Evolution of magnesium during reactive milling under hydrogen atmosphere with crystallitic carbon as milling aid
•Shape of β-MgH2 nanoparticles from milling of Mg with H2 is oblique hexagonal prism.•Size increase of Mg particles from MgH2 dehydriding can be restrained by carbon.•Endothermic peak of γ-MgH2 is 53°C lower than that of β-MgH2 from 10 to 20h milling.•Heat absorption of γ-MgH2 dehydriding is 18kJ/mo...
Saved in:
Published in | Journal of alloys and compounds Vol. 581; pp. 472 - 478 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
25.12.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Shape of β-MgH2 nanoparticles from milling of Mg with H2 is oblique hexagonal prism.•Size increase of Mg particles from MgH2 dehydriding can be restrained by carbon.•Endothermic peak of γ-MgH2 is 53°C lower than that of β-MgH2 from 10 to 20h milling.•Heat absorption of γ-MgH2 dehydriding is 18kJ/mol H2 lower than that of β-MgH2.
This paper is concerned with the changes of morphology, crystal structure and hydrogen storage properties of magnesium during reactive milling under hydrogen atmosphere with crystallitic carbon, which is prepared from anthracite coal by demineralization and carbonization, as milling aid. Experiments show that β-MgH2 of tetrahedral crystal structure with particle size of 20–60nm and geometric shape of oblique hexagonal prism predominates in the material from 3h of milling under 1MPa H2. Besides, there is γ-MgH2 of orthorhombic crystal structure in the materials from milling. The Mg particles from MgH2 dehydriding take the shape of right hexagonal prism. The carbon can prevent Mg particles from coalescing into big bulk during heating for hydrogen releasing. The endothermic peak of γ-MgH2 is 53°C lower than that of β-MgH2 in the materials from 10 to 20h of milling, and its heat absorption for dehydriding is 18kJ/mol H2 lower than that of β-MgH2. |
---|---|
AbstractList | This paper is concerned with the changes of morphology, crystal structure and hydrogen storage properties of magnesium during reactive milling under hydrogen atmosphere with crystallitic carbon, which is prepared from anthracite coal by demineralization and carbonization, as milling aid. Experiments show that beta-MgH(2) of tetrahedral crystal structure with particle size of 20-60 nm and geometric shape of oblique hexagonal prism predominates in the material from 3 h of milling under 1 MPa H(2). Besides, there is gamma-MgH(2) of orthorhombic crystal structure in the materials from milling. The Mg particles from MgH(2) dehydriding take the shape of right hexagonal prism. The carbon can prevent Mg particles from coalescing into big bulk during heating for hydrogen releasing. The endothermic peak of gamma-MgH(2) is 53 degree C lower than that of beta-MgH(2) in the materials from 10 to 20 h of milling, and its heat absorption for dehydriding is 18 kJ/mol H(2) lower than that of beta-MgH(2). •Shape of β-MgH2 nanoparticles from milling of Mg with H2 is oblique hexagonal prism.•Size increase of Mg particles from MgH2 dehydriding can be restrained by carbon.•Endothermic peak of γ-MgH2 is 53°C lower than that of β-MgH2 from 10 to 20h milling.•Heat absorption of γ-MgH2 dehydriding is 18kJ/mol H2 lower than that of β-MgH2. This paper is concerned with the changes of morphology, crystal structure and hydrogen storage properties of magnesium during reactive milling under hydrogen atmosphere with crystallitic carbon, which is prepared from anthracite coal by demineralization and carbonization, as milling aid. Experiments show that β-MgH2 of tetrahedral crystal structure with particle size of 20–60nm and geometric shape of oblique hexagonal prism predominates in the material from 3h of milling under 1MPa H2. Besides, there is γ-MgH2 of orthorhombic crystal structure in the materials from milling. The Mg particles from MgH2 dehydriding take the shape of right hexagonal prism. The carbon can prevent Mg particles from coalescing into big bulk during heating for hydrogen releasing. The endothermic peak of γ-MgH2 is 53°C lower than that of β-MgH2 in the materials from 10 to 20h of milling, and its heat absorption for dehydriding is 18kJ/mol H2 lower than that of β-MgH2. This paper is concerned with the changes of morphology, crystal structure and hydrogen storage properties of magnesium during reactive milling under hydrogen atmosphere with crystallitic carbon, which is prepared from anthracite coal by demineralization and carbonization, as milling aid. Experiments show that I2-MgH2 of tetrahedral crystal structure with particle size of 20a60 nm and geometric shape of oblique hexagonal prism predominates in the material from 3 h of milling under 1 MPa H2. Besides, there is I3-MgH2 of orthorhombic crystal structure in the materials from milling. The Mg particles from MgH2 dehydriding take the shape of right hexagonal prism. The carbon can prevent Mg particles from coalescing into big bulk during heating for hydrogen releasing. The endothermic peak of I3-MgH2 is 53 degree C lower than that of I2-MgH2 in the materials from 10 to 20 h of milling, and its heat absorption for dehydriding is 18 kJ/mol H2 lower than that of I2-MgH2. |
Author | Han, Zongying Niu, Haili Zhang, Qianqian Cui, Liqiang Chen, Haipeng Liu, Di Ran, Weixian Han, Shuna Zhou, Shixue Zhang, Tonghuan |
Author_xml | – sequence: 1 givenname: Shixue surname: Zhou fullname: Zhou, Shixue email: zhoushixue66@163.com – sequence: 2 givenname: Qianqian surname: Zhang fullname: Zhang, Qianqian – sequence: 3 givenname: Weixian surname: Ran fullname: Ran, Weixian – sequence: 4 givenname: Zongying surname: Han fullname: Han, Zongying – sequence: 5 givenname: Haili surname: Niu fullname: Niu, Haili – sequence: 6 givenname: Shuna surname: Han fullname: Han, Shuna – sequence: 7 givenname: Liqiang surname: Cui fullname: Cui, Liqiang – sequence: 8 givenname: Tonghuan surname: Zhang fullname: Zhang, Tonghuan – sequence: 9 givenname: Haipeng surname: Chen fullname: Chen, Haipeng – sequence: 10 givenname: Di surname: Liu fullname: Liu, Di |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27822889$$DView record in Pascal Francis |
BookMark | eNqFkU2L2zAQhn3YQvejP6GgS6GXuJJtWTI9lLJsP2Chl_YsxtIoUZClVJJT8u_XJmEPveQkGN7nHTHPXXUTYsCqes9ozSjrP-3rPXiv41Q3lLU1FTUd2E11S4eGb2Qr5dvqLuc9pZQNLbutDk_H6OfiYiDRkgm2AbObJ2Lm5MKWJARd3BHJ5LxfB3MwmMjuZFLcYiBQppgPO0xI_rmyIzqdclk-4IrTREMal17IrzQ481C9seAzvru899Wfb0-_H39snn99__n49XmjO8rLxrQa2QiaCcABWCOGRoyci9HYwcDYWSmRoqQC256344CGQT9aOzRWWE2H9r76eO49pPh3xlzU5LJG7yFgnLNinLVdz2XXXY92gvOeUb5GP1yikDV4myBol9UhuQnSSTVCNo2U63Z-zukUc05oXyOMqlWU2quLKLWKUlSoRdTCff6P067AqqckcP4q_eVM43LYo8OksnYYNBqXUBdlorvS8AItJrmW |
CitedBy_id | crossref_primary_10_1142_S1793604714500349 crossref_primary_10_2320_matertrans_MG201416 crossref_primary_10_1007_s11595_024_2951_1 crossref_primary_10_1016_j_nanoen_2020_105535 crossref_primary_10_1007_s11665_020_04602_6 crossref_primary_10_1016_j_jallcom_2018_02_135 crossref_primary_10_1016_j_matchar_2024_113821 crossref_primary_10_1016_j_jmst_2023_03_063 crossref_primary_10_1016_j_apsusc_2016_10_101 crossref_primary_10_1016_j_ijhydene_2015_06_110 |
Cites_doi | 10.1016/j.ijhydene.2012.08.089 10.1016/S0925-8388(01)01506-7 10.1016/S0925-8388(00)01460-2 10.1016/j.ijhydene.2005.11.003 10.1016/j.ijhydene.2010.12.052 10.1016/j.ijhydene.2011.11.123 10.1016/S0925-8388(03)00746-1 10.1021/ja054569h 10.1016/j.ijhydene.2010.05.080 10.1016/j.jallcom.2010.01.072 10.1016/S0925-8388(02)00120-2 10.1016/S0925-8388(99)00474-0 10.1016/j.actamat.2009.05.004 10.1016/j.jallcom.2006.03.069 10.1016/j.carbon.2013.01.058 10.1016/j.carbon.2006.11.017 10.1016/j.ijhydene.2006.01.020 10.1016/j.fuel.2012.09.002 10.1016/j.fuel.2011.06.051 10.1021/cm702205v 10.1016/j.jallcom.2005.07.021 10.1088/0957-4484/17/15/041 10.1016/S0925-8388(98)00829-9 10.1021/cm702897f 10.1016/j.jallcom.2004.04.145 10.1016/j.ijhydene.2011.05.180 10.1016/j.ijhydene.2011.05.086 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QF 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2013.07.091 |
DatabaseName | CrossRef Pascal-Francis Aluminium Industry Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Aluminium Industry Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics Applied Sciences |
EndPage | 478 |
ExternalDocumentID | 27822889 10_1016_j_jallcom_2013_07_091 S0925838813017167 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFRZQ AFTJW AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSH SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AAYXX ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS T9H WUQ AFXIZ EFKBS IQODW 7QF 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c405t-d3ce1bac17ae9a127927b557bdf9dab4f88e0e807e3653b9ed1a6bff92f7fc093 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Mon Jul 21 09:26:09 EDT 2025 Fri Jul 11 12:36:26 EDT 2025 Mon Jul 21 09:15:23 EDT 2025 Tue Jul 01 03:03:19 EDT 2025 Thu Apr 24 23:05:30 EDT 2025 Fri May 16 00:29:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Crystal phase Magnesium hydride Microstructure Reactive milling Particle size Hydrogen storage Solubility Controlled atmospheres Desorption Carbon Heat treatments Carbonization Hexagonal lattices Orthorhombic lattices Magnesium Crystal morphology Orthorhombic crystals Dehydridation Crystal structure |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-d3ce1bac17ae9a127927b557bdf9dab4f88e0e807e3653b9ed1a6bff92f7fc093 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1475561054 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1513465844 proquest_miscellaneous_1475561054 pascalfrancis_primary_27822889 crossref_primary_10_1016_j_jallcom_2013_07_091 crossref_citationtrail_10_1016_j_jallcom_2013_07_091 elsevier_sciencedirect_doi_10_1016_j_jallcom_2013_07_091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-25 |
PublicationDateYYYYMMDD | 2013-12-25 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fernández, Sánchez (b0010) 2002; 340 Huang, Guo, Calka, Wexler, Liu (b0100) 2007; 427 Imamura, Tabata, Shigetomi, Takesue, Sakata (b0105) 2002; 330–332 Castro, Fuster, Urretavizcaya (b0115) 2012; 37 Wu, Wang, Yao, Liu, Chen, Lu, Cheng (b0085) 2006; 414 Huot, Liang, Boily, van Neste, Schulz (b0015) 1999; 293–295 Gasan, Celik, Aydinbeyli, Yaman (b0035) 2012; 37 Bobet, Grigorova, Khrussanova, Khristov, Stefanov, Peshev, Radev (b0110) 2004; 366 Takasaki, Mukai, Kitamura, Tanase, Sakai (b0045) 2010; 494 Bogdanović, Bohmhammel, Christ, Reiser, Schlichte, Vehlen, Wolf (b0005) 1999; 282 P Wagemans, van Lenthe, de Jongh, van Dillen, de Jong (b0050) 2005; 127 Aguey-Zinsou, Ares-Fernandez (b0065) 2008; 20 de Jongh, Wagemans, Eggenhuisen, Dauvillier, Radstake, Meeldijk, Geus, de Jong (b0070) 2007; 19 A Varin, Czujko, Wronski (b0025) 2006; 17 Shao, Felderhoff, Schüth (b0030) 2011; 36 Rud, Lakhnik (b0095) 2012; 37 Montone, Grbović, Bassetti, Mirenghi, Rotolo, Bonetti, Pasquini, Antisari (b0080) 2006; 31 Imamura, Masanari, Kusuhara, Katsumoto, Sumi, Sakata (b0075) 2005; 386 Gennari, Castro, Urretavizcaya (b0020) 2001; 321 Denys, Riabov, Maehlen, Lototsky, Solberg, Yartys (b0040) 2009; 57 Lototskyy, Sibanyoni, Denys, Williams, Pollet, Yartys (b0090) 2013; 57 Zhang, Yang, Yang, Zhao, Zheng, Tian, Li (b0060) 2011; 36 Ranjbar, Ismail, Guo, Yu, Liu (b0120) 2010; 35 Akyıldız, Özenbaş, Öztürk (b0055) 2006; 31 Oriňáková, Oriňák (b0125) 2011; 90 Narayanan, Lueking (b0135) 2007; 45 Zhou, Chen, Ding, Niu, Zhang, Wang, Zhang, Liu, Han, Yu (b0130) 2013; 109 Castro (10.1016/j.jallcom.2013.07.091_b0115) 2012; 37 Wu (10.1016/j.jallcom.2013.07.091_b0085) 2006; 414 Denys (10.1016/j.jallcom.2013.07.091_b0040) 2009; 57 Montone (10.1016/j.jallcom.2013.07.091_b0080) 2006; 31 Zhou (10.1016/j.jallcom.2013.07.091_b0130) 2013; 109 Imamura (10.1016/j.jallcom.2013.07.091_b0105) 2002; 330–332 P Wagemans (10.1016/j.jallcom.2013.07.091_b0050) 2005; 127 Imamura (10.1016/j.jallcom.2013.07.091_b0075) 2005; 386 Takasaki (10.1016/j.jallcom.2013.07.091_b0045) 2010; 494 Zhang (10.1016/j.jallcom.2013.07.091_b0060) 2011; 36 Huang (10.1016/j.jallcom.2013.07.091_b0100) 2007; 427 Ranjbar (10.1016/j.jallcom.2013.07.091_b0120) 2010; 35 Shao (10.1016/j.jallcom.2013.07.091_b0030) 2011; 36 Aguey-Zinsou (10.1016/j.jallcom.2013.07.091_b0065) 2008; 20 Rud (10.1016/j.jallcom.2013.07.091_b0095) 2012; 37 Fernández (10.1016/j.jallcom.2013.07.091_b0010) 2002; 340 A Varin (10.1016/j.jallcom.2013.07.091_b0025) 2006; 17 Oriňáková (10.1016/j.jallcom.2013.07.091_b0125) 2011; 90 Gasan (10.1016/j.jallcom.2013.07.091_b0035) 2012; 37 Akyıldız (10.1016/j.jallcom.2013.07.091_b0055) 2006; 31 Bogdanović (10.1016/j.jallcom.2013.07.091_b0005) 1999; 282 Huot (10.1016/j.jallcom.2013.07.091_b0015) 1999; 293–295 Lototskyy (10.1016/j.jallcom.2013.07.091_b0090) 2013; 57 Bobet (10.1016/j.jallcom.2013.07.091_b0110) 2004; 366 Narayanan (10.1016/j.jallcom.2013.07.091_b0135) 2007; 45 de Jongh (10.1016/j.jallcom.2013.07.091_b0070) 2007; 19 Gennari (10.1016/j.jallcom.2013.07.091_b0020) 2001; 321 |
References_xml | – volume: 494 start-page: 439 year: 2010 end-page: 445 ident: b0045 article-title: High-pressure synthesis of novel hydrides Mg publication-title: J. Alloys Comp. – volume: 109 start-page: 68 year: 2013 end-page: 75 ident: b0130 article-title: Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium publication-title: Fuel – volume: 31 start-page: 1379 year: 2006 end-page: 1383 ident: b0055 article-title: Hydrogen absorption in magnesium based crystalline thin films publication-title: Int. J. Hydrogen Energy – volume: 386 start-page: 211 year: 2005 end-page: 216 ident: b0075 article-title: High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling publication-title: J. Alloys Comp. – volume: 57 start-page: 3989 year: 2009 end-page: 4000 ident: b0040 article-title: In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg–Mm–Ni after reactive ball milling in hydrogen publication-title: Acta Mater. – volume: 282 start-page: 84 year: 1999 end-page: 92 ident: b0005 article-title: Thermodynamic investigation of the magnesium–hydrogen system publication-title: J. Alloys Comp. – volume: 37 start-page: 1912 year: 2012 end-page: 1918 ident: b0035 article-title: Effect of V, Nb, Ti and graphite additions on the hydrogen desorption temperature of magnesium hydride publication-title: Int. J. Hydrogen Energy – volume: 20 start-page: 376 year: 2008 end-page: 378 ident: b0065 article-title: Synthesis of colloidal magnesium: a near room temperature store for hydrogen publication-title: Chem. Mater. – volume: 366 start-page: 298 year: 2004 end-page: 302 ident: b0110 article-title: Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling publication-title: J. Alloys Comp. – volume: 36 start-page: 4967 year: 2011 end-page: 4975 ident: b0060 article-title: Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction publication-title: Int. J. Hydrogen Energy – volume: 340 start-page: 189 year: 2002 end-page: 198 ident: b0010 article-title: Rate determining step in the absorption and desorption of hydrogen by magnesium publication-title: J. Alloys Comp. – volume: 330–332 start-page: 579 year: 2002 end-page: 583 ident: b0105 article-title: Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium publication-title: J. Alloys Comp. – volume: 19 start-page: 6052 year: 2007 end-page: 6057 ident: b0070 article-title: The preparation of carbon-supported magnesium nanoparticles using melt infiltration publication-title: Chem. Mater. – volume: 37 start-page: 16844 year: 2012 end-page: 16851 ident: b0115 article-title: MgH publication-title: Int. J. Hydrogen Energy – volume: 321 start-page: 46 year: 2001 end-page: 53 ident: b0020 article-title: Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying publication-title: J. Alloys Comp. – volume: 57 start-page: 146 year: 2013 end-page: 160 ident: b0090 article-title: Magnesium–carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen publication-title: Carbon – volume: 293–295 start-page: 495 year: 1999 end-page: 500 ident: b0015 article-title: Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride publication-title: J. Alloys Comp. – volume: 414 start-page: 259 year: 2006 end-page: 264 ident: b0085 article-title: Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride publication-title: J. Alloys Comp. – volume: 127 start-page: 16675 year: 2005 end-page: 16680 ident: b0050 article-title: Hydrogen storage in magnesium clusters: quantum chemical study publication-title: J. Am. Chem. Soc. – volume: 90 start-page: 3123 year: 2011 end-page: 3140 ident: b0125 article-title: Recent applications of carbon nanotubes in hydrogen production and storage publication-title: Fuel – volume: 45 start-page: 805 year: 2007 end-page: 820 ident: b0135 article-title: Mechanically milled coal and magnesium composites for hydrogen storage publication-title: Carbon – volume: 37 start-page: 4179 year: 2012 end-page: 4187 ident: b0095 article-title: Effect of carbon allotropes on the structure and hydrogen sorption during reactive ball-milling of Mg–C powder mixtures publication-title: Int. J. Hydrogen Energy – volume: 31 start-page: 2088 year: 2006 end-page: 2096 ident: b0080 article-title: Microstructure, surface properties and hydrating behaviour of Mg–C composites prepared by ball milling with benzene publication-title: Int. J. Hydrogen Energy – volume: 427 start-page: 94 year: 2007 end-page: 100 ident: b0100 article-title: Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium publication-title: J. Alloys Comp. – volume: 17 start-page: 3856 year: 2006 end-page: 3865 ident: b0025 article-title: Particle size, grain size and γ-MgH publication-title: Nanotechnology – volume: 35 start-page: 7821 year: 2010 end-page: 7826 ident: b0120 article-title: Effects of CNTs on the hydrogen storage properties of MgH publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 10828 year: 2011 end-page: 10833 ident: b0030 article-title: Hydrogen storage properties of nanostructured MgH publication-title: Int. J. Hydrogen Energy – volume: 37 start-page: 16844 year: 2012 ident: 10.1016/j.jallcom.2013.07.091_b0115 article-title: MgH2 synthesis during reactive mechanical alloying studied by in-situ pressure monitoring publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.08.089 – volume: 330–332 start-page: 579 year: 2002 ident: 10.1016/j.jallcom.2013.07.091_b0105 article-title: Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium publication-title: J. Alloys Comp. doi: 10.1016/S0925-8388(01)01506-7 – volume: 321 start-page: 46 year: 2001 ident: 10.1016/j.jallcom.2013.07.091_b0020 article-title: Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying publication-title: J. Alloys Comp. doi: 10.1016/S0925-8388(00)01460-2 – volume: 31 start-page: 1379 year: 2006 ident: 10.1016/j.jallcom.2013.07.091_b0055 article-title: Hydrogen absorption in magnesium based crystalline thin films publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2005.11.003 – volume: 36 start-page: 4967 year: 2011 ident: 10.1016/j.jallcom.2013.07.091_b0060 article-title: Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.12.052 – volume: 37 start-page: 4179 year: 2012 ident: 10.1016/j.jallcom.2013.07.091_b0095 article-title: Effect of carbon allotropes on the structure and hydrogen sorption during reactive ball-milling of Mg–C powder mixtures publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.11.123 – volume: 366 start-page: 298 year: 2004 ident: 10.1016/j.jallcom.2013.07.091_b0110 article-title: Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling publication-title: J. Alloys Comp. doi: 10.1016/S0925-8388(03)00746-1 – volume: 127 start-page: 16675 year: 2005 ident: 10.1016/j.jallcom.2013.07.091_b0050 article-title: Hydrogen storage in magnesium clusters: quantum chemical study publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054569h – volume: 35 start-page: 7821 year: 2010 ident: 10.1016/j.jallcom.2013.07.091_b0120 article-title: Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.05.080 – volume: 494 start-page: 439 year: 2010 ident: 10.1016/j.jallcom.2013.07.091_b0045 article-title: High-pressure synthesis of novel hydrides Mg7−xAxTiH16−x (A=Li, Na, K; x=0−1.0) and their reversible hydrogen storage properties publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2010.01.072 – volume: 340 start-page: 189 year: 2002 ident: 10.1016/j.jallcom.2013.07.091_b0010 article-title: Rate determining step in the absorption and desorption of hydrogen by magnesium publication-title: J. Alloys Comp. doi: 10.1016/S0925-8388(02)00120-2 – volume: 293–295 start-page: 495 year: 1999 ident: 10.1016/j.jallcom.2013.07.091_b0015 article-title: Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride publication-title: J. Alloys Comp. doi: 10.1016/S0925-8388(99)00474-0 – volume: 57 start-page: 3989 year: 2009 ident: 10.1016/j.jallcom.2013.07.091_b0040 article-title: In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg–Mm–Ni after reactive ball milling in hydrogen publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.05.004 – volume: 427 start-page: 94 year: 2007 ident: 10.1016/j.jallcom.2013.07.091_b0100 article-title: Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2006.03.069 – volume: 57 start-page: 146 year: 2013 ident: 10.1016/j.jallcom.2013.07.091_b0090 article-title: Magnesium–carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen publication-title: Carbon doi: 10.1016/j.carbon.2013.01.058 – volume: 45 start-page: 805 year: 2007 ident: 10.1016/j.jallcom.2013.07.091_b0135 article-title: Mechanically milled coal and magnesium composites for hydrogen storage publication-title: Carbon doi: 10.1016/j.carbon.2006.11.017 – volume: 31 start-page: 2088 year: 2006 ident: 10.1016/j.jallcom.2013.07.091_b0080 article-title: Microstructure, surface properties and hydrating behaviour of Mg–C composites prepared by ball milling with benzene publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.01.020 – volume: 109 start-page: 68 year: 2013 ident: 10.1016/j.jallcom.2013.07.091_b0130 article-title: Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium publication-title: Fuel doi: 10.1016/j.fuel.2012.09.002 – volume: 90 start-page: 3123 year: 2011 ident: 10.1016/j.jallcom.2013.07.091_b0125 article-title: Recent applications of carbon nanotubes in hydrogen production and storage publication-title: Fuel doi: 10.1016/j.fuel.2011.06.051 – volume: 19 start-page: 6052 year: 2007 ident: 10.1016/j.jallcom.2013.07.091_b0070 article-title: The preparation of carbon-supported magnesium nanoparticles using melt infiltration publication-title: Chem. Mater. doi: 10.1021/cm702205v – volume: 414 start-page: 259 year: 2006 ident: 10.1016/j.jallcom.2013.07.091_b0085 article-title: Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2005.07.021 – volume: 17 start-page: 3856 year: 2006 ident: 10.1016/j.jallcom.2013.07.091_b0025 article-title: Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling publication-title: Nanotechnology doi: 10.1088/0957-4484/17/15/041 – volume: 282 start-page: 84 year: 1999 ident: 10.1016/j.jallcom.2013.07.091_b0005 article-title: Thermodynamic investigation of the magnesium–hydrogen system publication-title: J. Alloys Comp. doi: 10.1016/S0925-8388(98)00829-9 – volume: 20 start-page: 376 year: 2008 ident: 10.1016/j.jallcom.2013.07.091_b0065 article-title: Synthesis of colloidal magnesium: a near room temperature store for hydrogen publication-title: Chem. Mater. doi: 10.1021/cm702897f – volume: 386 start-page: 211 year: 2005 ident: 10.1016/j.jallcom.2013.07.091_b0075 article-title: High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2004.04.145 – volume: 36 start-page: 10828 year: 2011 ident: 10.1016/j.jallcom.2013.07.091_b0030 article-title: Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.180 – volume: 37 start-page: 1912 year: 2012 ident: 10.1016/j.jallcom.2013.07.091_b0035 article-title: Effect of V, Nb, Ti and graphite additions on the hydrogen desorption temperature of magnesium hydride publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.086 |
SSID | ssj0001931 |
Score | 2.169779 |
Snippet | •Shape of β-MgH2 nanoparticles from milling of Mg with H2 is oblique hexagonal prism.•Size increase of Mg particles from MgH2 dehydriding can be restrained by... This paper is concerned with the changes of morphology, crystal structure and hydrogen storage properties of magnesium during reactive milling under hydrogen... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 472 |
SubjectTerms | Applied sciences Atmospheres Carbon Chemical and electrochemical properties Coal Condensed matter: structure, mechanical and thermal properties Crystal phase Crystal structure Energy Energy. Thermal use of fuels Equations of state, phase equilibria, and phase transitions Exact sciences and technology Heating Hydrogen storage Magnesium Magnesium hydride Materials and auxiliary equipments used in energy engineering Metals. Metallurgy Microstructure Physics Prisms Reactive milling Solubility, segregation, and mixing; phase separation Structure of solids and liquids; crystallography Structure of specific crystalline solids |
Title | Evolution of magnesium during reactive milling under hydrogen atmosphere with crystallitic carbon as milling aid |
URI | https://dx.doi.org/10.1016/j.jallcom.2013.07.091 https://www.proquest.com/docview/1475561054 https://www.proquest.com/docview/1513465844 |
Volume | 581 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY2xljC1bafYRNNirE9uSLemxhJZ0Y33ZCn0TkixtCUkc7GTQl_3tu_NHujK6wh4tdLbQne9-tn53R8hHYY1NnYojB-Et4spmkVJpEYU0Dbm1UvGGRPPlMp9d8U_X2fUBmfa5MEir7Hx_69Mbb92NTLrdnGzm88nXWKV45ifBC2PNF8wo51yglY9_3dI8AKA0XfNgcoSzb7N4JovxwiyXSBqBKMiaGp4quS8-PduYGnYttO0u_vLcTTg6f0GedziSnrZLfUkO_HpAnkz79m0DcvRHpcEBedwwPV39imzOfnbWRstAV-Y7-Lr5bkXbfEUKGLLxgBTbEeEAJplV9MdNUZVga9RsV2WNpQg8xV-41FU3gC-XDYmOOlNZuK-p99JmXrwmV-dn36azqGu7EDlAb9uoYM4n1rhEGK9MghUGhc0yYYugCmN5kNLHXsbCszxjVvkiMbkNQaVBBBcrdkwO1-XanxAqRJxLaz0zhvEiUcqA-0hsbIuMBcf5kPB-s7XrapJja4yl7slnC93pSKOOdCw06GhIxnuxTVuU4yEB2WtS37EuDYHjIdHRHc3vH5gitpJSDcmH3hQ0qBjPW8zal7savqoENh8FUPyPOVnCOKJA_ub_1_iWPMUrZNmk2TtyuK12_j1gpa0dNS_DiDw6vfg8u_wNOIsXYw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTmgghKCAKB_DSLxmzYdTx49TtaljW1_YpL1ZtmOPVm1TJS3S_nvu8lGYEEzi1fEllu_yu1_i-wD4Iow2sZVhYNG9BVyaNJAyzgMfx35kTCZ5HURzOR1NrvnXm_RmD8ZdLgyFVbbY32B6jdbtyLDdzeF6Nht-C2VMZ34ZojDVfBGPYJ-qU6U92D8-O59Md4CMHKVunIfzAxL4lcgznB_N9WJBcSPoCJO6jKeM_uainq11hRvnm44Xf4B37ZFOX8Dzlkqy42a1L2HPrfpwMO46uPXh6W_FBvvwuA72tNUrWJ_8aA2OFZ4t9S3C3Wy7ZE3KIkMaWYMgo45ENEB5ZiX7fpeXBZob05tlUVE1AsfoLy6z5R1SzEUdR8esLg3eV1c7aT3LX8P16cnVeBK0nRcCiwRuE-SJdZHRNhLaSR1RkUFh0lSY3MtcG-6zzIUuC4VLRmlipMsjPTLey9gLb0OZvIHeqli5t8CECEeZMS7ROuF5JKVGBIlMaPI08ZbzAfBus5Vty5JTd4yF6uLP5qrVkSIdqVAo1NEAjnZi66Yux0MCWadJdc_AFPqOh0QP72l-98CY6FWWyQF87kxBoYrpyEWvXLGt8MNKUP9R5MX_mJNGCSciyN_9_xo_wcHk6vJCXZxNz9_DE7pCQTdx-gF6m3LrPiJ12pjD9tX4CbHfGhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+magnesium+during+reactive+milling+under+hydrogen+atmosphere+with+crystallitic+carbon+as+milling+aid&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Zhou%2C+Shixue&rft.au=Zhang%2C+Qianqian&rft.au=Ran%2C+Weixian&rft.au=Han%2C+Zongying&rft.date=2013-12-25&rft.issn=0925-8388&rft.volume=581&rft.spage=472&rft.epage=478&rft_id=info:doi/10.1016%2Fj.jallcom.2013.07.091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2013_07_091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |