Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes
Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was carried out to compare mycorrhizal tomato (76R MYC) and its non-mycorrhizal mutant (rmc) on the CO2 and N2O emissions from an organically-mana...
Saved in:
Published in | Soil biology & biochemistry Vol. 74; pp. 184 - 192 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.07.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was carried out to compare mycorrhizal tomato (76R MYC) and its non-mycorrhizal mutant (rmc) on the CO2 and N2O emissions from an organically-managed soil. Plants were grown for 10 weeks in pots with compost amended soil and subjected to two consecutive dry down cycles to simulate changing moisture regimes in the field. Dry downs were applied gradually through controlled watering treatments. The effects of AM and soil moisture in GHG emissions were assessed in root in-growth PVC cylinders installed in the pots. Gas samples were taken from the cylinders using static chambers 4 h after each watering event. Photosynthetic rates and stomatal conductance of the plants were assessed after watering using a field portable open flow infra-red gas analyzer. Soil moisture was monitored throughout the experiment. Plant biomass and total shoot N, P and K as well as soil content of DON, DOC, NH4+–N, NO3−–N and microbial biomass C, were assessed at harvest. For the same shoot growth and nutrient content, rmc plants allocated more resources to root biomass than mycorrhizal plants. AM symbiosis improved the capacity of the plants to adapt to changing soil moisture, increasing photosynthetic rates and stomatal conductance at high soil moisture but decreasing them when soil moisture was lower. In addition AM symbiosis helped to regulate N2O emissions at high soil moisture. Control over N2O emissions by AM plants seemed to be driven by a higher use of soil water and not by increased N uptake.
•Mycorrhizal tomato and its non-mycorrhizal mutant were subjected to changing soil moisture regimes.•Mycorrhizal plants increased water use at higher soil moisture and tightly controlled water loss.•Mycorrhizal plants reduced soil N2O, but not CO2 emissions.•Effects of mycorrhizal plants on N2O were probably related to changes in soil moisture. |
---|---|
AbstractList | Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was carried out to compare mycorrhizal tomato (76R MYC) and its non-mycorrhizal mutant (rmc) on the CO2 and N2O emissions from an organically-managed soil. Plants were grown for 10 weeks in pots with compost amended soil and subjected to two consecutive dry down cycles to simulate changing moisture regimes in the field. Dry downs were applied gradually through controlled watering treatments. The effects of AM and soil moisture in GHG emissions were assessed in root in-growth PVC cylinders installed in the pots. Gas samples were taken from the cylinders using static chambers 4 h after each watering event. Photosynthetic rates and stomatal conductance of the plants were assessed after watering using a field portable open flow infra-red gas analyzer. Soil moisture was monitored throughout the experiment. Plant biomass and total shoot N, P and K as well as soil content of DON, DOC, NH4+–N, NO3−–N and microbial biomass C, were assessed at harvest. For the same shoot growth and nutrient content, rmc plants allocated more resources to root biomass than mycorrhizal plants. AM symbiosis improved the capacity of the plants to adapt to changing soil moisture, increasing photosynthetic rates and stomatal conductance at high soil moisture but decreasing them when soil moisture was lower. In addition AM symbiosis helped to regulate N2O emissions at high soil moisture. Control over N2O emissions by AM plants seemed to be driven by a higher use of soil water and not by increased N uptake. Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was carried out to compare mycorrhizal tomato (76R MYC) and its non-mycorrhizal mutant (rmc) on the CO sub(2) and N sub(2)O emissions from an organically-managed soil. Plants were grown for 10 weeks in pots with compost amended soil and subjected to two consecutive dry down cycles to simulate changing moisture regimes in the field. Dry downs were applied gradually through controlled watering treatments. The effects of AM and soil moisture in GHG emissions were assessed in root in-growth PVC cylinders installed in the pots. Gas samples were taken from the cylinders using static chambers 4 h after each watering event. Photosynthetic rates and stomatal conductance of the plants were assessed after watering using a field portable open flow infra-red gas analyzer. Soil moisture was monitored throughout the experiment. Plant biomass and total shoot N, P and K as well as soil content of DON, DOC, NH sub(4) super(+)-N, NO sub(3) super(-)-N and microbial biomass C, were assessed at harvest. For the same shoot growth and nutrient content, rmc plants allocated more resources to root biomass than mycorrhizal plants. AM symbiosis improved the capacity of the plants to adapt to changing soil moisture, increasing photosynthetic rates and stomatal conductance at high soil moisture but decreasing them when soil moisture was lower. In addition AM symbiosis helped to regulate N sub(2)O emissions at high soil moisture. Control over N sub(2)O emissions by AM plants seemed to be driven by a higher use of soil water and not by increased N uptake. Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was carried out to compare mycorrhizal tomato (76R MYC) and its non-mycorrhizal mutant (rmc) on the CO2 and N2O emissions from an organically-managed soil. Plants were grown for 10 weeks in pots with compost amended soil and subjected to two consecutive dry down cycles to simulate changing moisture regimes in the field. Dry downs were applied gradually through controlled watering treatments. The effects of AM and soil moisture in GHG emissions were assessed in root in-growth PVC cylinders installed in the pots. Gas samples were taken from the cylinders using static chambers 4 h after each watering event. Photosynthetic rates and stomatal conductance of the plants were assessed after watering using a field portable open flow infra-red gas analyzer. Soil moisture was monitored throughout the experiment. Plant biomass and total shoot N, P and K as well as soil content of DON, DOC, NH4+–N, NO3−–N and microbial biomass C, were assessed at harvest. For the same shoot growth and nutrient content, rmc plants allocated more resources to root biomass than mycorrhizal plants. AM symbiosis improved the capacity of the plants to adapt to changing soil moisture, increasing photosynthetic rates and stomatal conductance at high soil moisture but decreasing them when soil moisture was lower. In addition AM symbiosis helped to regulate N2O emissions at high soil moisture. Control over N2O emissions by AM plants seemed to be driven by a higher use of soil water and not by increased N uptake. •Mycorrhizal tomato and its non-mycorrhizal mutant were subjected to changing soil moisture regimes.•Mycorrhizal plants increased water use at higher soil moisture and tightly controlled water loss.•Mycorrhizal plants reduced soil N2O, but not CO2 emissions.•Effects of mycorrhizal plants on N2O were probably related to changes in soil moisture. |
Author | Barrios-Masias, Felipe H. Lazcano, Cristina Jackson, Louise E. |
Author_xml | – sequence: 1 givenname: Cristina surname: Lazcano fullname: Lazcano, Cristina email: clazcano@ucdavis.edu – sequence: 2 givenname: Felipe H. surname: Barrios-Masias fullname: Barrios-Masias, Felipe H. – sequence: 3 givenname: Louise E. surname: Jackson fullname: Jackson, Louise E. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28506683$$DView record in Pascal Francis |
BookMark | eNqFkU2r1DAUhoNcwblXf4KQjeCmNWmaNMWFXC5-wQU3ug6Z5LSToU3GnFYZf72ZO4MLN7MKhOd5c3LeW3ITUwRCXnNWc8bVu32NKUzbkOqG8bZmomacPSMbrru-Em2jb8iGMaEr1vHuBblF3DPGGsnFhhzv83ZFt0420_noUs678MdOFIYB3II0RXqYbFzob7tAphkmu4QUkdro6elZOmaAuEsrAh0tUpgD4hOxRl8Mt7NxDHGkcwq4rBlKxhhmwJfk-WAnhFeX8478-PTx-8OX6vHb568P94-Va5lcKt_4TovOOd5rN6geetsJ7gbo1LZVWnHv2457aIQAbdumXHSD7BuutRNb7cUdeXvOPeT0cwVcTJnQwVR-BWVqw7VQSrSMy-uoFK2WUqq-oG8uqEVnpyHb6AKaQw6zzUfTaMmU0qJw8sy5nBAzDP8QzsypPbM3l_bMqT3DhCntFe_9f54Ly9Pql2zDdNX-cLahLPZXgGzQBYgOfMilVuNTuJLwF_iZvdY |
CODEN | SBIOAH |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2021_108193 crossref_primary_10_1111_ejss_13131 crossref_primary_10_1007_s11104_022_05715_8 crossref_primary_10_1111_aab_12736 crossref_primary_10_1007_s00248_023_02172_3 crossref_primary_10_1016_j_soilbio_2022_108856 crossref_primary_10_1080_00103624_2017_1358740 crossref_primary_10_1016_j_ecoenv_2018_03_047 crossref_primary_10_3934_microbiol_2017_4_938 crossref_primary_10_2166_wcc_2024_482 crossref_primary_10_3390_microorganisms9050983 crossref_primary_10_1093_femsec_fiz208 crossref_primary_10_48130_VR_2023_0001 crossref_primary_10_1016_j_agrformet_2023_109385 crossref_primary_10_1016_j_agwat_2024_108802 crossref_primary_10_1016_j_scienta_2015_09_002 crossref_primary_10_1016_j_scitotenv_2021_150857 crossref_primary_10_1111_1462_2920_15815 crossref_primary_10_1525_elementa_2022_00043 crossref_primary_10_1016_j_geoderma_2018_09_023 crossref_primary_10_1002_ldr_3491 crossref_primary_10_17660_ActaHortic_2018_1191_29 crossref_primary_10_3390_jof1020168 crossref_primary_10_1080_03650340_2022_2025588 crossref_primary_10_1016_j_rhisph_2021_100414 crossref_primary_10_1111_gcb_13785 crossref_primary_10_48130_SIF_2023_0017 crossref_primary_10_1007_s11104_022_05534_x crossref_primary_10_1016_j_geoderma_2021_115179 crossref_primary_10_1371_journal_pone_0113261 crossref_primary_10_1016_j_eja_2023_126748 crossref_primary_10_1016_j_soilbio_2014_10_016 crossref_primary_10_3389_fmicb_2015_01559 crossref_primary_10_1016_j_scitotenv_2016_05_178 crossref_primary_10_1111_1365_2664_13489 crossref_primary_10_17557_tjfc_1446456 crossref_primary_10_1111_nph_17817 crossref_primary_10_3389_fmicb_2020_00682 crossref_primary_10_3390_horticulturae6030045 crossref_primary_10_1080_00103624_2017_1322602 crossref_primary_10_1016_j_scitotenv_2021_145133 crossref_primary_10_1016_j_tplants_2015_03_004 crossref_primary_10_1007_s00203_022_02882_1 crossref_primary_10_1038_s43016_021_00253_5 crossref_primary_10_3389_fmicb_2022_961969 crossref_primary_10_1016_j_apsoil_2021_104325 crossref_primary_10_1016_j_jenvman_2018_10_040 crossref_primary_10_1111_nph_14931 crossref_primary_10_1016_j_apsoil_2014_11_016 crossref_primary_10_1111_gcb_17409 crossref_primary_10_1007_s40333_018_0019_9 crossref_primary_10_1016_j_soilbio_2019_03_025 crossref_primary_10_1007_s00572_015_0639_2 crossref_primary_10_1016_j_agee_2021_107641 crossref_primary_10_1016_j_apsoil_2024_105799 crossref_primary_10_1111_nph_19252 crossref_primary_10_1186_s40168_023_01466_5 crossref_primary_10_1111_1365_2745_12788 crossref_primary_10_3389_fevo_2023_1224849 crossref_primary_10_1007_s10343_022_00702_6 crossref_primary_10_1007_s11104_021_04957_2 crossref_primary_10_1016_j_apsoil_2021_104012 |
Cites_doi | 10.1890/02-0282 10.1007/s00442-012-2258-3 10.1007/s00374-005-0007-z 10.1111/j.1365-3040.1996.tb00010.x 10.1126/science.1208473 10.1007/s11104-011-1021-6 10.1016/S0007-1536(70)80110-3 10.1046/j.1365-313X.1998.00252.x 10.1071/FP07281 10.1007/s11104-008-9796-9 10.1016/j.soilbio.2011.12.015 10.1046/j.1399-3054.2003.00196.x 10.1007/s005720100097 10.1111/j.1469-8137.1990.tb04718.x 10.1007/s00572-010-0333-3 10.1146/annurev.arplant.59.032607.092932 10.1371/journal.pone.0029825 10.1016/S1360-1385(03)00184-5 10.1007/s00442-003-1458-2 10.1890/08-0789.1 10.1111/j.1469-8137.1990.tb00476.x 10.1007/s11104-005-5847-7 10.1146/annurev-arplant-042110-103846 10.1007/s11104-012-1326-0 10.1111/j.1469-8137.1993.tb03839.x 10.4141/S04-002 10.1038/ncomms1046 10.2307/2269357 10.1016/S0169-5347(00)02098-X 10.1093/jexbot/51.343.287 10.1007/s11104-011-0890-z 10.1073/pnas.1118650109 10.1046/j.0028-646X.2001.00316.x 10.1007/s00248-007-9212-7 10.2136/sssaj1981.03615995004500020017x 10.1016/j.cosust.2012.08.003 10.1111/j.1469-8137.2006.01841.x 10.1007/s11104-008-9629-x 10.1093/jxb/47.10.1541 10.2136/sssaj1993.03615995005700040021x 10.1016/0038-0717(87)90052-6 10.1006/niox.2000.0319 10.1111/j.1399-3054.2004.00421.x 10.1016/j.soilbio.2011.11.018 10.1111/j.1469-8137.2008.02630.x |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QH 7SN 7UA C1K F1W H95 L.G M7N 7S9 L.6 |
DOI | 10.1016/j.soilbio.2014.03.010 |
DatabaseName | CrossRef Pascal-Francis Aqualine Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
EndPage | 192 |
ExternalDocumentID | 28506683 10_1016_j_soilbio_2014_03_010 S0038071714000996 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7QH 7SN 7UA C1K F1W H95 L.G M7N 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c405t-d2d7837cc198cf69e9a731cfe76b46861dd471de233e8a4261d7f592188c3b8d3 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Sun Aug 24 03:08:29 EDT 2025 Fri Jul 11 03:36:09 EDT 2025 Wed Apr 02 07:37:54 EDT 2025 Thu Apr 24 23:10:29 EDT 2025 Tue Jul 01 03:19:51 EDT 2025 Fri Feb 23 02:23:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Symbiosis Nitrous oxide Sustainable agriculture Nitrogen cycle Rhizosphere interactions Carbon dioxide Water Gas emission Glomeromycota Symbiont Fungi Rhizosphere Soils Endomycorrhiza Water regime Greenhouse gas Mycorrhiza Soil science Nitrogen protoxide |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-d2d7837cc198cf69e9a731cfe76b46861dd471de233e8a4261d7f592188c3b8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1534855569 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1836634015 proquest_miscellaneous_1534855569 pascalfrancis_primary_28506683 crossref_primary_10_1016_j_soilbio_2014_03_010 crossref_citationtrail_10_1016_j_soilbio_2014_03_010 elsevier_sciencedirect_doi_10_1016_j_soilbio_2014_03_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Vance, Brookes, Jenkinson (bib50) 1987; 19 Goicoechea, Merino, Sanchez-Diaz (bib21) 2004; 122 Robinson (bib43) 2001; 16 Blagodatsky, Smith (bib7) 2012; 47 Augé (bib2) 2004 Drinkwater, Letourneau, Workneh, Bruggen, Shennan (bib15) 1995; 5 Rolston (bib44) 1986 Forster (bib54) 1995 Rillig, Ramsey, Gannon, Mummey, Gadkar, Kapulnik (bib55) 2008; 308 Jackson, Burger, Cavagnaro (bib26) 2008; 59 Maynard, Hochmuth (bib35) 1997 Phillips, Hayman (bib42) 1970; 55 Cabrera, Beare (bib10) 1993; 57 Duan, Neuman, Reiber, Green, Saxton, Auge (bib16) 1996; 47 Pearson, Jakobsen (bib40) 1993 Iqbal, Nelson, McCulley (bib24) 2012; 364 Cavagnaro, Jackson, Six, Ferris, Goyal, Asami, Scow (bib13) 2006; 282 Miranda, Espey, Wink (bib37) 2001; 5 Asghari, Cavagnaro (bib1) 2012; 7 Kothari, Marschner, George (bib30) 1990; 116 Kiers, Duhamel, Beesetty, Mensah, Franken, Verbruggen, Fellbaum, Kowalchuk, Hart, Bago, Palmer, West, Vandenkoornhuyse, Jansa, Bucking (bib28) 2011; 333 Leigh, Hodge, Fitter (bib32) 2009; 181 Ruzicka, Hausmann, Barrios-Masias, Jackson, Schachtman (bib47) 2012; 350 Smith, Smith (bib48) 2011; 62 Barker, Stummer, Gao, Dispain (bib5) 1998; 15 Ruiz-Lozano, Porcel, Aroca (bib45) 2006; 171 Burger, Jackson, Lundquist, Louie, Miller, Rolston, Scow (bib9) 2005; 42 Hartz, Miyao, Lestrange, Stoddard, Nuñez, Aegerter (bib22) 2008 Johnson, Leake, Ostle, Ineson, Read (bib27) 2002 Langley, Hungate (bib31) 2003; 84 Oehl, Sieverding, Mäder, Dubois, Ineichen, Boller, Wiemken (bib38) 2004; 138 Ruiz-Lozano, Porcel, Bárzana, Azcón, Aroca (bib46) 2012 Philippot, Hallin, Börjesson, Baggs (bib41) 2008; 321 Thomas (bib49) 1982 Evans, Bloom, Sukrapanna, Ehleringer (bib17) 1996; 19 Zhu, Miller (bib53) 2003; 8 Fellbaum, Gachomo, Beesetty, Choudhari, Strahan, Pfeffer, Kiers, Bücking (bib18) 2012; 109 Hutchinson, Mosier (bib23) 1981; 45 Cavagnaro, Jackson, Scow, Hristova (bib12) 2007; 54 Cavagnaro, Barrios-Masias, Jackson (bib11) 2012; 353 Gianinazzi, Gollotte, Binet, van Tuinen, Redecker, Wipf (bib20) 2010; 20 Cavagnaro, Langley, Jackson, Smukler, Koch (bib14) 2008; 35 Marulanda, Azcón, Ruiz-Lozano (bib34) 2003 Jackson, Bowles, Hodson, Lazcano (bib25) 2012; 4 Frank, Groffman (bib19) 2009; 90 Wheeler, Tilak (bib52) 2000; 51 McGonigle, Miller, Evans, Fairchild, Swan (bib36) 1990; 115 Olsen, Sommers (bib39) 1982 Kjøller, Rosendahl (bib29) 2000 Mäder (bib33) 2008 Veresoglou, Chen, Rillig (bib51) 2012; 46 Augé (bib3) 2001; 11 Birhane, Sterck, Fetene, Bongers, Kuyper (bib6) 2012; 169 Baker, Doyle, Mccarty, Mosier, Parkin, Reicosky, Smith, Venterea (bib4) 2003 Bonfante, Genre (bib8) 2010; 1 Ruiz-Lozano (10.1016/j.soilbio.2014.03.010_bib45) 2006; 171 Asghari (10.1016/j.soilbio.2014.03.010_bib1) 2012; 7 Kiers (10.1016/j.soilbio.2014.03.010_bib28) 2011; 333 Forster (10.1016/j.soilbio.2014.03.010_bib54) 1995 Kothari (10.1016/j.soilbio.2014.03.010_bib30) 1990; 116 Iqbal (10.1016/j.soilbio.2014.03.010_bib24) 2012; 364 Hartz (10.1016/j.soilbio.2014.03.010_bib22) 2008 Bonfante (10.1016/j.soilbio.2014.03.010_bib8) 2010; 1 Wheeler (10.1016/j.soilbio.2014.03.010_bib52) 2000; 51 Vance (10.1016/j.soilbio.2014.03.010_bib50) 1987; 19 Johnson (10.1016/j.soilbio.2014.03.010_bib27) 2002 Blagodatsky (10.1016/j.soilbio.2014.03.010_bib7) 2012; 47 Cavagnaro (10.1016/j.soilbio.2014.03.010_bib11) 2012; 353 Rolston (10.1016/j.soilbio.2014.03.010_bib44) 1986 Veresoglou (10.1016/j.soilbio.2014.03.010_bib51) 2012; 46 Duan (10.1016/j.soilbio.2014.03.010_bib16) 1996; 47 Fellbaum (10.1016/j.soilbio.2014.03.010_bib18) 2012; 109 Phillips (10.1016/j.soilbio.2014.03.010_bib42) 1970; 55 Birhane (10.1016/j.soilbio.2014.03.010_bib6) 2012; 169 Jackson (10.1016/j.soilbio.2014.03.010_bib25) 2012; 4 Rillig (10.1016/j.soilbio.2014.03.010_bib55) 2008; 308 Barker (10.1016/j.soilbio.2014.03.010_bib5) 1998; 15 Oehl (10.1016/j.soilbio.2014.03.010_bib38) 2004; 138 Kjøller (10.1016/j.soilbio.2014.03.010_bib29) 2000 Ruzicka (10.1016/j.soilbio.2014.03.010_bib47) 2012; 350 Cabrera (10.1016/j.soilbio.2014.03.010_bib10) 1993; 57 Zhu (10.1016/j.soilbio.2014.03.010_bib53) 2003; 8 Gianinazzi (10.1016/j.soilbio.2014.03.010_bib20) 2010; 20 Hutchinson (10.1016/j.soilbio.2014.03.010_bib23) 1981; 45 Drinkwater (10.1016/j.soilbio.2014.03.010_bib15) 1995; 5 Leigh (10.1016/j.soilbio.2014.03.010_bib32) 2009; 181 Augé (10.1016/j.soilbio.2014.03.010_bib2) 2004 Pearson (10.1016/j.soilbio.2014.03.010_bib40) 1993 Mäder (10.1016/j.soilbio.2014.03.010_bib33) 2008 Augé (10.1016/j.soilbio.2014.03.010_bib3) 2001; 11 Miranda (10.1016/j.soilbio.2014.03.010_bib37) 2001; 5 Olsen (10.1016/j.soilbio.2014.03.010_bib39) 1982 Jackson (10.1016/j.soilbio.2014.03.010_bib26) 2008; 59 Robinson (10.1016/j.soilbio.2014.03.010_bib43) 2001; 16 Baker (10.1016/j.soilbio.2014.03.010_bib4) 2003 Burger (10.1016/j.soilbio.2014.03.010_bib9) 2005; 42 Cavagnaro (10.1016/j.soilbio.2014.03.010_bib14) 2008; 35 McGonigle (10.1016/j.soilbio.2014.03.010_bib36) 1990; 115 Philippot (10.1016/j.soilbio.2014.03.010_bib41) 2008; 321 Cavagnaro (10.1016/j.soilbio.2014.03.010_bib13) 2006; 282 Frank (10.1016/j.soilbio.2014.03.010_bib19) 2009; 90 Langley (10.1016/j.soilbio.2014.03.010_bib31) 2003; 84 Marulanda (10.1016/j.soilbio.2014.03.010_bib34) 2003 Smith (10.1016/j.soilbio.2014.03.010_bib48) 2011; 62 Thomas (10.1016/j.soilbio.2014.03.010_bib49) 1982 Ruiz-Lozano (10.1016/j.soilbio.2014.03.010_bib46) 2012 Goicoechea (10.1016/j.soilbio.2014.03.010_bib21) 2004; 122 Cavagnaro (10.1016/j.soilbio.2014.03.010_bib12) 2007; 54 Evans (10.1016/j.soilbio.2014.03.010_bib17) 1996; 19 Maynard (10.1016/j.soilbio.2014.03.010_bib35) 1997 |
References_xml | – volume: 308 start-page: 267 year: 2008 end-page: 275 ident: bib55 article-title: Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology publication-title: Plant Soil – start-page: 526 year: 2003 end-page: 533 ident: bib34 article-title: Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by publication-title: Physiologia Plantarum – volume: 169 start-page: 895 year: 2012 end-page: 904 ident: bib6 article-title: Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions publication-title: Oecologia – volume: 138 start-page: 574 year: 2004 end-page: 583 ident: bib38 article-title: Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi publication-title: Oecologia – volume: 353 start-page: 181 year: 2012 end-page: 194 ident: bib11 article-title: Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system publication-title: Plant and Soil – volume: 46 start-page: 53 year: 2012 end-page: 62 ident: bib51 article-title: Arbuscular mycorrhiza and soil nitrogen cycling publication-title: Soil Biology and Biochemistry – volume: 20 start-page: 519 year: 2010 end-page: 530 ident: bib20 article-title: Agroecology: the key role of arbuscular mycorrhizas in ecosystem services publication-title: Mycorrhiza – volume: 45 start-page: 311 year: 1981 end-page: 316 ident: bib23 article-title: Improved soil cover method for field measurement of nitrous oxide fluxes publication-title: Soil Science Society of America Journal – volume: 4 start-page: 517 year: 2012 end-page: 522 ident: bib25 article-title: Soil microbial-root and microbial-rhizosphere processes to increase nitrogen availability and retention in agroecosystems publication-title: Current Opinion in Environmental Sustainability – volume: 1 start-page: 1 year: 2010 end-page: 11 ident: bib8 article-title: Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis publication-title: Nature Communications – start-page: 403 year: 1982 end-page: 430 ident: bib39 article-title: Phosphorus publication-title: Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties – start-page: 481 year: 1993 end-page: 488 ident: bib40 article-title: Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 54 start-page: 618 year: 2007 end-page: 626 ident: bib12 article-title: Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil publication-title: Microbial Ecology – volume: 90 start-page: 1512 year: 2009 end-page: 1519 ident: bib19 article-title: Plant rhizospheric N processes: what we don't know and why we should care publication-title: Ecology – volume: 16 start-page: 153 year: 2001 end-page: 162 ident: bib43 article-title: δ publication-title: Trends in Ecology & Evolution – volume: 115 start-page: 495 year: 1990 end-page: 501 ident: bib36 article-title: A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi publication-title: New Phytologist – start-page: 373 year: 2004 end-page: 381 ident: bib2 article-title: Arbuscular mycorrhizae and soil/plant water relations publication-title: Canadian Journal of Soil Science – volume: 84 start-page: 2302 year: 2003 end-page: 2312 ident: bib31 article-title: Mycorrhizal controls on belowground litter quality publication-title: Ecology – volume: 19 start-page: 1317 year: 1996 end-page: 1323 ident: bib17 article-title: Nitrogen isotope composition of tomato ( publication-title: Plant, Cell and Environment – start-page: 361 year: 2000 end-page: 365 ident: bib29 article-title: Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae publication-title: Biology and Fertility of Soils – volume: 116 start-page: 303 year: 1990 end-page: 311 ident: bib30 article-title: Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize publication-title: New Phytologist – year: 2003 ident: bib4 article-title: GRAC Enet Chamber-based Trace Gas Flux Measurement Protocol – volume: 42 start-page: 109 year: 2005 end-page: 118 ident: bib9 article-title: Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes publication-title: Biology and Fertility of Soils – volume: 62 start-page: 227 year: 2011 end-page: 250 ident: bib48 article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales publication-title: Annual Review of Plant Biology – volume: 321 start-page: 61 year: 2008 end-page: 81 ident: bib41 article-title: Biochemical cycling in the rhizosphere having an impact on global change publication-title: Plant and Soil – volume: 282 start-page: 209 year: 2006 end-page: 225 ident: bib13 article-title: Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production publication-title: Plant and Soil – volume: 122 start-page: 453 year: 2004 end-page: 464 ident: bib21 article-title: Contribution of arbuscular mycorrhizal fungi (AMF) to the adaptations exhibited by the deciduous shrub publication-title: Physiologia Plantarum – volume: 333 start-page: 880 year: 2011 end-page: 882 ident: bib28 article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis publication-title: Science – volume: 59 start-page: 341 year: 2008 end-page: 363 ident: bib26 article-title: Roots, nitrogen transformations, and ecosystem services publication-title: Annual Review of Plant Biology – volume: 55 year: 1970 ident: bib42 article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection publication-title: Transactions of the British Mycological Society – volume: 109 start-page: 2666 year: 2012 end-page: 2671 ident: bib18 article-title: Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 51 start-page: 287 year: 2000 end-page: 297 ident: bib52 article-title: Effects of symbiosis with Frankia and arbuscular mycorrhizal fungus on the natural abundance of publication-title: Journal of Experimental Botany – volume: 15 start-page: 791 year: 1998 end-page: 797 ident: bib5 article-title: A mutant in publication-title: The Plant Journal – volume: 47 start-page: 1541 year: 1996 end-page: 1550 ident: bib16 article-title: Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought publication-title: Journal of Experimental Botany – start-page: 335 year: 2012 end-page: 362 ident: bib46 article-title: Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: state of the art publication-title: Plant Responses to Drought Stress. From Morphological to Molecular Features – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: bib50 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biology and Biochemistry – volume: 171 start-page: 693 year: 2006 end-page: 698 ident: bib45 article-title: Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? publication-title: New Phytologist – volume: 8 start-page: 407 year: 2003 end-page: 409 ident: bib53 article-title: Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems publication-title: Trends in Plant Science – volume: 5 start-page: 62 year: 2001 end-page: 71 ident: bib37 article-title: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite publication-title: Nitric Oxide: Biology and Chemistry/Official Journal of the Nitric Oxide Society – volume: 181 start-page: 199 year: 2009 end-page: 207 ident: bib32 article-title: Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material publication-title: The New Phytologist – volume: 11 start-page: 3 year: 2001 end-page: 42 ident: bib3 article-title: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis publication-title: Mycorrhiza – start-page: 327 year: 2002 end-page: 334 ident: bib27 article-title: In situ publication-title: New Phytologist – volume: 35 start-page: 228 year: 2008 ident: bib14 article-title: Growth, nutrition, and soil respiration of a mycorrhiza-defective tomato mutant and its mycorrhizal wild-type progenitor publication-title: Functional Plant Biology – start-page: 159 year: 1982 end-page: 165 ident: bib49 article-title: Exchangeable cations publication-title: Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties – year: 1997 ident: bib35 article-title: Knott's Handbook for Vegetable Growers – volume: 364 start-page: 15 year: 2012 end-page: 27 ident: bib24 article-title: Fungal endophyte presence and genotype affect plant diversity and soil-to-atmosphere trace gas fluxes publication-title: Plant and Soil – volume: 5 start-page: 1098 year: 1995 end-page: 1112 ident: bib15 article-title: Fundamental differences between conventional and organic tomato agroecosystems in California publication-title: Ecological Applications – start-page: 383 year: 1986 end-page: 411 ident: bib44 article-title: Glas flux publication-title: Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods – year: 2008 ident: bib22 article-title: Processing Tomato Production in California – volume: 350 start-page: 145 year: 2012 end-page: 162 ident: bib47 article-title: Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions publication-title: Plant and Soil – start-page: 79 year: 1995 end-page: 87 ident: bib54 article-title: Soil nitrogen publication-title: Methods in Applied Soil Microbiology and Biochemistry – volume: 57 start-page: 1007 year: 1993 end-page: 1012 ident: bib10 article-title: Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts publication-title: Soil Science Society of America Journal – volume: 47 start-page: 78 year: 2012 end-page: 92 ident: bib7 article-title: Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil publication-title: Soil Biology and Biochemistry – volume: 7 start-page: e29825 year: 2012 ident: bib1 article-title: Arbuscular mycorrhizas reduce nitrogen loss via leaching publication-title: PloS ONE – start-page: 155 year: 2008 end-page: 161 ident: bib33 article-title: Transport of publication-title: New Phytologist – start-page: 383 year: 1986 ident: 10.1016/j.soilbio.2014.03.010_bib44 article-title: Glas flux – volume: 84 start-page: 2302 year: 2003 ident: 10.1016/j.soilbio.2014.03.010_bib31 article-title: Mycorrhizal controls on belowground litter quality publication-title: Ecology doi: 10.1890/02-0282 – year: 1997 ident: 10.1016/j.soilbio.2014.03.010_bib35 – volume: 169 start-page: 895 year: 2012 ident: 10.1016/j.soilbio.2014.03.010_bib6 article-title: Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions publication-title: Oecologia doi: 10.1007/s00442-012-2258-3 – year: 2008 ident: 10.1016/j.soilbio.2014.03.010_bib22 – volume: 42 start-page: 109 year: 2005 ident: 10.1016/j.soilbio.2014.03.010_bib9 article-title: Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-005-0007-z – volume: 19 start-page: 1317 year: 1996 ident: 10.1016/j.soilbio.2014.03.010_bib17 article-title: Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition publication-title: Plant, Cell and Environment doi: 10.1111/j.1365-3040.1996.tb00010.x – volume: 333 start-page: 880 year: 2011 ident: 10.1016/j.soilbio.2014.03.010_bib28 article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis publication-title: Science doi: 10.1126/science.1208473 – volume: 353 start-page: 181 year: 2012 ident: 10.1016/j.soilbio.2014.03.010_bib11 article-title: Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system publication-title: Plant and Soil doi: 10.1007/s11104-011-1021-6 – volume: 55 year: 1970 ident: 10.1016/j.soilbio.2014.03.010_bib42 article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection publication-title: Transactions of the British Mycological Society doi: 10.1016/S0007-1536(70)80110-3 – volume: 15 start-page: 791 year: 1998 ident: 10.1016/j.soilbio.2014.03.010_bib5 article-title: A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation publication-title: The Plant Journal doi: 10.1046/j.1365-313X.1998.00252.x – volume: 35 start-page: 228 year: 2008 ident: 10.1016/j.soilbio.2014.03.010_bib14 article-title: Growth, nutrition, and soil respiration of a mycorrhiza-defective tomato mutant and its mycorrhizal wild-type progenitor publication-title: Functional Plant Biology doi: 10.1071/FP07281 – volume: 321 start-page: 61 year: 2008 ident: 10.1016/j.soilbio.2014.03.010_bib41 article-title: Biochemical cycling in the rhizosphere having an impact on global change publication-title: Plant and Soil doi: 10.1007/s11104-008-9796-9 – volume: 47 start-page: 78 year: 2012 ident: 10.1016/j.soilbio.2014.03.010_bib7 article-title: Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2011.12.015 – start-page: 526 year: 2003 ident: 10.1016/j.soilbio.2014.03.010_bib34 article-title: Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress publication-title: Physiologia Plantarum doi: 10.1046/j.1399-3054.2003.00196.x – volume: 11 start-page: 3 year: 2001 ident: 10.1016/j.soilbio.2014.03.010_bib3 article-title: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis publication-title: Mycorrhiza doi: 10.1007/s005720100097 – volume: 116 start-page: 303 year: 1990 ident: 10.1016/j.soilbio.2014.03.010_bib30 article-title: Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize publication-title: New Phytologist doi: 10.1111/j.1469-8137.1990.tb04718.x – volume: 20 start-page: 519 year: 2010 ident: 10.1016/j.soilbio.2014.03.010_bib20 article-title: Agroecology: the key role of arbuscular mycorrhizas in ecosystem services publication-title: Mycorrhiza doi: 10.1007/s00572-010-0333-3 – volume: 59 start-page: 341 year: 2008 ident: 10.1016/j.soilbio.2014.03.010_bib26 article-title: Roots, nitrogen transformations, and ecosystem services publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.59.032607.092932 – volume: 7 start-page: e29825 year: 2012 ident: 10.1016/j.soilbio.2014.03.010_bib1 article-title: Arbuscular mycorrhizas reduce nitrogen loss via leaching publication-title: PloS ONE doi: 10.1371/journal.pone.0029825 – volume: 8 start-page: 407 year: 2003 ident: 10.1016/j.soilbio.2014.03.010_bib53 article-title: Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems publication-title: Trends in Plant Science doi: 10.1016/S1360-1385(03)00184-5 – volume: 138 start-page: 574 year: 2004 ident: 10.1016/j.soilbio.2014.03.010_bib38 article-title: Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi publication-title: Oecologia doi: 10.1007/s00442-003-1458-2 – volume: 90 start-page: 1512 year: 2009 ident: 10.1016/j.soilbio.2014.03.010_bib19 article-title: Plant rhizospheric N processes: what we don't know and why we should care publication-title: Ecology doi: 10.1890/08-0789.1 – year: 2003 ident: 10.1016/j.soilbio.2014.03.010_bib4 – volume: 115 start-page: 495 year: 1990 ident: 10.1016/j.soilbio.2014.03.010_bib36 article-title: A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi publication-title: New Phytologist doi: 10.1111/j.1469-8137.1990.tb00476.x – volume: 282 start-page: 209 year: 2006 ident: 10.1016/j.soilbio.2014.03.010_bib13 article-title: Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production publication-title: Plant and Soil doi: 10.1007/s11104-005-5847-7 – start-page: 155 year: 2008 ident: 10.1016/j.soilbio.2014.03.010_bib33 article-title: Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 62 start-page: 227 year: 2011 ident: 10.1016/j.soilbio.2014.03.010_bib48 article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-042110-103846 – volume: 364 start-page: 15 year: 2012 ident: 10.1016/j.soilbio.2014.03.010_bib24 article-title: Fungal endophyte presence and genotype affect plant diversity and soil-to-atmosphere trace gas fluxes publication-title: Plant and Soil doi: 10.1007/s11104-012-1326-0 – start-page: 481 year: 1993 ident: 10.1016/j.soilbio.2014.03.010_bib40 article-title: Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi publication-title: New Phytologist doi: 10.1111/j.1469-8137.1993.tb03839.x – start-page: 335 year: 2012 ident: 10.1016/j.soilbio.2014.03.010_bib46 article-title: Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: state of the art – start-page: 373 year: 2004 ident: 10.1016/j.soilbio.2014.03.010_bib2 article-title: Arbuscular mycorrhizae and soil/plant water relations publication-title: Canadian Journal of Soil Science doi: 10.4141/S04-002 – volume: 1 start-page: 1 year: 2010 ident: 10.1016/j.soilbio.2014.03.010_bib8 article-title: Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis publication-title: Nature Communications doi: 10.1038/ncomms1046 – start-page: 361 year: 2000 ident: 10.1016/j.soilbio.2014.03.010_bib29 article-title: Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae publication-title: Biology and Fertility of Soils – volume: 5 start-page: 1098 year: 1995 ident: 10.1016/j.soilbio.2014.03.010_bib15 article-title: Fundamental differences between conventional and organic tomato agroecosystems in California publication-title: Ecological Applications doi: 10.2307/2269357 – start-page: 403 year: 1982 ident: 10.1016/j.soilbio.2014.03.010_bib39 article-title: Phosphorus – volume: 16 start-page: 153 year: 2001 ident: 10.1016/j.soilbio.2014.03.010_bib43 article-title: δ15N as an integrator of the nitrogen publication-title: Trends in Ecology & Evolution doi: 10.1016/S0169-5347(00)02098-X – volume: 51 start-page: 287 year: 2000 ident: 10.1016/j.soilbio.2014.03.010_bib52 article-title: Effects of symbiosis with Frankia and arbuscular mycorrhizal fungus on the natural abundance of 15N in four species of Casuarina publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/51.343.287 – volume: 350 start-page: 145 year: 2012 ident: 10.1016/j.soilbio.2014.03.010_bib47 article-title: Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions publication-title: Plant and Soil doi: 10.1007/s11104-011-0890-z – volume: 109 start-page: 2666 year: 2012 ident: 10.1016/j.soilbio.2014.03.010_bib18 article-title: Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1118650109 – start-page: 327 year: 2002 ident: 10.1016/j.soilbio.2014.03.010_bib27 article-title: In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil publication-title: New Phytologist doi: 10.1046/j.0028-646X.2001.00316.x – volume: 54 start-page: 618 year: 2007 ident: 10.1016/j.soilbio.2014.03.010_bib12 article-title: Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil publication-title: Microbial Ecology doi: 10.1007/s00248-007-9212-7 – volume: 45 start-page: 311 year: 1981 ident: 10.1016/j.soilbio.2014.03.010_bib23 article-title: Improved soil cover method for field measurement of nitrous oxide fluxes publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1981.03615995004500020017x – volume: 4 start-page: 517 year: 2012 ident: 10.1016/j.soilbio.2014.03.010_bib25 article-title: Soil microbial-root and microbial-rhizosphere processes to increase nitrogen availability and retention in agroecosystems publication-title: Current Opinion in Environmental Sustainability doi: 10.1016/j.cosust.2012.08.003 – volume: 171 start-page: 693 year: 2006 ident: 10.1016/j.soilbio.2014.03.010_bib45 article-title: Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? publication-title: New Phytologist doi: 10.1111/j.1469-8137.2006.01841.x – volume: 308 start-page: 267 year: 2008 ident: 10.1016/j.soilbio.2014.03.010_bib55 article-title: Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology publication-title: Plant Soil doi: 10.1007/s11104-008-9629-x – volume: 47 start-page: 1541 year: 1996 ident: 10.1016/j.soilbio.2014.03.010_bib16 article-title: Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought publication-title: Journal of Experimental Botany doi: 10.1093/jxb/47.10.1541 – volume: 57 start-page: 1007 year: 1993 ident: 10.1016/j.soilbio.2014.03.010_bib10 article-title: Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1993.03615995005700040021x – volume: 19 start-page: 703 year: 1987 ident: 10.1016/j.soilbio.2014.03.010_bib50 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(87)90052-6 – volume: 5 start-page: 62 year: 2001 ident: 10.1016/j.soilbio.2014.03.010_bib37 article-title: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite publication-title: Nitric Oxide: Biology and Chemistry/Official Journal of the Nitric Oxide Society doi: 10.1006/niox.2000.0319 – volume: 122 start-page: 453 year: 2004 ident: 10.1016/j.soilbio.2014.03.010_bib21 article-title: Contribution of arbuscular mycorrhizal fungi (AMF) to the adaptations exhibited by the deciduous shrub Anthyllis cytisoides L. under water deficit publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.2004.00421.x – volume: 46 start-page: 53 year: 2012 ident: 10.1016/j.soilbio.2014.03.010_bib51 article-title: Arbuscular mycorrhiza and soil nitrogen cycling publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2011.11.018 – start-page: 79 year: 1995 ident: 10.1016/j.soilbio.2014.03.010_bib54 article-title: Soil nitrogen – volume: 181 start-page: 199 year: 2009 ident: 10.1016/j.soilbio.2014.03.010_bib32 article-title: Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material publication-title: The New Phytologist doi: 10.1111/j.1469-8137.2008.02630.x – start-page: 159 year: 1982 ident: 10.1016/j.soilbio.2014.03.010_bib49 article-title: Exchangeable cations |
SSID | ssj0002513 |
Score | 2.3913581 |
Snippet | Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 184 |
SubjectTerms | Agronomy. Soil science and plant productions ammonium nitrogen Biochemistry and biology Biological and medical sciences Carbon dioxide Chemical, physicochemical, biochemical and biological properties composts dissolved organic carbon dissolved organic nitrogen Economic plant physiology Fundamental and applied biological sciences. Psychology greenhouse experimentation greenhouse gas emissions greenhouse gases Lycopersicon esculentum microbial biomass mutants nitrate nitrogen Nitrogen cycle Nitrous oxide nutrient content phosphorus photosynthesis Physics, chemistry, biochemistry and biology of agricultural and forest soils potassium Rhizosphere interactions soil amendments soil biological properties Soil science soil water soil-plant interactions stomatal conductance Sustainable agriculture Symbiosis Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...) tomatoes vesicular arbuscular mycorrhizae water uptake |
Title | Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes |
URI | https://dx.doi.org/10.1016/j.soilbio.2014.03.010 https://www.proquest.com/docview/1534855569 https://www.proquest.com/docview/1836634015 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8h9jAQmjY-RGGrjMRraBsnjvNYVau6IXgaEm-WYzulqE2rpGhiD_zt3CVOEdoE0h4T2bFz59yHcr_fAZwLZxIjLfHbhS4gaGeQZVwHWodxnsSpMxkBha-uxeQm-nkb327BqMXCUFmlt_2NTa-ttb_T89LsrWYzwvgSWTo18K7jHKLdjqKETvnF00uZB_pvT7wrCayTvKB4evfElzvPZoQBHEQ11ykBaf_tn_ZWukKp5U27i78sd-2Oxp_hk48j2bDZ6hfYcsU-7A6npefScPvwcdQ2czuAxyFKr6k5ZYtHzDjLu9kfnO_LOdiyYKs5Cpn9xtizZGVbIsd0YRntn02pQOdu-VA5NtUVoydX9QhCoZWsBhCjG2SLJS6J6zNq-bBw1SHcjL__Gk0C33UhMBi8rQMb2gSzVmMGqTS5SF2qEz4wuUtEFgkpBtaiQ7Mu5NxJTRmYTfI4xVBBGp5Jy49gu1gW7hjqd7Ai6vNQEwoFbYU1YZxJIyK0qv2wA1Era2U8JTl1xpirtvbsXnkVKVKR6nOFKurAxWbaquHkeG-CbBWpXh0uhX7jvandV4rfLBgS1Z-QvANn7UlQKHn63aILh9pQ6EuIeScW6RtjJMeQD3Pc-OT_93gKO3TVFBF_he11-eC-Yai0zrr1t9CFD8Mfl5PrZ9o7F7k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a42EghGAwUS7DSPCYtbUTx33goRpMHbs8bdLejGM7Xac2rZJOU3ngT_EHOSdxNk0gJiHtNYnjxJ9zLsr5vgPwUXqbWuVI3477iKidUZYJExnDkzxNBt5mRBQ-Opaj0_jbWXK2Br9aLgyVVQbb39j02lqHI92wmt3FZEIcXxJLpwbedZwjQ2XlgV9dYd5Wfd7_giB_4nzv68nuKAqtBSKLEcoyctylmJpZizm3zeXAD0wq-jb3qcxiqWTfObTaznMhvDKUZrg0TwboD5UVmXIC7_sAHsZoLqhtws7Pm7oSDBiC0q8idlB6QxvqXpBA7zSbEOmwH9fiqsTc_btDfLIwFcKUN_01_nAVtf_bewZPQ-DKhs3aPIc1X2zC4-G4DOIdfhM2dtvucS9gNUS4miJXNlthilueT37g-FA_wuYFW0wRVXaFwW7JyrYmj5nCMXp-NqaKoPP5ZeXZ2FSM7lzVVxDtrWQ1Yxn9LpvNcUqcn1GPiZmvXsLpvWCxBevFvPCvoH4HJ-Oe4IZoL2icnOVJpqyM0Yz3eAfidq21DRro1IpjqttitwsdINIEke4JjRB1YOd62KIRAblrgGqB1Ld2s0ZHddfQ7VvAX0_ISVtQKtGBD-1O0Ljy9H_HFB7R0Oi8SOonkYN_XKMExpiYVCev__8Z38PG6OToUB_uHx-8gUd0pqlgfgvry_LSv8M4bZlt198Fg-_3_SH-BihpUwE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbuscular+mycorrhizal+effects+on+plant+water+relations+and+soil+greenhouse+gas+emissions+under+changing+moisture+regimes&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Lazcano%2C+Cristina&rft.au=Barrios-Masias%2C+Felipe+H.&rft.au=Jackson%2C+Louise+E.&rft.date=2014-07-01&rft.pub=Elsevier+Ltd&rft.issn=0038-0717&rft.eissn=1879-3428&rft.volume=74&rft.spage=184&rft.epage=192&rft_id=info:doi/10.1016%2Fj.soilbio.2014.03.010&rft.externalDocID=S0038071714000996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |