Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes
The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Jani...
Saved in:
Published in | Physical review letters Vol. 126; no. 18; p. 181301 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
07.05.2021
|
Online Access | Get more information |
Cover
Loading…
Abstract | The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG. |
---|---|
AbstractList | The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG. |
Author | Yeom, Dong-Han Brahma, Suddhasattwa Chen, Che-Yu |
Author_xml | – sequence: 1 givenname: Suddhasattwa surname: Brahma fullname: Brahma, Suddhasattwa organization: Department of Physics, McGill University, Montréal QC H3A 2T8, Canada – sequence: 2 givenname: Che-Yu surname: Chen fullname: Chen, Che-Yu organization: Institute of Physics, Academia Sinica, Taipei 11529, Taiwan – sequence: 3 givenname: Dong-Han surname: Yeom fullname: Yeom, Dong-Han organization: Research Center for Dielectric and Advanced Matter Physics, Pusan National University, Busan 46241, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34018784$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j11LwzAYhYMozk3_wsgf6HzfJk2TSx26CcXpmNczaVOttsls0sH-vcOPq8Ph8DxwxuTUeWcJmSLMEIFdP70fwtruCxvjDFMxQ4kM8IRcIOQqyRH5iIxD-ACA4yzPyYhxQJlLfkFeNzbExr3RwvsdfR60i0NHF73eN_FA6953dGWC7fc6Nt7pls69C_ZrsK60gfqaPh77kR9a3dO1j_pHdtvq8pMufWvDJTmrdRvs1V9OyMv93Wa-TIrV4mF-UyQlhywmFYIROZgMBQMlqpJLwaTWohapgUplqDIolWJVmTJrea4s5IIbrmojjeHphEx_vbvBdLba7vqm0_1h-381_Qa62FnD |
CitedBy_id | crossref_primary_10_1007_s11433_023_2373_0 crossref_primary_10_1016_j_physletb_2024_139211 crossref_primary_10_1140_epjc_s10052_022_10451_5 crossref_primary_10_1016_j_dark_2024_101605 crossref_primary_10_1016_j_dark_2021_100916 crossref_primary_10_1103_PhysRevD_106_064006 crossref_primary_10_1140_epjc_s10052_024_13669_7 crossref_primary_10_1088_1475_7516_2024_10_037 crossref_primary_10_1103_PhysRevD_105_L121502 crossref_primary_10_1103_PhysRevD_110_024041 crossref_primary_10_1140_epjc_s10052_025_13957_w crossref_primary_10_1016_j_dark_2024_101642 crossref_primary_10_1140_epjc_s10052_022_10263_7 crossref_primary_10_1140_epjc_s10052_025_13970_z crossref_primary_10_1103_PhysRevD_104_084016 crossref_primary_10_1016_j_jheap_2025_100350 crossref_primary_10_1140_epjc_s10052_023_11180_z crossref_primary_10_1140_epjc_s10052_023_11316_1 crossref_primary_10_1088_1475_7516_2022_11_032 crossref_primary_10_1103_PhysRevD_106_044068 crossref_primary_10_1007_s10714_022_02906_7 crossref_primary_10_1088_1674_1137_ad34c1 crossref_primary_10_1103_PhysRevD_110_044045 crossref_primary_10_1103_PhysRevD_107_124020 crossref_primary_10_1016_j_dark_2024_101734 crossref_primary_10_1140_epjc_s10052_024_13342_z crossref_primary_10_1007_JHEP01_2024_125 crossref_primary_10_1088_1475_7516_2023_03_029 crossref_primary_10_1142_S0219887822501766 crossref_primary_10_1140_epjc_s10052_022_10730_1 crossref_primary_10_1140_epjc_s10052_023_12015_7 crossref_primary_10_1088_1674_1137_ac1e83 crossref_primary_10_1103_PhysRevD_108_024035 crossref_primary_10_1140_epjc_s10052_024_13524_9 crossref_primary_10_1016_j_dark_2023_101195 crossref_primary_10_1007_s10714_025_03383_4 crossref_primary_10_1103_PhysRevD_105_084068 crossref_primary_10_1103_PhysRevD_106_104011 crossref_primary_10_1103_PhysRevD_105_064020 crossref_primary_10_1088_1475_7516_2023_10_055 crossref_primary_10_3390_universe9070313 crossref_primary_10_1016_j_dark_2024_101627 crossref_primary_10_1088_1475_7516_2021_10_059 crossref_primary_10_1088_1475_7516_2024_01_059 crossref_primary_10_1142_S0217751X23500264 crossref_primary_10_1007_s10714_022_03028_w crossref_primary_10_1088_1402_4896_ad4833 crossref_primary_10_1088_1475_7516_2024_05_101 crossref_primary_10_1016_j_dark_2024_101743 crossref_primary_10_1088_1475_7516_2022_09_008 crossref_primary_10_1088_1475_7516_2022_03_011 crossref_primary_10_3847_1538_4357_acb334 crossref_primary_10_1103_PhysRevD_108_104004 crossref_primary_10_1016_j_nuclphysb_2024_116612 crossref_primary_10_1088_1674_1137_accdc7 crossref_primary_10_1140_epjc_s10052_025_13997_2 crossref_primary_10_1088_1475_7516_2022_02_011 crossref_primary_10_1088_1475_7516_2023_11_096 crossref_primary_10_1103_PhysRevD_111_046025 crossref_primary_10_1016_j_jheap_2024_11_012 crossref_primary_10_1016_j_dark_2025_101818 crossref_primary_10_1103_PhysRevD_111_024010 crossref_primary_10_1088_1674_1137_ad9f44 crossref_primary_10_1140_epjc_s10052_023_12163_w crossref_primary_10_1103_PhysRevD_107_064019 crossref_primary_10_1088_1361_6382_ad6129 crossref_primary_10_1016_j_dark_2024_101796 crossref_primary_10_3847_1538_4357_ac6dda crossref_primary_10_1103_PhysRevD_106_044009 crossref_primary_10_1140_epjp_s13360_023_04384_5 crossref_primary_10_1140_epjc_s10052_023_12205_3 crossref_primary_10_3390_universe10110421 crossref_primary_10_1140_epjc_s10052_025_13755_4 crossref_primary_10_1007_s10773_023_05454_1 crossref_primary_10_1016_j_jheap_2025_100367 crossref_primary_10_3847_1538_4357_aca411 crossref_primary_10_1088_1361_6382_acd97b crossref_primary_10_1140_epjc_s10052_024_12832_4 crossref_primary_10_1007_JHEP04_2022_066 crossref_primary_10_1016_j_aop_2022_169147 crossref_primary_10_1103_PhysRevD_107_064052 crossref_primary_10_1103_PhysRevD_107_084043 crossref_primary_10_1103_PhysRevD_109_104058 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevLett.126.181301 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 34018784 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM OK1 P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c405t-d10b670b5163096dc48638aa6f62b0d951950c993dc23ee479e0764b49fb8bb42 |
IngestDate | Thu Jan 02 22:55:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-d10b670b5163096dc48638aa6f62b0d951950c993dc23ee479e0764b49fb8bb42 |
PMID | 34018784 |
ParticipantIDs | pubmed_primary_34018784 |
PublicationCentury | 2000 |
PublicationDate | 2021-May-07 |
PublicationDateYYYYMMDD | 2021-05-07 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2021 |
SSID | ssj0001268 |
Score | 2.6182077 |
Snippet | The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 181301 |
Title | Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34018784 |
Volume | 126 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN5UjaYX4_tt9uCtoS5lu8DRGJWY-EhjEz0pyy56sNAoaqJ_3tkHBa0a9UIbNt1Qvm-H2WG-GYR2qCd87soUlrjHHHgew5rrMun4AeFdj4o41b0ITk5Z1KfHl93LRuOtri4peDt5_VJX8h9U4RzgqlSyf0B2NCmcgO-ALxwBYTj-DmNVIkOplPJ8qNIz4fkxaB09xLofhBaOnPFR1FVHCarUaR0qUNmx2a3ORO3l6qU8TKZDeq1IFXqqe67nJaBW7HKvdUBVkB2M1iA2eT5C3MWPcVG8VFlAVgMCn87VUy1OOzBOfHbrRJamNgLRcXW-n3lKSmM1iR86vmvUoCOzapTwJX-CmpUEr8IzIYxxA05UIQn1l3ryWSma2jBPe_wHAMRwoGH1qOoraPrM_Tz6qbB2OTSBJmCLoXqmqkBPswzPscAKyuGSdr--oCaaKSf5tCvR3snFHJq12wq8ZzgyjxoyW0DTBrPHRXRjmYIVU7BlCrZMwYop-ANTcJ0pOE9xjSm4ZArWTMGaKUuof3hwsR85treGk4CLXjjCJZz5sB7BH4ddrEhoAJY4jlnKOpyIUBUdIgk4ryLpeFJSP5TEZ5TTMOUB57SzjCazPJOrCBMpiJ-GMU9FSMGfDBMmpSsC8L5CSplcQyvm1lwPTQGV6_KmrX87soGaFdM20VQKK1ZugftX8G0N1Dvi11z6 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+Loop+Quantum+Gravity+from+Observational+Consequences+of+Nonsingular+Rotating+Black+Holes&rft.jtitle=Physical+review+letters&rft.au=Brahma%2C+Suddhasattwa&rft.au=Chen%2C+Che-Yu&rft.au=Yeom%2C+Dong-Han&rft.date=2021-05-07&rft.eissn=1079-7114&rft.volume=126&rft.issue=18&rft.spage=181301&rft_id=info:doi/10.1103%2FPhysRevLett.126.181301&rft_id=info%3Apmid%2F34018784&rft_id=info%3Apmid%2F34018784&rft.externalDocID=34018784 |