On the nanobubbles interfacial properties and future applications in flotation
•Air nanobubbles were formed after depressurisation of saturated air in reagentized solutions.•Zeta potential values displayed sigmoidal pH behaviour between pH 2 (+26mV) and 8.5 (−28mV).•The nanobubbles had an isoelectric point at pH 4.5.•The size of the nanobubbles depended on zeta potentials, big...
Saved in:
Published in | Minerals engineering Vol. 60; pp. 33 - 40 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Air nanobubbles were formed after depressurisation of saturated air in reagentized solutions.•Zeta potential values displayed sigmoidal pH behaviour between pH 2 (+26mV) and 8.5 (−28mV).•The nanobubbles had an isoelectric point at pH 4.5.•The size of the nanobubbles depended on zeta potentials, bigger at the isoelectric point or ±5mV (750nm).•Highly charged and small nanobubbles were obtained in the presence of surfactants.
Nanobubbles, generations forms, basic studies and applications constitute a growing research area, included their usage in advanced mineral flotation. Yet, there are investigation needs for sustainable generation procedures, stability and understanding the nanobubbles interfacial properties and structures. Results proved that a reduction in pressure makes the super-saturated liquid suffers cavitation and nanobubbles were generated. Medium pH and solutions tested were adjusted, in the air saturation vessel, before the nanobubbles were formed, and this allowed to control (in situ) the surface charge/zeta potential-size of the forming nanobubbles. Measurements obtained with a ZetaSizer Nano equipment showed zeta potential values, in the presence of 10−2 molL−1 NaCl, displaying sigmoidal pH behaviour between pH 2 (+26mV) and 8.5 (−28mV); an isoelectric point was attained at pH 4.5 and were positively charged (up to 23mV) in acidic medium, a phenomenon which has not been previously observed. In alkaline medium, bubbles were highly negative zeta potential (−59mV) at pH 10. The double layers appear to play a role in the formation of stable nanobubbles providing a repulsive force, which prevents inter-bubble aggregation and coalescence. Accordingly, the sizes of the nanobubbles depended on their charge and increased with pH, reaching a maximum (720nm) around the isoelectric point (±5mV). Highly charged and small nanobubbles (approximately 150–180nm) were obtained in the presence of surfactants (10−4 molL−1 of alkyl methyl ether monoamine or sodium dodecyl sulphate); the zeta potential values in these experiments followed a similar trend of other reported values, validating the technique used with the nanobubbles sizes varying with pH from 150 to 400nm. Thus, charged and uncharged stable nanobubbles can be tailor-made with or without surfactants and it is expected that their use will broaden options in mineral flotation especially if collectors coated nanobubbles (“bubble-collectors”) were employed. A detailed and updated review on factors involving stability, longevity and coalescence of nanobubbles was made. It is believed that future trend will be on sustainable formation and application of nanobubbles at industrial scale contributing to widen applied research in mineral, materials processing and liquid effluent treatment by advanced flotation. |
---|---|
AbstractList | •Air nanobubbles were formed after depressurisation of saturated air in reagentized solutions.•Zeta potential values displayed sigmoidal pH behaviour between pH 2 (+26mV) and 8.5 (−28mV).•The nanobubbles had an isoelectric point at pH 4.5.•The size of the nanobubbles depended on zeta potentials, bigger at the isoelectric point or ±5mV (750nm).•Highly charged and small nanobubbles were obtained in the presence of surfactants.
Nanobubbles, generations forms, basic studies and applications constitute a growing research area, included their usage in advanced mineral flotation. Yet, there are investigation needs for sustainable generation procedures, stability and understanding the nanobubbles interfacial properties and structures. Results proved that a reduction in pressure makes the super-saturated liquid suffers cavitation and nanobubbles were generated. Medium pH and solutions tested were adjusted, in the air saturation vessel, before the nanobubbles were formed, and this allowed to control (in situ) the surface charge/zeta potential-size of the forming nanobubbles. Measurements obtained with a ZetaSizer Nano equipment showed zeta potential values, in the presence of 10−2 molL−1 NaCl, displaying sigmoidal pH behaviour between pH 2 (+26mV) and 8.5 (−28mV); an isoelectric point was attained at pH 4.5 and were positively charged (up to 23mV) in acidic medium, a phenomenon which has not been previously observed. In alkaline medium, bubbles were highly negative zeta potential (−59mV) at pH 10. The double layers appear to play a role in the formation of stable nanobubbles providing a repulsive force, which prevents inter-bubble aggregation and coalescence. Accordingly, the sizes of the nanobubbles depended on their charge and increased with pH, reaching a maximum (720nm) around the isoelectric point (±5mV). Highly charged and small nanobubbles (approximately 150–180nm) were obtained in the presence of surfactants (10−4 molL−1 of alkyl methyl ether monoamine or sodium dodecyl sulphate); the zeta potential values in these experiments followed a similar trend of other reported values, validating the technique used with the nanobubbles sizes varying with pH from 150 to 400nm. Thus, charged and uncharged stable nanobubbles can be tailor-made with or without surfactants and it is expected that their use will broaden options in mineral flotation especially if collectors coated nanobubbles (“bubble-collectors”) were employed. A detailed and updated review on factors involving stability, longevity and coalescence of nanobubbles was made. It is believed that future trend will be on sustainable formation and application of nanobubbles at industrial scale contributing to widen applied research in mineral, materials processing and liquid effluent treatment by advanced flotation. Nanobubbles, generations forms, basic studies and applications constitute a growing research area, included their usage in advanced mineral flotation. Yet, there are investigation needs for sustainable generation procedures, stability and understanding the nanobubbles interfacial properties and structures. Results proved that a reduction in pressure makes the super-saturated liquid suffers cavitation and nanobubbles were generated. Medium pH and solutions tested were adjusted, in the air saturation vessel, before the nanobubbles were formed, and this allowed to control (in situ) the surface charge/zeta potential-size of the forming nanobubbles. Measurements obtained with a ZetaSizer Nano equipment showed zeta potential values, in the presence of 10 super(-) super(2) mol L super(-1) NaCl, displaying sigmoidal pH behaviour between pH 2 (+26 mV) and 8.5 (-28 mV); an isoelectric point was attained at pH 4.5 and were positively charged (up to 23 mV) in acidic medium, a phenomenon which has not been previously observed. In alkaline medium, bubbles were highly negative zeta potential (-59 mV) at pH 10. The double layers appear to play a role in the formation of stable nanobubbles providing a repulsive force, which prevents inter-bubble aggregation and coalescence. Accordingly, the sizes of the nanobubbles depended on their charge and increased with pH, reaching a maximum (720 nm) around the isoelectric point ( plus or minus 5 mV). Highly charged and small nanobubbles (approximately 150-180 nm) were obtained in the presence of surfactants (10 super(-) super(4) mol L super(-1) of alkyl methyl ether monoamine or sodium dodecyl sulphate); the zeta potential values in these experiments followed a similar trend of other reported values, validating the technique used with the nanobubbles sizes varying with pH from 150 to 400 nm. Thus, charged and uncharged stable nanobubbles can be tailor-made with or without surfactants and it is expected that their use will broaden options in mineral flotation especially if collectors coated nanobubbles ("bubble-collectors") were employed. A detailed and updated review on factors involving stability, longevity and coalescence of nanobubbles was made. It is believed that future trend will be on sustainable formation and application of nanobubbles at industrial scale contributing to widen applied research in mineral, materials processing and liquid effluent treatment by advanced flotation. |
Author | Rubio, J. Wilberg, K.Q. Calgaroto, S. |
Author_xml | – sequence: 1 givenname: S. surname: Calgaroto fullname: Calgaroto, S. – sequence: 2 givenname: K.Q. surname: Wilberg fullname: Wilberg, K.Q. – sequence: 3 givenname: J. surname: Rubio fullname: Rubio, J. email: jrubio@ufrgs.br |
BookMark | eNqFkD1v2zAQhonCAWon_QcdNHaRcpRJWspQIDDyBRjN0s7EiTw2NGRKJakA-feVq04dmulwh_c5vHg2bBWGQIx95lBx4Or6WJ18oPCzqoGLCuoKoP7A1rzZ1WUrhFixNTRtXapmJz-yTUpHAJC7pl2zb8-hyC9UBAxDN3VdT6nwIVN0aDz2xRiHkWL28xmDLdyUp0gFjmPvDWY_hHO8cP2Q_2xX7MJhn-jT33nJftzffd8_lofnh6f97aE0AmQuO9c54YxqrVPCOlG3ZLnELXBnVY0dtTjX48ryLSqJCMpwksJau1WoTLu9ZF-Wv3O_XxOlrE8-Gep7DDRMSXMpOTTAJZ-jN0vUxCGlSE4bv5TNEX2vOeizRH3Ui0R9lqih1rPEGRb_wGP0J4xv72FfF4xmB6-eok7GUzBkfSSTtR38_x_8BuqbkiI |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_9b03795 crossref_primary_10_1016_j_chemosphere_2018_03_157 crossref_primary_10_1021_acs_iecr_2c01551 crossref_primary_10_1016_j_mineng_2023_108428 crossref_primary_10_1021_acs_langmuir_8b01163 crossref_primary_10_1007_s11270_018_3745_x crossref_primary_10_1089_ees_2016_0325 crossref_primary_10_34172_apb_2024_042 crossref_primary_10_1021_acsomega_0c02154 crossref_primary_10_1016_j_ultsonch_2023_106574 crossref_primary_10_1017_jfm_2023_898 crossref_primary_10_1021_acs_jpcb_8b11385 crossref_primary_10_1016_j_seppur_2017_10_054 crossref_primary_10_1021_acs_iecr_1c04046 crossref_primary_10_1021_acs_langmuir_9b01384 crossref_primary_10_1021_acs_langmuir_2c00819 crossref_primary_10_1016_j_mineng_2016_01_006 crossref_primary_10_1016_j_mineng_2022_107868 crossref_primary_10_1021_acsomega_2c03674 crossref_primary_10_1007_s11356_022_20896_6 crossref_primary_10_1016_j_cjche_2023_03_014 crossref_primary_10_14397_jals_2018_52_4_109 crossref_primary_10_1016_j_fuel_2021_120765 crossref_primary_10_1016_j_jclepro_2023_139153 crossref_primary_10_1016_j_powtec_2018_09_062 crossref_primary_10_1016_j_minpro_2015_02_010 crossref_primary_10_1007_s42461_020_00295_6 crossref_primary_10_1016_j_conbuildmat_2024_139807 crossref_primary_10_1021_acsanm_1c01907 crossref_primary_10_1080_19392699_2019_1692340 crossref_primary_10_1016_j_apsusc_2017_11_044 crossref_primary_10_1016_j_powtec_2020_10_040 crossref_primary_10_1080_15567036_2019_1618994 crossref_primary_10_1016_j_apsusc_2020_145282 crossref_primary_10_3390_min14070694 crossref_primary_10_1016_j_jhazmat_2023_131530 crossref_primary_10_1016_j_marpolbul_2016_04_023 crossref_primary_10_1038_s41598_018_38066_5 crossref_primary_10_1080_08827508_2023_2260932 crossref_primary_10_1016_j_fuel_2019_116325 crossref_primary_10_1016_j_seppur_2022_121777 crossref_primary_10_1016_j_apsusc_2024_161736 crossref_primary_10_1016_j_carbon_2018_05_068 crossref_primary_10_1021_acs_accounts_8b00606 crossref_primary_10_1016_j_seppur_2017_05_014 crossref_primary_10_1080_01932691_2022_2033625 crossref_primary_10_1016_j_mineng_2016_05_001 crossref_primary_10_3390_en14092542 crossref_primary_10_3390_fluids7120383 crossref_primary_10_1016_j_xphs_2016_06_020 crossref_primary_10_1007_s42461_021_00527_3 crossref_primary_10_1021_acs_langmuir_2c03075 crossref_primary_10_1039_C9CS00839J crossref_primary_10_1016_j_cis_2019_101992 crossref_primary_10_1016_j_rser_2021_111373 crossref_primary_10_1016_j_mineng_2017_10_020 crossref_primary_10_1016_j_colcom_2022_100639 crossref_primary_10_1016_j_clay_2019_01_013 crossref_primary_10_1016_j_mineng_2021_107140 crossref_primary_10_1016_j_colsurfa_2020_125669 crossref_primary_10_1016_j_molliq_2024_125180 crossref_primary_10_1016_j_electacta_2021_138769 crossref_primary_10_1016_j_cis_2019_101995 crossref_primary_10_1016_j_jcis_2019_12_093 crossref_primary_10_1021_acs_langmuir_9b01443 crossref_primary_10_1134_S1063785020070184 crossref_primary_10_5897_AJEST2024_3268 crossref_primary_10_1089_ees_2017_0377 crossref_primary_10_1016_j_desal_2024_118271 crossref_primary_10_1016_j_memsci_2023_121402 crossref_primary_10_1016_j_mineng_2022_107540 crossref_primary_10_1007_s12613_019_1936_0 crossref_primary_10_1016_j_minpro_2016_01_012 crossref_primary_10_1021_acs_langmuir_1c02010 crossref_primary_10_3390_nano15040314 crossref_primary_10_1016_j_powtec_2020_07_049 crossref_primary_10_1038_s41598_018_21264_6 crossref_primary_10_1007_s11837_024_06411_x crossref_primary_10_1007_s12613_023_2615_8 crossref_primary_10_1016_j_memsci_2018_09_064 crossref_primary_10_1089_ees_2018_0203 crossref_primary_10_4491_eer_2016_028 crossref_primary_10_1002_ppsc_202300224 crossref_primary_10_1016_j_jcis_2018_11_110 crossref_primary_10_1016_j_eng_2022_04_027 crossref_primary_10_1007_s11182_019_01618_x crossref_primary_10_1016_j_seppur_2017_06_007 crossref_primary_10_1016_j_mineng_2022_107554 crossref_primary_10_1080_19392699_2020_1732947 crossref_primary_10_1080_09593330_2022_2143295 crossref_primary_10_1016_j_cis_2021_102403 crossref_primary_10_1016_j_ijbiomac_2022_11_095 crossref_primary_10_1080_10408398_2022_2067119 crossref_primary_10_1016_j_powtec_2021_10_004 crossref_primary_10_1016_j_mineng_2015_11_003 crossref_primary_10_1088_1361_648X_ac15d5 crossref_primary_10_1103_RevModPhys_87_981 crossref_primary_10_1016_j_colsurfa_2022_128296 crossref_primary_10_1080_07373937_2021_1881791 crossref_primary_10_3390_coatings10101003 crossref_primary_10_1016_j_apsusc_2019_01_292 crossref_primary_10_1016_j_jconhyd_2017_12_001 crossref_primary_10_1063_5_0141614 crossref_primary_10_1016_j_cep_2025_110277 crossref_primary_10_1016_j_minpro_2016_11_003 crossref_primary_10_1088_1572_9494_ab6183 crossref_primary_10_1021_acs_jpclett_0c02658 crossref_primary_10_1021_acs_jpcc_0c00435 crossref_primary_10_3390_pr11092739 crossref_primary_10_1016_j_colsurfa_2024_134895 crossref_primary_10_1016_j_cis_2020_102359 crossref_primary_10_1021_acs_langmuir_1c00973 crossref_primary_10_1016_j_ultsonch_2020_105366 crossref_primary_10_1016_j_colsurfa_2023_132842 crossref_primary_10_1016_j_mineng_2019_01_015 crossref_primary_10_1142_S0219581X18500485 crossref_primary_10_3390_fluids10020025 crossref_primary_10_1016_j_memsci_2023_121554 crossref_primary_10_1080_07373937_2021_1942898 crossref_primary_10_3390_min12080944 crossref_primary_10_1063_5_0257743 crossref_primary_10_1088_1674_1056_27_11_118104 crossref_primary_10_1039_C8SM01949E crossref_primary_10_1080_87559129_2021_2023172 crossref_primary_10_1039_D4EN00004H crossref_primary_10_1016_j_scitotenv_2022_157304 crossref_primary_10_1016_j_partic_2021_03_003 crossref_primary_10_1039_D1EN00700A crossref_primary_10_1016_j_colsurfa_2023_131879 crossref_primary_10_1016_j_mineng_2022_107906 crossref_primary_10_1016_j_desal_2019_03_008 crossref_primary_10_1002_elps_201900305 crossref_primary_10_1080_08827508_2016_1218871 crossref_primary_10_2166_wst_2017_441 crossref_primary_10_1016_j_memsci_2024_123209 crossref_primary_10_1039_D0NR03332D crossref_primary_10_1080_12269328_2016_1153987 crossref_primary_10_1016_j_surfin_2025_106063 crossref_primary_10_1016_j_jclepro_2023_139433 crossref_primary_10_1016_j_chemosphere_2024_141323 crossref_primary_10_1016_j_cej_2020_124227 crossref_primary_10_2166_wst_2017_113 crossref_primary_10_1016_j_rser_2021_111074 crossref_primary_10_3390_min12040462 crossref_primary_10_1016_j_jcis_2016_10_027 crossref_primary_10_1186_s13568_021_01254_0 crossref_primary_10_1021_acs_langmuir_3c01170 crossref_primary_10_1002_nano_202100337 crossref_primary_10_1016_j_ultsonch_2018_11_020 crossref_primary_10_1016_j_watres_2024_122757 crossref_primary_10_1021_acsomega_3c08379 crossref_primary_10_1039_C7CP03856A crossref_primary_10_1016_j_mineng_2023_108236 crossref_primary_10_1039_D1CP04406K crossref_primary_10_1016_j_biortech_2018_10_077 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103645 crossref_primary_10_1039_C6NR06844H crossref_primary_10_1021_acs_langmuir_6b02489 crossref_primary_10_1007_s11051_019_4618_y crossref_primary_10_3390_ma15217437 crossref_primary_10_1007_s11182_020_02148_7 crossref_primary_10_1016_j_ultsonch_2020_105167 crossref_primary_10_1111_wej_12577 crossref_primary_10_1016_j_fuel_2023_127661 crossref_primary_10_1016_j_ultsonch_2020_104996 crossref_primary_10_1016_j_mineng_2024_108983 crossref_primary_10_1080_19392699_2018_1459582 crossref_primary_10_1021_acs_langmuir_6b01620 crossref_primary_10_1039_D2NA00009A crossref_primary_10_1016_j_ultsonch_2018_05_038 crossref_primary_10_1039_C8RA07952H crossref_primary_10_1016_j_mineng_2021_106799 crossref_primary_10_1039_D1CP01279G crossref_primary_10_1021_acsestengg_2c00117 crossref_primary_10_1016_j_mineng_2018_07_011 crossref_primary_10_1016_j_molliq_2023_121242 crossref_primary_10_1016_j_ces_2022_117693 crossref_primary_10_1021_acs_langmuir_8b03927 crossref_primary_10_1002_aic_16604 crossref_primary_10_1016_j_jconrel_2021_09_032 crossref_primary_10_1016_j_ijmst_2018_08_011 crossref_primary_10_1080_09593330_2019_1650123 crossref_primary_10_1139_er_2021_0127 crossref_primary_10_1002_elps_202100171 crossref_primary_10_3390_nano10071362 crossref_primary_10_1016_j_mineng_2018_08_020 crossref_primary_10_1007_s12209_020_00263_7 crossref_primary_10_14356_kona_2024004 crossref_primary_10_1016_j_geothermics_2020_101962 crossref_primary_10_1016_j_mineng_2017_06_020 crossref_primary_10_1021_acs_iecr_1c01233 crossref_primary_10_3390_min8070264 crossref_primary_10_1021_acs_langmuir_1c00469 crossref_primary_10_1021_acs_langmuir_2c03027 crossref_primary_10_1007_s12613_022_2450_3 crossref_primary_10_1093_chemle_upae145 crossref_primary_10_1039_C9RA05868K crossref_primary_10_1039_D1RA04890B crossref_primary_10_3390_compounds4030035 crossref_primary_10_1016_j_fuel_2022_127370 crossref_primary_10_1021_acs_langmuir_0c00359 crossref_primary_10_1016_j_colsurfa_2021_127866 crossref_primary_10_1016_j_mineng_2023_108438 crossref_primary_10_1016_j_mineng_2024_109030 crossref_primary_10_1016_j_ultsonch_2019_01_013 crossref_primary_10_1016_j_jhazmat_2020_123759 crossref_primary_10_1016_j_colsurfa_2014_11_043 crossref_primary_10_1016_j_ultsonch_2024_107198 crossref_primary_10_1016_j_mineng_2024_108610 crossref_primary_10_1021_acs_langmuir_8b01724 crossref_primary_10_1016_j_ultsonch_2018_10_021 crossref_primary_10_1016_j_colsurfa_2024_133166 crossref_primary_10_1021_acs_langmuir_9b00507 crossref_primary_10_1007_s11433_020_1538_0 crossref_primary_10_1016_j_cep_2023_109401 crossref_primary_10_1016_j_jcis_2019_05_014 |
Cites_doi | 10.1016/S0301-7516(01)00064-3 10.1103/PhysRevLett.107.116101 10.1080/01496390701747853 10.1016/j.cocis.2011.01.010 10.1016/0021-9797(81)90304-0 10.1021/jp0610158 10.1016/j.minpro.2008.09.003 10.1016/j.cocis.2004.06.002 10.1002/cjce.5450650514 10.1016/j.jcis.2007.01.014 10.1016/j.minpro.2005.07.002 10.1002/cjce.5450850519 10.1002/cjce.5450680307 10.1016/j.minpro.2010.10.006 10.1007/BF02830128 10.1006/jcis.2001.7842 10.1016/j.minpro.2007.04.002 10.1016/S0378-3820(02)00224-2 10.1080/19392699.2013.810623 10.1006/jcis.1997.5361 10.1016/0021-9797(78)90256-4 10.1016/j.minpro.2005.01.004 10.1016/S0001-8686(03)00037-X 10.1252/jcej.26.7 10.1016/S0001-8686(99)00014-7 10.1016/S0378-4371(02)01191-3 10.1103/PhysRevLett.108.104501 10.1006/jcis.1999.6663 10.1016/0021-9797(83)90196-0 10.1016/0021-9797(86)90178-5 10.1021/jp906978v 10.1179/cmq.2010.49.4.325 10.1016/j.colsurfa.2005.06.063 10.1016/j.cis.2010.01.006 10.1016/0021-9797(78)90036-X 10.1016/S1452-3981(23)14725-0 10.1016/j.minpro.2013.04.016 10.1016/j.cplett.2008.04.099 10.1016/j.jcis.2012.08.056 10.1016/j.colsurfa.2012.07.025 10.1006/jcis.2002.8471 10.1016/j.ces.2009.10.003 10.1016/j.colsurfa.2010.03.005 10.1021/jp0445270 10.1016/j.minpro.2006.07.019 10.1006/jcis.1996.0479 10.1016/j.minpro.2013.07.002 10.1016/j.memsci.2006.04.007 10.1016/0021-9797(92)90193-P 10.1039/b901806a 10.1016/S0001-8686(01)00083-5 10.1016/S0021-9797(03)00086-9 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.mineng.2014.02.002 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
EndPage | 40 |
ExternalDocumentID | 10_1016_j_mineng_2014_02_002 S0892687514000399 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SSG SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c405t-bfbf4fc69df64df429ed15a301fd62abe9a57816d13a65aa06c1e54ddd36a6c93 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Fri Jul 11 03:06:51 EDT 2025 Tue Jul 01 01:13:20 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Fri Feb 23 02:35:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flotation Stability SDS Size DAF DAH Surfactants Psat DTAC Qsat Zeta potential IEP Nanobubbles EDA3B |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-bfbf4fc69df64df429ed15a301fd62abe9a57816d13a65aa06c1e54ddd36a6c93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1551080151 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1551080151 crossref_citationtrail_10_1016_j_mineng_2014_02_002 crossref_primary_10_1016_j_mineng_2014_02_002 elsevier_sciencedirect_doi_10_1016_j_mineng_2014_02_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2014 2014-06-00 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
PublicationDecade | 2010 |
PublicationTitle | Minerals engineering |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Han, Dockko (b0085) 1998; 2 Schramm, Stasiuk, Turner (b0190) 2003; 80 Fan, Tao, Honaker, Luo (b0050) 2010; 20 Kukizaki, Goto (b0115) 2006; 281 Yoon, Yordan (b0255) 1986; 113 Lima, Boström, Sernelius, Horinek, Netz, Biscaia, Kunz, Tavares (b0285) 2008; 458 Elmahdy, Mirnezami, Finch (b0045) 2008; 89 Collins, Motarjemi, Jameson (b0030) 1978; 63 Phianmongkhol, Varley (b0160) 2003; 260 Seddon, Zandvliet, Lohse (b0195) 2011; 107 Ushikubo, Furukawa, Nagakawa, Enari, Makino, Kawagoe, Shiina, Oshita (b0230) 2010; 361 Usui, Sasaki (b0240) 1977; 65 Castro, Miranda, Toledo, Laskowski (b0020) 2013; 124 Okada, Akagi, Kogure, Yoshioka (b9025) 1990; 68 Usui, Sasaki, Matsukawa (b0245) 1981; 81 Sobhy, A. 2013. Cavitation nanobubble enhanced flotation process for more efficient coal recovery. Ph.D Thesis, College of Engineering-University of Kentucky, 145p. Kubota, Hayashi, Inaoka (b0105) 1983; 95 Ohgaki, Khan, Joden, Tsuji, Nakagawa (b0150) 2010; 65 Sobhy, Tao (b0210) 2013; 33 Fan, Tao (b9005) 2008; 43 Uddin, Jin, Mirnezami, Finch (b0235) 2013; 389 Craig (b0035) 2004; 9 Paluch (b0155) 2000; 84 Yang, Dabros, Li, Czarnecki, Masliyah (b0250) 2001; 243 Gontijo, De, Fornasiero, Ralston (b0075) 2007; 85 Schramm, Smith (b0185) 1987; 65 Rodrigues, Rubio (b0165) 2007; 82 Sobhy, Tao (b0205) 2013; 124 Fan, M., Chao, Y., Tao, D., 2012. Fundamental studies in nanobubble generation and applications in flotation. SME-Meeting, pp. 457–469. Oliveira, Rubio (b9030) 2011; 98 Weijs, Lohse (b0260) 2012; 108 Hampton, Nguyen (b0080) 2010; 154 Zimmerman, Tesar, Bandulasena (b0275) 2011; 16 Li, Somasundaran (b0125) 1992; 148 Fan, Tao, Honaker, Luo (b0055) 2010; 20 Agarwal, A., 2005. An experimental study of nanobubbles on hydrophobic surfaces. MSc thesis, Citable URI (December 2013) Jameson (b0090) 2010; 4 Schubert (b0220) 2005; 78 Creux, Lachaise, Graciaa, Beattie, Djerdjev (b0040) 2009; 113 Massachusetts Institute of Technology-MIT. Dept. of Mechanical Engineering. Publisher: MIT. Rubio, Capponi, Rodrigues, Matiolo (b0170) 2007; 84 Cho, Laskowski (b9000) 2002; 64 Attard, Moody, Tyrrell (b0015) 2002; 314 Fan, Tao, Honaker, Luo (b0060) 2010; 20 Preocanin, Selmania, Lindqvist-Reis, Heberling, Kallay, Lutzenkirchen (b8000) 2012; 412 Weihong, Ren, Hu (b9050) 2013; 8 Liu, Zhou, Xu, Masliyah (b0135) 2000; 252 Saulnier, Lachaise, Morel, Graciaa (b0290) 1996; 182 Saulnier, Bouriat, Morel, Lachaise, Graciaa (b0180) 1998; 200 Cho, Kimb, Chuna, Kima (b0025) 2005; 269 Grau, Laskowski, Heiskanen (b9020) 2005; 76 Marcelja (b0140) 2006; 110 Karraker, Radke (b0095) 2002; 96 Laskowski (b0280) 1989 Takahashi (b0225) 2005; 109 Najafi, Drelich, Yeung, Xu, Masliyah (b0145) 2007; 308 Gray-Weale, Beattie (b0070) 2009; 11 Kim, Song, Kim (b0100) 2000; 223 Attard (b0010) 2003; 104 Kubota, Jameson (b0110) 1993; 26 10.1016/j.mineng.2014.02.002_b0200 Cho (10.1016/j.mineng.2014.02.002_b0025) 2005; 269 Saulnier (10.1016/j.mineng.2014.02.002_b0180) 1998; 200 Hampton (10.1016/j.mineng.2014.02.002_b0080) 2010; 154 Jameson (10.1016/j.mineng.2014.02.002_b0090) 2010; 4 Attard (10.1016/j.mineng.2014.02.002_b0010) 2003; 104 10.1016/j.mineng.2014.02.002_b0005 Marcelja (10.1016/j.mineng.2014.02.002_b0140) 2006; 110 Paluch (10.1016/j.mineng.2014.02.002_b0155) 2000; 84 Oliveira (10.1016/j.mineng.2014.02.002_b9030) 2011; 98 Fan (10.1016/j.mineng.2014.02.002_b0055) 2010; 20 Zimmerman (10.1016/j.mineng.2014.02.002_b0275) 2011; 16 Liu (10.1016/j.mineng.2014.02.002_b0135) 2000; 252 Karraker (10.1016/j.mineng.2014.02.002_b0095) 2002; 96 Sobhy (10.1016/j.mineng.2014.02.002_b0210) 2013; 33 Elmahdy (10.1016/j.mineng.2014.02.002_b0045) 2008; 89 Rodrigues (10.1016/j.mineng.2014.02.002_b0165) 2007; 82 Usui (10.1016/j.mineng.2014.02.002_b0240) 1977; 65 Usui (10.1016/j.mineng.2014.02.002_b0245) 1981; 81 Weijs (10.1016/j.mineng.2014.02.002_b0260) 2012; 108 Fan (10.1016/j.mineng.2014.02.002_b0050) 2010; 20 Gray-Weale (10.1016/j.mineng.2014.02.002_b0070) 2009; 11 Gontijo (10.1016/j.mineng.2014.02.002_b0075) 2007; 85 Seddon (10.1016/j.mineng.2014.02.002_b0195) 2011; 107 Collins (10.1016/j.mineng.2014.02.002_b0030) 1978; 63 Phianmongkhol (10.1016/j.mineng.2014.02.002_b0160) 2003; 260 Craig (10.1016/j.mineng.2014.02.002_b0035) 2004; 9 Han (10.1016/j.mineng.2014.02.002_b0085) 1998; 2 Okada (10.1016/j.mineng.2014.02.002_b9025) 1990; 68 Schubert (10.1016/j.mineng.2014.02.002_b0220) 2005; 78 Kubota (10.1016/j.mineng.2014.02.002_b0105) 1983; 95 Fan (10.1016/j.mineng.2014.02.002_b0060) 2010; 20 Cho (10.1016/j.mineng.2014.02.002_b9000) 2002; 64 Najafi (10.1016/j.mineng.2014.02.002_b0145) 2007; 308 Uddin (10.1016/j.mineng.2014.02.002_b0235) 2013; 389 Lima (10.1016/j.mineng.2014.02.002_b0285) 2008; 458 Fan (10.1016/j.mineng.2014.02.002_b9005) 2008; 43 10.1016/j.mineng.2014.02.002_b0065 Preocanin (10.1016/j.mineng.2014.02.002_b8000) 2012; 412 Sobhy (10.1016/j.mineng.2014.02.002_b0205) 2013; 124 Takahashi (10.1016/j.mineng.2014.02.002_b0225) 2005; 109 Rubio (10.1016/j.mineng.2014.02.002_b0170) 2007; 84 Kubota (10.1016/j.mineng.2014.02.002_b0110) 1993; 26 Kim (10.1016/j.mineng.2014.02.002_b0100) 2000; 223 Ohgaki (10.1016/j.mineng.2014.02.002_b0150) 2010; 65 Yang (10.1016/j.mineng.2014.02.002_b0250) 2001; 243 Ushikubo (10.1016/j.mineng.2014.02.002_b0230) 2010; 361 Attard (10.1016/j.mineng.2014.02.002_b0015) 2002; 314 Schramm (10.1016/j.mineng.2014.02.002_b0185) 1987; 65 Yoon (10.1016/j.mineng.2014.02.002_b0255) 1986; 113 Li (10.1016/j.mineng.2014.02.002_b0125) 1992; 148 Saulnier (10.1016/j.mineng.2014.02.002_b0290) 1996; 182 Laskowski (10.1016/j.mineng.2014.02.002_b0280) 1989 Creux (10.1016/j.mineng.2014.02.002_b0040) 2009; 113 Castro (10.1016/j.mineng.2014.02.002_b0020) 2013; 124 Grau (10.1016/j.mineng.2014.02.002_b9020) 2005; 76 Kukizaki (10.1016/j.mineng.2014.02.002_b0115) 2006; 281 Schramm (10.1016/j.mineng.2014.02.002_b0190) 2003; 80 Weihong (10.1016/j.mineng.2014.02.002_b9050) 2013; 8 |
References_xml | – volume: 148 start-page: 587 year: 1992 end-page: 591 ident: b0125 article-title: Reversal of bubble charge in multivalent inorganic salt solutions-effect of aluminum publication-title: J. Colloid Interface Sci. – volume: 308 start-page: 344 year: 2007 end-page: 350 ident: b0145 article-title: A novel method of measuring electrophoretic mobility of gas bubbles publication-title: J. Colloid Interface Sci. – volume: 458 start-page: 299 year: 2008 end-page: 302 ident: b0285 article-title: Forces between air–bubbles in electrolyte solution publication-title: Chem. Phys. Lett. – volume: 33 start-page: 242 year: 2013 end-page: 256 ident: b0210 article-title: High-efficiency nanobubble coal flotation publication-title: Int. J. Coal Prep. Utilization – volume: 64 start-page: 69 year: 2002 end-page: 80 ident: b9000 article-title: Effect of flotation frothers on bubble size and foam stability publication-title: Int. J. Mineral Process. – volume: 20 start-page: 1 year: 2010 end-page: 19 ident: b0050 article-title: Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on the properties of microbubble and millimeter scale bubble solutions publication-title: Mining Sci. Technol. – volume: 85 start-page: 739 year: 2007 end-page: 747 ident: b0075 article-title: The limits of fine and coarse particle flotation publication-title: The Canadian J. Chem. Eng. – volume: 361 start-page: 31 year: 2010 end-page: 37 ident: b0230 article-title: Evidence of the existence and the stability of nano-bubbles in water publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects – start-page: 15 year: 1989 end-page: 34 ident: b0280 article-title: The colloid chemistry and flotation properties of primary aliphatic amines publication-title: Challenges in Mineral Processing – volume: 110 start-page: 13062 year: 2006 end-page: 13067 ident: b0140 article-title: Selective coalescence of bubbles in simple electrolytes publication-title: J. Phys. Chem. B – volume: 65 start-page: 1296 year: 2010 end-page: 1300 ident: b0150 article-title: Physicochemical approach to nanobubble solutions publication-title: Chem. Eng. Sci. – volume: 243 start-page: 128 year: 2001 end-page: 135 ident: b0250 article-title: Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method publication-title: J. Colloid Interface Sci. – volume: 200 start-page: 81 year: 1998 end-page: 85 ident: b0180 article-title: Zeta potential of air bubbles in solutions of binary mixtures of surfactants (mono distributed nonionic/anionic surfactant mixtures) publication-title: J. Colloid Interface Sci. – volume: 2 start-page: 461 year: 1998 end-page: 466 ident: b0085 article-title: Zeta potential measurement of bubbles in DAF process and its effect on the removal efficiency publication-title: KSCE J. Civil Eng. – volume: 68 start-page: 393 year: 1990 end-page: 399 ident: b9025 article-title: Effect on surface charges of bubbles and fine particles on air flotation process publication-title: The Canadian J. Chem. Eng. – volume: 81 start-page: 80 year: 1981 end-page: 84 ident: b0245 article-title: The dependence of zeta potential on bubble size as determined by the Dorn effect publication-title: J. Colloid Interface Sci. – volume: 65 start-page: 799 year: 1987 end-page: 811 ident: b0185 article-title: Two classes of anionic surfactants and their significance in hot water processing of oil sands publication-title: Can. J. Chem. Eng. – volume: 154 start-page: 30 year: 2010 end-page: 55 ident: b0080 article-title: Nanobubbles and the nanobubble bridging capillary force publication-title: Adv. Colloid Interface Sci. – volume: 182 start-page: 395 year: 1996 end-page: 399 ident: b0290 article-title: Zeta potential of air bubbles in surfactant solutions publication-title: J. Colloid Interface Sci. – volume: 98 start-page: 118 year: 2011 end-page: 123 ident: b9030 article-title: Zeta potential of single and polymer coated microbubbles using an adapted microelectrophoresis technique publication-title: Int. J. Mineral Process. – volume: 412 start-page: 120 year: 2012 end-page: 128 ident: b8000 article-title: Surface charge at Teflon/aqueous solution of potassium chloride interfaces publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects – volume: 20 start-page: 159 year: 2010 end-page: 177 ident: b0055 article-title: Nanobubble generation and its application in froth flotation (part II): fundamental study and theoretical analysis publication-title: Mining Sci. Technol. – volume: 76 start-page: 225 year: 2005 end-page: 233 ident: b9020 article-title: Effect of frothers on bubble size publication-title: Int. J. Mineral Process. – volume: 113 start-page: 14146 year: 2009 end-page: 14150 ident: b0040 article-title: Strong specific hydroxide ion binding at the pristine oil/water and air/water Interfaces publication-title: J. Phys. Chem. B – volume: 124 start-page: 109 year: 2013 end-page: 116 ident: b0205 article-title: Nanobubble column flotation of fine coal particles and associated fundamentals publication-title: Int. J. Mineral Process. – volume: 96 start-page: 231 year: 2002 end-page: 264 ident: b0095 article-title: Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment publication-title: Adv. Colloid Interface Sci. – volume: 314 start-page: 696 year: 2002 end-page: 705 ident: b0015 article-title: Nanobubbles: the big picture publication-title: Physica A – volume: 11 start-page: 10994 year: 2009 end-page: 11005 ident: b0070 article-title: An explanation for the charge on water’s surface publication-title: Phys. Chem. Chem. Phys. – reference: Sobhy, A. 2013. Cavitation nanobubble enhanced flotation process for more efficient coal recovery. Ph.D Thesis, College of Engineering-University of Kentucky, 145p. – volume: 260 start-page: 332 year: 2003 end-page: 338 ident: b0160 article-title: Zeta potential measurement for air bubbles in protein solutions publication-title: J. Colloid Interface Sci. – volume: 109 start-page: 21858 year: 2005 end-page: 21864 ident: b0225 article-title: Potential of microbubbles in aqueous solutions: electrical properties of the gas–water interface publication-title: J. Phys. Chem. B – volume: 16 start-page: 350 year: 2011 end-page: 356 ident: b0275 article-title: Towards energy efficient nanobubble generation with fluidic oscillation publication-title: Curr. Opin. Colloid Interface Sci. – volume: 223 start-page: 285 year: 2000 end-page: 291 ident: b0100 article-title: Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions publication-title: J. Colloid Interface Sci. – volume: 43 start-page: 1 year: 2008 end-page: 10 ident: b9005 article-title: A study on nanobubble enhanced coarse phosphate froth flotation publication-title: Separ. Sci. Technol. – volume: 9 start-page: 178 year: 2004 end-page: 184 ident: b0035 article-title: Bubble coalescence and specific-ion effects publication-title: Curr. Opin. Colloid Interface Sci. – reference: Fan, M., Chao, Y., Tao, D., 2012. Fundamental studies in nanobubble generation and applications in flotation. SME-Meeting, pp. 457–469. – volume: 65 start-page: 36 year: 1977 end-page: 45 ident: b0240 article-title: Zeta potential measurements of bubbles in aqueous surfactant solutions publication-title: J. Colloid Interface Sci. – volume: 78 start-page: 11 year: 2005 end-page: 21 ident: b0220 article-title: Nanobubbles, hydrophobic effect, heterocoagulation and hydrodynamics in flotation publication-title: Int. J. Mineral Process. – volume: 8 start-page: 5828 year: 2013 end-page: 5837 ident: b9050 article-title: Effect of Water Chemistry on Zeta Potential of Air Bubbles publication-title: Int. J. Electrochem. Sci. – volume: 104 start-page: 75 year: 2003 end-page: 95 ident: b0010 article-title: Nanobubbles and the hydrophobic attraction publication-title: Adv. Colloid Interface Sci. – volume: 84 start-page: 27 year: 2000 end-page: 45 ident: b0155 article-title: Electrical properties of free surface of water and aqueous solutions publication-title: Adv. Colloid Interface Sci. – reference: Agarwal, A., 2005. An experimental study of nanobubbles on hydrophobic surfaces. MSc thesis, Citable URI (December 2013): < – volume: 84 start-page: 41 year: 2007 end-page: 50 ident: b0170 article-title: Enhanced flotation of sulfide fines using the emulsified oil extender technique publication-title: Int. J. Mineral Process. – reference: >: Massachusetts Institute of Technology-MIT. Dept. of Mechanical Engineering. Publisher: MIT. – volume: 82 start-page: 1 year: 2007 end-page: 13 ident: b0165 article-title: DAF-dissolved air flotation: potential applications in the mining and mineral processing industry publication-title: Int. J. Mineral Process. – volume: 20 start-page: 0317 year: 2010 end-page: 0338 ident: b0060 article-title: Nanobubble generation and its application in froth flotation (part III): specially designed laboratory scale column flotation of phosphate publication-title: Mining Sci. Technol. – volume: 95 start-page: 362 year: 1983 end-page: 369 ident: b0105 article-title: A convenient experimental method for measurement of zeta-potentials generating on the bubble suspended in aqueous surfactant solutions publication-title: J. Colloid Interface Sci. – volume: 63 start-page: 69 year: 1978 end-page: 75 ident: b0030 article-title: A method for measuring the charge on small gas bubbles publication-title: J. Colloid Interface Sci. – volume: 80 start-page: 101 year: 2003 end-page: 118 ident: b0190 article-title: The influence of interfacial tension in the recovery of bitumen by water-based conditioning and flotation of Athabasca oil sands publication-title: Fuel Process. Technol. – volume: 269 start-page: 28 year: 2005 end-page: 34 ident: b0025 article-title: Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects – volume: 113 start-page: 430 year: 1986 end-page: 438 ident: b0255 article-title: Zeta-potential measurements on microbubbles generated using various surfactants publication-title: J. Colloid Interface Sci. – volume: 124 start-page: 8 year: 2013 end-page: 14 ident: b0020 article-title: Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater publication-title: Int. J. Mineral Process. – volume: 4 start-page: 325 year: 2010 end-page: 330 ident: b0090 article-title: Advances in fine and coarse particle flotation publication-title: Can. Metall. Q. – volume: 107 start-page: 116101 year: 2011 ident: b0195 article-title: Knudsen gas provides nanobubble stability publication-title: Phys. Rev. Lett. – volume: 389 start-page: 298 year: 2013 end-page: 305 ident: b0235 article-title: An apparatus to measure electrical charge of bubble swarms publication-title: J. Colloid Interface Sci. – volume: 108 start-page: 104501 year: 2012 ident: b0260 article-title: Why surface nanobubbles live for hours publication-title: Phys. Rev. Lett. – volume: 26 start-page: 7 year: 1993 end-page: 12 ident: b0110 article-title: A study of the electrophoretic mobility of a very small inert gas bubble suspended in aqueous inorganic electrolyte and cationic surfactant solutions publication-title: J. Chem. Eng. Japan – volume: 89 start-page: 40 year: 2008 end-page: 43 ident: b0045 article-title: Zeta potential of air bubbles in presence of frothers publication-title: Int. J. Mineral Process. – volume: 281 start-page: 386 year: 2006 end-page: 396 ident: b0115 article-title: Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes publication-title: J. Membr. Sci. – volume: 252 start-page: 409 year: 2000 end-page: 418 ident: b0135 article-title: Bitumen-clay interactions in aqueous media studied by zeta potential distribution measurement publication-title: J. Colloid Interface Sci. – volume: 64 start-page: 69 year: 2002 ident: 10.1016/j.mineng.2014.02.002_b9000 article-title: Effect of flotation frothers on bubble size and foam stability publication-title: Int. J. Mineral Process. doi: 10.1016/S0301-7516(01)00064-3 – volume: 20 start-page: 159 issue: 2 year: 2010 ident: 10.1016/j.mineng.2014.02.002_b0055 article-title: Nanobubble generation and its application in froth flotation (part II): fundamental study and theoretical analysis publication-title: Mining Sci. Technol. – volume: 107 start-page: 116101 year: 2011 ident: 10.1016/j.mineng.2014.02.002_b0195 article-title: Knudsen gas provides nanobubble stability publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.116101 – volume: 43 start-page: 1 year: 2008 ident: 10.1016/j.mineng.2014.02.002_b9005 article-title: A study on nanobubble enhanced coarse phosphate froth flotation publication-title: Separ. Sci. Technol. doi: 10.1080/01496390701747853 – volume: 16 start-page: 350 year: 2011 ident: 10.1016/j.mineng.2014.02.002_b0275 article-title: Towards energy efficient nanobubble generation with fluidic oscillation publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2011.01.010 – volume: 81 start-page: 80 issue: 1 year: 1981 ident: 10.1016/j.mineng.2014.02.002_b0245 article-title: The dependence of zeta potential on bubble size as determined by the Dorn effect publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(81)90304-0 – volume: 110 start-page: 13062 year: 2006 ident: 10.1016/j.mineng.2014.02.002_b0140 article-title: Selective coalescence of bubbles in simple electrolytes publication-title: J. Phys. Chem. B doi: 10.1021/jp0610158 – volume: 89 start-page: 40 issue: 1–4 year: 2008 ident: 10.1016/j.mineng.2014.02.002_b0045 article-title: Zeta potential of air bubbles in presence of frothers publication-title: Int. J. Mineral Process. doi: 10.1016/j.minpro.2008.09.003 – volume: 9 start-page: 178 issue: 1–2 year: 2004 ident: 10.1016/j.mineng.2014.02.002_b0035 article-title: Bubble coalescence and specific-ion effects publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2004.06.002 – volume: 65 start-page: 799 issue: 5 year: 1987 ident: 10.1016/j.mineng.2014.02.002_b0185 article-title: Two classes of anionic surfactants and their significance in hot water processing of oil sands publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450650514 – volume: 308 start-page: 344 issue: 2 year: 2007 ident: 10.1016/j.mineng.2014.02.002_b0145 article-title: A novel method of measuring electrophoretic mobility of gas bubbles publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.01.014 – volume: 78 start-page: 11 year: 2005 ident: 10.1016/j.mineng.2014.02.002_b0220 article-title: Nanobubbles, hydrophobic effect, heterocoagulation and hydrodynamics in flotation publication-title: Int. J. Mineral Process. doi: 10.1016/j.minpro.2005.07.002 – volume: 85 start-page: 739 issue: 5 year: 2007 ident: 10.1016/j.mineng.2014.02.002_b0075 article-title: The limits of fine and coarse particle flotation publication-title: The Canadian J. Chem. Eng. doi: 10.1002/cjce.5450850519 – volume: 68 start-page: 393 issue: 3 year: 1990 ident: 10.1016/j.mineng.2014.02.002_b9025 article-title: Effect on surface charges of bubbles and fine particles on air flotation process publication-title: The Canadian J. Chem. Eng. doi: 10.1002/cjce.5450680307 – volume: 98 start-page: 118 year: 2011 ident: 10.1016/j.mineng.2014.02.002_b9030 article-title: Zeta potential of single and polymer coated microbubbles using an adapted microelectrophoresis technique publication-title: Int. J. Mineral Process. doi: 10.1016/j.minpro.2010.10.006 – volume: 2 start-page: 461 issue: 4 year: 1998 ident: 10.1016/j.mineng.2014.02.002_b0085 article-title: Zeta potential measurement of bubbles in DAF process and its effect on the removal efficiency publication-title: KSCE J. Civil Eng. doi: 10.1007/BF02830128 – volume: 243 start-page: 128 issue: 1 year: 2001 ident: 10.1016/j.mineng.2014.02.002_b0250 article-title: Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2001.7842 – volume: 84 start-page: 41 year: 2007 ident: 10.1016/j.mineng.2014.02.002_b0170 article-title: Enhanced flotation of sulfide fines using the emulsified oil extender technique publication-title: Int. J. Mineral Process. doi: 10.1016/j.minpro.2007.04.002 – volume: 80 start-page: 101 issue: 2 year: 2003 ident: 10.1016/j.mineng.2014.02.002_b0190 article-title: The influence of interfacial tension in the recovery of bitumen by water-based conditioning and flotation of Athabasca oil sands publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(02)00224-2 – volume: 33 start-page: 242 year: 2013 ident: 10.1016/j.mineng.2014.02.002_b0210 article-title: High-efficiency nanobubble coal flotation publication-title: Int. J. Coal Prep. Utilization doi: 10.1080/19392699.2013.810623 – volume: 200 start-page: 81 issue: 1 year: 1998 ident: 10.1016/j.mineng.2014.02.002_b0180 article-title: Zeta potential of air bubbles in solutions of binary mixtures of surfactants (mono distributed nonionic/anionic surfactant mixtures) publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1997.5361 – volume: 65 start-page: 36 issue: 1 year: 1977 ident: 10.1016/j.mineng.2014.02.002_b0240 article-title: Zeta potential measurements of bubbles in aqueous surfactant solutions publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(78)90256-4 – volume: 76 start-page: 225 year: 2005 ident: 10.1016/j.mineng.2014.02.002_b9020 article-title: Effect of frothers on bubble size publication-title: Int. J. Mineral Process. doi: 10.1016/j.minpro.2005.01.004 – volume: 104 start-page: 75 issue: 1–3 year: 2003 ident: 10.1016/j.mineng.2014.02.002_b0010 article-title: Nanobubbles and the hydrophobic attraction publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(03)00037-X – volume: 26 start-page: 7 issue: 1 year: 1993 ident: 10.1016/j.mineng.2014.02.002_b0110 article-title: A study of the electrophoretic mobility of a very small inert gas bubble suspended in aqueous inorganic electrolyte and cationic surfactant solutions publication-title: J. Chem. Eng. Japan doi: 10.1252/jcej.26.7 – volume: 84 start-page: 27 issue: 1–3 year: 2000 ident: 10.1016/j.mineng.2014.02.002_b0155 article-title: Electrical properties of free surface of water and aqueous solutions publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(99)00014-7 – volume: 314 start-page: 696 year: 2002 ident: 10.1016/j.mineng.2014.02.002_b0015 article-title: Nanobubbles: the big picture publication-title: Physica A doi: 10.1016/S0378-4371(02)01191-3 – volume: 108 start-page: 104501 year: 2012 ident: 10.1016/j.mineng.2014.02.002_b0260 article-title: Why surface nanobubbles live for hours publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.104501 – ident: 10.1016/j.mineng.2014.02.002_b0005 – volume: 223 start-page: 285 year: 2000 ident: 10.1016/j.mineng.2014.02.002_b0100 article-title: Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1999.6663 – volume: 95 start-page: 362 issue: 2 year: 1983 ident: 10.1016/j.mineng.2014.02.002_b0105 article-title: A convenient experimental method for measurement of zeta-potentials generating on the bubble suspended in aqueous surfactant solutions publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(83)90196-0 – volume: 113 start-page: 430 issue: 2 year: 1986 ident: 10.1016/j.mineng.2014.02.002_b0255 article-title: Zeta-potential measurements on microbubbles generated using various surfactants publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(86)90178-5 – volume: 113 start-page: 14146 year: 2009 ident: 10.1016/j.mineng.2014.02.002_b0040 article-title: Strong specific hydroxide ion binding at the pristine oil/water and air/water Interfaces publication-title: J. Phys. Chem. B doi: 10.1021/jp906978v – ident: 10.1016/j.mineng.2014.02.002_b0200 – volume: 4 start-page: 325 issue: 6 year: 2010 ident: 10.1016/j.mineng.2014.02.002_b0090 article-title: Advances in fine and coarse particle flotation publication-title: Can. Metall. Q. doi: 10.1179/cmq.2010.49.4.325 – volume: 269 start-page: 28 year: 2005 ident: 10.1016/j.mineng.2014.02.002_b0025 article-title: Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2005.06.063 – volume: 154 start-page: 30 issue: 1/2 year: 2010 ident: 10.1016/j.mineng.2014.02.002_b0080 article-title: Nanobubbles and the nanobubble bridging capillary force publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2010.01.006 – volume: 63 start-page: 69 issue: 1 year: 1978 ident: 10.1016/j.mineng.2014.02.002_b0030 article-title: A method for measuring the charge on small gas bubbles publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(78)90036-X – volume: 8 start-page: 5828 year: 2013 ident: 10.1016/j.mineng.2014.02.002_b9050 article-title: Effect of Water Chemistry on Zeta Potential of Air Bubbles publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)14725-0 – volume: 124 start-page: 109 year: 2013 ident: 10.1016/j.mineng.2014.02.002_b0205 article-title: Nanobubble column flotation of fine coal particles and associated fundamentals publication-title: Int. J. Mineral Process. doi: 10.1016/j.minpro.2013.04.016 – volume: 458 start-page: 299 year: 2008 ident: 10.1016/j.mineng.2014.02.002_b0285 article-title: Forces between air–bubbles in electrolyte solution publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2008.04.099 – volume: 389 start-page: 298 year: 2013 ident: 10.1016/j.mineng.2014.02.002_b0235 article-title: An apparatus to measure electrical charge of bubble swarms publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.08.056 – volume: 412 start-page: 120 year: 2012 ident: 10.1016/j.mineng.2014.02.002_b8000 article-title: Surface charge at Teflon/aqueous solution of potassium chloride interfaces publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2012.07.025 – volume: 252 start-page: 409 issue: 2 year: 2000 ident: 10.1016/j.mineng.2014.02.002_b0135 article-title: Bitumen-clay interactions in aqueous media studied by zeta potential distribution measurement publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2002.8471 – volume: 65 start-page: 1296 year: 2010 ident: 10.1016/j.mineng.2014.02.002_b0150 article-title: Physicochemical approach to nanobubble solutions publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.10.003 – volume: 361 start-page: 31 year: 2010 ident: 10.1016/j.mineng.2014.02.002_b0230 article-title: Evidence of the existence and the stability of nano-bubbles in water publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2010.03.005 – volume: 109 start-page: 21858 year: 2005 ident: 10.1016/j.mineng.2014.02.002_b0225 article-title: Potential of microbubbles in aqueous solutions: electrical properties of the gas–water interface publication-title: J. Phys. Chem. B doi: 10.1021/jp0445270 – volume: 82 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.mineng.2014.02.002_b0165 article-title: DAF-dissolved air flotation: potential applications in the mining and mineral processing industry publication-title: Int. J. Mineral Process. doi: 10.1016/j.minpro.2006.07.019 – volume: 182 start-page: 395 issue: 2 year: 1996 ident: 10.1016/j.mineng.2014.02.002_b0290 article-title: Zeta potential of air bubbles in surfactant solutions publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0479 – volume: 20 start-page: 0317 issue: 3 year: 2010 ident: 10.1016/j.mineng.2014.02.002_b0060 article-title: Nanobubble generation and its application in froth flotation (part III): specially designed laboratory scale column flotation of phosphate publication-title: Mining Sci. Technol. – volume: 124 start-page: 8 year: 2013 ident: 10.1016/j.mineng.2014.02.002_b0020 article-title: Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater publication-title: Int. J. Mineral Process. doi: 10.1016/j.minpro.2013.07.002 – volume: 281 start-page: 386 year: 2006 ident: 10.1016/j.mineng.2014.02.002_b0115 article-title: Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.04.007 – volume: 20 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.mineng.2014.02.002_b0050 article-title: Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on the properties of microbubble and millimeter scale bubble solutions publication-title: Mining Sci. Technol. – volume: 148 start-page: 587 issue: 2 year: 1992 ident: 10.1016/j.mineng.2014.02.002_b0125 article-title: Reversal of bubble charge in multivalent inorganic salt solutions-effect of aluminum publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(92)90193-P – volume: 11 start-page: 10994 year: 2009 ident: 10.1016/j.mineng.2014.02.002_b0070 article-title: An explanation for the charge on water’s surface publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b901806a – ident: 10.1016/j.mineng.2014.02.002_b0065 – volume: 96 start-page: 231 issue: 1–3 year: 2002 ident: 10.1016/j.mineng.2014.02.002_b0095 article-title: Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(01)00083-5 – start-page: 15 year: 1989 ident: 10.1016/j.mineng.2014.02.002_b0280 article-title: The colloid chemistry and flotation properties of primary aliphatic amines – volume: 260 start-page: 332 issue: 2 year: 2003 ident: 10.1016/j.mineng.2014.02.002_b0160 article-title: Zeta potential measurement for air bubbles in protein solutions publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(03)00086-9 |
SSID | ssj0005789 |
Score | 2.5083797 |
Snippet | •Air nanobubbles were formed after depressurisation of saturated air in reagentized solutions.•Zeta potential values displayed sigmoidal pH behaviour between... Nanobubbles, generations forms, basic studies and applications constitute a growing research area, included their usage in advanced mineral flotation. Yet,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 33 |
SubjectTerms | Charging Coalescence Flotation Liquids Minerals Nanobubbles Nanostructure Size Stability Surfactants Zeta potential |
Title | On the nanobubbles interfacial properties and future applications in flotation |
URI | https://dx.doi.org/10.1016/j.mineng.2014.02.002 https://www.proquest.com/docview/1551080151 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn_gsEbzG7iOb7R5LsVTFetBCb2GySaRS09LH1d_uZB9SBSl43N3JsnzJznxJZr4QcpMprgQkwATwgPFEByxLQLO43cZoqzBCFYs5TwPRH_KHUTJqkG5dC-PTKivfX_r0wltXd1oVmq3ZeNx6CdpZJJBu4xTBV5j6Ij7OUz_Kbz_X0jzS4hg8b8y8dV0-V-R4fSCTc28-wYuXyp3RX-Hpl6Muok9vn-xVtJF2yi87IA3jDsnumpjgERk8O4psjjpwU7VSamIW1ItBzC34ZXE688vuc6-fSsFpWoqJ0PUNbDSndjItN-ePybB399rts-q0BJYj6VoyZZXlNheZtoJri3HG6DAB_IGtFhEokwFiEQodxiASgEDkoUm41joWIPIsPiFbburMKaGQ5thrSRoqg4TFpJBFxVQyRi6IjMmekbgGSeaVlLg_0WIi65yxd1lCKz20MogkQntG2HerWSmlscE-rfGXP4aERG-_oeV13V34dOG3QMCZ6WohPUFEjow05_zfb78gO_6qzBe7JFvL-cpcITNZqmYx9Jpku3P_2B98ARDZ46E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA4uB_UgrrgbwWvsLJlM5yhFqVs92EJv4WWSSKWmpcvV3-7LLFIFEbxOXobhS_LeN8nL9wi5zBRXAhJgAnjAeKIDliWgWdxsYrRVGKGKzZynjmj3-H0_6S-RVn0XxqdVVr6_9OmFt66eNCo0G-PBoPESNLNIIN3GXwR_wzRbJqscl68vY3D1sZDnkRZ18Lw18-b1_bkiyesdqZx79RlevJTujH6LTz88dRF-brfIZsUb6XX5adtkybgdsrGgJrhLOs-OIp2jDtxIzZUamin1ahATC35fnI79vvvEC6hScJqWaiJ08QQbzakdjsrT-T3Su73pttqsKpfAcmRdM6asstzmItNWcG0x0BgdJoAr2GoRgTIZIBah0GEMIgEIRB6ahGutYwEiz-J9suJGzhwQCmmOw5akoTLIWEwKWVT8S8ZIBpEy2UMS1yDJvNIS9yUthrJOGnuTJbTSQyuDSCK0h4R99RqXWhp_2Kc1_vLbnJDo7v_oeVEPF7ZO_RkIODOaT6VniEiSkecc_fvt52St3X16lI93nYdjsu5byuSxE7Iym8zNKdKUmTorpuEnWETlLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+nanobubbles+interfacial+properties+and+future+applications+in+flotation&rft.jtitle=Minerals+engineering&rft.au=Calgaroto%2C+S&rft.au=Wilberg%2C+K+Q&rft.au=Rubio%2C+J&rft.date=2014-06-01&rft.issn=0892-6875&rft.volume=60&rft.spage=33&rft.epage=40&rft_id=info:doi/10.1016%2Fj.mineng.2014.02.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |