Corrosion mechanism and hydrogen evolution on Mg

•The corrosion mechanism for Mg has been reviewed in light of contemporary works employing advanced analytics.•Mg dissolution occurs via an n=2 mechanism, at open circuit and during anodic polarisation.•Hydrogen evolution accompanying Mg dissolution is a persistent cathodic reaction.•A phenomenologi...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in solid state & materials science Vol. 19; no. 2; pp. 85 - 94
Main Authors Thomas, S., Medhekar, N.V., Frankel, G.S., Birbilis, N.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The corrosion mechanism for Mg has been reviewed in light of contemporary works employing advanced analytics.•Mg dissolution occurs via an n=2 mechanism, at open circuit and during anodic polarisation.•Hydrogen evolution accompanying Mg dissolution is a persistent cathodic reaction.•A phenomenological model for Mg dissolution is presented, accounting for enhanced catalytic behaviour. Magnesium (Mg) dissolution is distinct from other engineering metals, as Mg can support cathodic hydrogen evolution on its surface during anodic polarisation. The phenomenon of cathodic hydrogen evolution upon anodically polarised Mg is characterised by the rate of the hydrogen evolution reaction (HER) increasing with anodic polarisation, a phenomenon called the negative different effect (NDE). Mg has a tendency to aggressively corrode in aqueous solutions, impairing its application as a durable engineering material or a predictable electrode material, which is also influenced by the NDE. Over the last century a number of different theories have sought to explain the NDE. However, recent progress in research upon Mg utilising contemporary methods including advanced electrochemical techniques, on-line elemental analysis and cross-sectional electron microscopy, have not only refined the understanding of Mg dissolution, but discredited almost a century of alternate theories. During anodic polarisation, a bilayered MgO/Mg(OH)2 film forms on Mg, appearing as a dark region on visual inspection. This film gradually occupies the bulk of the previously pristine Mg surface, and importantly sustains (and enhances) the HER. This phenomenon of cathodic activation may also be catalysed by an enrichment of noble elements or impurities on the Mg surface, which could play an important role in promoting the HER. A phenomenological model for the dissolution of Mg encompassing the current opinion of many researchers is presented herein.
AbstractList •The corrosion mechanism for Mg has been reviewed in light of contemporary works employing advanced analytics.•Mg dissolution occurs via an n=2 mechanism, at open circuit and during anodic polarisation.•Hydrogen evolution accompanying Mg dissolution is a persistent cathodic reaction.•A phenomenological model for Mg dissolution is presented, accounting for enhanced catalytic behaviour. Magnesium (Mg) dissolution is distinct from other engineering metals, as Mg can support cathodic hydrogen evolution on its surface during anodic polarisation. The phenomenon of cathodic hydrogen evolution upon anodically polarised Mg is characterised by the rate of the hydrogen evolution reaction (HER) increasing with anodic polarisation, a phenomenon called the negative different effect (NDE). Mg has a tendency to aggressively corrode in aqueous solutions, impairing its application as a durable engineering material or a predictable electrode material, which is also influenced by the NDE. Over the last century a number of different theories have sought to explain the NDE. However, recent progress in research upon Mg utilising contemporary methods including advanced electrochemical techniques, on-line elemental analysis and cross-sectional electron microscopy, have not only refined the understanding of Mg dissolution, but discredited almost a century of alternate theories. During anodic polarisation, a bilayered MgO/Mg(OH)2 film forms on Mg, appearing as a dark region on visual inspection. This film gradually occupies the bulk of the previously pristine Mg surface, and importantly sustains (and enhances) the HER. This phenomenon of cathodic activation may also be catalysed by an enrichment of noble elements or impurities on the Mg surface, which could play an important role in promoting the HER. A phenomenological model for the dissolution of Mg encompassing the current opinion of many researchers is presented herein.
Magnesium (Mg) dissolution is distinct from other engineering metals, as Mg can support cathodic hydrogen evolution on its surface during anodic polarisation. The phenomenon of cathodic hydrogen evolution upon anodically polarised Mg is characterised by the rate of the hydrogen evolution reaction (HER) increasing with anodic polarisation, a phenomenon called the negative different effect (NDE). Mg has a tendency to aggressively corrode in aqueous solutions, impairing its application as a durable engineering material or a predictable electrode material, which is also influenced by the NDE. Over the last century a number of different theories have sought to explain the NDE. However, recent progress in research upon Mg utilising contemporary methods including advanced electrochemical techniques, on-line elemental analysis and cross-sectional electron microscopy, have not only refined the understanding of Mg dissolution, but discredited almost a century of alternate theories. During anodic polarisation, a bilayered MgO/Mg(OH)2 film forms on Mg, appearing as a dark region on visual inspection. This film gradually occupies the bulk of the previously pristine Mg surface, and importantly sustains (and enhances) the HER. This phenomenon of cathodic activation may also be catalysed by an enrichment of noble elements or impurities on the Mg surface, which could play an important role in promoting the HER. A phenomenological model for the dissolution of Mg encompassing the current opinion of many researchers is presented herein.
Author Medhekar, N.V.
Birbilis, N.
Thomas, S.
Frankel, G.S.
Author_xml – sequence: 1
  givenname: S.
  surname: Thomas
  fullname: Thomas, S.
  organization: Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia
– sequence: 2
  givenname: N.V.
  surname: Medhekar
  fullname: Medhekar, N.V.
  organization: Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia
– sequence: 3
  givenname: G.S.
  surname: Frankel
  fullname: Frankel, G.S.
  organization: Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
– sequence: 4
  givenname: N.
  surname: Birbilis
  fullname: Birbilis, N.
  email: nick.birbilis@monash.edu
  organization: Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia
BookMark eNqFkD1rwzAQhjWk0KTtP-jgsYvdUyzZVodCCf2ClC7tLGT5lCjYUio5gfz72rhThxYODo7nfeGeBZk575CQawoZBVrc7jLtY-xitgTKMhAZAJ-ROc25SGFZFedkEeMOAFhRFHMCKx-Cj9a7pEO9Vc7GLlGuSbanJvgNugSPvj30IzDM2-aSnBnVRrz62Rfk8-nxY_WSrt-fX1cP61Qz4H2qC1PUtQEuOAijKpNzjYqJHBiW5XCsWI0NVRwMr8slVrUxeSUANAjBBu6C3Ey9--C_Dhh72dmosW2VQ3-IkpYl5Dwv-YiyCdXDJzGgkftgOxVOkoIcpcidnKTIUYoEIQcpQ-zuV0zbXo2f9kHZ9r_w_RTGwcHRYpBRW3QaGxtQ97Lx9u-Cb6vQg8w
CitedBy_id crossref_primary_10_1016_j_jenvman_2019_109473
crossref_primary_10_1007_s11665_022_07081_z
crossref_primary_10_1016_j_electacta_2018_12_158
crossref_primary_10_1016_j_electacta_2018_11_118
crossref_primary_10_1016_j_electacta_2022_141463
crossref_primary_10_1016_S1003_6326_24_66486_1
crossref_primary_10_3390_met12040591
crossref_primary_10_1155_2023_7667296
crossref_primary_10_1016_j_surfcoat_2017_08_062
crossref_primary_10_1016_j_msec_2015_11_069
crossref_primary_10_1016_j_electacta_2017_11_062
crossref_primary_10_1016_j_seppur_2022_120653
crossref_primary_10_1016_j_jpowsour_2020_228528
crossref_primary_10_1021_acsabm_1c00826
crossref_primary_10_1149_2_0341507jes
crossref_primary_10_1002_jbm_b_34424
crossref_primary_10_1016_j_tsf_2018_05_046
crossref_primary_10_1016_j_corsci_2022_110463
crossref_primary_10_1149_1945_7111_acf78e
crossref_primary_10_1016_j_matchemphys_2022_125802
crossref_primary_10_1016_j_corsci_2021_109501
crossref_primary_10_1016_j_electacta_2019_03_080
crossref_primary_10_1039_C6RA08478H
crossref_primary_10_1007_s12633_023_02736_5
crossref_primary_10_1016_j_pmatsci_2017_04_011
crossref_primary_10_5006_3634
crossref_primary_10_1016_j_bioactmat_2021_07_026
crossref_primary_10_1016_j_ijhydene_2021_08_087
crossref_primary_10_1149_2_0561916jes
crossref_primary_10_1016_j_jclepro_2016_04_002
crossref_primary_10_3390_ma13061325
crossref_primary_10_1007_s11661_020_05878_y
crossref_primary_10_20964_2018_01_36
crossref_primary_10_1016_j_jma_2017_08_004
crossref_primary_10_1016_j_electacta_2023_143140
crossref_primary_10_1155_2018_9696549
crossref_primary_10_1016_j_apsusc_2016_01_283
crossref_primary_10_1016_j_cej_2023_142655
crossref_primary_10_1016_j_jma_2023_07_018
crossref_primary_10_1016_j_electacta_2022_140152
crossref_primary_10_1021_acsami_5b04487
crossref_primary_10_1016_j_jelechem_2019_113393
crossref_primary_10_1149_2_0171504jes
crossref_primary_10_1016_j_corsci_2018_01_044
crossref_primary_10_1016_j_jma_2021_11_006
crossref_primary_10_1149_2_0331911jes
crossref_primary_10_1016_j_corsci_2024_112512
crossref_primary_10_3390_coatings8110375
crossref_primary_10_1016_j_corsci_2024_112513
crossref_primary_10_1016_j_jmst_2017_07_017
crossref_primary_10_3390_met12122074
crossref_primary_10_2320_matertrans_MT_L2021011
crossref_primary_10_1016_j_jhazmat_2021_125993
crossref_primary_10_1016_j_measurement_2023_113683
crossref_primary_10_1039_C9TB00388F
crossref_primary_10_1149_2_0251805jes
crossref_primary_10_1016_j_elecom_2015_10_023
crossref_primary_10_1016_j_jmrt_2024_01_071
crossref_primary_10_1016_j_corsci_2022_110920
crossref_primary_10_1016_j_mtcomm_2024_108525
crossref_primary_10_1016_j_matchemphys_2016_05_016
crossref_primary_10_1016_j_colsurfa_2024_135426
crossref_primary_10_1149_2_0171813jes
crossref_primary_10_1007_s10856_020_06383_9
crossref_primary_10_1016_j_diamond_2021_108251
crossref_primary_10_1016_j_jma_2021_09_005
crossref_primary_10_1016_j_electacta_2023_142594
crossref_primary_10_1016_j_corsci_2019_02_026
crossref_primary_10_1016_j_corsci_2016_02_024
crossref_primary_10_1016_j_jallcom_2020_156619
crossref_primary_10_3390_ma15072613
crossref_primary_10_1016_j_jpowsour_2022_231745
crossref_primary_10_5006_2115
crossref_primary_10_1016_j_corsci_2019_108185
crossref_primary_10_1149_2_0241514jes
crossref_primary_10_1016_j_corsci_2023_111095
crossref_primary_10_3390_met11101658
crossref_primary_10_1016_j_jallcom_2019_02_200
crossref_primary_10_1016_j_jmrt_2021_01_076
crossref_primary_10_1039_D0BM00566E
crossref_primary_10_1149_1945_7111_ac1a56
crossref_primary_10_3390_ma16134700
crossref_primary_10_1016_j_ijhydene_2022_05_001
crossref_primary_10_1016_j_electacta_2023_142127
crossref_primary_10_1016_j_jmrt_2023_12_202
crossref_primary_10_1016_j_actbio_2018_02_023
crossref_primary_10_1016_j_msec_2019_110042
crossref_primary_10_1007_s10853_024_09716_z
crossref_primary_10_1016_S1003_6326_22_65915_6
crossref_primary_10_1016_j_colsurfa_2021_126914
crossref_primary_10_1088_2631_8695_ad04ac
crossref_primary_10_1002_maco_202011598
crossref_primary_10_1016_j_corsci_2021_109664
crossref_primary_10_1016_j_matchemphys_2020_123555
crossref_primary_10_1007_s10853_021_06135_2
crossref_primary_10_1007_s12540_019_00410_3
crossref_primary_10_1016_j_msec_2017_03_010
crossref_primary_10_1016_j_jece_2021_106661
crossref_primary_10_1007_s43452_023_00658_y
crossref_primary_10_1007_s10854_023_10558_9
crossref_primary_10_3390_ijms20194859
crossref_primary_10_1080_01694243_2023_2251759
crossref_primary_10_1016_j_electacta_2017_03_210
crossref_primary_10_1149_2_0351911jes
crossref_primary_10_1016_j_jallcom_2019_153515
crossref_primary_10_3390_met10081064
crossref_primary_10_1021_ac504576g
crossref_primary_10_1016_j_electacta_2018_01_121
crossref_primary_10_1016_j_surfcoat_2020_125919
crossref_primary_10_1016_j_electacta_2023_141969
crossref_primary_10_1016_j_corsci_2022_110178
crossref_primary_10_1149_2_0911914jes
crossref_primary_10_5006_2255
crossref_primary_10_1016_j_scriptamat_2016_01_008
crossref_primary_10_1016_j_corsci_2017_09_022
crossref_primary_10_1038_srep29471
crossref_primary_10_1002_er_7257
crossref_primary_10_5006_1601
crossref_primary_10_1016_j_electacta_2016_03_043
crossref_primary_10_1016_j_msea_2024_146939
crossref_primary_10_1016_j_jallcom_2022_164752
crossref_primary_10_1016_j_matlet_2023_135760
crossref_primary_10_1039_D3NJ04280D
crossref_primary_10_1016_j_jclepro_2022_133181
crossref_primary_10_1002_elan_201600265
crossref_primary_10_1016_j_jma_2024_05_025
crossref_primary_10_1016_j_actbio_2019_04_012
crossref_primary_10_1016_j_corsci_2018_02_051
crossref_primary_10_1016_j_electacta_2016_07_018
crossref_primary_10_1088_2053_1591_aab878
crossref_primary_10_1016_j_corsci_2022_110723
crossref_primary_10_1016_j_corsci_2018_06_027
crossref_primary_10_13005_ojc_370224
crossref_primary_10_1016_j_ceramint_2024_04_302
crossref_primary_10_1007_s11665_019_3876_2
crossref_primary_10_1007_s12221_022_4389_4
crossref_primary_10_5006_2247
crossref_primary_10_1002_jbm_b_34051
crossref_primary_10_1016_j_corsci_2021_109562
crossref_primary_10_1016_j_jmst_2020_03_060
crossref_primary_10_1016_j_jallcom_2025_179540
crossref_primary_10_1149_2_0621802jes
crossref_primary_10_1039_D5EE00075K
crossref_primary_10_1007_s12666_023_03070_5
crossref_primary_10_15446_dyna_v85n206_71067
crossref_primary_10_1002_elsa_202100196
crossref_primary_10_1007_s10008_022_05310_y
crossref_primary_10_1016_j_jtice_2017_03_007
crossref_primary_10_1002_mgea_47
crossref_primary_10_1016_j_scitotenv_2020_138221
crossref_primary_10_1021_acs_jpcc_6b09232
crossref_primary_10_1016_j_jma_2020_03_016
crossref_primary_10_3390_coatings14030271
crossref_primary_10_5006_2274
crossref_primary_10_1016_j_corsci_2017_01_025
crossref_primary_10_1039_C6RA28636D
crossref_primary_10_1016_j_mtcomm_2023_105465
crossref_primary_10_1038_srep16601
crossref_primary_10_1007_s11661_020_05693_5
crossref_primary_10_1016_j_corsci_2021_109590
crossref_primary_10_1016_j_apsusc_2015_09_092
crossref_primary_10_1016_j_prostr_2023_10_077
crossref_primary_10_1016_j_jmbbm_2016_04_015
crossref_primary_10_1149_2_0541506jes
crossref_primary_10_1016_j_actbio_2019_07_022
crossref_primary_10_1016_j_jallcom_2024_175342
crossref_primary_10_1007_s12598_020_01472_8
crossref_primary_10_1088_2051_672X_4_1_014005
crossref_primary_10_1016_j_corsci_2016_03_019
crossref_primary_10_1016_j_jenvman_2024_123027
crossref_primary_10_1149_2_1371706jes
crossref_primary_10_1149_2_0781508jes
crossref_primary_10_1016_j_corsci_2017_08_014
crossref_primary_10_1007_s11998_021_00564_z
crossref_primary_10_1016_j_colsurfb_2024_114202
crossref_primary_10_1016_j_ensm_2021_09_008
crossref_primary_10_3390_ma14020286
crossref_primary_10_3390_met6120322
crossref_primary_10_1016_j_commatsci_2021_110532
crossref_primary_10_1007_s11581_022_04545_z
crossref_primary_10_1149_2_0871606jes
crossref_primary_10_1016_j_corsci_2019_01_015
crossref_primary_10_1016_j_electacta_2018_09_155
crossref_primary_10_1016_j_diamond_2022_109224
crossref_primary_10_5006_2268
crossref_primary_10_1016_j_corsci_2015_01_011
crossref_primary_10_5006_1851
crossref_primary_10_1016_j_colsurfb_2015_05_050
crossref_primary_10_1080_1478422X_2022_2127637
crossref_primary_10_1149_1945_7111_abfb33
crossref_primary_10_1103_PhysRevMaterials_4_043801
crossref_primary_10_1016_j_corsci_2021_109937
crossref_primary_10_1149_1945_7111_abbdd0
crossref_primary_10_1016_j_jtice_2016_10_051
crossref_primary_10_1016_j_jma_2024_03_002
crossref_primary_10_1016_j_corsci_2022_110775
crossref_primary_10_5006_2299
crossref_primary_10_1016_j_matchemphys_2019_122350
crossref_primary_10_1007_s12540_022_01345_y
crossref_primary_10_1016_j_molstruc_2023_136353
crossref_primary_10_1103_PhysRevResearch_5_033219
crossref_primary_10_1149_2_0711603jes
crossref_primary_10_2139_ssrn_4145288
crossref_primary_10_1016_j_matlet_2018_08_069
crossref_primary_10_1016_j_intermet_2021_107334
crossref_primary_10_1016_j_apsusc_2015_11_002
crossref_primary_10_1016_j_corsci_2019_108321
crossref_primary_10_1039_C5FD00066A
crossref_primary_10_1088_1757_899X_1068_1_012004
crossref_primary_10_1002_maco_202213116
crossref_primary_10_1088_1757_899X_572_1_012039
crossref_primary_10_1007_s40436_021_00387_6
crossref_primary_10_1038_srep28747
crossref_primary_10_1016_j_mtcomm_2022_103557
crossref_primary_10_1016_S1003_6326_22_65984_3
crossref_primary_10_1039_C5CP05577F
crossref_primary_10_1038_s41598_024_63174_w
crossref_primary_10_5006_2282
crossref_primary_10_1038_s41598_023_42249_0
crossref_primary_10_20964_2022_12_106
crossref_primary_10_3390_met10111521
crossref_primary_10_1016_j_actbio_2016_09_005
crossref_primary_10_1149_2_0251508jes
crossref_primary_10_1016_j_jallcom_2018_06_073
crossref_primary_10_1016_j_electacta_2016_05_164
crossref_primary_10_1007_s40195_017_0548_9
crossref_primary_10_1016_j_jma_2018_12_002
crossref_primary_10_1080_00084433_2017_1327500
crossref_primary_10_1166_jbt_2023_3247
crossref_primary_10_1371_journal_pone_0182914
crossref_primary_10_1109_MEI_2023_10286140
crossref_primary_10_1016_j_jallcom_2021_161809
crossref_primary_10_1002_adem_201800949
crossref_primary_10_1016_j_jhazmat_2023_132325
crossref_primary_10_1557_jmr_2017_448
crossref_primary_10_1016_j_snb_2020_127691
crossref_primary_10_1016_j_msec_2016_09_056
crossref_primary_10_1007_s11356_019_04160_y
crossref_primary_10_1149_2_0201608jes
crossref_primary_10_1021_acs_energyfuels_3c00163
crossref_primary_10_5006_3604
crossref_primary_10_1016_j_inoche_2024_113111
crossref_primary_10_1149_1945_7111_ac862e
crossref_primary_10_3390_polym14163413
crossref_primary_10_1016_j_corsci_2018_10_014
crossref_primary_10_3390_coatings9010047
crossref_primary_10_1016_j_corsci_2021_109268
crossref_primary_10_1016_j_corsci_2015_10_031
crossref_primary_10_1017_S1431927618016240
crossref_primary_10_1016_j_electacta_2016_10_006
crossref_primary_10_1016_j_electacta_2021_138915
crossref_primary_10_1149_1945_7111_ac1cc5
crossref_primary_10_1016_j_jpowsour_2020_227880
crossref_primary_10_1016_j_psep_2022_04_040
crossref_primary_10_1103_PhysRevMaterials_3_053806
crossref_primary_10_5006_2501
crossref_primary_10_1080_01932691_2024_2342428
crossref_primary_10_1039_C5RA25359D
crossref_primary_10_1016_j_jma_2022_09_024
crossref_primary_10_1080_02670836_2023_2226487
crossref_primary_10_2464_jilm_71_82
crossref_primary_10_1016_j_jmst_2019_08_056
crossref_primary_10_1016_j_ijfatigue_2018_10_019
crossref_primary_10_1007_s12034_019_1923_0
crossref_primary_10_1016_j_mtcomm_2021_102250
crossref_primary_10_1016_j_apsusc_2015_11_040
crossref_primary_10_1016_j_jma_2023_05_004
crossref_primary_10_1039_C4RA16967K
crossref_primary_10_22226_2410_3535_2021_3_291_297
crossref_primary_10_1016_j_jma_2023_11_007
crossref_primary_10_1021_acsami_7b10750
crossref_primary_10_1063_5_0087683
crossref_primary_10_1016_j_elecom_2023_107529
crossref_primary_10_1016_j_jma_2022_09_031
crossref_primary_10_1016_j_corsci_2024_112558
crossref_primary_10_1016_j_jma_2021_06_005
crossref_primary_10_1016_j_matchar_2018_07_004
crossref_primary_10_1016_j_surfcoat_2016_03_066
crossref_primary_10_5006_3625
crossref_primary_10_1016_j_jelechem_2021_115538
crossref_primary_10_5006_3624
crossref_primary_10_1016_j_nanoen_2024_109269
crossref_primary_10_1016_j_electacta_2015_03_021
crossref_primary_10_1149_2_0621507jes
crossref_primary_10_1149_2_0141509jes
crossref_primary_10_3390_ma11112331
crossref_primary_10_1016_j_jallcom_2022_168154
crossref_primary_10_1016_j_corsci_2018_08_013
crossref_primary_10_1016_j_snb_2019_126625
crossref_primary_10_1016_j_bioactmat_2020_03_005
crossref_primary_10_1149_1945_7111_abaf79
crossref_primary_10_1149_2_0671805jes
crossref_primary_10_1007_s40195_020_01058_4
crossref_primary_10_1007_s10853_023_09199_4
crossref_primary_10_1016_j_msec_2020_111623
crossref_primary_10_1016_S1003_6326_22_65861_8
Cites_doi 10.1016/j.corsci.2011.12.002
10.1016/j.ijhydene.2010.06.115
10.1016/j.jclepro.2009.08.013
10.1002/maco.200390130
10.1016/j.elecom.2013.08.023
10.1002/recl.19290480815
10.1016/S0010-938X(96)00172-2
10.5006/i0010-9312-68-6-489
10.1002/bbpc.19050113002
10.1021/ar800229g
10.1149/1.2425601
10.1016/S0022-0728(70)80201-7
10.1016/j.electacta.2013.12.109
10.1149/2.064403jes
10.1021/ja01631a013
10.1149/1.2430052
10.1149/1.3071389
10.1016/j.corsci.2012.08.029
10.1149/1.2424019
10.1016/0378-7753(88)87001-0
10.1016/j.corsci.2013.01.017
10.4028/www.scientific.net/MSF.426-432.569
10.1016/j.electacta.2013.07.131
10.1016/j.elecom.2007.12.003
10.1016/0010-938X(77)90059-2
10.1039/c3ee40871j
10.1139/v53-115
10.1016/j.electacta.2014.03.133
10.1016/S0010-938X(97)00037-1
10.1016/j.actbio.2011.11.014
10.1016/j.electacta.2013.11.086
10.1080/14786446608644179
10.1149/1.2425763
10.1149/1.2428817
10.1039/c3cc45021j
10.1016/j.elecom.2013.07.021
10.1016/j.ijhydene.2010.07.032
10.1149/1.2427299
10.1016/0013-4686(92)87014-Q
10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
10.1016/0010-938X(93)90238-C
10.1063/1.1743339
10.1002/adfm.201301847
10.1016/j.jclepro.2006.05.022
10.1149/1.2428007
10.1016/j.electacta.2013.12.124
10.1016/j.ccr.2009.04.008
10.1149/05831.0023ecst
10.1149/1.2425600
10.4028/www.scientific.net/MSF.419-422.51
10.1179/imr.1993.38.3.138
10.1149/2.024406jes
10.1039/c3nr01458d
10.1016/j.corsci.2010.02.038
10.1016/j.corsci.2013.05.022
10.1016/j.corsci.2013.07.038
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SE
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.cossms.2014.09.005
DatabaseName CrossRef
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Corrosion Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EndPage 94
ExternalDocumentID 10_1016_j_cossms_2014_09_005
S1359028614000618
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SE
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c405t-c6f6bbf059509fa8f35cea49304e7795084bed1a50f5b72e8bff38900c0994493
IEDL.DBID .~1
ISSN 1359-0286
IngestDate Fri Jul 11 11:59:14 EDT 2025
Tue Jul 01 01:27:21 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Fri Feb 23 02:26:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Magnesium
Mg batteries
Cathodic activation
Dissolution
Hydrogen evolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-c6f6bbf059509fa8f35cea49304e7795084bed1a50f5b72e8bff38900c0994493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1770353759
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1770353759
crossref_primary_10_1016_j_cossms_2014_09_005
crossref_citationtrail_10_1016_j_cossms_2014_09_005
elsevier_sciencedirect_doi_10_1016_j_cossms_2014_09_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2015
2015-04-00
20150401
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationTitle Current opinion in solid state & materials science
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Perrault (b0220) 1970; 27
Polmear (b0005) 2006
Lamaka, Karavai, Bastos, Zheludkevich, Ferreira (b0090) 2008; 10
Petty, Davidson, Kleinberg (b0200) 1954; 76
Unocic, Elsentriecy, Brady, Meyer, Song, Fayek (b0270) 2014; 161
Kirkland, Birbilis, Staiger (b0050) 2012; 8
Curioni (b0255) 2014; 120
Lebouil, Duboin, Monti, Tabeling, Volovitch, Ogle (b0295) 2014; 124
Straumanis, Wang (b0140) 1955; 102
Song, Atrens, StJohn, Nairn, Li (b0235) 1997; 39
Hanawalt, Nelson, Peloubet (b0125) 1942; 147
King, Birbilis, Scully (b0310) 2014; 121
Taheri, Kish, Birbilis, Danaie, McNally, McDermid (b0170) 2014; 116
King (b0155) 1963; 110
James, Straumanis, Bhatia, Johnson (b0120) 1963; 110
Gulbrandsen, Tafto, Olsen (b0230) 1993; 34
Makar, Kruger (b0010) 1993; 38
Tunold, Holtan, Berge, Lasson, Steen-Hansen (b0175) 1977; 17
Lindstrom, Johansson, Svensson (b0320) 2003; 54
Robinson (b0150) 1946; 96
Williams, Gusieva, Birbilis (b0285) 2012; 68
Kirkland, Birbilis (b0045) 2014
Perrault (b0215) 1970; 27
Tharumarajah, Koltun (b0015) 2007; 15
Gomberg (b0195) 1929; 48
King (b0160) 1966; 113
Peng, Chen (b0065) 2009; 253
Kedrinsky, Murygin, Dmitrenko, Abolin, Sukhova, Grudyanov (b0115) 1988; 22
Hoey, Cohen (b0190) 1958; 105
Asmussen, Jakupi, Danaie, Botton, Shoesmith (b0280) 2013; 75
Zhang, Tao, Chen (b0055) 2013
Kundu, Gil, Jang, Lee, Jung, Ku (b0075) 2010; 35
Baborovsky (b0185) 1905; 11
Schumann, Friedrich (b0025) 2003; 419–422
Swiatowska, Volovitch, Ogle (b0305) 2010; 52
Birbilis, Williams, Gusieva, Samaniego, Gibson, McMurray (b0315) 2013; 34
Glicksmann (b0110) 1959; 106
Kirkland, Williams, Birbilis (b0100) 2012; 65
Chen, Cheng (b0070) 2009; 42
Tomashov, Komissarova, Timonova (b0335) 1955; 4
Zheng, Yang, Li, Fu, Xingguo (b0080) 2013; 49
McNulty, Hanawalt (b0130) 1942
Frankel, Samaniego, Birbilis (b0250) 2013; 70
Kushch, Kuyunko, Nazarov, Tarasov (b0085) 2011; 36
Williams, Dafydd, Subramanian (b0290) 2014; 58
Danaie, Asmussen, Jakupi, Shoesmith, Botton (b0275) 2013; 77
Gao, Feng, Pei, Gu, Li, Wang (b0040) 2013; 5
Pourbaix (b0095) 1974
Beetz (b0105) 1866; 32
Conway, Bockris (b0135) 1957; 26
Robinson, King (b0145) 1961; 108
Gulbrandsen (b0225) 1992; 37
Yoo, Shterenberg, Gofer, Gershinsky, Pour, Aurbach (b0060) 2013; 6
Straumanis, Bhatia (b0180) 1963; 110
Shi, Jia, Atrens (b0240) 2012; 60
Nishikawa, Takara (b0030) 2003; 426–432
Birbilis, King, Thomas, Frankel, Scully (b0260) 2014; 132
Rossrucker, Mayrhofer, Frankel, Birbilis (b0300) 2014; 161
Du, Han, Peng (b0020) 2010; 18
Casey, Bergeron (b0165) 1953; 31
Williams, Birbilis, McMurray (b0245) 2013; 36
Song, Atrens (b0205) 1999; 1
Samaniego, Hurley, Frankel (b0210) 2014
Nordlien, Ono, Masuko, Nisancioglu (b0265) 1997; 39
Yin, Cheng, Mao, Haasch, Liu, Xie (b0035) 2014; 24
Williams, Labukas, Rodriguez-Santiago, Andzelm (b0325) 2014
Gomberg (10.1016/j.cossms.2014.09.005_b0195) 1929; 48
Lebouil (10.1016/j.cossms.2014.09.005_b0295) 2014; 124
Williams (10.1016/j.cossms.2014.09.005_b0290) 2014; 58
Shi (10.1016/j.cossms.2014.09.005_b0240) 2012; 60
Williams (10.1016/j.cossms.2014.09.005_b0325) 2014
Nordlien (10.1016/j.cossms.2014.09.005_b0265) 1997; 39
Lindstrom (10.1016/j.cossms.2014.09.005_b0320) 2003; 54
Perrault (10.1016/j.cossms.2014.09.005_b0215) 1970; 27
Baborovsky (10.1016/j.cossms.2014.09.005_b0185) 1905; 11
Kundu (10.1016/j.cossms.2014.09.005_b0075) 2010; 35
Pourbaix (10.1016/j.cossms.2014.09.005_b0095) 1974
Gulbrandsen (10.1016/j.cossms.2014.09.005_b0225) 1992; 37
Kirkland (10.1016/j.cossms.2014.09.005_b0045) 2014
Lamaka (10.1016/j.cossms.2014.09.005_b0090) 2008; 10
Birbilis (10.1016/j.cossms.2014.09.005_b0260) 2014; 132
Makar (10.1016/j.cossms.2014.09.005_b0010) 1993; 38
Zheng (10.1016/j.cossms.2014.09.005_b0080) 2013; 49
Swiatowska (10.1016/j.cossms.2014.09.005_b0305) 2010; 52
Zhang (10.1016/j.cossms.2014.09.005_b0055) 2013
Du (10.1016/j.cossms.2014.09.005_b0020) 2010; 18
Glicksmann (10.1016/j.cossms.2014.09.005_b0110) 1959; 106
Hanawalt (10.1016/j.cossms.2014.09.005_b0125) 1942; 147
Straumanis (10.1016/j.cossms.2014.09.005_b0180) 1963; 110
Song (10.1016/j.cossms.2014.09.005_b0235) 1997; 39
Tunold (10.1016/j.cossms.2014.09.005_b0175) 1977; 17
James (10.1016/j.cossms.2014.09.005_b0120) 1963; 110
Samaniego (10.1016/j.cossms.2014.09.005_b0210) 2014
Curioni (10.1016/j.cossms.2014.09.005_b0255) 2014; 120
Birbilis (10.1016/j.cossms.2014.09.005_b0315) 2013; 34
Kushch (10.1016/j.cossms.2014.09.005_b0085) 2011; 36
King (10.1016/j.cossms.2014.09.005_b0155) 1963; 110
Gulbrandsen (10.1016/j.cossms.2014.09.005_b0230) 1993; 34
Robinson (10.1016/j.cossms.2014.09.005_b0145) 1961; 108
Hoey (10.1016/j.cossms.2014.09.005_b0190) 1958; 105
Chen (10.1016/j.cossms.2014.09.005_b0070) 2009; 42
Frankel (10.1016/j.cossms.2014.09.005_b0250) 2013; 70
Song (10.1016/j.cossms.2014.09.005_b0205) 1999; 1
Robinson (10.1016/j.cossms.2014.09.005_b0150) 1946; 96
Kedrinsky (10.1016/j.cossms.2014.09.005_b0115) 1988; 22
Yoo (10.1016/j.cossms.2014.09.005_b0060) 2013; 6
King (10.1016/j.cossms.2014.09.005_b0160) 1966; 113
Peng (10.1016/j.cossms.2014.09.005_b0065) 2009; 253
Taheri (10.1016/j.cossms.2014.09.005_b0170) 2014; 116
Williams (10.1016/j.cossms.2014.09.005_b0285) 2012; 68
Perrault (10.1016/j.cossms.2014.09.005_b0220) 1970; 27
Straumanis (10.1016/j.cossms.2014.09.005_b0140) 1955; 102
Kirkland (10.1016/j.cossms.2014.09.005_b0100) 2012; 65
Polmear (10.1016/j.cossms.2014.09.005_b0005) 2006
Casey (10.1016/j.cossms.2014.09.005_b0165) 1953; 31
Nishikawa (10.1016/j.cossms.2014.09.005_b0030) 2003; 426–432
Tharumarajah (10.1016/j.cossms.2014.09.005_b0015) 2007; 15
Rossrucker (10.1016/j.cossms.2014.09.005_b0300) 2014; 161
Conway (10.1016/j.cossms.2014.09.005_b0135) 1957; 26
Asmussen (10.1016/j.cossms.2014.09.005_b0280) 2013; 75
Kirkland (10.1016/j.cossms.2014.09.005_b0050) 2012; 8
Petty (10.1016/j.cossms.2014.09.005_b0200) 1954; 76
Williams (10.1016/j.cossms.2014.09.005_b0245) 2013; 36
Yin (10.1016/j.cossms.2014.09.005_b0035) 2014; 24
Beetz (10.1016/j.cossms.2014.09.005_b0105) 1866; 32
Schumann (10.1016/j.cossms.2014.09.005_b0025) 2003; 419–422
Danaie (10.1016/j.cossms.2014.09.005_b0275) 2013; 77
King (10.1016/j.cossms.2014.09.005_b0310) 2014; 121
McNulty (10.1016/j.cossms.2014.09.005_b0130) 1942
Tomashov (10.1016/j.cossms.2014.09.005_b0335) 1955; 4
Unocic (10.1016/j.cossms.2014.09.005_b0270) 2014; 161
Gao (10.1016/j.cossms.2014.09.005_b0040) 2013; 5
References_xml – volume: 76
  start-page: 363
  year: 1954
  ident: b0200
  publication-title: J Am Chem Soc
– volume: 39
  start-page: 1397
  year: 1997
  ident: b0265
  publication-title: Corros Sci
– volume: 49
  start-page: 9437
  year: 2013
  ident: b0080
  publication-title: Chem Commun
– volume: 35
  start-page: 10827
  year: 2010
  ident: b0075
  publication-title: Int J Hydrogen Energy
– volume: 106
  start-page: 83
  year: 1959
  ident: b0110
  publication-title: J Electrochem Soc
– year: 1974
  ident: b0095
  article-title: Atlas of electrochemical equilibria in aqueous solutions
– volume: 147
  start-page: 273
  year: 1942
  end-page: 299
  ident: b0125
  publication-title: Trans AIME
– volume: 27
  start-page: 47
  year: 1970
  ident: b0215
  publication-title: J Electroanal Chem
– volume: 34
  start-page: 1423
  year: 1993
  ident: b0230
  publication-title: Corros Sci
– volume: 10
  start-page: 259
  year: 2008
  ident: b0090
  publication-title: Electrochem Commun
– year: 2014
  ident: b0325
  publication-title: Corrosion
– volume: 5
  start-page: 4696
  year: 2013
  ident: b0040
  publication-title: Nanoscale
– volume: 37
  start-page: 1403
  year: 1992
  ident: b0225
  publication-title: Electrochim Acta
– volume: 75
  start-page: 114
  year: 2013
  ident: b0280
  publication-title: Corros Sci
– volume: 77
  start-page: 151
  year: 2013
  end-page: 163
  ident: b0275
  publication-title: Corros Sci
– volume: 38
  start-page: 138
  year: 1993
  ident: b0010
  publication-title: Int Mater Rev
– volume: 110
  start-page: 1117
  year: 1963
  ident: b0120
  publication-title: J Electrochem Soc
– start-page: 423
  year: 1942
  ident: b0130
  publication-title: Trans Electrochem Soc
– volume: 121
  start-page: 394
  year: 2014
  ident: b0310
  publication-title: Electrochim Acta
– volume: 36
  start-page: 1321
  year: 2011
  ident: b0085
  publication-title: Int J Hydrogen Energy
– volume: 108
  start-page: 36
  year: 1961
  ident: b0145
  publication-title: J Electrochem Soc
– volume: 161
  start-page: C302
  year: 2014
  ident: b0270
  publication-title: J Electrochem Soc
– volume: 419–422
  start-page: 51
  year: 2003
  ident: b0025
  publication-title: Mater Sci Forum
– volume: 124
  start-page: 176
  year: 2014
  ident: b0295
  publication-title: Electrochim Acta
– volume: 42
  start-page: 713
  year: 2009
  ident: b0070
  publication-title: Acc Chem Res
– volume: 36
  start-page: 1
  year: 2013
  ident: b0245
  publication-title: Electrochem Commun
– volume: 48
  start-page: 847
  year: 1929
  ident: b0195
  publication-title: Rec Trav Chim
– year: 2014
  ident: b0045
  article-title: Magnesium biomaterials: design, testing and best practise
– volume: 6
  start-page: 2265
  year: 2013
  ident: b0060
  publication-title: Energy Environ Sci
– volume: 96
  start-page: 499
  year: 1946
  ident: b0150
  publication-title: Trans Electrochem Soc
– volume: 32
  start-page: 269
  year: 1866
  ident: b0105
  publication-title: Philos Mag
– volume: 11
  start-page: 465
  year: 1905
  ident: b0185
  publication-title: Z Elektrochem
– volume: 26
  start-page: 532
  year: 1957
  ident: b0135
  publication-title: J Chem Phys
– volume: 58
  start-page: 23
  year: 2014
  ident: b0290
  publication-title: ECS Trans
– volume: 17
  start-page: 353
  year: 1977
  ident: b0175
  publication-title: Corros Sci
– volume: 65
  start-page: 5
  year: 2012
  ident: b0100
  article-title: Observations of the galvanostatic dissolution of pure magnesium
  publication-title: Corros Sci
– volume: 34
  start-page: 295
  year: 2013
  ident: b0315
  publication-title: Electrochem Commun
– volume: 113
  start-page: 536
  year: 1966
  ident: b0160
  publication-title: J Electrochem Soc
– volume: 22
  start-page: 99
  year: 1988
  ident: b0115
  publication-title: J Power Sources
– volume: 8
  start-page: 925
  year: 2012
  ident: b0050
  publication-title: Acta Biomater
– volume: 15
  start-page: 1007
  year: 2007
  ident: b0015
  publication-title: J Clean Prod
– volume: 39
  start-page: 855
  year: 1997
  ident: b0235
  publication-title: Corros Sci
– volume: 161
  start-page: C115
  year: 2014
  ident: b0300
  publication-title: J Electrochem Soc
– volume: 70
  start-page: 104
  year: 2013
  ident: b0250
  publication-title: Corros Sci
– volume: 110
  start-page: 1113
  year: 1963
  ident: b0155
  publication-title: J Electrochem Soc
– volume: 120
  start-page: 284
  year: 2014
  ident: b0255
  publication-title: Electrochim Acta
– volume: 54
  start-page: 587
  year: 2003
  ident: b0320
  publication-title: Mater Corros
– volume: 116
  start-page: 396
  year: 2014
  ident: b0170
  publication-title: Electrochim Acta
– volume: 68
  start-page: 489
  year: 2012
  ident: b0285
  publication-title: Corrosion
– year: 2006
  ident: b0005
  article-title: Light alloys: from traditional alloys to nanocrystals
– volume: 253
  start-page: 2805
  year: 2009
  ident: b0065
  publication-title: Coord Chem Rev
– volume: 27
  start-page: 47
  year: 1970
  ident: b0220
  publication-title: Electroanal Chem Interfacial Chem
– volume: 52
  start-page: 2372
  year: 2010
  ident: b0305
  publication-title: Corros Sci
– year: 2014
  ident: b0210
  publication-title: J Electroanal Chem
– volume: 426–432
  start-page: 569
  year: 2003
  ident: b0030
  publication-title: Mater Sci Forum
– volume: 31
  start-page: 849
  year: 1953
  ident: b0165
  publication-title: Can J Chem
– volume: 105
  start-page: 245
  year: 1958
  ident: b0190
  publication-title: J Electrochem Soc
– volume: 132
  start-page: 277
  year: 2014
  ident: b0260
  publication-title: Electrochim Acta
– volume: 102
  start-page: 304
  year: 1955
  ident: b0140
  publication-title: J Electrochem Soc
– volume: 110
  start-page: 357
  year: 1963
  ident: b0180
  publication-title: J Electrochem Soc
– year: 2013
  ident: b0055
  publication-title: Mater Horizons
– volume: 18
  start-page: 112
  year: 2010
  ident: b0020
  publication-title: J Clean Prod
– volume: 24
  start-page: 645
  year: 2014
  ident: b0035
  publication-title: Adv Funct Mater
– volume: 4
  start-page: 172
  year: 1955
  ident: b0335
  publication-title: Trudy Inst Fiz Khim, Akad Nauk SSSR, No. 5, Issledoran, Korrozii Metal
– volume: 1
  start-page: 11
  year: 1999
  ident: b0205
  publication-title: Adv Eng Mater
– volume: 60
  start-page: 296
  year: 2012
  ident: b0240
  publication-title: Corros Sci
– volume: 60
  start-page: 296
  year: 2012
  ident: 10.1016/j.cossms.2014.09.005_b0240
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2011.12.002
– volume: 36
  start-page: 1321
  year: 2011
  ident: 10.1016/j.cossms.2014.09.005_b0085
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.06.115
– volume: 18
  start-page: 112
  year: 2010
  ident: 10.1016/j.cossms.2014.09.005_b0020
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2009.08.013
– volume: 54
  start-page: 587
  year: 2003
  ident: 10.1016/j.cossms.2014.09.005_b0320
  publication-title: Mater Corros
  doi: 10.1002/maco.200390130
– volume: 36
  start-page: 1
  year: 2013
  ident: 10.1016/j.cossms.2014.09.005_b0245
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2013.08.023
– volume: 48
  start-page: 847
  year: 1929
  ident: 10.1016/j.cossms.2014.09.005_b0195
  publication-title: Rec Trav Chim
  doi: 10.1002/recl.19290480815
– volume: 39
  start-page: 855
  year: 1997
  ident: 10.1016/j.cossms.2014.09.005_b0235
  publication-title: Corros Sci
  doi: 10.1016/S0010-938X(96)00172-2
– volume: 68
  start-page: 489
  year: 2012
  ident: 10.1016/j.cossms.2014.09.005_b0285
  publication-title: Corrosion
  doi: 10.5006/i0010-9312-68-6-489
– volume: 96
  start-page: 499
  year: 1946
  ident: 10.1016/j.cossms.2014.09.005_b0150
  publication-title: Trans Electrochem Soc
– volume: 11
  start-page: 465
  year: 1905
  ident: 10.1016/j.cossms.2014.09.005_b0185
  publication-title: Z Elektrochem
  doi: 10.1002/bbpc.19050113002
– volume: 42
  start-page: 713
  year: 2009
  ident: 10.1016/j.cossms.2014.09.005_b0070
  publication-title: Acc Chem Res
  doi: 10.1021/ar800229g
– volume: 110
  start-page: 1117
  year: 1963
  ident: 10.1016/j.cossms.2014.09.005_b0120
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2425601
– volume: 27
  start-page: 47
  year: 1970
  ident: 10.1016/j.cossms.2014.09.005_b0215
  publication-title: J Electroanal Chem
  doi: 10.1016/S0022-0728(70)80201-7
– volume: 120
  start-page: 284
  year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0255
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.12.109
– volume: 161
  start-page: C115
  year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0300
  publication-title: J Electrochem Soc
  doi: 10.1149/2.064403jes
– volume: 76
  start-page: 363
  year: 1954
  ident: 10.1016/j.cossms.2014.09.005_b0200
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01631a013
– volume: 147
  start-page: 273
  year: 1942
  ident: 10.1016/j.cossms.2014.09.005_b0125
  publication-title: Trans AIME
– volume: 102
  start-page: 304
  year: 1955
  ident: 10.1016/j.cossms.2014.09.005_b0140
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2430052
– start-page: 423
  year: 1942
  ident: 10.1016/j.cossms.2014.09.005_b0130
  publication-title: Trans Electrochem Soc
  doi: 10.1149/1.3071389
– volume: 65
  start-page: 5
  year: 2012
  ident: 10.1016/j.cossms.2014.09.005_b0100
  article-title: Observations of the galvanostatic dissolution of pure magnesium
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2012.08.029
– volume: 113
  start-page: 536
  year: 1966
  ident: 10.1016/j.cossms.2014.09.005_b0160
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2424019
– volume: 22
  start-page: 99
  year: 1988
  ident: 10.1016/j.cossms.2014.09.005_b0115
  publication-title: J Power Sources
  doi: 10.1016/0378-7753(88)87001-0
– year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0325
  publication-title: Corrosion
– volume: 70
  start-page: 104
  year: 2013
  ident: 10.1016/j.cossms.2014.09.005_b0250
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2013.01.017
– year: 2013
  ident: 10.1016/j.cossms.2014.09.005_b0055
  publication-title: Mater Horizons
– volume: 426–432
  start-page: 569
  year: 2003
  ident: 10.1016/j.cossms.2014.09.005_b0030
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.426-432.569
– volume: 124
  start-page: 176
  year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0295
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.07.131
– volume: 10
  start-page: 259
  year: 2008
  ident: 10.1016/j.cossms.2014.09.005_b0090
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2007.12.003
– volume: 17
  start-page: 353
  year: 1977
  ident: 10.1016/j.cossms.2014.09.005_b0175
  publication-title: Corros Sci
  doi: 10.1016/0010-938X(77)90059-2
– volume: 6
  start-page: 2265
  year: 2013
  ident: 10.1016/j.cossms.2014.09.005_b0060
  publication-title: Energy Environ Sci
  doi: 10.1039/c3ee40871j
– volume: 31
  start-page: 849
  year: 1953
  ident: 10.1016/j.cossms.2014.09.005_b0165
  publication-title: Can J Chem
  doi: 10.1139/v53-115
– volume: 132
  start-page: 277
  year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0260
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2014.03.133
– volume: 39
  start-page: 1397
  year: 1997
  ident: 10.1016/j.cossms.2014.09.005_b0265
  publication-title: Corros Sci
  doi: 10.1016/S0010-938X(97)00037-1
– volume: 4
  start-page: 172
  year: 1955
  ident: 10.1016/j.cossms.2014.09.005_b0335
  publication-title: Trudy Inst Fiz Khim, Akad Nauk SSSR, No. 5, Issledoran, Korrozii Metal
– year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0210
  publication-title: J Electroanal Chem
– volume: 8
  start-page: 925
  year: 2012
  ident: 10.1016/j.cossms.2014.09.005_b0050
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2011.11.014
– volume: 116
  start-page: 396
  year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0170
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.11.086
– volume: 32
  start-page: 269
  year: 1866
  ident: 10.1016/j.cossms.2014.09.005_b0105
  publication-title: Philos Mag
  doi: 10.1080/14786446608644179
– volume: 110
  start-page: 357
  year: 1963
  ident: 10.1016/j.cossms.2014.09.005_b0180
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2425763
– volume: 105
  start-page: 245
  year: 1958
  ident: 10.1016/j.cossms.2014.09.005_b0190
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2428817
– volume: 49
  start-page: 9437
  year: 2013
  ident: 10.1016/j.cossms.2014.09.005_b0080
  publication-title: Chem Commun
  doi: 10.1039/c3cc45021j
– volume: 34
  start-page: 295
  year: 2013
  ident: 10.1016/j.cossms.2014.09.005_b0315
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2013.07.021
– year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0045
– volume: 35
  start-page: 10827
  year: 2010
  ident: 10.1016/j.cossms.2014.09.005_b0075
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.07.032
– volume: 27
  start-page: 47
  year: 1970
  ident: 10.1016/j.cossms.2014.09.005_b0220
  publication-title: Electroanal Chem Interfacial Chem
  doi: 10.1016/S0022-0728(70)80201-7
– volume: 106
  start-page: 83
  year: 1959
  ident: 10.1016/j.cossms.2014.09.005_b0110
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2427299
– volume: 37
  start-page: 1403
  year: 1992
  ident: 10.1016/j.cossms.2014.09.005_b0225
  publication-title: Electrochim Acta
  doi: 10.1016/0013-4686(92)87014-Q
– year: 1974
  ident: 10.1016/j.cossms.2014.09.005_b0095
– volume: 1
  start-page: 11
  year: 1999
  ident: 10.1016/j.cossms.2014.09.005_b0205
  publication-title: Adv Eng Mater
  doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
– volume: 34
  start-page: 1423
  year: 1993
  ident: 10.1016/j.cossms.2014.09.005_b0230
  publication-title: Corros Sci
  doi: 10.1016/0010-938X(93)90238-C
– volume: 26
  start-page: 532
  year: 1957
  ident: 10.1016/j.cossms.2014.09.005_b0135
  publication-title: J Chem Phys
  doi: 10.1063/1.1743339
– volume: 24
  start-page: 645
  year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0035
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201301847
– volume: 15
  start-page: 1007
  year: 2007
  ident: 10.1016/j.cossms.2014.09.005_b0015
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2006.05.022
– volume: 108
  start-page: 36
  year: 1961
  ident: 10.1016/j.cossms.2014.09.005_b0145
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2428007
– volume: 121
  start-page: 394
  year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0310
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.12.124
– volume: 253
  start-page: 2805
  year: 2009
  ident: 10.1016/j.cossms.2014.09.005_b0065
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2009.04.008
– volume: 58
  start-page: 23
  year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0290
  publication-title: ECS Trans
  doi: 10.1149/05831.0023ecst
– volume: 110
  start-page: 1113
  year: 1963
  ident: 10.1016/j.cossms.2014.09.005_b0155
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2425600
– volume: 419–422
  start-page: 51
  year: 2003
  ident: 10.1016/j.cossms.2014.09.005_b0025
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.419-422.51
– volume: 38
  start-page: 138
  year: 1993
  ident: 10.1016/j.cossms.2014.09.005_b0010
  publication-title: Int Mater Rev
  doi: 10.1179/imr.1993.38.3.138
– volume: 161
  start-page: C302
  year: 2014
  ident: 10.1016/j.cossms.2014.09.005_b0270
  publication-title: J Electrochem Soc
  doi: 10.1149/2.024406jes
– volume: 5
  start-page: 4696
  year: 2013
  ident: 10.1016/j.cossms.2014.09.005_b0040
  publication-title: Nanoscale
  doi: 10.1039/c3nr01458d
– volume: 52
  start-page: 2372
  year: 2010
  ident: 10.1016/j.cossms.2014.09.005_b0305
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2010.02.038
– volume: 75
  start-page: 114
  year: 2013
  ident: 10.1016/j.cossms.2014.09.005_b0280
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2013.05.022
– year: 2006
  ident: 10.1016/j.cossms.2014.09.005_b0005
– volume: 77
  start-page: 151
  year: 2013
  ident: 10.1016/j.cossms.2014.09.005_b0275
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2013.07.038
SSID ssj0004666
Score 2.5696757
SecondaryResourceType review_article
Snippet •The corrosion mechanism for Mg has been reviewed in light of contemporary works employing advanced analytics.•Mg dissolution occurs via an n=2 mechanism, at...
Magnesium (Mg) dissolution is distinct from other engineering metals, as Mg can support cathodic hydrogen evolution on its surface during anodic polarisation....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms Activation
Anodic polarization
Cathodic activation
Dissolution
Durability
Hydrogen evolution
Magnesium
Mg batteries
Nondestructive testing
Surface chemistry
Title Corrosion mechanism and hydrogen evolution on Mg
URI https://dx.doi.org/10.1016/j.cossms.2014.09.005
https://www.proquest.com/docview/1770353759
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF5KRdAH0apYjxLB19ik2c02jyVY6tEiaqFvy55asUnpIfjib3c2h1QRCkIgJMwu4dvZbybsHAhdGC0UwRL2NzXKxUISl3NiXIW54EqbKBA237k_CHtDfDMiowqKy1wYG1ZZcH_O6RlbF2-aBZrN6XjcfPSDrPQI2JfMENuEX4yp1fLLT38lNzI7r7TCrpUu0-eyGC8Jhmhii3b7ebVT28Tub_P0i6gz69PdRTuF2-h08i_bQxWd1ND2SjHBGtrMgjnlfB95cTqD2QFxZ6JtZu94PnF4opyXDzVLQWMc_V5onANX__kADbtXT3HPLTojuBIcrIUrQxMKYcA1AntveNsERGqOo8DDmlLb2BULrXxOPEMEbem2MAY8E8-T4BBikDtE1SRN9BFyVFuJUEcGm8j-PvkRFTwMsOA-UA_GrToKSkCYLMqG2-4Vb6yMD3tlOYzMwsi8iAGMdeR-j5rmZTPWyNMSa_Zj-Rkw-5qR5-XSMNgZ9riDJzpdzplPgc1IQEl0_O_ZT9AWPJE8VOcUVRezpT4DL2QhGpmaNdBGJ364u7f369ve4Askzd57
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60RdSDaFWszwheQ5NmN2mOpSj10V5sobdln1qxSelD8N87m4dUEQpCTsnuEr7MfjNhZ74BuDFaKEok7u_IKJcISV3OqXEV4YIrbeJA2HrnXj_sDsnDiI42oFPWwti0yoL7c07P2Lq40yjQbEzH48azH2TSI-hfMkfc2oSqVaeiFai27x-7_ZXyyOzI0o537YSygi5L85LoiyZWt9vPBU9tH7u_PdQvrs4c0N0-7BWRo9POX-4ANnRSg90VPcEabGX5nHJ-CF4nneHqCLoz0ba4dzyfODxRzuunmqVoNI7-KIzOwav3cgTDu9tBp-sWzRFciTHWwpWhCYUwGB2hyze8ZQIqNSdx4BEdRba3KxFa-Zx6hoqoqVvCGAxOPE9iTEhw3DFUkjTRJ-ColhKhjg0xsf2D8uNI8DAggvvIPoQ06xCUgDBZKIfbBhbvrEwRe2M5jMzCyLyYIYx1cL9nTXPljDXjoxJr9sMCGJL7mpnX5adhuDnsiQdPdLqcMz9CQqNBROPTf69-BdvdQe-JPd33H89gB5_QPHPnHCqL2VJfYFCyEJeF0X0B1-Pflw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+mechanism+and+hydrogen+evolution+on+Mg&rft.jtitle=Current+opinion+in+solid+state+%26+materials+science&rft.au=Thomas%2C+S.&rft.au=Medhekar%2C+N.V.&rft.au=Frankel%2C+G.S.&rft.au=Birbilis%2C+N.&rft.date=2015-04-01&rft.pub=Elsevier+Ltd&rft.issn=1359-0286&rft.volume=19&rft.issue=2&rft.spage=85&rft.epage=94&rft_id=info:doi/10.1016%2Fj.cossms.2014.09.005&rft.externalDocID=S1359028614000618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-0286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-0286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-0286&client=summon