxtgYfplgYRPTOZzhzl96WbxZ6cEdlB7T5OESwDuukuIVYrcli4ArOestmIWJBsH9M48MTeTD__CNYHUigROZrw4i0lKVLqHBnM_LVVZxvpOpoeWyoa7EaePoN6HgTvi2nHvxOLmdD38z09b2sjv_7bU_hyYhE2WFgnWewhu0WbI6olI0y323B4zspC7fh96HWg0svwdy5sM-VhewT9t6jq2WqNeyru_XrwvTn7Ih-ICE2ki0sm59f6Evf3DHvqsAIfbKfylDzfAmgn8Pp8dH840k8VmmINYG9PjaCa8VznVqRpcibwhhCfTotMLGE1nhDELJSjVRZaqwolZCIzvxH3OOKfJTZC9hoFy3uADM5WufTqkRmc1sUqkoqlerKaKM4yiqC2ZJctR5TmLtKGn9qr8oksiZSu8KaZR1IHcH7acDfkL1jdddtR5Sp20iPCPb_4Yfbx1QEJAnbRbC3ZJB6FP-urmgFnEGYhr-dWklunTFGtbgYupqXghN0JnUzgjcr-pQVKaMyzyJ4GTjv9u0jA-8-POs9eBTOoJ3bzSvY6K8GfE3gqW_2vdTcAGLcE0w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoeodAaiQMHso3zsONjBa22sK0QSkVvwfFDrYqyiCQXfj1jO5sWxErcothOHM9M5rPnBfAmSyxVjWEoSMKF5DQmFqJoYipMhvjUSmu9g-wZm5_nHy-Kiw14N8XCGGO885mZuUtvy9dLNbijsgNUPg4R3IG7qPeLNERrTTYDV3LW2zYLHnME_mMiH5qIg-rkc7A7oEjxzFeH4SkTzKVUuKWOfH0V5x0pO1wgGypbrIeeXgUdb8HpavLB8-R6NvTNTP36K6_j_37dI3g4YlFyGJjnMWyYdhu2RlxKRqnvtuHBraSFO_DtUKnBJZgg7mTYZ8sy5IPpvU9XS2SrycLd-nql-0tyhL-QEB1JlpZUl1fq2jd3xDsrEMSf5IvU2FytIPQTOD8-qt7P47FOQ6wQ7vWx5lRJmqvU8iw1tCm0Rtyn0sIkFvEabRBElrIRMku15UxyYYwzACL_uDIfLHsKm-2yNc-B6NxY59UqeWZzWxSyTEqZqlIrLakRZQSzFblqNSYxd7U0vtd-M5OIGkntSmuyOpA6grfTgB8hf8f6rjuOKFO3kR4R7P3BDzePKRFKIrqLYHfFIPX4A-jqElfAmYRx-OupFSXXmWNka5ZDV1PGKYJn3HBGsL-mDytxOyryLIJngfNu3j4y8It_z3of7s2r00W9ODn7tAv3w4m0c8J5CZv9z8G8QijVN3tegn4D4GsWlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+centerline+detection+and+line+width+estimation+of+thick+lines+using+the+radon+transform&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhang%2C+Qiaoping&rft.au=Couloigner%2C+Isabelle&rft.date=2007-02-01&rft.issn=1057-7149&rft.volume=16&rft.issue=2&rft.spage=310&rft_id=info:doi/10.1109%2FTIP.2006.887731&rft_id=info%3Apmid%2F17269626&rft.externalDocID=17269626 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |