Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes

Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was carried out to compare mycorrhizal tomato (76R MYC) and its non-mycorrhizal mutant (rmc) on the CO2 and N2O emissions from an organically-mana...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 74; pp. 184 - 192
Main Authors Lazcano, Cristina, Barrios-Masias, Felipe H., Jackson, Louise E.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.07.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was carried out to compare mycorrhizal tomato (76R MYC) and its non-mycorrhizal mutant (rmc) on the CO2 and N2O emissions from an organically-managed soil. Plants were grown for 10 weeks in pots with compost amended soil and subjected to two consecutive dry down cycles to simulate changing moisture regimes in the field. Dry downs were applied gradually through controlled watering treatments. The effects of AM and soil moisture in GHG emissions were assessed in root in-growth PVC cylinders installed in the pots. Gas samples were taken from the cylinders using static chambers 4 h after each watering event. Photosynthetic rates and stomatal conductance of the plants were assessed after watering using a field portable open flow infra-red gas analyzer. Soil moisture was monitored throughout the experiment. Plant biomass and total shoot N, P and K as well as soil content of DON, DOC, NH4+–N, NO3−–N and microbial biomass C, were assessed at harvest. For the same shoot growth and nutrient content, rmc plants allocated more resources to root biomass than mycorrhizal plants. AM symbiosis improved the capacity of the plants to adapt to changing soil moisture, increasing photosynthetic rates and stomatal conductance at high soil moisture but decreasing them when soil moisture was lower. In addition AM symbiosis helped to regulate N2O emissions at high soil moisture. Control over N2O emissions by AM plants seemed to be driven by a higher use of soil water and not by increased N uptake. •Mycorrhizal tomato and its non-mycorrhizal mutant were subjected to changing soil moisture regimes.•Mycorrhizal plants increased water use at higher soil moisture and tightly controlled water loss.•Mycorrhizal plants reduced soil N2O, but not CO2 emissions.•Effects of mycorrhizal plants on N2O were probably related to changes in soil moisture.
AbstractList Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was carried out to compare mycorrhizal tomato (76R MYC) and its non-mycorrhizal mutant (rmc) on the CO2 and N2O emissions from an organically-managed soil. Plants were grown for 10 weeks in pots with compost amended soil and subjected to two consecutive dry down cycles to simulate changing moisture regimes in the field. Dry downs were applied gradually through controlled watering treatments. The effects of AM and soil moisture in GHG emissions were assessed in root in-growth PVC cylinders installed in the pots. Gas samples were taken from the cylinders using static chambers 4 h after each watering event. Photosynthetic rates and stomatal conductance of the plants were assessed after watering using a field portable open flow infra-red gas analyzer. Soil moisture was monitored throughout the experiment. Plant biomass and total shoot N, P and K as well as soil content of DON, DOC, NH4+–N, NO3−–N and microbial biomass C, were assessed at harvest. For the same shoot growth and nutrient content, rmc plants allocated more resources to root biomass than mycorrhizal plants. AM symbiosis improved the capacity of the plants to adapt to changing soil moisture, increasing photosynthetic rates and stomatal conductance at high soil moisture but decreasing them when soil moisture was lower. In addition AM symbiosis helped to regulate N2O emissions at high soil moisture. Control over N2O emissions by AM plants seemed to be driven by a higher use of soil water and not by increased N uptake.
Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was carried out to compare mycorrhizal tomato (76R MYC) and its non-mycorrhizal mutant (rmc) on the CO sub(2) and N sub(2)O emissions from an organically-managed soil. Plants were grown for 10 weeks in pots with compost amended soil and subjected to two consecutive dry down cycles to simulate changing moisture regimes in the field. Dry downs were applied gradually through controlled watering treatments. The effects of AM and soil moisture in GHG emissions were assessed in root in-growth PVC cylinders installed in the pots. Gas samples were taken from the cylinders using static chambers 4 h after each watering event. Photosynthetic rates and stomatal conductance of the plants were assessed after watering using a field portable open flow infra-red gas analyzer. Soil moisture was monitored throughout the experiment. Plant biomass and total shoot N, P and K as well as soil content of DON, DOC, NH sub(4) super(+)-N, NO sub(3) super(-)-N and microbial biomass C, were assessed at harvest. For the same shoot growth and nutrient content, rmc plants allocated more resources to root biomass than mycorrhizal plants. AM symbiosis improved the capacity of the plants to adapt to changing soil moisture, increasing photosynthetic rates and stomatal conductance at high soil moisture but decreasing them when soil moisture was lower. In addition AM symbiosis helped to regulate N sub(2)O emissions at high soil moisture. Control over N sub(2)O emissions by AM plants seemed to be driven by a higher use of soil water and not by increased N uptake.
Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was carried out to compare mycorrhizal tomato (76R MYC) and its non-mycorrhizal mutant (rmc) on the CO2 and N2O emissions from an organically-managed soil. Plants were grown for 10 weeks in pots with compost amended soil and subjected to two consecutive dry down cycles to simulate changing moisture regimes in the field. Dry downs were applied gradually through controlled watering treatments. The effects of AM and soil moisture in GHG emissions were assessed in root in-growth PVC cylinders installed in the pots. Gas samples were taken from the cylinders using static chambers 4 h after each watering event. Photosynthetic rates and stomatal conductance of the plants were assessed after watering using a field portable open flow infra-red gas analyzer. Soil moisture was monitored throughout the experiment. Plant biomass and total shoot N, P and K as well as soil content of DON, DOC, NH4+–N, NO3−–N and microbial biomass C, were assessed at harvest. For the same shoot growth and nutrient content, rmc plants allocated more resources to root biomass than mycorrhizal plants. AM symbiosis improved the capacity of the plants to adapt to changing soil moisture, increasing photosynthetic rates and stomatal conductance at high soil moisture but decreasing them when soil moisture was lower. In addition AM symbiosis helped to regulate N2O emissions at high soil moisture. Control over N2O emissions by AM plants seemed to be driven by a higher use of soil water and not by increased N uptake. •Mycorrhizal tomato and its non-mycorrhizal mutant were subjected to changing soil moisture regimes.•Mycorrhizal plants increased water use at higher soil moisture and tightly controlled water loss.•Mycorrhizal plants reduced soil N2O, but not CO2 emissions.•Effects of mycorrhizal plants on N2O were probably related to changes in soil moisture.
Author Barrios-Masias, Felipe H.
Lazcano, Cristina
Jackson, Louise E.
Author_xml – sequence: 1
  givenname: Cristina
  surname: Lazcano
  fullname: Lazcano, Cristina
  email: clazcano@ucdavis.edu
– sequence: 2
  givenname: Felipe H.
  surname: Barrios-Masias
  fullname: Barrios-Masias, Felipe H.
– sequence: 3
  givenname: Louise E.
  surname: Jackson
  fullname: Jackson, Louise E.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28506683$$DView record in Pascal Francis
BookMark eNqFkU2r1DAUhoNcwblXf4KQjeCmNWmaNMWFXC5-wQU3ug6Z5LSToU3GnFYZf72ZO4MLN7MKhOd5c3LeW3ITUwRCXnNWc8bVu32NKUzbkOqG8bZmomacPSMbrru-Em2jb8iGMaEr1vHuBblF3DPGGsnFhhzv83ZFt0420_noUs678MdOFIYB3II0RXqYbFzob7tAphkmu4QUkdro6elZOmaAuEsrAh0tUpgD4hOxRl8Mt7NxDHGkcwq4rBlKxhhmwJfk-WAnhFeX8478-PTx-8OX6vHb568P94-Va5lcKt_4TovOOd5rN6geetsJ7gbo1LZVWnHv2457aIQAbdumXHSD7BuutRNb7cUdeXvOPeT0cwVcTJnQwVR-BWVqw7VQSrSMy-uoFK2WUqq-oG8uqEVnpyHb6AKaQw6zzUfTaMmU0qJw8sy5nBAzDP8QzsypPbM3l_bMqT3DhCntFe_9f54Ly9Pql2zDdNX-cLahLPZXgGzQBYgOfMilVuNTuJLwF_iZvdY
CODEN SBIOAH
CitedBy_id crossref_primary_10_1016_j_ecolind_2021_108193
crossref_primary_10_1111_ejss_13131
crossref_primary_10_1007_s11104_022_05715_8
crossref_primary_10_1111_aab_12736
crossref_primary_10_1007_s00248_023_02172_3
crossref_primary_10_1016_j_soilbio_2022_108856
crossref_primary_10_1080_00103624_2017_1358740
crossref_primary_10_1016_j_ecoenv_2018_03_047
crossref_primary_10_3934_microbiol_2017_4_938
crossref_primary_10_2166_wcc_2024_482
crossref_primary_10_3390_microorganisms9050983
crossref_primary_10_1093_femsec_fiz208
crossref_primary_10_48130_VR_2023_0001
crossref_primary_10_1016_j_agrformet_2023_109385
crossref_primary_10_1016_j_agwat_2024_108802
crossref_primary_10_1016_j_scienta_2015_09_002
crossref_primary_10_1016_j_scitotenv_2021_150857
crossref_primary_10_1111_1462_2920_15815
crossref_primary_10_1525_elementa_2022_00043
crossref_primary_10_1016_j_geoderma_2018_09_023
crossref_primary_10_1002_ldr_3491
crossref_primary_10_17660_ActaHortic_2018_1191_29
crossref_primary_10_3390_jof1020168
crossref_primary_10_1080_03650340_2022_2025588
crossref_primary_10_1016_j_rhisph_2021_100414
crossref_primary_10_1111_gcb_13785
crossref_primary_10_48130_SIF_2023_0017
crossref_primary_10_1007_s11104_022_05534_x
crossref_primary_10_1016_j_geoderma_2021_115179
crossref_primary_10_1371_journal_pone_0113261
crossref_primary_10_1016_j_eja_2023_126748
crossref_primary_10_1016_j_soilbio_2014_10_016
crossref_primary_10_3389_fmicb_2015_01559
crossref_primary_10_1016_j_scitotenv_2016_05_178
crossref_primary_10_1111_1365_2664_13489
crossref_primary_10_17557_tjfc_1446456
crossref_primary_10_1111_nph_17817
crossref_primary_10_3389_fmicb_2020_00682
crossref_primary_10_3390_horticulturae6030045
crossref_primary_10_1080_00103624_2017_1322602
crossref_primary_10_1016_j_scitotenv_2021_145133
crossref_primary_10_1016_j_tplants_2015_03_004
crossref_primary_10_1007_s00203_022_02882_1
crossref_primary_10_1038_s43016_021_00253_5
crossref_primary_10_3389_fmicb_2022_961969
crossref_primary_10_1016_j_apsoil_2021_104325
crossref_primary_10_1016_j_jenvman_2018_10_040
crossref_primary_10_1111_nph_14931
crossref_primary_10_1016_j_apsoil_2014_11_016
crossref_primary_10_1111_gcb_17409
crossref_primary_10_1007_s40333_018_0019_9
crossref_primary_10_1016_j_soilbio_2019_03_025
crossref_primary_10_1007_s00572_015_0639_2
crossref_primary_10_1016_j_agee_2021_107641
crossref_primary_10_1016_j_apsoil_2024_105799
crossref_primary_10_1111_nph_19252
crossref_primary_10_1186_s40168_023_01466_5
crossref_primary_10_1111_1365_2745_12788
crossref_primary_10_3389_fevo_2023_1224849
crossref_primary_10_1007_s10343_022_00702_6
crossref_primary_10_1007_s11104_021_04957_2
crossref_primary_10_1016_j_apsoil_2021_104012
Cites_doi 10.1890/02-0282
10.1007/s00442-012-2258-3
10.1007/s00374-005-0007-z
10.1111/j.1365-3040.1996.tb00010.x
10.1126/science.1208473
10.1007/s11104-011-1021-6
10.1016/S0007-1536(70)80110-3
10.1046/j.1365-313X.1998.00252.x
10.1071/FP07281
10.1007/s11104-008-9796-9
10.1016/j.soilbio.2011.12.015
10.1046/j.1399-3054.2003.00196.x
10.1007/s005720100097
10.1111/j.1469-8137.1990.tb04718.x
10.1007/s00572-010-0333-3
10.1146/annurev.arplant.59.032607.092932
10.1371/journal.pone.0029825
10.1016/S1360-1385(03)00184-5
10.1007/s00442-003-1458-2
10.1890/08-0789.1
10.1111/j.1469-8137.1990.tb00476.x
10.1007/s11104-005-5847-7
10.1146/annurev-arplant-042110-103846
10.1007/s11104-012-1326-0
10.1111/j.1469-8137.1993.tb03839.x
10.4141/S04-002
10.1038/ncomms1046
10.2307/2269357
10.1016/S0169-5347(00)02098-X
10.1093/jexbot/51.343.287
10.1007/s11104-011-0890-z
10.1073/pnas.1118650109
10.1046/j.0028-646X.2001.00316.x
10.1007/s00248-007-9212-7
10.2136/sssaj1981.03615995004500020017x
10.1016/j.cosust.2012.08.003
10.1111/j.1469-8137.2006.01841.x
10.1007/s11104-008-9629-x
10.1093/jxb/47.10.1541
10.2136/sssaj1993.03615995005700040021x
10.1016/0038-0717(87)90052-6
10.1006/niox.2000.0319
10.1111/j.1399-3054.2004.00421.x
10.1016/j.soilbio.2011.11.018
10.1111/j.1469-8137.2008.02630.x
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QH
7SN
7UA
C1K
F1W
H95
L.G
M7N
7S9
L.6
DOI 10.1016/j.soilbio.2014.03.010
DatabaseName CrossRef
Pascal-Francis
Aqualine
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
EndPage 192
ExternalDocumentID 28506683
10_1016_j_soilbio_2014_03_010
S0038071714000996
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7QH
7SN
7UA
C1K
F1W
H95
L.G
M7N
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c405t-d2d7837cc198cf69e9a731cfe76b46861dd471de233e8a4261d7f592188c3b8d3
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Sun Aug 24 03:08:29 EDT 2025
Fri Jul 11 03:36:09 EDT 2025
Wed Apr 02 07:37:54 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Tue Jul 01 03:19:51 EDT 2025
Fri Feb 23 02:23:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Symbiosis
Nitrous oxide
Sustainable agriculture
Nitrogen cycle
Rhizosphere interactions
Carbon dioxide
Water
Gas emission
Glomeromycota
Symbiont
Fungi
Rhizosphere
Soils
Endomycorrhiza
Water regime
Greenhouse gas
Mycorrhiza
Soil science
Nitrogen protoxide
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-d2d7837cc198cf69e9a731cfe76b46861dd471de233e8a4261d7f592188c3b8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1534855569
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1836634015
proquest_miscellaneous_1534855569
pascalfrancis_primary_28506683
crossref_primary_10_1016_j_soilbio_2014_03_010
crossref_citationtrail_10_1016_j_soilbio_2014_03_010
elsevier_sciencedirect_doi_10_1016_j_soilbio_2014_03_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Soil biology & biochemistry
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Vance, Brookes, Jenkinson (bib50) 1987; 19
Goicoechea, Merino, Sanchez-Diaz (bib21) 2004; 122
Robinson (bib43) 2001; 16
Blagodatsky, Smith (bib7) 2012; 47
Augé (bib2) 2004
Drinkwater, Letourneau, Workneh, Bruggen, Shennan (bib15) 1995; 5
Rolston (bib44) 1986
Forster (bib54) 1995
Rillig, Ramsey, Gannon, Mummey, Gadkar, Kapulnik (bib55) 2008; 308
Jackson, Burger, Cavagnaro (bib26) 2008; 59
Maynard, Hochmuth (bib35) 1997
Phillips, Hayman (bib42) 1970; 55
Cabrera, Beare (bib10) 1993; 57
Duan, Neuman, Reiber, Green, Saxton, Auge (bib16) 1996; 47
Pearson, Jakobsen (bib40) 1993
Iqbal, Nelson, McCulley (bib24) 2012; 364
Cavagnaro, Jackson, Six, Ferris, Goyal, Asami, Scow (bib13) 2006; 282
Miranda, Espey, Wink (bib37) 2001; 5
Asghari, Cavagnaro (bib1) 2012; 7
Kothari, Marschner, George (bib30) 1990; 116
Kiers, Duhamel, Beesetty, Mensah, Franken, Verbruggen, Fellbaum, Kowalchuk, Hart, Bago, Palmer, West, Vandenkoornhuyse, Jansa, Bucking (bib28) 2011; 333
Leigh, Hodge, Fitter (bib32) 2009; 181
Ruzicka, Hausmann, Barrios-Masias, Jackson, Schachtman (bib47) 2012; 350
Smith, Smith (bib48) 2011; 62
Barker, Stummer, Gao, Dispain (bib5) 1998; 15
Ruiz-Lozano, Porcel, Aroca (bib45) 2006; 171
Burger, Jackson, Lundquist, Louie, Miller, Rolston, Scow (bib9) 2005; 42
Hartz, Miyao, Lestrange, Stoddard, Nuñez, Aegerter (bib22) 2008
Johnson, Leake, Ostle, Ineson, Read (bib27) 2002
Langley, Hungate (bib31) 2003; 84
Oehl, Sieverding, Mäder, Dubois, Ineichen, Boller, Wiemken (bib38) 2004; 138
Ruiz-Lozano, Porcel, Bárzana, Azcón, Aroca (bib46) 2012
Philippot, Hallin, Börjesson, Baggs (bib41) 2008; 321
Thomas (bib49) 1982
Evans, Bloom, Sukrapanna, Ehleringer (bib17) 1996; 19
Zhu, Miller (bib53) 2003; 8
Fellbaum, Gachomo, Beesetty, Choudhari, Strahan, Pfeffer, Kiers, Bücking (bib18) 2012; 109
Hutchinson, Mosier (bib23) 1981; 45
Cavagnaro, Jackson, Scow, Hristova (bib12) 2007; 54
Cavagnaro, Barrios-Masias, Jackson (bib11) 2012; 353
Gianinazzi, Gollotte, Binet, van Tuinen, Redecker, Wipf (bib20) 2010; 20
Cavagnaro, Langley, Jackson, Smukler, Koch (bib14) 2008; 35
Marulanda, Azcón, Ruiz-Lozano (bib34) 2003
Jackson, Bowles, Hodson, Lazcano (bib25) 2012; 4
Frank, Groffman (bib19) 2009; 90
Wheeler, Tilak (bib52) 2000; 51
McGonigle, Miller, Evans, Fairchild, Swan (bib36) 1990; 115
Olsen, Sommers (bib39) 1982
Kjøller, Rosendahl (bib29) 2000
Mäder (bib33) 2008
Veresoglou, Chen, Rillig (bib51) 2012; 46
Augé (bib3) 2001; 11
Birhane, Sterck, Fetene, Bongers, Kuyper (bib6) 2012; 169
Baker, Doyle, Mccarty, Mosier, Parkin, Reicosky, Smith, Venterea (bib4) 2003
Bonfante, Genre (bib8) 2010; 1
Ruiz-Lozano (10.1016/j.soilbio.2014.03.010_bib45) 2006; 171
Asghari (10.1016/j.soilbio.2014.03.010_bib1) 2012; 7
Kiers (10.1016/j.soilbio.2014.03.010_bib28) 2011; 333
Forster (10.1016/j.soilbio.2014.03.010_bib54) 1995
Kothari (10.1016/j.soilbio.2014.03.010_bib30) 1990; 116
Iqbal (10.1016/j.soilbio.2014.03.010_bib24) 2012; 364
Hartz (10.1016/j.soilbio.2014.03.010_bib22) 2008
Bonfante (10.1016/j.soilbio.2014.03.010_bib8) 2010; 1
Wheeler (10.1016/j.soilbio.2014.03.010_bib52) 2000; 51
Vance (10.1016/j.soilbio.2014.03.010_bib50) 1987; 19
Johnson (10.1016/j.soilbio.2014.03.010_bib27) 2002
Blagodatsky (10.1016/j.soilbio.2014.03.010_bib7) 2012; 47
Cavagnaro (10.1016/j.soilbio.2014.03.010_bib11) 2012; 353
Rolston (10.1016/j.soilbio.2014.03.010_bib44) 1986
Veresoglou (10.1016/j.soilbio.2014.03.010_bib51) 2012; 46
Duan (10.1016/j.soilbio.2014.03.010_bib16) 1996; 47
Fellbaum (10.1016/j.soilbio.2014.03.010_bib18) 2012; 109
Phillips (10.1016/j.soilbio.2014.03.010_bib42) 1970; 55
Birhane (10.1016/j.soilbio.2014.03.010_bib6) 2012; 169
Jackson (10.1016/j.soilbio.2014.03.010_bib25) 2012; 4
Rillig (10.1016/j.soilbio.2014.03.010_bib55) 2008; 308
Barker (10.1016/j.soilbio.2014.03.010_bib5) 1998; 15
Oehl (10.1016/j.soilbio.2014.03.010_bib38) 2004; 138
Kjøller (10.1016/j.soilbio.2014.03.010_bib29) 2000
Ruzicka (10.1016/j.soilbio.2014.03.010_bib47) 2012; 350
Cabrera (10.1016/j.soilbio.2014.03.010_bib10) 1993; 57
Zhu (10.1016/j.soilbio.2014.03.010_bib53) 2003; 8
Gianinazzi (10.1016/j.soilbio.2014.03.010_bib20) 2010; 20
Hutchinson (10.1016/j.soilbio.2014.03.010_bib23) 1981; 45
Drinkwater (10.1016/j.soilbio.2014.03.010_bib15) 1995; 5
Leigh (10.1016/j.soilbio.2014.03.010_bib32) 2009; 181
Augé (10.1016/j.soilbio.2014.03.010_bib2) 2004
Pearson (10.1016/j.soilbio.2014.03.010_bib40) 1993
Mäder (10.1016/j.soilbio.2014.03.010_bib33) 2008
Augé (10.1016/j.soilbio.2014.03.010_bib3) 2001; 11
Miranda (10.1016/j.soilbio.2014.03.010_bib37) 2001; 5
Olsen (10.1016/j.soilbio.2014.03.010_bib39) 1982
Jackson (10.1016/j.soilbio.2014.03.010_bib26) 2008; 59
Robinson (10.1016/j.soilbio.2014.03.010_bib43) 2001; 16
Baker (10.1016/j.soilbio.2014.03.010_bib4) 2003
Burger (10.1016/j.soilbio.2014.03.010_bib9) 2005; 42
Cavagnaro (10.1016/j.soilbio.2014.03.010_bib14) 2008; 35
McGonigle (10.1016/j.soilbio.2014.03.010_bib36) 1990; 115
Philippot (10.1016/j.soilbio.2014.03.010_bib41) 2008; 321
Cavagnaro (10.1016/j.soilbio.2014.03.010_bib13) 2006; 282
Frank (10.1016/j.soilbio.2014.03.010_bib19) 2009; 90
Langley (10.1016/j.soilbio.2014.03.010_bib31) 2003; 84
Marulanda (10.1016/j.soilbio.2014.03.010_bib34) 2003
Smith (10.1016/j.soilbio.2014.03.010_bib48) 2011; 62
Thomas (10.1016/j.soilbio.2014.03.010_bib49) 1982
Ruiz-Lozano (10.1016/j.soilbio.2014.03.010_bib46) 2012
Goicoechea (10.1016/j.soilbio.2014.03.010_bib21) 2004; 122
Cavagnaro (10.1016/j.soilbio.2014.03.010_bib12) 2007; 54
Evans (10.1016/j.soilbio.2014.03.010_bib17) 1996; 19
Maynard (10.1016/j.soilbio.2014.03.010_bib35) 1997
References_xml – volume: 308
  start-page: 267
  year: 2008
  end-page: 275
  ident: bib55
  article-title: Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology
  publication-title: Plant Soil
– start-page: 526
  year: 2003
  end-page: 533
  ident: bib34
  article-title: Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by
  publication-title: Physiologia Plantarum
– volume: 169
  start-page: 895
  year: 2012
  end-page: 904
  ident: bib6
  article-title: Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions
  publication-title: Oecologia
– volume: 138
  start-page: 574
  year: 2004
  end-page: 583
  ident: bib38
  article-title: Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi
  publication-title: Oecologia
– volume: 353
  start-page: 181
  year: 2012
  end-page: 194
  ident: bib11
  article-title: Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system
  publication-title: Plant and Soil
– volume: 46
  start-page: 53
  year: 2012
  end-page: 62
  ident: bib51
  article-title: Arbuscular mycorrhiza and soil nitrogen cycling
  publication-title: Soil Biology and Biochemistry
– volume: 20
  start-page: 519
  year: 2010
  end-page: 530
  ident: bib20
  article-title: Agroecology: the key role of arbuscular mycorrhizas in ecosystem services
  publication-title: Mycorrhiza
– volume: 45
  start-page: 311
  year: 1981
  end-page: 316
  ident: bib23
  article-title: Improved soil cover method for field measurement of nitrous oxide fluxes
  publication-title: Soil Science Society of America Journal
– volume: 4
  start-page: 517
  year: 2012
  end-page: 522
  ident: bib25
  article-title: Soil microbial-root and microbial-rhizosphere processes to increase nitrogen availability and retention in agroecosystems
  publication-title: Current Opinion in Environmental Sustainability
– volume: 1
  start-page: 1
  year: 2010
  end-page: 11
  ident: bib8
  article-title: Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis
  publication-title: Nature Communications
– start-page: 403
  year: 1982
  end-page: 430
  ident: bib39
  article-title: Phosphorus
  publication-title: Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties
– start-page: 481
  year: 1993
  end-page: 488
  ident: bib40
  article-title: Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 54
  start-page: 618
  year: 2007
  end-page: 626
  ident: bib12
  article-title: Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil
  publication-title: Microbial Ecology
– volume: 90
  start-page: 1512
  year: 2009
  end-page: 1519
  ident: bib19
  article-title: Plant rhizospheric N processes: what we don't know and why we should care
  publication-title: Ecology
– volume: 16
  start-page: 153
  year: 2001
  end-page: 162
  ident: bib43
  article-title: δ
  publication-title: Trends in Ecology & Evolution
– volume: 115
  start-page: 495
  year: 1990
  end-page: 501
  ident: bib36
  article-title: A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– start-page: 373
  year: 2004
  end-page: 381
  ident: bib2
  article-title: Arbuscular mycorrhizae and soil/plant water relations
  publication-title: Canadian Journal of Soil Science
– volume: 84
  start-page: 2302
  year: 2003
  end-page: 2312
  ident: bib31
  article-title: Mycorrhizal controls on belowground litter quality
  publication-title: Ecology
– volume: 19
  start-page: 1317
  year: 1996
  end-page: 1323
  ident: bib17
  article-title: Nitrogen isotope composition of tomato (
  publication-title: Plant, Cell and Environment
– start-page: 361
  year: 2000
  end-page: 365
  ident: bib29
  article-title: Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae
  publication-title: Biology and Fertility of Soils
– volume: 116
  start-page: 303
  year: 1990
  end-page: 311
  ident: bib30
  article-title: Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize
  publication-title: New Phytologist
– year: 2003
  ident: bib4
  article-title: GRAC Enet Chamber-based Trace Gas Flux Measurement Protocol
– volume: 42
  start-page: 109
  year: 2005
  end-page: 118
  ident: bib9
  article-title: Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes
  publication-title: Biology and Fertility of Soils
– volume: 62
  start-page: 227
  year: 2011
  end-page: 250
  ident: bib48
  article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales
  publication-title: Annual Review of Plant Biology
– volume: 321
  start-page: 61
  year: 2008
  end-page: 81
  ident: bib41
  article-title: Biochemical cycling in the rhizosphere having an impact on global change
  publication-title: Plant and Soil
– volume: 282
  start-page: 209
  year: 2006
  end-page: 225
  ident: bib13
  article-title: Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production
  publication-title: Plant and Soil
– volume: 122
  start-page: 453
  year: 2004
  end-page: 464
  ident: bib21
  article-title: Contribution of arbuscular mycorrhizal fungi (AMF) to the adaptations exhibited by the deciduous shrub
  publication-title: Physiologia Plantarum
– volume: 333
  start-page: 880
  year: 2011
  end-page: 882
  ident: bib28
  article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis
  publication-title: Science
– volume: 59
  start-page: 341
  year: 2008
  end-page: 363
  ident: bib26
  article-title: Roots, nitrogen transformations, and ecosystem services
  publication-title: Annual Review of Plant Biology
– volume: 55
  year: 1970
  ident: bib42
  article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection
  publication-title: Transactions of the British Mycological Society
– volume: 109
  start-page: 2666
  year: 2012
  end-page: 2671
  ident: bib18
  article-title: Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 51
  start-page: 287
  year: 2000
  end-page: 297
  ident: bib52
  article-title: Effects of symbiosis with Frankia and arbuscular mycorrhizal fungus on the natural abundance of
  publication-title: Journal of Experimental Botany
– volume: 15
  start-page: 791
  year: 1998
  end-page: 797
  ident: bib5
  article-title: A mutant in
  publication-title: The Plant Journal
– volume: 47
  start-page: 1541
  year: 1996
  end-page: 1550
  ident: bib16
  article-title: Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought
  publication-title: Journal of Experimental Botany
– start-page: 335
  year: 2012
  end-page: 362
  ident: bib46
  article-title: Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: state of the art
  publication-title: Plant Responses to Drought Stress. From Morphological to Molecular Features
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: bib50
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biology and Biochemistry
– volume: 171
  start-page: 693
  year: 2006
  end-page: 698
  ident: bib45
  article-title: Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes?
  publication-title: New Phytologist
– volume: 8
  start-page: 407
  year: 2003
  end-page: 409
  ident: bib53
  article-title: Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems
  publication-title: Trends in Plant Science
– volume: 5
  start-page: 62
  year: 2001
  end-page: 71
  ident: bib37
  article-title: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite
  publication-title: Nitric Oxide: Biology and Chemistry/Official Journal of the Nitric Oxide Society
– volume: 181
  start-page: 199
  year: 2009
  end-page: 207
  ident: bib32
  article-title: Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material
  publication-title: The New Phytologist
– volume: 11
  start-page: 3
  year: 2001
  end-page: 42
  ident: bib3
  article-title: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis
  publication-title: Mycorrhiza
– start-page: 327
  year: 2002
  end-page: 334
  ident: bib27
  article-title: In situ
  publication-title: New Phytologist
– volume: 35
  start-page: 228
  year: 2008
  ident: bib14
  article-title: Growth, nutrition, and soil respiration of a mycorrhiza-defective tomato mutant and its mycorrhizal wild-type progenitor
  publication-title: Functional Plant Biology
– start-page: 159
  year: 1982
  end-page: 165
  ident: bib49
  article-title: Exchangeable cations
  publication-title: Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties
– year: 1997
  ident: bib35
  article-title: Knott's Handbook for Vegetable Growers
– volume: 364
  start-page: 15
  year: 2012
  end-page: 27
  ident: bib24
  article-title: Fungal endophyte presence and genotype affect plant diversity and soil-to-atmosphere trace gas fluxes
  publication-title: Plant and Soil
– volume: 5
  start-page: 1098
  year: 1995
  end-page: 1112
  ident: bib15
  article-title: Fundamental differences between conventional and organic tomato agroecosystems in California
  publication-title: Ecological Applications
– start-page: 383
  year: 1986
  end-page: 411
  ident: bib44
  article-title: Glas flux
  publication-title: Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods
– year: 2008
  ident: bib22
  article-title: Processing Tomato Production in California
– volume: 350
  start-page: 145
  year: 2012
  end-page: 162
  ident: bib47
  article-title: Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions
  publication-title: Plant and Soil
– start-page: 79
  year: 1995
  end-page: 87
  ident: bib54
  article-title: Soil nitrogen
  publication-title: Methods in Applied Soil Microbiology and Biochemistry
– volume: 57
  start-page: 1007
  year: 1993
  end-page: 1012
  ident: bib10
  article-title: Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts
  publication-title: Soil Science Society of America Journal
– volume: 47
  start-page: 78
  year: 2012
  end-page: 92
  ident: bib7
  article-title: Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: e29825
  year: 2012
  ident: bib1
  article-title: Arbuscular mycorrhizas reduce nitrogen loss via leaching
  publication-title: PloS ONE
– start-page: 155
  year: 2008
  end-page: 161
  ident: bib33
  article-title: Transport of
  publication-title: New Phytologist
– start-page: 383
  year: 1986
  ident: 10.1016/j.soilbio.2014.03.010_bib44
  article-title: Glas flux
– volume: 84
  start-page: 2302
  year: 2003
  ident: 10.1016/j.soilbio.2014.03.010_bib31
  article-title: Mycorrhizal controls on belowground litter quality
  publication-title: Ecology
  doi: 10.1890/02-0282
– year: 1997
  ident: 10.1016/j.soilbio.2014.03.010_bib35
– volume: 169
  start-page: 895
  year: 2012
  ident: 10.1016/j.soilbio.2014.03.010_bib6
  article-title: Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions
  publication-title: Oecologia
  doi: 10.1007/s00442-012-2258-3
– year: 2008
  ident: 10.1016/j.soilbio.2014.03.010_bib22
– volume: 42
  start-page: 109
  year: 2005
  ident: 10.1016/j.soilbio.2014.03.010_bib9
  article-title: Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-005-0007-z
– volume: 19
  start-page: 1317
  year: 1996
  ident: 10.1016/j.soilbio.2014.03.010_bib17
  article-title: Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.1996.tb00010.x
– volume: 333
  start-page: 880
  year: 2011
  ident: 10.1016/j.soilbio.2014.03.010_bib28
  article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis
  publication-title: Science
  doi: 10.1126/science.1208473
– volume: 353
  start-page: 181
  year: 2012
  ident: 10.1016/j.soilbio.2014.03.010_bib11
  article-title: Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system
  publication-title: Plant and Soil
  doi: 10.1007/s11104-011-1021-6
– volume: 55
  year: 1970
  ident: 10.1016/j.soilbio.2014.03.010_bib42
  article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection
  publication-title: Transactions of the British Mycological Society
  doi: 10.1016/S0007-1536(70)80110-3
– volume: 15
  start-page: 791
  year: 1998
  ident: 10.1016/j.soilbio.2014.03.010_bib5
  article-title: A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.1998.00252.x
– volume: 35
  start-page: 228
  year: 2008
  ident: 10.1016/j.soilbio.2014.03.010_bib14
  article-title: Growth, nutrition, and soil respiration of a mycorrhiza-defective tomato mutant and its mycorrhizal wild-type progenitor
  publication-title: Functional Plant Biology
  doi: 10.1071/FP07281
– volume: 321
  start-page: 61
  year: 2008
  ident: 10.1016/j.soilbio.2014.03.010_bib41
  article-title: Biochemical cycling in the rhizosphere having an impact on global change
  publication-title: Plant and Soil
  doi: 10.1007/s11104-008-9796-9
– volume: 47
  start-page: 78
  year: 2012
  ident: 10.1016/j.soilbio.2014.03.010_bib7
  article-title: Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2011.12.015
– start-page: 526
  year: 2003
  ident: 10.1016/j.soilbio.2014.03.010_bib34
  article-title: Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress
  publication-title: Physiologia Plantarum
  doi: 10.1046/j.1399-3054.2003.00196.x
– volume: 11
  start-page: 3
  year: 2001
  ident: 10.1016/j.soilbio.2014.03.010_bib3
  article-title: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis
  publication-title: Mycorrhiza
  doi: 10.1007/s005720100097
– volume: 116
  start-page: 303
  year: 1990
  ident: 10.1016/j.soilbio.2014.03.010_bib30
  article-title: Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1990.tb04718.x
– volume: 20
  start-page: 519
  year: 2010
  ident: 10.1016/j.soilbio.2014.03.010_bib20
  article-title: Agroecology: the key role of arbuscular mycorrhizas in ecosystem services
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-010-0333-3
– volume: 59
  start-page: 341
  year: 2008
  ident: 10.1016/j.soilbio.2014.03.010_bib26
  article-title: Roots, nitrogen transformations, and ecosystem services
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.59.032607.092932
– volume: 7
  start-page: e29825
  year: 2012
  ident: 10.1016/j.soilbio.2014.03.010_bib1
  article-title: Arbuscular mycorrhizas reduce nitrogen loss via leaching
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0029825
– volume: 8
  start-page: 407
  year: 2003
  ident: 10.1016/j.soilbio.2014.03.010_bib53
  article-title: Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(03)00184-5
– volume: 138
  start-page: 574
  year: 2004
  ident: 10.1016/j.soilbio.2014.03.010_bib38
  article-title: Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi
  publication-title: Oecologia
  doi: 10.1007/s00442-003-1458-2
– volume: 90
  start-page: 1512
  year: 2009
  ident: 10.1016/j.soilbio.2014.03.010_bib19
  article-title: Plant rhizospheric N processes: what we don't know and why we should care
  publication-title: Ecology
  doi: 10.1890/08-0789.1
– year: 2003
  ident: 10.1016/j.soilbio.2014.03.010_bib4
– volume: 115
  start-page: 495
  year: 1990
  ident: 10.1016/j.soilbio.2014.03.010_bib36
  article-title: A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1990.tb00476.x
– volume: 282
  start-page: 209
  year: 2006
  ident: 10.1016/j.soilbio.2014.03.010_bib13
  article-title: Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production
  publication-title: Plant and Soil
  doi: 10.1007/s11104-005-5847-7
– start-page: 155
  year: 2008
  ident: 10.1016/j.soilbio.2014.03.010_bib33
  article-title: Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 62
  start-page: 227
  year: 2011
  ident: 10.1016/j.soilbio.2014.03.010_bib48
  article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev-arplant-042110-103846
– volume: 364
  start-page: 15
  year: 2012
  ident: 10.1016/j.soilbio.2014.03.010_bib24
  article-title: Fungal endophyte presence and genotype affect plant diversity and soil-to-atmosphere trace gas fluxes
  publication-title: Plant and Soil
  doi: 10.1007/s11104-012-1326-0
– start-page: 481
  year: 1993
  ident: 10.1016/j.soilbio.2014.03.010_bib40
  article-title: Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1993.tb03839.x
– start-page: 335
  year: 2012
  ident: 10.1016/j.soilbio.2014.03.010_bib46
  article-title: Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: state of the art
– start-page: 373
  year: 2004
  ident: 10.1016/j.soilbio.2014.03.010_bib2
  article-title: Arbuscular mycorrhizae and soil/plant water relations
  publication-title: Canadian Journal of Soil Science
  doi: 10.4141/S04-002
– volume: 1
  start-page: 1
  year: 2010
  ident: 10.1016/j.soilbio.2014.03.010_bib8
  article-title: Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis
  publication-title: Nature Communications
  doi: 10.1038/ncomms1046
– start-page: 361
  year: 2000
  ident: 10.1016/j.soilbio.2014.03.010_bib29
  article-title: Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae
  publication-title: Biology and Fertility of Soils
– volume: 5
  start-page: 1098
  year: 1995
  ident: 10.1016/j.soilbio.2014.03.010_bib15
  article-title: Fundamental differences between conventional and organic tomato agroecosystems in California
  publication-title: Ecological Applications
  doi: 10.2307/2269357
– start-page: 403
  year: 1982
  ident: 10.1016/j.soilbio.2014.03.010_bib39
  article-title: Phosphorus
– volume: 16
  start-page: 153
  year: 2001
  ident: 10.1016/j.soilbio.2014.03.010_bib43
  article-title: δ15N as an integrator of the nitrogen
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/S0169-5347(00)02098-X
– volume: 51
  start-page: 287
  year: 2000
  ident: 10.1016/j.soilbio.2014.03.010_bib52
  article-title: Effects of symbiosis with Frankia and arbuscular mycorrhizal fungus on the natural abundance of 15N in four species of Casuarina
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jexbot/51.343.287
– volume: 350
  start-page: 145
  year: 2012
  ident: 10.1016/j.soilbio.2014.03.010_bib47
  article-title: Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions
  publication-title: Plant and Soil
  doi: 10.1007/s11104-011-0890-z
– volume: 109
  start-page: 2666
  year: 2012
  ident: 10.1016/j.soilbio.2014.03.010_bib18
  article-title: Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1118650109
– start-page: 327
  year: 2002
  ident: 10.1016/j.soilbio.2014.03.010_bib27
  article-title: In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil
  publication-title: New Phytologist
  doi: 10.1046/j.0028-646X.2001.00316.x
– volume: 54
  start-page: 618
  year: 2007
  ident: 10.1016/j.soilbio.2014.03.010_bib12
  article-title: Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil
  publication-title: Microbial Ecology
  doi: 10.1007/s00248-007-9212-7
– volume: 45
  start-page: 311
  year: 1981
  ident: 10.1016/j.soilbio.2014.03.010_bib23
  article-title: Improved soil cover method for field measurement of nitrous oxide fluxes
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1981.03615995004500020017x
– volume: 4
  start-page: 517
  year: 2012
  ident: 10.1016/j.soilbio.2014.03.010_bib25
  article-title: Soil microbial-root and microbial-rhizosphere processes to increase nitrogen availability and retention in agroecosystems
  publication-title: Current Opinion in Environmental Sustainability
  doi: 10.1016/j.cosust.2012.08.003
– volume: 171
  start-page: 693
  year: 2006
  ident: 10.1016/j.soilbio.2014.03.010_bib45
  article-title: Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes?
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2006.01841.x
– volume: 308
  start-page: 267
  year: 2008
  ident: 10.1016/j.soilbio.2014.03.010_bib55
  article-title: Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9629-x
– volume: 47
  start-page: 1541
  year: 1996
  ident: 10.1016/j.soilbio.2014.03.010_bib16
  article-title: Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/47.10.1541
– volume: 57
  start-page: 1007
  year: 1993
  ident: 10.1016/j.soilbio.2014.03.010_bib10
  article-title: Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1993.03615995005700040021x
– volume: 19
  start-page: 703
  year: 1987
  ident: 10.1016/j.soilbio.2014.03.010_bib50
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(87)90052-6
– volume: 5
  start-page: 62
  year: 2001
  ident: 10.1016/j.soilbio.2014.03.010_bib37
  article-title: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite
  publication-title: Nitric Oxide: Biology and Chemistry/Official Journal of the Nitric Oxide Society
  doi: 10.1006/niox.2000.0319
– volume: 122
  start-page: 453
  year: 2004
  ident: 10.1016/j.soilbio.2014.03.010_bib21
  article-title: Contribution of arbuscular mycorrhizal fungi (AMF) to the adaptations exhibited by the deciduous shrub Anthyllis cytisoides L. under water deficit
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.2004.00421.x
– volume: 46
  start-page: 53
  year: 2012
  ident: 10.1016/j.soilbio.2014.03.010_bib51
  article-title: Arbuscular mycorrhiza and soil nitrogen cycling
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2011.11.018
– start-page: 79
  year: 1995
  ident: 10.1016/j.soilbio.2014.03.010_bib54
  article-title: Soil nitrogen
– volume: 181
  start-page: 199
  year: 2009
  ident: 10.1016/j.soilbio.2014.03.010_bib32
  article-title: Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material
  publication-title: The New Phytologist
  doi: 10.1111/j.1469-8137.2008.02630.x
– start-page: 159
  year: 1982
  ident: 10.1016/j.soilbio.2014.03.010_bib49
  article-title: Exchangeable cations
SSID ssj0002513
Score 2.3913581
Snippet Increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and greenhouse gas (GHG) emissions. A greenhouse experiment was...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 184
SubjectTerms Agronomy. Soil science and plant productions
ammonium nitrogen
Biochemistry and biology
Biological and medical sciences
Carbon dioxide
Chemical, physicochemical, biochemical and biological properties
composts
dissolved organic carbon
dissolved organic nitrogen
Economic plant physiology
Fundamental and applied biological sciences. Psychology
greenhouse experimentation
greenhouse gas emissions
greenhouse gases
Lycopersicon esculentum
microbial biomass
mutants
nitrate nitrogen
Nitrogen cycle
Nitrous oxide
nutrient content
phosphorus
photosynthesis
Physics, chemistry, biochemistry and biology of agricultural and forest soils
potassium
Rhizosphere interactions
soil amendments
soil biological properties
Soil science
soil water
soil-plant interactions
stomatal conductance
Sustainable agriculture
Symbiosis
Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...)
tomatoes
vesicular arbuscular mycorrhizae
water uptake
Title Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes
URI https://dx.doi.org/10.1016/j.soilbio.2014.03.010
https://www.proquest.com/docview/1534855569
https://www.proquest.com/docview/1836634015
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8h9jAQmjY-RGGrjMRraBsnjvNYVau6IXgaEm-WYzulqE2rpGhiD_zt3CVOEdoE0h4T2bFz59yHcr_fAZwLZxIjLfHbhS4gaGeQZVwHWodxnsSpMxkBha-uxeQm-nkb327BqMXCUFmlt_2NTa-ttb_T89LsrWYzwvgSWTo18K7jHKLdjqKETvnF00uZB_pvT7wrCayTvKB4evfElzvPZoQBHEQ11ykBaf_tn_ZWukKp5U27i78sd-2Oxp_hk48j2bDZ6hfYcsU-7A6npefScPvwcdQ2czuAxyFKr6k5ZYtHzDjLu9kfnO_LOdiyYKs5Cpn9xtizZGVbIsd0YRntn02pQOdu-VA5NtUVoydX9QhCoZWsBhCjG2SLJS6J6zNq-bBw1SHcjL__Gk0C33UhMBi8rQMb2gSzVmMGqTS5SF2qEz4wuUtEFgkpBtaiQ7Mu5NxJTRmYTfI4xVBBGp5Jy49gu1gW7hjqd7Ai6vNQEwoFbYU1YZxJIyK0qv2wA1Era2U8JTl1xpirtvbsXnkVKVKR6nOFKurAxWbaquHkeG-CbBWpXh0uhX7jvandV4rfLBgS1Z-QvANn7UlQKHn63aILh9pQ6EuIeScW6RtjJMeQD3Pc-OT_93gKO3TVFBF_he11-eC-Yai0zrr1t9CFD8Mfl5PrZ9o7F7k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a42EghGAwUS7DSPCYtbUTx33goRpMHbs8bdLejGM7Xac2rZJOU3ngT_EHOSdxNk0gJiHtNYnjxJ9zLsr5vgPwUXqbWuVI3477iKidUZYJExnDkzxNBt5mRBQ-Opaj0_jbWXK2Br9aLgyVVQbb39j02lqHI92wmt3FZEIcXxJLpwbedZwjQ2XlgV9dYd5Wfd7_giB_4nzv68nuKAqtBSKLEcoyctylmJpZizm3zeXAD0wq-jb3qcxiqWTfObTaznMhvDKUZrg0TwboD5UVmXIC7_sAHsZoLqhtws7Pm7oSDBiC0q8idlB6QxvqXpBA7zSbEOmwH9fiqsTc_btDfLIwFcKUN_01_nAVtf_bewZPQ-DKhs3aPIc1X2zC4-G4DOIdfhM2dtvucS9gNUS4miJXNlthilueT37g-FA_wuYFW0wRVXaFwW7JyrYmj5nCMXp-NqaKoPP5ZeXZ2FSM7lzVVxDtrWQ1Yxn9LpvNcUqcn1GPiZmvXsLpvWCxBevFvPCvoH4HJ-Oe4IZoL2icnOVJpqyM0Yz3eAfidq21DRro1IpjqttitwsdINIEke4JjRB1YOd62KIRAblrgGqB1Ld2s0ZHddfQ7VvAX0_ISVtQKtGBD-1O0Ljy9H_HFB7R0Oi8SOonkYN_XKMExpiYVCev__8Z38PG6OToUB_uHx-8gUd0pqlgfgvry_LSv8M4bZlt198Fg-_3_SH-BihpUwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbuscular+mycorrhizal+effects+on+plant+water+relations+and+soil+greenhouse+gas+emissions+under+changing+moisture+regimes&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Lazcano%2C+Cristina&rft.au=Barrios-Masias%2C+Felipe+H.&rft.au=Jackson%2C+Louise+E.&rft.date=2014-07-01&rft.pub=Elsevier+Ltd&rft.issn=0038-0717&rft.eissn=1879-3428&rft.volume=74&rft.spage=184&rft.epage=192&rft_id=info:doi/10.1016%2Fj.soilbio.2014.03.010&rft.externalDocID=S0038071714000996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon