Interface structure characterization of Fe36Ni alloy with ultrasonic soldering

•Fe36Ni joint microstructures using ZnAl(Si) by ultrasonic soldering are compared.•Γ-Fe4Zn9 and Γ2-Fe6Ni5Zn89 phases are identified on the ZnAl/Fe36Ni interface.•A reaction layer approximately 0.1μm thick appears on the ZnAlSi/Fe36Ni interface.•Shear strength of the joints using ZnAlSi solder reache...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 576; pp. 386 - 392
Main Authors Wei, Jinghui, Deng, Binghui, Gao, Xingqiang, Yan, Jiuchun, Chen, Xiaoguang
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 05.11.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Fe36Ni joint microstructures using ZnAl(Si) by ultrasonic soldering are compared.•Γ-Fe4Zn9 and Γ2-Fe6Ni5Zn89 phases are identified on the ZnAl/Fe36Ni interface.•A reaction layer approximately 0.1μm thick appears on the ZnAlSi/Fe36Ni interface.•Shear strength of the joints using ZnAlSi solder reaches as high as 102–115 MPa.•A reaction model is presented to analyze the function mechanism of Si. The ultrasonic soldering of Fe36Ni alloy using Zn-based filler metal (with and without Si) has been investigated at 420°C. For the solder without Si, apparent double reaction layers formed at the Fe36Ni and ZnAl interfaces, including the Γ-Fe4Zn9 facing Fe36Ni alloy and Γ2-Fe6Ni5Zn89 upon which numerous cracks had grown into the solder. When 0.4wt% Si was added to the solder, the bond microstructure was the Zn–Al eutectic phase and η-Zn phase without cracks; only a thin intermetallic compound with constant thickness was formed on the ZnAlSi/Fe36Ni interface even though the process parameters had changed. Joints using ZnAlSi solder reached the highest compressive shear strength of approximately 102–115MPa with their fracture paths propagating primarily through the intermetallic compound layers at the ZnAlSi/Fe36Ni interface. The mechanism for the effect of Si is explored through a reaction model of the ZnAl(Si)/Fe36Ni system with ultrasonic soldering. This study provides a joining method characterized by low temperature and low stress for low-expansion alloys.
AbstractList The ultrasonic soldering of Fe(36)Ni alloy using Zn-based filler metal (with and without Si) has been investigated at 420 degree C. For the solder without Si, apparent double reaction layers formed at the Fe(36)Ni and ZnAl interfaces, including the tau -Fe(4)Zn(9) facing Fe(36)Ni alloy and tau -Fe(6)Ni(5)Zn(89) upon which numerous cracks had grown into the solder. When 0.4 wt% Si was added to the solder, the bond microstructure was the Zn-Al eutectic phase and eta -Zn phase without cracks; only a thin intermetallic compound with constant thickness was formed on the ZnAlSi/Fe(36)Ni interface even though the process parameters had changed. Joints using ZnAlSi solder reached the highest compressive shear strength of approximately 102-115MPa with their fracture paths propagating primarily through the intermetallic compound layers at the ZnAlSi/Fe(36)Ni interface. The mechanism for the effect of Si is explored through a reaction model of the ZnAl(Si)/Fe(36)Ni system with ultrasonic soldering. This study provides a joining method characterized by low temperature and low stress for low-expansion alloys.
•Fe36Ni joint microstructures using ZnAl(Si) by ultrasonic soldering are compared.•Γ-Fe4Zn9 and Γ2-Fe6Ni5Zn89 phases are identified on the ZnAl/Fe36Ni interface.•A reaction layer approximately 0.1μm thick appears on the ZnAlSi/Fe36Ni interface.•Shear strength of the joints using ZnAlSi solder reaches as high as 102–115 MPa.•A reaction model is presented to analyze the function mechanism of Si. The ultrasonic soldering of Fe36Ni alloy using Zn-based filler metal (with and without Si) has been investigated at 420°C. For the solder without Si, apparent double reaction layers formed at the Fe36Ni and ZnAl interfaces, including the Γ-Fe4Zn9 facing Fe36Ni alloy and Γ2-Fe6Ni5Zn89 upon which numerous cracks had grown into the solder. When 0.4wt% Si was added to the solder, the bond microstructure was the Zn–Al eutectic phase and η-Zn phase without cracks; only a thin intermetallic compound with constant thickness was formed on the ZnAlSi/Fe36Ni interface even though the process parameters had changed. Joints using ZnAlSi solder reached the highest compressive shear strength of approximately 102–115MPa with their fracture paths propagating primarily through the intermetallic compound layers at the ZnAlSi/Fe36Ni interface. The mechanism for the effect of Si is explored through a reaction model of the ZnAl(Si)/Fe36Ni system with ultrasonic soldering. This study provides a joining method characterized by low temperature and low stress for low-expansion alloys.
The ultrasonic soldering of Fe36Ni alloy using Zn-based filler metal (with and without Si) has been investigated at 420 degree C. For the solder without Si, apparent double reaction layers formed at the Fe36Ni and ZnAl interfaces, including the Gamma -Fe4Zn9 facing Fe36Ni alloy and Gamma 2-Fe6Ni5Zn89 upon which numerous cracks had grown into the solder. When 0.4 wt% Si was added to the solder, the bond microstructure was the Zn-Al eutectic phase and eta -Zn phase without cracks; only a thin intermetallic compound with constant thickness was formed on the ZnAlSi/Fe36Ni interface even though the process parameters had changed. Joints using ZnAlSi solder reached the highest compressive shear strength of approximately 102-115 MPa with their fracture paths propagating primarily through the intermetallic compound layers at the ZnAlSi/Fe36Ni interface. The mechanism for the effect of Si is explored through a reaction model of the ZnAl(Si)/Fe36Ni system with ultrasonic soldering. This study provides a joining method characterized by low temperature and low stress for low-expansion alloys.
Author Yan, Jiuchun
Gao, Xingqiang
Deng, Binghui
Wei, Jinghui
Chen, Xiaoguang
Author_xml – sequence: 1
  givenname: Jinghui
  surname: Wei
  fullname: Wei, Jinghui
– sequence: 2
  givenname: Binghui
  surname: Deng
  fullname: Deng, Binghui
– sequence: 3
  givenname: Xingqiang
  surname: Gao
  fullname: Gao, Xingqiang
– sequence: 4
  givenname: Jiuchun
  surname: Yan
  fullname: Yan, Jiuchun
  email: jcyan@hit.edu.cn
– sequence: 5
  givenname: Xiaoguang
  surname: Chen
  fullname: Chen, Xiaoguang
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27638208$$DView record in Pascal Francis
BookMark eNqFkUFrFTEUhYNU8LX6E4TZCG5mvEkmmQwuRIq1hVI3ug5p5sbmkZfUJGOpv96077lx81YXLt8593LOKTmJKSIhbykMFKj8sB22JgSbdgMDygcQAyjxgmyomng_SjmfkA3MTPSKK_WKnJayBQA6c7ohN1exYnbGYldqXm1dM3b2zmRj297_MdWn2CXXXSCXN75rh9Jj9-DrXbeGmk1J0duupLA0Ov58TV46Ewq-Ocwz8uPiy_fzy_7629er88_XvR1B1H7hkqGgFIQQjgphJ6U4s6iAi2Uxor0jR6RyZre3Ulk3Thyc4yMbqROKMn5G3u9973P6tWKpeueLxRBMxLQWTQWnwDmM4jg6ylHMfJ7mhr47oKZYE1w20fqi77Pfmfyo2SS5YqAa93HP2ZxKyei09fU5qZaID5qCfipGb_WhGP1UjAahWzFNLf5T_ztwTPdpr8MW7G-PWRfrMVpcfEZb9ZL8EYe_qEGsQw
CitedBy_id crossref_primary_10_1016_S1006_706X_17_30149_8
crossref_primary_10_4028_www_scientific_net_AMR_941_944_2074
crossref_primary_10_3390_met6110263
crossref_primary_10_1088_2053_1591_aaefba
crossref_primary_10_1088_2053_1591_ab155f
crossref_primary_10_1007_s10854_018_0413_2
crossref_primary_10_1007_s12206_024_0232_8
Cites_doi 10.1016/j.scriptamat.2010.04.006
10.1016/S1359-6454(03)00140-X
10.1016/j.jallcom.2009.08.064
10.1557/JMR.2003.0165
10.1023/A:1018680625668
10.1016/S1044-5803(98)00020-5
10.1361/105497103772084642
10.1016/S0364-5916(01)00048-7
10.1179/174328407X157281
10.1016/S0925-8388(01)01273-7
10.1007/s11664-008-0528-y
10.1016/j.jallcom.2009.08.084
10.1016/S1003-6326(07)60134-4
10.1007/s11837-009-0013-y
10.1109/ICEPT.2008.4607112
10.2355/isijinternational.37.906
10.1108/eb020226
10.1016/S1359-6454(00)00231-7
10.1016/j.jallcom.2005.04.015
10.1023/A:1018632709739
10.1016/j.matdes.2010.06.005
10.1007/BF00553379
10.1016/j.matchar.2008.08.003
10.1016/S1875-5372(10)60009-4
10.1016/S0955-2219(02)00011-0
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QF
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2013.05.085
DatabaseName CrossRef
Pascal-Francis
Aluminium Industry Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Aluminium Industry Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
Applied Sciences
EISSN 1873-4669
EndPage 392
ExternalDocumentID 27638208
10_1016_j_jallcom_2013_05_085
S0925838813012450
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
SSH
T9H
WUQ
IQODW
7QF
8BQ
8FD
AFXIZ
JG9
ID FETCH-LOGICAL-c405t-d362e5110555f155c78832ce8035dda5ace64e1692bb68cf4730ff34241f58123
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Fri Jul 11 05:03:23 EDT 2025
Fri Jul 11 07:52:33 EDT 2025
Wed Apr 02 07:23:34 EDT 2025
Tue Jul 01 03:03:16 EDT 2025
Thu Apr 24 23:02:25 EDT 2025
Fri Feb 23 02:23:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Scanning electron microscopy
Metals and alloys
Microstructure
Diffusion
Liquid–solid reactions
Ruptures
Intermetallic compounds
Fillers
Ultrasonic waves
Shear strength
Liquid―solid reactions
Scanning electron microscopy, SEM
Compression strength
Thickness
Interfaces
Interface structure
Solder
Cracks
Fractures
Eutectics
Stress effects
Liquid solid reaction
Soldered joints
Soldering
Double layers
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-d362e5110555f155c78832ce8035dda5ace64e1692bb68cf4730ff34241f58123
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1464593979
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1531033045
proquest_miscellaneous_1464593979
pascalfrancis_primary_27638208
crossref_citationtrail_10_1016_j_jallcom_2013_05_085
crossref_primary_10_1016_j_jallcom_2013_05_085
elsevier_sciencedirect_doi_10_1016_j_jallcom_2013_05_085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-05
PublicationDateYYYYMMDD 2013-11-05
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-05
  day: 05
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of alloys and compounds
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Liu, Liu, Zhong, Li, Wenbin (b0005) 2010; 63
Lei, Lixia, Xiaoyu, Peng, Jicai (b0035) 2011; 32
Peng, Yin, Xuping, Zhi, Zhao (b0095) 2005; 402
Song, Lin, Yang, Fan (b0145) 2009; 488
Suganuma, Kim, Kim (b0060) 2009; 61
Hwang, Suganuma (b0040) 2003; 18
Morimoto, Mcdevitt, Meshii (b0120) 1997; 37
Saiz, Cannon, Tomsia (b0015) 2000; 48
Q.S. Zhu, J.J. Guo, Z.G. Wang, Z.F. Zhang, J.K. Shang, Shear of Sn-3.8Ag-0.7Cu solder balls on electrodeposited FeNi layer. in: International Conference on Electronic Packaging Technology & High Density Packaging, Shanghai, China, 2008, pp. 1–4.
Chang, Cheng, Wang (b0070) 2009; 60
Perrot, Churg, Reumont, Dauphin (b0105) 1989; 308
Nicholls (b0130) 1964; 11
Takaku, Makino, Watanabe, Ohnuma, Kainuma, Yamada (b0125) 2009; 38
Gang, tang, Qiaoyu (b0065) 2007; 17
Tang, Xuping, Toguri (b0085) 2001; 25
Zhishui, Pei, Kai, Ruifeng (b0025) 2008; 37
Raghavan (b0090) 2003
Jordan, Marder (b0115) 1997; 32
Jordan, Marder (b0110) 1997; 32
Raynor, Noden (b0100) 1957; 58
Xuping, Tang, Toguri (b0075) 2001; 325
Chunguang, Qiao, Jin (b0030) 2002; 22
Saiz, Hwang, Suganuma, Tomsia (b0045) 2000; 51
Corbacho, Suárez, Molleda (b0010) 1998; 41
Zhang, Guo, Shang (b0055) 2009; 487
Wang, Feng, Zhang, He, Zhang (b0020) 2007; 23
Eggeler, Auer, Kaesche (b0080) 1986; 21
Lei (10.1016/j.jallcom.2013.05.085_b0035) 2011; 32
Eggeler (10.1016/j.jallcom.2013.05.085_b0080) 1986; 21
Song (10.1016/j.jallcom.2013.05.085_b0145) 2009; 488
Nicholls (10.1016/j.jallcom.2013.05.085_b0130) 1964; 11
Xuping (10.1016/j.jallcom.2013.05.085_b0075) 2001; 325
Liu (10.1016/j.jallcom.2013.05.085_b0005) 2010; 63
Chunguang (10.1016/j.jallcom.2013.05.085_b0030) 2002; 22
Wang (10.1016/j.jallcom.2013.05.085_b0020) 2007; 23
Corbacho (10.1016/j.jallcom.2013.05.085_b0010) 1998; 41
Jordan (10.1016/j.jallcom.2013.05.085_b0110) 1997; 32
Morimoto (10.1016/j.jallcom.2013.05.085_b0120) 1997; 37
Saiz (10.1016/j.jallcom.2013.05.085_b0015) 2000; 48
Zhishui (10.1016/j.jallcom.2013.05.085_b0025) 2008; 37
Zhang (10.1016/j.jallcom.2013.05.085_b0055) 2009; 487
10.1016/j.jallcom.2013.05.085_b0050
Jordan (10.1016/j.jallcom.2013.05.085_b0115) 1997; 32
Peng (10.1016/j.jallcom.2013.05.085_b0095) 2005; 402
Saiz (10.1016/j.jallcom.2013.05.085_b0045) 2000; 51
Raghavan (10.1016/j.jallcom.2013.05.085_b0090) 2003
Hwang (10.1016/j.jallcom.2013.05.085_b0040) 2003; 18
Takaku (10.1016/j.jallcom.2013.05.085_b0125) 2009; 38
Chang (10.1016/j.jallcom.2013.05.085_b0070) 2009; 60
Perrot (10.1016/j.jallcom.2013.05.085_b0105) 1989; 308
Gang (10.1016/j.jallcom.2013.05.085_b0065) 2007; 17
Tang (10.1016/j.jallcom.2013.05.085_b0085) 2001; 25
Suganuma (10.1016/j.jallcom.2013.05.085_b0060) 2009; 61
Raynor (10.1016/j.jallcom.2013.05.085_b0100) 1957; 58
References_xml – volume: 32
  start-page: 5603
  year: 1997
  end-page: 5610
  ident: b0115
  publication-title: J. Mater. Sci.
– volume: 488
  start-page: 217
  year: 2009
  end-page: 222
  ident: b0145
  publication-title: J. Alloys Comp.
– start-page: 558
  year: 2003
  end-page: 560
  ident: b0090
  publication-title: J. Phase Equilib.
– volume: 308
  start-page: 1413
  year: 1989
  end-page: 1417
  ident: b0105
  publication-title: Acad. Sci. Pairs Ser. II
– volume: 41
  start-page: 27
  year: 1998
  end-page: 34
  ident: b0010
  publication-title: Mater. Char.
– volume: 11
  start-page: 16
  year: 1964
  end-page: 21
  ident: b0130
  publication-title: Anti-Corros Method M
– volume: 37
  start-page: 906
  year: 1997
  end-page: 913
  ident: b0120
  publication-title: ISIJ Int.
– volume: 58
  start-page: 269
  year: 1957
  end-page: 271
  ident: b0100
  publication-title: J. Inst. Met.
– volume: 32
  start-page: 5593
  year: 1997
  end-page: 5602
  ident: b0110
  publication-title: J. Mater. Sci.
– volume: 18
  start-page: 1202
  year: 2003
  end-page: 1210
  ident: b0040
  publication-title: J. Mater. Res.
– volume: 17
  start-page: 564
  year: 2007
  end-page: 569
  ident: b0065
  publication-title: T Nonferr. Met. Soc.
– volume: 21
  start-page: 3348
  year: 1986
  end-page: 3350
  ident: b0080
  publication-title: J. Mater. Sci.
– volume: 63
  start-page: 359
  year: 2010
  end-page: 362
  ident: b0005
  publication-title: Scripta Mater.
– volume: 487
  start-page: 776
  year: 2009
  end-page: 780
  ident: b0055
  publication-title: J. Alloys Comp.
– volume: 22
  start-page: 2181
  year: 2002
  end-page: 2186
  ident: b0030
  publication-title: J. Eur. Ceram. Soc.
– volume: 32
  start-page: 382
  year: 2011
  end-page: 387
  ident: b0035
  publication-title: Mater. Des.
– volume: 25
  start-page: 277
  year: 2001
  end-page: 567
  ident: b0085
  publication-title: Calphad
– reference: Q.S. Zhu, J.J. Guo, Z.G. Wang, Z.F. Zhang, J.K. Shang, Shear of Sn-3.8Ag-0.7Cu solder balls on electrodeposited FeNi layer. in: International Conference on Electronic Packaging Technology & High Density Packaging, Shanghai, China, 2008, pp. 1–4.
– volume: 37
  start-page: 2118
  year: 2008
  end-page: 2121
  ident: b0025
  publication-title: Rare Met. Mater. Eng.
– volume: 402
  start-page: 124
  year: 2005
  end-page: 129
  ident: b0095
  publication-title: J. Alloys Comp.
– volume: 61
  start-page: 64
  year: 2009
  end-page: 71
  ident: b0060
  publication-title: Jom-J. Min. Met. Mater. S
– volume: 60
  start-page: 144
  year: 2009
  end-page: 149
  ident: b0070
  publication-title: Mater. Char.
– volume: 325
  start-page: 129
  year: 2001
  end-page: 136
  ident: b0075
  publication-title: J. Alloys Comp.
– volume: 48
  start-page: 4449
  year: 2000
  end-page: 4462
  ident: b0015
  publication-title: Acta Mater.
– volume: 23
  start-page: 320
  year: 2007
  end-page: 323
  ident: b0020
  publication-title: Mater. Sci. Technol.
– volume: 51
  start-page: 3185
  year: 2000
  end-page: 3197
  ident: b0045
  publication-title: Acta Mater.
– volume: 38
  start-page: 54
  year: 2009
  end-page: 60
  ident: b0125
  publication-title: J. Electron. Mater.
– volume: 63
  start-page: 359
  year: 2010
  ident: 10.1016/j.jallcom.2013.05.085_b0005
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2010.04.006
– volume: 51
  start-page: 3185
  year: 2000
  ident: 10.1016/j.jallcom.2013.05.085_b0045
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(03)00140-X
– volume: 487
  start-page: 776
  year: 2009
  ident: 10.1016/j.jallcom.2013.05.085_b0055
  publication-title: J. Alloys Comp.
  doi: 10.1016/j.jallcom.2009.08.064
– volume: 18
  start-page: 1202
  issue: 5
  year: 2003
  ident: 10.1016/j.jallcom.2013.05.085_b0040
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2003.0165
– volume: 32
  start-page: 5593
  year: 1997
  ident: 10.1016/j.jallcom.2013.05.085_b0110
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1018680625668
– volume: 41
  start-page: 27
  year: 1998
  ident: 10.1016/j.jallcom.2013.05.085_b0010
  publication-title: Mater. Char.
  doi: 10.1016/S1044-5803(98)00020-5
– start-page: 558
  year: 2003
  ident: 10.1016/j.jallcom.2013.05.085_b0090
  publication-title: J. Phase Equilib.
  doi: 10.1361/105497103772084642
– volume: 25
  start-page: 277
  issue: 2
  year: 2001
  ident: 10.1016/j.jallcom.2013.05.085_b0085
  publication-title: Calphad
  doi: 10.1016/S0364-5916(01)00048-7
– volume: 23
  start-page: 320
  issue: 3
  year: 2007
  ident: 10.1016/j.jallcom.2013.05.085_b0020
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/174328407X157281
– volume: 325
  start-page: 129
  year: 2001
  ident: 10.1016/j.jallcom.2013.05.085_b0075
  publication-title: J. Alloys Comp.
  doi: 10.1016/S0925-8388(01)01273-7
– volume: 38
  start-page: 54
  issue: 1
  year: 2009
  ident: 10.1016/j.jallcom.2013.05.085_b0125
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-008-0528-y
– volume: 488
  start-page: 217
  year: 2009
  ident: 10.1016/j.jallcom.2013.05.085_b0145
  publication-title: J. Alloys Comp.
  doi: 10.1016/j.jallcom.2009.08.084
– volume: 17
  start-page: 564
  year: 2007
  ident: 10.1016/j.jallcom.2013.05.085_b0065
  publication-title: T Nonferr. Met. Soc.
  doi: 10.1016/S1003-6326(07)60134-4
– volume: 58
  start-page: 269
  issue: 86
  year: 1957
  ident: 10.1016/j.jallcom.2013.05.085_b0100
  publication-title: J. Inst. Met.
– volume: 61
  start-page: 64
  issue: 1
  year: 2009
  ident: 10.1016/j.jallcom.2013.05.085_b0060
  publication-title: Jom-J. Min. Met. Mater. S
  doi: 10.1007/s11837-009-0013-y
– ident: 10.1016/j.jallcom.2013.05.085_b0050
  doi: 10.1109/ICEPT.2008.4607112
– volume: 37
  start-page: 906
  issue: 9
  year: 1997
  ident: 10.1016/j.jallcom.2013.05.085_b0120
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.37.906
– volume: 11
  start-page: 16
  issue: 10
  year: 1964
  ident: 10.1016/j.jallcom.2013.05.085_b0130
  publication-title: Anti-Corros Method M
  doi: 10.1108/eb020226
– volume: 48
  start-page: 4449
  issue: 18–19
  year: 2000
  ident: 10.1016/j.jallcom.2013.05.085_b0015
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(00)00231-7
– volume: 402
  start-page: 124
  year: 2005
  ident: 10.1016/j.jallcom.2013.05.085_b0095
  publication-title: J. Alloys Comp.
  doi: 10.1016/j.jallcom.2005.04.015
– volume: 32
  start-page: 5603
  year: 1997
  ident: 10.1016/j.jallcom.2013.05.085_b0115
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1018632709739
– volume: 32
  start-page: 382
  year: 2011
  ident: 10.1016/j.jallcom.2013.05.085_b0035
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.06.005
– volume: 21
  start-page: 3348
  year: 1986
  ident: 10.1016/j.jallcom.2013.05.085_b0080
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00553379
– volume: 308
  start-page: 1413
  issue: 16
  year: 1989
  ident: 10.1016/j.jallcom.2013.05.085_b0105
  publication-title: Acad. Sci. Pairs Ser. II
– volume: 60
  start-page: 144
  year: 2009
  ident: 10.1016/j.jallcom.2013.05.085_b0070
  publication-title: Mater. Char.
  doi: 10.1016/j.matchar.2008.08.003
– volume: 37
  start-page: 2118
  issue: 12
  year: 2008
  ident: 10.1016/j.jallcom.2013.05.085_b0025
  publication-title: Rare Met. Mater. Eng.
  doi: 10.1016/S1875-5372(10)60009-4
– volume: 22
  start-page: 2181
  year: 2002
  ident: 10.1016/j.jallcom.2013.05.085_b0030
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/S0955-2219(02)00011-0
SSID ssj0001931
Score 2.1283987
Snippet •Fe36Ni joint microstructures using ZnAl(Si) by ultrasonic soldering are compared.•Γ-Fe4Zn9 and Γ2-Fe6Ni5Zn89 phases are identified on the ZnAl/Fe36Ni...
The ultrasonic soldering of Fe(36)Ni alloy using Zn-based filler metal (with and without Si) has been investigated at 420 degree C. For the solder without Si,...
The ultrasonic soldering of Fe36Ni alloy using Zn-based filler metal (with and without Si) has been investigated at 420 degree C. For the solder without Si,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 386
SubjectTerms Applied sciences
Brazing. Soldering
Compressive strength
Condensed matter: structure, mechanical and thermal properties
Diffusion
Diffusion in solids
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
Ferrous alloys
Fracture mechanics
Interface structure and roughness
Intermetallic compounds
Intermetallics
Joining, thermal cutting: metallurgical aspects
Liquid–solid reactions
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Metals and alloys
Metals. Metallurgy
Microstructure
Phase transformations
Physics
Scanning electron microscopy
SEM
Silicon
Solders
Solid surfaces and solid-solid interfaces
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Transport properties of condensed matter (nonelectronic)
Ultrasonic soldering
Title Interface structure characterization of Fe36Ni alloy with ultrasonic soldering
URI https://dx.doi.org/10.1016/j.jallcom.2013.05.085
https://www.proquest.com/docview/1464593979
https://www.proquest.com/docview/1531033045
Volume 576
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KIioiWhXro6zgNW2a7KbJsRRLVehFC70tyWYXWkpb-jh48bc7s0lai2LBY8I-ws5kvpmdF8Bj5McCUUM5cZIKh4cp_nOGrBThGfIWClfZANle0O3zl4EYlKBd5MJQWGUu-zOZbqV1_qaen2Z9NhzW39zII59fiFIYQcra7Zw3ictrn5swD1RQbNc8HOzQ6E0WT31UG8XjMQWNIAr6toAntVT-HZ9OZvECT81k7S5-SG4LR50zOM31SNbKPvUcSnpShsN20b6tDMffKg2W4cBGeqrFBfTsHaCJlWZZ7djVXDO1LtucZWWyqWEd7Qe9ISPH_Aej61q2Gi_n8YJq6TLk2NQufQn9ztN7u-vkTRUchbrZ0kkRsTRqWVToy6AyodAG9j2lQ9cXaRoL3D7guhFEXpIEoTIcRYAxPkekNwK1Af8K9ibTib4G1ohCxEA3QYxHcms3aRoEQpPgmilHw6sCvDhKqfKK49T4YiyL0LKRzCkgiQLSFRIpUIHaetosK7mxa0JY0Elu8Y5EWNg1tbpF1_WGHspdVI7CCjwUhJZIQPKmxBM9XS3IZuIiIrfoH2MEtXEjZ_TN_7_xFo7oySZAijvYQ97Q96gJLZOqZfUq7LeeX7u9L0ZIBvw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kIlNEdCrOzwi-1nVtU9tHGY5NZ19U2Fto0wQ2Rjfs9uB_713aTofiwNe2-SCX3u8ud_kdwE3oxhxRQ1pxknLLC1L85zR5KdzRFC3ktjQJspHfe_Meh3y4AZ3qLgylVZa6v9DpRluXT1rlarZmo1HrxQ4divkFqIURpMhv3yR2Kl6Dzfv-Uy9aKmS0UUzhPPzeogZfF3la49txPJlQ3ggCoWs4PKmq8u8QtTuLc1w4XVS8-KG8DSJ192GvNCXZfTHbA9hQWQPqnaqCWwN2vpENNmDLJHvK_BAicwyoY6lYQR-7eFdMLpmbi4uZbKpZV7l-NGIUm_9gdGLLFpP5e5wTnS7DTZuaro_grfvw2ulZZV0FS6J5NrdSBC2FhhZxfWm0JyS6wa4jVWC7PE1jjsP7nmr7oZMkfiC1h1pAa9dDsNccDQL3GGrZNFMnwNphgDBoJwjzKHFlJ3casVAn2Gfqoe_VBK9aSiFL0nGqfTERVXbZWJQSECQBYXOBEmjC7bLZrGDdWNcgqOQkVraPQGRY1_RyRa7LAR1UvWgfBU24rgQtUIAUUIkzNV3k5DZ5PKTI6B_fcKrkRvHo0__P8QrqvdfngRj0o6cz2KY35j4kP4ca7hN1gYbRPLksN_4nQcQJrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+structure+characterization+of+Fe36Ni+alloy+with+ultrasonic+soldering&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Wei%2C+Jinghui&rft.au=Deng%2C+Binghui&rft.au=Gao%2C+Xingqiang&rft.au=Yan%2C+Jiuchun&rft.date=2013-11-05&rft.issn=0925-8388&rft.volume=576&rft.spage=386&rft.epage=392&rft_id=info:doi/10.1016%2Fj.jallcom.2013.05.085&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2013_05_085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon