Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes

The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Jani...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 126; no. 18; p. 181301
Main Authors Brahma, Suddhasattwa, Chen, Che-Yu, Yeom, Dong-Han
Format Journal Article
LanguageEnglish
Published United States 07.05.2021
Online AccessGet more information

Cover

Loading…
Abstract The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG.
AbstractList The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG.
Author Yeom, Dong-Han
Brahma, Suddhasattwa
Chen, Che-Yu
Author_xml – sequence: 1
  givenname: Suddhasattwa
  surname: Brahma
  fullname: Brahma, Suddhasattwa
  organization: Department of Physics, McGill University, Montréal QC H3A 2T8, Canada
– sequence: 2
  givenname: Che-Yu
  surname: Chen
  fullname: Chen, Che-Yu
  organization: Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
– sequence: 3
  givenname: Dong-Han
  surname: Yeom
  fullname: Yeom, Dong-Han
  organization: Research Center for Dielectric and Advanced Matter Physics, Pusan National University, Busan 46241, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34018784$$D View this record in MEDLINE/PubMed
BookMark eNo1j11LwzAYhYMozk3_wsgf6HzfJk2TSx26CcXpmNczaVOttsls0sH-vcOPq8Ph8DxwxuTUeWcJmSLMEIFdP70fwtruCxvjDFMxQ4kM8IRcIOQqyRH5iIxD-ACA4yzPyYhxQJlLfkFeNzbExr3RwvsdfR60i0NHF73eN_FA6953dGWC7fc6Nt7pls69C_ZrsK60gfqaPh77kR9a3dO1j_pHdtvq8pMufWvDJTmrdRvs1V9OyMv93Wa-TIrV4mF-UyQlhywmFYIROZgMBQMlqpJLwaTWohapgUplqDIolWJVmTJrea4s5IIbrmojjeHphEx_vbvBdLba7vqm0_1h-381_Qa62FnD
CitedBy_id crossref_primary_10_1007_s11433_023_2373_0
crossref_primary_10_1016_j_physletb_2024_139211
crossref_primary_10_1140_epjc_s10052_022_10451_5
crossref_primary_10_1016_j_dark_2024_101605
crossref_primary_10_1016_j_dark_2021_100916
crossref_primary_10_1103_PhysRevD_106_064006
crossref_primary_10_1140_epjc_s10052_024_13669_7
crossref_primary_10_1088_1475_7516_2024_10_037
crossref_primary_10_1103_PhysRevD_105_L121502
crossref_primary_10_1103_PhysRevD_110_024041
crossref_primary_10_1140_epjc_s10052_025_13957_w
crossref_primary_10_1016_j_dark_2024_101642
crossref_primary_10_1140_epjc_s10052_022_10263_7
crossref_primary_10_1140_epjc_s10052_025_13970_z
crossref_primary_10_1103_PhysRevD_104_084016
crossref_primary_10_1016_j_jheap_2025_100350
crossref_primary_10_1140_epjc_s10052_023_11180_z
crossref_primary_10_1140_epjc_s10052_023_11316_1
crossref_primary_10_1088_1475_7516_2022_11_032
crossref_primary_10_1103_PhysRevD_106_044068
crossref_primary_10_1007_s10714_022_02906_7
crossref_primary_10_1088_1674_1137_ad34c1
crossref_primary_10_1103_PhysRevD_110_044045
crossref_primary_10_1103_PhysRevD_107_124020
crossref_primary_10_1016_j_dark_2024_101734
crossref_primary_10_1140_epjc_s10052_024_13342_z
crossref_primary_10_1007_JHEP01_2024_125
crossref_primary_10_1088_1475_7516_2023_03_029
crossref_primary_10_1142_S0219887822501766
crossref_primary_10_1140_epjc_s10052_022_10730_1
crossref_primary_10_1140_epjc_s10052_023_12015_7
crossref_primary_10_1088_1674_1137_ac1e83
crossref_primary_10_1103_PhysRevD_108_024035
crossref_primary_10_1140_epjc_s10052_024_13524_9
crossref_primary_10_1016_j_dark_2023_101195
crossref_primary_10_1007_s10714_025_03383_4
crossref_primary_10_1103_PhysRevD_105_084068
crossref_primary_10_1103_PhysRevD_106_104011
crossref_primary_10_1103_PhysRevD_105_064020
crossref_primary_10_1088_1475_7516_2023_10_055
crossref_primary_10_3390_universe9070313
crossref_primary_10_1016_j_dark_2024_101627
crossref_primary_10_1088_1475_7516_2021_10_059
crossref_primary_10_1088_1475_7516_2024_01_059
crossref_primary_10_1142_S0217751X23500264
crossref_primary_10_1007_s10714_022_03028_w
crossref_primary_10_1088_1402_4896_ad4833
crossref_primary_10_1088_1475_7516_2024_05_101
crossref_primary_10_1016_j_dark_2024_101743
crossref_primary_10_1088_1475_7516_2022_09_008
crossref_primary_10_1088_1475_7516_2022_03_011
crossref_primary_10_3847_1538_4357_acb334
crossref_primary_10_1103_PhysRevD_108_104004
crossref_primary_10_1016_j_nuclphysb_2024_116612
crossref_primary_10_1088_1674_1137_accdc7
crossref_primary_10_1140_epjc_s10052_025_13997_2
crossref_primary_10_1088_1475_7516_2022_02_011
crossref_primary_10_1088_1475_7516_2023_11_096
crossref_primary_10_1103_PhysRevD_111_046025
crossref_primary_10_1016_j_jheap_2024_11_012
crossref_primary_10_1016_j_dark_2025_101818
crossref_primary_10_1103_PhysRevD_111_024010
crossref_primary_10_1088_1674_1137_ad9f44
crossref_primary_10_1140_epjc_s10052_023_12163_w
crossref_primary_10_1103_PhysRevD_107_064019
crossref_primary_10_1088_1361_6382_ad6129
crossref_primary_10_1016_j_dark_2024_101796
crossref_primary_10_3847_1538_4357_ac6dda
crossref_primary_10_1103_PhysRevD_106_044009
crossref_primary_10_1140_epjp_s13360_023_04384_5
crossref_primary_10_1140_epjc_s10052_023_12205_3
crossref_primary_10_3390_universe10110421
crossref_primary_10_1140_epjc_s10052_025_13755_4
crossref_primary_10_1007_s10773_023_05454_1
crossref_primary_10_1016_j_jheap_2025_100367
crossref_primary_10_3847_1538_4357_aca411
crossref_primary_10_1088_1361_6382_acd97b
crossref_primary_10_1140_epjc_s10052_024_12832_4
crossref_primary_10_1007_JHEP04_2022_066
crossref_primary_10_1016_j_aop_2022_169147
crossref_primary_10_1103_PhysRevD_107_064052
crossref_primary_10_1103_PhysRevD_107_084043
crossref_primary_10_1103_PhysRevD_109_104058
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.126.181301
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 34018784
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c405t-d10b670b5163096dc48638aa6f62b0d951950c993dc23ee479e0764b49fb8bb42
IngestDate Thu Jan 02 22:55:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-d10b670b5163096dc48638aa6f62b0d951950c993dc23ee479e0764b49fb8bb42
PMID 34018784
ParticipantIDs pubmed_primary_34018784
PublicationCentury 2000
PublicationDate 2021-May-07
PublicationDateYYYYMMDD 2021-05-07
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2021
SSID ssj0001268
Score 2.6182077
Snippet The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG...
SourceID pubmed
SourceType Index Database
StartPage 181301
Title Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes
URI https://www.ncbi.nlm.nih.gov/pubmed/34018784
Volume 126
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN5UjaYX4_tt9uCtoS5lu8DRGJWY-EhjEz0pyy56sNAoaqJ_3tkHBa0a9UIbNt1Qvm-H2WG-GYR2qCd87soUlrjHHHgew5rrMun4AeFdj4o41b0ITk5Z1KfHl93LRuOtri4peDt5_VJX8h9U4RzgqlSyf0B2NCmcgO-ALxwBYTj-DmNVIkOplPJ8qNIz4fkxaB09xLofhBaOnPFR1FVHCarUaR0qUNmx2a3ORO3l6qU8TKZDeq1IFXqqe67nJaBW7HKvdUBVkB2M1iA2eT5C3MWPcVG8VFlAVgMCn87VUy1OOzBOfHbrRJamNgLRcXW-n3lKSmM1iR86vmvUoCOzapTwJX-CmpUEr8IzIYxxA05UIQn1l3ryWSma2jBPe_wHAMRwoGH1qOoraPrM_Tz6qbB2OTSBJmCLoXqmqkBPswzPscAKyuGSdr--oCaaKSf5tCvR3snFHJq12wq8ZzgyjxoyW0DTBrPHRXRjmYIVU7BlCrZMwYop-ANTcJ0pOE9xjSm4ZArWTMGaKUuof3hwsR85treGk4CLXjjCJZz5sB7BH4ddrEhoAJY4jlnKOpyIUBUdIgk4ryLpeFJSP5TEZ5TTMOUB57SzjCazPJOrCBMpiJ-GMU9FSMGfDBMmpSsC8L5CSplcQyvm1lwPTQGV6_KmrX87soGaFdM20VQKK1ZugftX8G0N1Dvi11z6
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+Loop+Quantum+Gravity+from+Observational+Consequences+of+Nonsingular+Rotating+Black+Holes&rft.jtitle=Physical+review+letters&rft.au=Brahma%2C+Suddhasattwa&rft.au=Chen%2C+Che-Yu&rft.au=Yeom%2C+Dong-Han&rft.date=2021-05-07&rft.eissn=1079-7114&rft.volume=126&rft.issue=18&rft.spage=181301&rft_id=info:doi/10.1103%2FPhysRevLett.126.181301&rft_id=info%3Apmid%2F34018784&rft_id=info%3Apmid%2F34018784&rft.externalDocID=34018784