On the nanobubbles interfacial properties and future applications in flotation

•Air nanobubbles were formed after depressurisation of saturated air in reagentized solutions.•Zeta potential values displayed sigmoidal pH behaviour between pH 2 (+26mV) and 8.5 (−28mV).•The nanobubbles had an isoelectric point at pH 4.5.•The size of the nanobubbles depended on zeta potentials, big...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 60; pp. 33 - 40
Main Authors Calgaroto, S., Wilberg, K.Q., Rubio, J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Air nanobubbles were formed after depressurisation of saturated air in reagentized solutions.•Zeta potential values displayed sigmoidal pH behaviour between pH 2 (+26mV) and 8.5 (−28mV).•The nanobubbles had an isoelectric point at pH 4.5.•The size of the nanobubbles depended on zeta potentials, bigger at the isoelectric point or ±5mV (750nm).•Highly charged and small nanobubbles were obtained in the presence of surfactants. Nanobubbles, generations forms, basic studies and applications constitute a growing research area, included their usage in advanced mineral flotation. Yet, there are investigation needs for sustainable generation procedures, stability and understanding the nanobubbles interfacial properties and structures. Results proved that a reduction in pressure makes the super-saturated liquid suffers cavitation and nanobubbles were generated. Medium pH and solutions tested were adjusted, in the air saturation vessel, before the nanobubbles were formed, and this allowed to control (in situ) the surface charge/zeta potential-size of the forming nanobubbles. Measurements obtained with a ZetaSizer Nano equipment showed zeta potential values, in the presence of 10−2 molL−1 NaCl, displaying sigmoidal pH behaviour between pH 2 (+26mV) and 8.5 (−28mV); an isoelectric point was attained at pH 4.5 and were positively charged (up to 23mV) in acidic medium, a phenomenon which has not been previously observed. In alkaline medium, bubbles were highly negative zeta potential (−59mV) at pH 10. The double layers appear to play a role in the formation of stable nanobubbles providing a repulsive force, which prevents inter-bubble aggregation and coalescence. Accordingly, the sizes of the nanobubbles depended on their charge and increased with pH, reaching a maximum (720nm) around the isoelectric point (±5mV). Highly charged and small nanobubbles (approximately 150–180nm) were obtained in the presence of surfactants (10−4 molL−1 of alkyl methyl ether monoamine or sodium dodecyl sulphate); the zeta potential values in these experiments followed a similar trend of other reported values, validating the technique used with the nanobubbles sizes varying with pH from 150 to 400nm. Thus, charged and uncharged stable nanobubbles can be tailor-made with or without surfactants and it is expected that their use will broaden options in mineral flotation especially if collectors coated nanobubbles (“bubble-collectors”) were employed. A detailed and updated review on factors involving stability, longevity and coalescence of nanobubbles was made. It is believed that future trend will be on sustainable formation and application of nanobubbles at industrial scale contributing to widen applied research in mineral, materials processing and liquid effluent treatment by advanced flotation.
AbstractList •Air nanobubbles were formed after depressurisation of saturated air in reagentized solutions.•Zeta potential values displayed sigmoidal pH behaviour between pH 2 (+26mV) and 8.5 (−28mV).•The nanobubbles had an isoelectric point at pH 4.5.•The size of the nanobubbles depended on zeta potentials, bigger at the isoelectric point or ±5mV (750nm).•Highly charged and small nanobubbles were obtained in the presence of surfactants. Nanobubbles, generations forms, basic studies and applications constitute a growing research area, included their usage in advanced mineral flotation. Yet, there are investigation needs for sustainable generation procedures, stability and understanding the nanobubbles interfacial properties and structures. Results proved that a reduction in pressure makes the super-saturated liquid suffers cavitation and nanobubbles were generated. Medium pH and solutions tested were adjusted, in the air saturation vessel, before the nanobubbles were formed, and this allowed to control (in situ) the surface charge/zeta potential-size of the forming nanobubbles. Measurements obtained with a ZetaSizer Nano equipment showed zeta potential values, in the presence of 10−2 molL−1 NaCl, displaying sigmoidal pH behaviour between pH 2 (+26mV) and 8.5 (−28mV); an isoelectric point was attained at pH 4.5 and were positively charged (up to 23mV) in acidic medium, a phenomenon which has not been previously observed. In alkaline medium, bubbles were highly negative zeta potential (−59mV) at pH 10. The double layers appear to play a role in the formation of stable nanobubbles providing a repulsive force, which prevents inter-bubble aggregation and coalescence. Accordingly, the sizes of the nanobubbles depended on their charge and increased with pH, reaching a maximum (720nm) around the isoelectric point (±5mV). Highly charged and small nanobubbles (approximately 150–180nm) were obtained in the presence of surfactants (10−4 molL−1 of alkyl methyl ether monoamine or sodium dodecyl sulphate); the zeta potential values in these experiments followed a similar trend of other reported values, validating the technique used with the nanobubbles sizes varying with pH from 150 to 400nm. Thus, charged and uncharged stable nanobubbles can be tailor-made with or without surfactants and it is expected that their use will broaden options in mineral flotation especially if collectors coated nanobubbles (“bubble-collectors”) were employed. A detailed and updated review on factors involving stability, longevity and coalescence of nanobubbles was made. It is believed that future trend will be on sustainable formation and application of nanobubbles at industrial scale contributing to widen applied research in mineral, materials processing and liquid effluent treatment by advanced flotation.
Nanobubbles, generations forms, basic studies and applications constitute a growing research area, included their usage in advanced mineral flotation. Yet, there are investigation needs for sustainable generation procedures, stability and understanding the nanobubbles interfacial properties and structures. Results proved that a reduction in pressure makes the super-saturated liquid suffers cavitation and nanobubbles were generated. Medium pH and solutions tested were adjusted, in the air saturation vessel, before the nanobubbles were formed, and this allowed to control (in situ) the surface charge/zeta potential-size of the forming nanobubbles. Measurements obtained with a ZetaSizer Nano equipment showed zeta potential values, in the presence of 10 super(-) super(2) mol L super(-1) NaCl, displaying sigmoidal pH behaviour between pH 2 (+26 mV) and 8.5 (-28 mV); an isoelectric point was attained at pH 4.5 and were positively charged (up to 23 mV) in acidic medium, a phenomenon which has not been previously observed. In alkaline medium, bubbles were highly negative zeta potential (-59 mV) at pH 10. The double layers appear to play a role in the formation of stable nanobubbles providing a repulsive force, which prevents inter-bubble aggregation and coalescence. Accordingly, the sizes of the nanobubbles depended on their charge and increased with pH, reaching a maximum (720 nm) around the isoelectric point ( plus or minus 5 mV). Highly charged and small nanobubbles (approximately 150-180 nm) were obtained in the presence of surfactants (10 super(-) super(4) mol L super(-1) of alkyl methyl ether monoamine or sodium dodecyl sulphate); the zeta potential values in these experiments followed a similar trend of other reported values, validating the technique used with the nanobubbles sizes varying with pH from 150 to 400 nm. Thus, charged and uncharged stable nanobubbles can be tailor-made with or without surfactants and it is expected that their use will broaden options in mineral flotation especially if collectors coated nanobubbles ("bubble-collectors") were employed. A detailed and updated review on factors involving stability, longevity and coalescence of nanobubbles was made. It is believed that future trend will be on sustainable formation and application of nanobubbles at industrial scale contributing to widen applied research in mineral, materials processing and liquid effluent treatment by advanced flotation.
Author Rubio, J.
Wilberg, K.Q.
Calgaroto, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Calgaroto
  fullname: Calgaroto, S.
– sequence: 2
  givenname: K.Q.
  surname: Wilberg
  fullname: Wilberg, K.Q.
– sequence: 3
  givenname: J.
  surname: Rubio
  fullname: Rubio, J.
  email: jrubio@ufrgs.br
BookMark eNqFkD1v2zAQhonCAWon_QcdNHaRcpRJWspQIDDyBRjN0s7EiTw2NGRKJakA-feVq04dmulwh_c5vHg2bBWGQIx95lBx4Or6WJ18oPCzqoGLCuoKoP7A1rzZ1WUrhFixNTRtXapmJz-yTUpHAJC7pl2zb8-hyC9UBAxDN3VdT6nwIVN0aDz2xRiHkWL28xmDLdyUp0gFjmPvDWY_hHO8cP2Q_2xX7MJhn-jT33nJftzffd8_lofnh6f97aE0AmQuO9c54YxqrVPCOlG3ZLnELXBnVY0dtTjX48ryLSqJCMpwksJau1WoTLu9ZF-Wv3O_XxOlrE8-Gep7DDRMSXMpOTTAJZ-jN0vUxCGlSE4bv5TNEX2vOeizRH3Ui0R9lqih1rPEGRb_wGP0J4xv72FfF4xmB6-eok7GUzBkfSSTtR38_x_8BuqbkiI
CitedBy_id crossref_primary_10_1021_acs_langmuir_9b03795
crossref_primary_10_1016_j_chemosphere_2018_03_157
crossref_primary_10_1021_acs_iecr_2c01551
crossref_primary_10_1016_j_mineng_2023_108428
crossref_primary_10_1021_acs_langmuir_8b01163
crossref_primary_10_1007_s11270_018_3745_x
crossref_primary_10_1089_ees_2016_0325
crossref_primary_10_34172_apb_2024_042
crossref_primary_10_1021_acsomega_0c02154
crossref_primary_10_1016_j_ultsonch_2023_106574
crossref_primary_10_1017_jfm_2023_898
crossref_primary_10_1021_acs_jpcb_8b11385
crossref_primary_10_1016_j_seppur_2017_10_054
crossref_primary_10_1021_acs_iecr_1c04046
crossref_primary_10_1021_acs_langmuir_9b01384
crossref_primary_10_1021_acs_langmuir_2c00819
crossref_primary_10_1016_j_mineng_2016_01_006
crossref_primary_10_1016_j_mineng_2022_107868
crossref_primary_10_1021_acsomega_2c03674
crossref_primary_10_1007_s11356_022_20896_6
crossref_primary_10_1016_j_cjche_2023_03_014
crossref_primary_10_14397_jals_2018_52_4_109
crossref_primary_10_1016_j_fuel_2021_120765
crossref_primary_10_1016_j_jclepro_2023_139153
crossref_primary_10_1016_j_powtec_2018_09_062
crossref_primary_10_1016_j_minpro_2015_02_010
crossref_primary_10_1007_s42461_020_00295_6
crossref_primary_10_1016_j_conbuildmat_2024_139807
crossref_primary_10_1021_acsanm_1c01907
crossref_primary_10_1080_19392699_2019_1692340
crossref_primary_10_1016_j_apsusc_2017_11_044
crossref_primary_10_1016_j_powtec_2020_10_040
crossref_primary_10_1080_15567036_2019_1618994
crossref_primary_10_1016_j_apsusc_2020_145282
crossref_primary_10_3390_min14070694
crossref_primary_10_1016_j_jhazmat_2023_131530
crossref_primary_10_1016_j_marpolbul_2016_04_023
crossref_primary_10_1038_s41598_018_38066_5
crossref_primary_10_1080_08827508_2023_2260932
crossref_primary_10_1016_j_fuel_2019_116325
crossref_primary_10_1016_j_seppur_2022_121777
crossref_primary_10_1016_j_apsusc_2024_161736
crossref_primary_10_1016_j_carbon_2018_05_068
crossref_primary_10_1021_acs_accounts_8b00606
crossref_primary_10_1016_j_seppur_2017_05_014
crossref_primary_10_1080_01932691_2022_2033625
crossref_primary_10_1016_j_mineng_2016_05_001
crossref_primary_10_3390_en14092542
crossref_primary_10_3390_fluids7120383
crossref_primary_10_1016_j_xphs_2016_06_020
crossref_primary_10_1007_s42461_021_00527_3
crossref_primary_10_1021_acs_langmuir_2c03075
crossref_primary_10_1039_C9CS00839J
crossref_primary_10_1016_j_cis_2019_101992
crossref_primary_10_1016_j_rser_2021_111373
crossref_primary_10_1016_j_mineng_2017_10_020
crossref_primary_10_1016_j_colcom_2022_100639
crossref_primary_10_1016_j_clay_2019_01_013
crossref_primary_10_1016_j_mineng_2021_107140
crossref_primary_10_1016_j_colsurfa_2020_125669
crossref_primary_10_1016_j_molliq_2024_125180
crossref_primary_10_1016_j_electacta_2021_138769
crossref_primary_10_1016_j_cis_2019_101995
crossref_primary_10_1016_j_jcis_2019_12_093
crossref_primary_10_1021_acs_langmuir_9b01443
crossref_primary_10_1134_S1063785020070184
crossref_primary_10_5897_AJEST2024_3268
crossref_primary_10_1089_ees_2017_0377
crossref_primary_10_1016_j_desal_2024_118271
crossref_primary_10_1016_j_memsci_2023_121402
crossref_primary_10_1016_j_mineng_2022_107540
crossref_primary_10_1007_s12613_019_1936_0
crossref_primary_10_1016_j_minpro_2016_01_012
crossref_primary_10_1021_acs_langmuir_1c02010
crossref_primary_10_3390_nano15040314
crossref_primary_10_1016_j_powtec_2020_07_049
crossref_primary_10_1038_s41598_018_21264_6
crossref_primary_10_1007_s11837_024_06411_x
crossref_primary_10_1007_s12613_023_2615_8
crossref_primary_10_1016_j_memsci_2018_09_064
crossref_primary_10_1089_ees_2018_0203
crossref_primary_10_4491_eer_2016_028
crossref_primary_10_1002_ppsc_202300224
crossref_primary_10_1016_j_jcis_2018_11_110
crossref_primary_10_1016_j_eng_2022_04_027
crossref_primary_10_1007_s11182_019_01618_x
crossref_primary_10_1016_j_seppur_2017_06_007
crossref_primary_10_1016_j_mineng_2022_107554
crossref_primary_10_1080_19392699_2020_1732947
crossref_primary_10_1080_09593330_2022_2143295
crossref_primary_10_1016_j_cis_2021_102403
crossref_primary_10_1016_j_ijbiomac_2022_11_095
crossref_primary_10_1080_10408398_2022_2067119
crossref_primary_10_1016_j_powtec_2021_10_004
crossref_primary_10_1016_j_mineng_2015_11_003
crossref_primary_10_1088_1361_648X_ac15d5
crossref_primary_10_1103_RevModPhys_87_981
crossref_primary_10_1016_j_colsurfa_2022_128296
crossref_primary_10_1080_07373937_2021_1881791
crossref_primary_10_3390_coatings10101003
crossref_primary_10_1016_j_apsusc_2019_01_292
crossref_primary_10_1016_j_jconhyd_2017_12_001
crossref_primary_10_1063_5_0141614
crossref_primary_10_1016_j_cep_2025_110277
crossref_primary_10_1016_j_minpro_2016_11_003
crossref_primary_10_1088_1572_9494_ab6183
crossref_primary_10_1021_acs_jpclett_0c02658
crossref_primary_10_1021_acs_jpcc_0c00435
crossref_primary_10_3390_pr11092739
crossref_primary_10_1016_j_colsurfa_2024_134895
crossref_primary_10_1016_j_cis_2020_102359
crossref_primary_10_1021_acs_langmuir_1c00973
crossref_primary_10_1016_j_ultsonch_2020_105366
crossref_primary_10_1016_j_colsurfa_2023_132842
crossref_primary_10_1016_j_mineng_2019_01_015
crossref_primary_10_1142_S0219581X18500485
crossref_primary_10_3390_fluids10020025
crossref_primary_10_1016_j_memsci_2023_121554
crossref_primary_10_1080_07373937_2021_1942898
crossref_primary_10_3390_min12080944
crossref_primary_10_1063_5_0257743
crossref_primary_10_1088_1674_1056_27_11_118104
crossref_primary_10_1039_C8SM01949E
crossref_primary_10_1080_87559129_2021_2023172
crossref_primary_10_1039_D4EN00004H
crossref_primary_10_1016_j_scitotenv_2022_157304
crossref_primary_10_1016_j_partic_2021_03_003
crossref_primary_10_1039_D1EN00700A
crossref_primary_10_1016_j_colsurfa_2023_131879
crossref_primary_10_1016_j_mineng_2022_107906
crossref_primary_10_1016_j_desal_2019_03_008
crossref_primary_10_1002_elps_201900305
crossref_primary_10_1080_08827508_2016_1218871
crossref_primary_10_2166_wst_2017_441
crossref_primary_10_1016_j_memsci_2024_123209
crossref_primary_10_1039_D0NR03332D
crossref_primary_10_1080_12269328_2016_1153987
crossref_primary_10_1016_j_surfin_2025_106063
crossref_primary_10_1016_j_jclepro_2023_139433
crossref_primary_10_1016_j_chemosphere_2024_141323
crossref_primary_10_1016_j_cej_2020_124227
crossref_primary_10_2166_wst_2017_113
crossref_primary_10_1016_j_rser_2021_111074
crossref_primary_10_3390_min12040462
crossref_primary_10_1016_j_jcis_2016_10_027
crossref_primary_10_1186_s13568_021_01254_0
crossref_primary_10_1021_acs_langmuir_3c01170
crossref_primary_10_1002_nano_202100337
crossref_primary_10_1016_j_ultsonch_2018_11_020
crossref_primary_10_1016_j_watres_2024_122757
crossref_primary_10_1021_acsomega_3c08379
crossref_primary_10_1039_C7CP03856A
crossref_primary_10_1016_j_mineng_2023_108236
crossref_primary_10_1039_D1CP04406K
crossref_primary_10_1016_j_biortech_2018_10_077
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103645
crossref_primary_10_1039_C6NR06844H
crossref_primary_10_1021_acs_langmuir_6b02489
crossref_primary_10_1007_s11051_019_4618_y
crossref_primary_10_3390_ma15217437
crossref_primary_10_1007_s11182_020_02148_7
crossref_primary_10_1016_j_ultsonch_2020_105167
crossref_primary_10_1111_wej_12577
crossref_primary_10_1016_j_fuel_2023_127661
crossref_primary_10_1016_j_ultsonch_2020_104996
crossref_primary_10_1016_j_mineng_2024_108983
crossref_primary_10_1080_19392699_2018_1459582
crossref_primary_10_1021_acs_langmuir_6b01620
crossref_primary_10_1039_D2NA00009A
crossref_primary_10_1016_j_ultsonch_2018_05_038
crossref_primary_10_1039_C8RA07952H
crossref_primary_10_1016_j_mineng_2021_106799
crossref_primary_10_1039_D1CP01279G
crossref_primary_10_1021_acsestengg_2c00117
crossref_primary_10_1016_j_mineng_2018_07_011
crossref_primary_10_1016_j_molliq_2023_121242
crossref_primary_10_1016_j_ces_2022_117693
crossref_primary_10_1021_acs_langmuir_8b03927
crossref_primary_10_1002_aic_16604
crossref_primary_10_1016_j_jconrel_2021_09_032
crossref_primary_10_1016_j_ijmst_2018_08_011
crossref_primary_10_1080_09593330_2019_1650123
crossref_primary_10_1139_er_2021_0127
crossref_primary_10_1002_elps_202100171
crossref_primary_10_3390_nano10071362
crossref_primary_10_1016_j_mineng_2018_08_020
crossref_primary_10_1007_s12209_020_00263_7
crossref_primary_10_14356_kona_2024004
crossref_primary_10_1016_j_geothermics_2020_101962
crossref_primary_10_1016_j_mineng_2017_06_020
crossref_primary_10_1021_acs_iecr_1c01233
crossref_primary_10_3390_min8070264
crossref_primary_10_1021_acs_langmuir_1c00469
crossref_primary_10_1021_acs_langmuir_2c03027
crossref_primary_10_1007_s12613_022_2450_3
crossref_primary_10_1093_chemle_upae145
crossref_primary_10_1039_C9RA05868K
crossref_primary_10_1039_D1RA04890B
crossref_primary_10_3390_compounds4030035
crossref_primary_10_1016_j_fuel_2022_127370
crossref_primary_10_1021_acs_langmuir_0c00359
crossref_primary_10_1016_j_colsurfa_2021_127866
crossref_primary_10_1016_j_mineng_2023_108438
crossref_primary_10_1016_j_mineng_2024_109030
crossref_primary_10_1016_j_ultsonch_2019_01_013
crossref_primary_10_1016_j_jhazmat_2020_123759
crossref_primary_10_1016_j_colsurfa_2014_11_043
crossref_primary_10_1016_j_ultsonch_2024_107198
crossref_primary_10_1016_j_mineng_2024_108610
crossref_primary_10_1021_acs_langmuir_8b01724
crossref_primary_10_1016_j_ultsonch_2018_10_021
crossref_primary_10_1016_j_colsurfa_2024_133166
crossref_primary_10_1021_acs_langmuir_9b00507
crossref_primary_10_1007_s11433_020_1538_0
crossref_primary_10_1016_j_cep_2023_109401
crossref_primary_10_1016_j_jcis_2019_05_014
Cites_doi 10.1016/S0301-7516(01)00064-3
10.1103/PhysRevLett.107.116101
10.1080/01496390701747853
10.1016/j.cocis.2011.01.010
10.1016/0021-9797(81)90304-0
10.1021/jp0610158
10.1016/j.minpro.2008.09.003
10.1016/j.cocis.2004.06.002
10.1002/cjce.5450650514
10.1016/j.jcis.2007.01.014
10.1016/j.minpro.2005.07.002
10.1002/cjce.5450850519
10.1002/cjce.5450680307
10.1016/j.minpro.2010.10.006
10.1007/BF02830128
10.1006/jcis.2001.7842
10.1016/j.minpro.2007.04.002
10.1016/S0378-3820(02)00224-2
10.1080/19392699.2013.810623
10.1006/jcis.1997.5361
10.1016/0021-9797(78)90256-4
10.1016/j.minpro.2005.01.004
10.1016/S0001-8686(03)00037-X
10.1252/jcej.26.7
10.1016/S0001-8686(99)00014-7
10.1016/S0378-4371(02)01191-3
10.1103/PhysRevLett.108.104501
10.1006/jcis.1999.6663
10.1016/0021-9797(83)90196-0
10.1016/0021-9797(86)90178-5
10.1021/jp906978v
10.1179/cmq.2010.49.4.325
10.1016/j.colsurfa.2005.06.063
10.1016/j.cis.2010.01.006
10.1016/0021-9797(78)90036-X
10.1016/S1452-3981(23)14725-0
10.1016/j.minpro.2013.04.016
10.1016/j.cplett.2008.04.099
10.1016/j.jcis.2012.08.056
10.1016/j.colsurfa.2012.07.025
10.1006/jcis.2002.8471
10.1016/j.ces.2009.10.003
10.1016/j.colsurfa.2010.03.005
10.1021/jp0445270
10.1016/j.minpro.2006.07.019
10.1006/jcis.1996.0479
10.1016/j.minpro.2013.07.002
10.1016/j.memsci.2006.04.007
10.1016/0021-9797(92)90193-P
10.1039/b901806a
10.1016/S0001-8686(01)00083-5
10.1016/S0021-9797(03)00086-9
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.mineng.2014.02.002
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
EndPage 40
ExternalDocumentID 10_1016_j_mineng_2014_02_002
S0892687514000399
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSG
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8BQ
8FD
JG9
ID FETCH-LOGICAL-c405t-bfbf4fc69df64df429ed15a301fd62abe9a57816d13a65aa06c1e54ddd36a6c93
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Fri Jul 11 03:06:51 EDT 2025
Tue Jul 01 01:13:20 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Fri Feb 23 02:35:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Flotation
Stability
SDS
Size
DAF
DAH
Surfactants
Psat
DTAC
Qsat
Zeta potential
IEP
Nanobubbles
EDA3B
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-bfbf4fc69df64df429ed15a301fd62abe9a57816d13a65aa06c1e54ddd36a6c93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1551080151
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1551080151
crossref_citationtrail_10_1016_j_mineng_2014_02_002
crossref_primary_10_1016_j_mineng_2014_02_002
elsevier_sciencedirect_doi_10_1016_j_mineng_2014_02_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
2014-06-00
20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationTitle Minerals engineering
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Han, Dockko (b0085) 1998; 2
Schramm, Stasiuk, Turner (b0190) 2003; 80
Fan, Tao, Honaker, Luo (b0050) 2010; 20
Kukizaki, Goto (b0115) 2006; 281
Yoon, Yordan (b0255) 1986; 113
Lima, Boström, Sernelius, Horinek, Netz, Biscaia, Kunz, Tavares (b0285) 2008; 458
Elmahdy, Mirnezami, Finch (b0045) 2008; 89
Collins, Motarjemi, Jameson (b0030) 1978; 63
Phianmongkhol, Varley (b0160) 2003; 260
Seddon, Zandvliet, Lohse (b0195) 2011; 107
Ushikubo, Furukawa, Nagakawa, Enari, Makino, Kawagoe, Shiina, Oshita (b0230) 2010; 361
Usui, Sasaki (b0240) 1977; 65
Castro, Miranda, Toledo, Laskowski (b0020) 2013; 124
Okada, Akagi, Kogure, Yoshioka (b9025) 1990; 68
Usui, Sasaki, Matsukawa (b0245) 1981; 81
Sobhy, A. 2013. Cavitation nanobubble enhanced flotation process for more efficient coal recovery. Ph.D Thesis, College of Engineering-University of Kentucky, 145p.
Kubota, Hayashi, Inaoka (b0105) 1983; 95
Ohgaki, Khan, Joden, Tsuji, Nakagawa (b0150) 2010; 65
Sobhy, Tao (b0210) 2013; 33
Fan, Tao (b9005) 2008; 43
Uddin, Jin, Mirnezami, Finch (b0235) 2013; 389
Craig (b0035) 2004; 9
Paluch (b0155) 2000; 84
Yang, Dabros, Li, Czarnecki, Masliyah (b0250) 2001; 243
Gontijo, De, Fornasiero, Ralston (b0075) 2007; 85
Schramm, Smith (b0185) 1987; 65
Rodrigues, Rubio (b0165) 2007; 82
Sobhy, Tao (b0205) 2013; 124
Fan, M., Chao, Y., Tao, D., 2012. Fundamental studies in nanobubble generation and applications in flotation. SME-Meeting, pp. 457–469.
Oliveira, Rubio (b9030) 2011; 98
Weijs, Lohse (b0260) 2012; 108
Hampton, Nguyen (b0080) 2010; 154
Zimmerman, Tesar, Bandulasena (b0275) 2011; 16
Li, Somasundaran (b0125) 1992; 148
Fan, Tao, Honaker, Luo (b0055) 2010; 20
Agarwal, A., 2005. An experimental study of nanobubbles on hydrophobic surfaces. MSc thesis, Citable URI (December 2013)
Jameson (b0090) 2010; 4
Schubert (b0220) 2005; 78
Creux, Lachaise, Graciaa, Beattie, Djerdjev (b0040) 2009; 113
Massachusetts Institute of Technology-MIT. Dept. of Mechanical Engineering. Publisher: MIT.
Rubio, Capponi, Rodrigues, Matiolo (b0170) 2007; 84
Cho, Laskowski (b9000) 2002; 64
Attard, Moody, Tyrrell (b0015) 2002; 314
Fan, Tao, Honaker, Luo (b0060) 2010; 20
Preocanin, Selmania, Lindqvist-Reis, Heberling, Kallay, Lutzenkirchen (b8000) 2012; 412
Weihong, Ren, Hu (b9050) 2013; 8
Liu, Zhou, Xu, Masliyah (b0135) 2000; 252
Saulnier, Lachaise, Morel, Graciaa (b0290) 1996; 182
Saulnier, Bouriat, Morel, Lachaise, Graciaa (b0180) 1998; 200
Cho, Kimb, Chuna, Kima (b0025) 2005; 269
Grau, Laskowski, Heiskanen (b9020) 2005; 76
Marcelja (b0140) 2006; 110
Karraker, Radke (b0095) 2002; 96
Laskowski (b0280) 1989
Takahashi (b0225) 2005; 109
Najafi, Drelich, Yeung, Xu, Masliyah (b0145) 2007; 308
Gray-Weale, Beattie (b0070) 2009; 11
Kim, Song, Kim (b0100) 2000; 223
Attard (b0010) 2003; 104
Kubota, Jameson (b0110) 1993; 26
10.1016/j.mineng.2014.02.002_b0200
Cho (10.1016/j.mineng.2014.02.002_b0025) 2005; 269
Saulnier (10.1016/j.mineng.2014.02.002_b0180) 1998; 200
Hampton (10.1016/j.mineng.2014.02.002_b0080) 2010; 154
Jameson (10.1016/j.mineng.2014.02.002_b0090) 2010; 4
Attard (10.1016/j.mineng.2014.02.002_b0010) 2003; 104
10.1016/j.mineng.2014.02.002_b0005
Marcelja (10.1016/j.mineng.2014.02.002_b0140) 2006; 110
Paluch (10.1016/j.mineng.2014.02.002_b0155) 2000; 84
Oliveira (10.1016/j.mineng.2014.02.002_b9030) 2011; 98
Fan (10.1016/j.mineng.2014.02.002_b0055) 2010; 20
Zimmerman (10.1016/j.mineng.2014.02.002_b0275) 2011; 16
Liu (10.1016/j.mineng.2014.02.002_b0135) 2000; 252
Karraker (10.1016/j.mineng.2014.02.002_b0095) 2002; 96
Sobhy (10.1016/j.mineng.2014.02.002_b0210) 2013; 33
Elmahdy (10.1016/j.mineng.2014.02.002_b0045) 2008; 89
Rodrigues (10.1016/j.mineng.2014.02.002_b0165) 2007; 82
Usui (10.1016/j.mineng.2014.02.002_b0240) 1977; 65
Usui (10.1016/j.mineng.2014.02.002_b0245) 1981; 81
Weijs (10.1016/j.mineng.2014.02.002_b0260) 2012; 108
Fan (10.1016/j.mineng.2014.02.002_b0050) 2010; 20
Gray-Weale (10.1016/j.mineng.2014.02.002_b0070) 2009; 11
Gontijo (10.1016/j.mineng.2014.02.002_b0075) 2007; 85
Seddon (10.1016/j.mineng.2014.02.002_b0195) 2011; 107
Collins (10.1016/j.mineng.2014.02.002_b0030) 1978; 63
Phianmongkhol (10.1016/j.mineng.2014.02.002_b0160) 2003; 260
Craig (10.1016/j.mineng.2014.02.002_b0035) 2004; 9
Han (10.1016/j.mineng.2014.02.002_b0085) 1998; 2
Okada (10.1016/j.mineng.2014.02.002_b9025) 1990; 68
Schubert (10.1016/j.mineng.2014.02.002_b0220) 2005; 78
Kubota (10.1016/j.mineng.2014.02.002_b0105) 1983; 95
Fan (10.1016/j.mineng.2014.02.002_b0060) 2010; 20
Cho (10.1016/j.mineng.2014.02.002_b9000) 2002; 64
Najafi (10.1016/j.mineng.2014.02.002_b0145) 2007; 308
Uddin (10.1016/j.mineng.2014.02.002_b0235) 2013; 389
Lima (10.1016/j.mineng.2014.02.002_b0285) 2008; 458
Fan (10.1016/j.mineng.2014.02.002_b9005) 2008; 43
10.1016/j.mineng.2014.02.002_b0065
Preocanin (10.1016/j.mineng.2014.02.002_b8000) 2012; 412
Sobhy (10.1016/j.mineng.2014.02.002_b0205) 2013; 124
Takahashi (10.1016/j.mineng.2014.02.002_b0225) 2005; 109
Rubio (10.1016/j.mineng.2014.02.002_b0170) 2007; 84
Kubota (10.1016/j.mineng.2014.02.002_b0110) 1993; 26
Kim (10.1016/j.mineng.2014.02.002_b0100) 2000; 223
Ohgaki (10.1016/j.mineng.2014.02.002_b0150) 2010; 65
Yang (10.1016/j.mineng.2014.02.002_b0250) 2001; 243
Ushikubo (10.1016/j.mineng.2014.02.002_b0230) 2010; 361
Attard (10.1016/j.mineng.2014.02.002_b0015) 2002; 314
Schramm (10.1016/j.mineng.2014.02.002_b0185) 1987; 65
Yoon (10.1016/j.mineng.2014.02.002_b0255) 1986; 113
Li (10.1016/j.mineng.2014.02.002_b0125) 1992; 148
Saulnier (10.1016/j.mineng.2014.02.002_b0290) 1996; 182
Laskowski (10.1016/j.mineng.2014.02.002_b0280) 1989
Creux (10.1016/j.mineng.2014.02.002_b0040) 2009; 113
Castro (10.1016/j.mineng.2014.02.002_b0020) 2013; 124
Grau (10.1016/j.mineng.2014.02.002_b9020) 2005; 76
Kukizaki (10.1016/j.mineng.2014.02.002_b0115) 2006; 281
Schramm (10.1016/j.mineng.2014.02.002_b0190) 2003; 80
Weihong (10.1016/j.mineng.2014.02.002_b9050) 2013; 8
References_xml – volume: 148
  start-page: 587
  year: 1992
  end-page: 591
  ident: b0125
  article-title: Reversal of bubble charge in multivalent inorganic salt solutions-effect of aluminum
  publication-title: J. Colloid Interface Sci.
– volume: 308
  start-page: 344
  year: 2007
  end-page: 350
  ident: b0145
  article-title: A novel method of measuring electrophoretic mobility of gas bubbles
  publication-title: J. Colloid Interface Sci.
– volume: 458
  start-page: 299
  year: 2008
  end-page: 302
  ident: b0285
  article-title: Forces between air–bubbles in electrolyte solution
  publication-title: Chem. Phys. Lett.
– volume: 33
  start-page: 242
  year: 2013
  end-page: 256
  ident: b0210
  article-title: High-efficiency nanobubble coal flotation
  publication-title: Int. J. Coal Prep. Utilization
– volume: 64
  start-page: 69
  year: 2002
  end-page: 80
  ident: b9000
  article-title: Effect of flotation frothers on bubble size and foam stability
  publication-title: Int. J. Mineral Process.
– volume: 20
  start-page: 1
  year: 2010
  end-page: 19
  ident: b0050
  article-title: Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on the properties of microbubble and millimeter scale bubble solutions
  publication-title: Mining Sci. Technol.
– volume: 85
  start-page: 739
  year: 2007
  end-page: 747
  ident: b0075
  article-title: The limits of fine and coarse particle flotation
  publication-title: The Canadian J. Chem. Eng.
– volume: 361
  start-page: 31
  year: 2010
  end-page: 37
  ident: b0230
  article-title: Evidence of the existence and the stability of nano-bubbles in water
  publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects
– start-page: 15
  year: 1989
  end-page: 34
  ident: b0280
  article-title: The colloid chemistry and flotation properties of primary aliphatic amines
  publication-title: Challenges in Mineral Processing
– volume: 110
  start-page: 13062
  year: 2006
  end-page: 13067
  ident: b0140
  article-title: Selective coalescence of bubbles in simple electrolytes
  publication-title: J. Phys. Chem. B
– volume: 65
  start-page: 1296
  year: 2010
  end-page: 1300
  ident: b0150
  article-title: Physicochemical approach to nanobubble solutions
  publication-title: Chem. Eng. Sci.
– volume: 243
  start-page: 128
  year: 2001
  end-page: 135
  ident: b0250
  article-title: Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method
  publication-title: J. Colloid Interface Sci.
– volume: 200
  start-page: 81
  year: 1998
  end-page: 85
  ident: b0180
  article-title: Zeta potential of air bubbles in solutions of binary mixtures of surfactants (mono distributed nonionic/anionic surfactant mixtures)
  publication-title: J. Colloid Interface Sci.
– volume: 2
  start-page: 461
  year: 1998
  end-page: 466
  ident: b0085
  article-title: Zeta potential measurement of bubbles in DAF process and its effect on the removal efficiency
  publication-title: KSCE J. Civil Eng.
– volume: 68
  start-page: 393
  year: 1990
  end-page: 399
  ident: b9025
  article-title: Effect on surface charges of bubbles and fine particles on air flotation process
  publication-title: The Canadian J. Chem. Eng.
– volume: 81
  start-page: 80
  year: 1981
  end-page: 84
  ident: b0245
  article-title: The dependence of zeta potential on bubble size as determined by the Dorn effect
  publication-title: J. Colloid Interface Sci.
– volume: 65
  start-page: 799
  year: 1987
  end-page: 811
  ident: b0185
  article-title: Two classes of anionic surfactants and their significance in hot water processing of oil sands
  publication-title: Can. J. Chem. Eng.
– volume: 154
  start-page: 30
  year: 2010
  end-page: 55
  ident: b0080
  article-title: Nanobubbles and the nanobubble bridging capillary force
  publication-title: Adv. Colloid Interface Sci.
– volume: 182
  start-page: 395
  year: 1996
  end-page: 399
  ident: b0290
  article-title: Zeta potential of air bubbles in surfactant solutions
  publication-title: J. Colloid Interface Sci.
– volume: 98
  start-page: 118
  year: 2011
  end-page: 123
  ident: b9030
  article-title: Zeta potential of single and polymer coated microbubbles using an adapted microelectrophoresis technique
  publication-title: Int. J. Mineral Process.
– volume: 412
  start-page: 120
  year: 2012
  end-page: 128
  ident: b8000
  article-title: Surface charge at Teflon/aqueous solution of potassium chloride interfaces
  publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects
– volume: 20
  start-page: 159
  year: 2010
  end-page: 177
  ident: b0055
  article-title: Nanobubble generation and its application in froth flotation (part II): fundamental study and theoretical analysis
  publication-title: Mining Sci. Technol.
– volume: 76
  start-page: 225
  year: 2005
  end-page: 233
  ident: b9020
  article-title: Effect of frothers on bubble size
  publication-title: Int. J. Mineral Process.
– volume: 113
  start-page: 14146
  year: 2009
  end-page: 14150
  ident: b0040
  article-title: Strong specific hydroxide ion binding at the pristine oil/water and air/water Interfaces
  publication-title: J. Phys. Chem. B
– volume: 124
  start-page: 109
  year: 2013
  end-page: 116
  ident: b0205
  article-title: Nanobubble column flotation of fine coal particles and associated fundamentals
  publication-title: Int. J. Mineral Process.
– volume: 96
  start-page: 231
  year: 2002
  end-page: 264
  ident: b0095
  article-title: Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment
  publication-title: Adv. Colloid Interface Sci.
– volume: 314
  start-page: 696
  year: 2002
  end-page: 705
  ident: b0015
  article-title: Nanobubbles: the big picture
  publication-title: Physica A
– volume: 11
  start-page: 10994
  year: 2009
  end-page: 11005
  ident: b0070
  article-title: An explanation for the charge on water’s surface
  publication-title: Phys. Chem. Chem. Phys.
– reference: Sobhy, A. 2013. Cavitation nanobubble enhanced flotation process for more efficient coal recovery. Ph.D Thesis, College of Engineering-University of Kentucky, 145p.
– volume: 260
  start-page: 332
  year: 2003
  end-page: 338
  ident: b0160
  article-title: Zeta potential measurement for air bubbles in protein solutions
  publication-title: J. Colloid Interface Sci.
– volume: 109
  start-page: 21858
  year: 2005
  end-page: 21864
  ident: b0225
  article-title: Potential of microbubbles in aqueous solutions: electrical properties of the gas–water interface
  publication-title: J. Phys. Chem. B
– volume: 16
  start-page: 350
  year: 2011
  end-page: 356
  ident: b0275
  article-title: Towards energy efficient nanobubble generation with fluidic oscillation
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 223
  start-page: 285
  year: 2000
  end-page: 291
  ident: b0100
  article-title: Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions
  publication-title: J. Colloid Interface Sci.
– volume: 43
  start-page: 1
  year: 2008
  end-page: 10
  ident: b9005
  article-title: A study on nanobubble enhanced coarse phosphate froth flotation
  publication-title: Separ. Sci. Technol.
– volume: 9
  start-page: 178
  year: 2004
  end-page: 184
  ident: b0035
  article-title: Bubble coalescence and specific-ion effects
  publication-title: Curr. Opin. Colloid Interface Sci.
– reference: Fan, M., Chao, Y., Tao, D., 2012. Fundamental studies in nanobubble generation and applications in flotation. SME-Meeting, pp. 457–469.
– volume: 65
  start-page: 36
  year: 1977
  end-page: 45
  ident: b0240
  article-title: Zeta potential measurements of bubbles in aqueous surfactant solutions
  publication-title: J. Colloid Interface Sci.
– volume: 78
  start-page: 11
  year: 2005
  end-page: 21
  ident: b0220
  article-title: Nanobubbles, hydrophobic effect, heterocoagulation and hydrodynamics in flotation
  publication-title: Int. J. Mineral Process.
– volume: 8
  start-page: 5828
  year: 2013
  end-page: 5837
  ident: b9050
  article-title: Effect of Water Chemistry on Zeta Potential of Air Bubbles
  publication-title: Int. J. Electrochem. Sci.
– volume: 104
  start-page: 75
  year: 2003
  end-page: 95
  ident: b0010
  article-title: Nanobubbles and the hydrophobic attraction
  publication-title: Adv. Colloid Interface Sci.
– volume: 84
  start-page: 27
  year: 2000
  end-page: 45
  ident: b0155
  article-title: Electrical properties of free surface of water and aqueous solutions
  publication-title: Adv. Colloid Interface Sci.
– reference: Agarwal, A., 2005. An experimental study of nanobubbles on hydrophobic surfaces. MSc thesis, Citable URI (December 2013): <
– volume: 84
  start-page: 41
  year: 2007
  end-page: 50
  ident: b0170
  article-title: Enhanced flotation of sulfide fines using the emulsified oil extender technique
  publication-title: Int. J. Mineral Process.
– reference: >: Massachusetts Institute of Technology-MIT. Dept. of Mechanical Engineering. Publisher: MIT.
– volume: 82
  start-page: 1
  year: 2007
  end-page: 13
  ident: b0165
  article-title: DAF-dissolved air flotation: potential applications in the mining and mineral processing industry
  publication-title: Int. J. Mineral Process.
– volume: 20
  start-page: 0317
  year: 2010
  end-page: 0338
  ident: b0060
  article-title: Nanobubble generation and its application in froth flotation (part III): specially designed laboratory scale column flotation of phosphate
  publication-title: Mining Sci. Technol.
– volume: 95
  start-page: 362
  year: 1983
  end-page: 369
  ident: b0105
  article-title: A convenient experimental method for measurement of zeta-potentials generating on the bubble suspended in aqueous surfactant solutions
  publication-title: J. Colloid Interface Sci.
– volume: 63
  start-page: 69
  year: 1978
  end-page: 75
  ident: b0030
  article-title: A method for measuring the charge on small gas bubbles
  publication-title: J. Colloid Interface Sci.
– volume: 80
  start-page: 101
  year: 2003
  end-page: 118
  ident: b0190
  article-title: The influence of interfacial tension in the recovery of bitumen by water-based conditioning and flotation of Athabasca oil sands
  publication-title: Fuel Process. Technol.
– volume: 269
  start-page: 28
  year: 2005
  end-page: 34
  ident: b0025
  article-title: Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions
  publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects
– volume: 113
  start-page: 430
  year: 1986
  end-page: 438
  ident: b0255
  article-title: Zeta-potential measurements on microbubbles generated using various surfactants
  publication-title: J. Colloid Interface Sci.
– volume: 124
  start-page: 8
  year: 2013
  end-page: 14
  ident: b0020
  article-title: Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater
  publication-title: Int. J. Mineral Process.
– volume: 4
  start-page: 325
  year: 2010
  end-page: 330
  ident: b0090
  article-title: Advances in fine and coarse particle flotation
  publication-title: Can. Metall. Q.
– volume: 107
  start-page: 116101
  year: 2011
  ident: b0195
  article-title: Knudsen gas provides nanobubble stability
  publication-title: Phys. Rev. Lett.
– volume: 389
  start-page: 298
  year: 2013
  end-page: 305
  ident: b0235
  article-title: An apparatus to measure electrical charge of bubble swarms
  publication-title: J. Colloid Interface Sci.
– volume: 108
  start-page: 104501
  year: 2012
  ident: b0260
  article-title: Why surface nanobubbles live for hours
  publication-title: Phys. Rev. Lett.
– volume: 26
  start-page: 7
  year: 1993
  end-page: 12
  ident: b0110
  article-title: A study of the electrophoretic mobility of a very small inert gas bubble suspended in aqueous inorganic electrolyte and cationic surfactant solutions
  publication-title: J. Chem. Eng. Japan
– volume: 89
  start-page: 40
  year: 2008
  end-page: 43
  ident: b0045
  article-title: Zeta potential of air bubbles in presence of frothers
  publication-title: Int. J. Mineral Process.
– volume: 281
  start-page: 386
  year: 2006
  end-page: 396
  ident: b0115
  article-title: Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes
  publication-title: J. Membr. Sci.
– volume: 252
  start-page: 409
  year: 2000
  end-page: 418
  ident: b0135
  article-title: Bitumen-clay interactions in aqueous media studied by zeta potential distribution measurement
  publication-title: J. Colloid Interface Sci.
– volume: 64
  start-page: 69
  year: 2002
  ident: 10.1016/j.mineng.2014.02.002_b9000
  article-title: Effect of flotation frothers on bubble size and foam stability
  publication-title: Int. J. Mineral Process.
  doi: 10.1016/S0301-7516(01)00064-3
– volume: 20
  start-page: 159
  issue: 2
  year: 2010
  ident: 10.1016/j.mineng.2014.02.002_b0055
  article-title: Nanobubble generation and its application in froth flotation (part II): fundamental study and theoretical analysis
  publication-title: Mining Sci. Technol.
– volume: 107
  start-page: 116101
  year: 2011
  ident: 10.1016/j.mineng.2014.02.002_b0195
  article-title: Knudsen gas provides nanobubble stability
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.116101
– volume: 43
  start-page: 1
  year: 2008
  ident: 10.1016/j.mineng.2014.02.002_b9005
  article-title: A study on nanobubble enhanced coarse phosphate froth flotation
  publication-title: Separ. Sci. Technol.
  doi: 10.1080/01496390701747853
– volume: 16
  start-page: 350
  year: 2011
  ident: 10.1016/j.mineng.2014.02.002_b0275
  article-title: Towards energy efficient nanobubble generation with fluidic oscillation
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2011.01.010
– volume: 81
  start-page: 80
  issue: 1
  year: 1981
  ident: 10.1016/j.mineng.2014.02.002_b0245
  article-title: The dependence of zeta potential on bubble size as determined by the Dorn effect
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(81)90304-0
– volume: 110
  start-page: 13062
  year: 2006
  ident: 10.1016/j.mineng.2014.02.002_b0140
  article-title: Selective coalescence of bubbles in simple electrolytes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0610158
– volume: 89
  start-page: 40
  issue: 1–4
  year: 2008
  ident: 10.1016/j.mineng.2014.02.002_b0045
  article-title: Zeta potential of air bubbles in presence of frothers
  publication-title: Int. J. Mineral Process.
  doi: 10.1016/j.minpro.2008.09.003
– volume: 9
  start-page: 178
  issue: 1–2
  year: 2004
  ident: 10.1016/j.mineng.2014.02.002_b0035
  article-title: Bubble coalescence and specific-ion effects
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2004.06.002
– volume: 65
  start-page: 799
  issue: 5
  year: 1987
  ident: 10.1016/j.mineng.2014.02.002_b0185
  article-title: Two classes of anionic surfactants and their significance in hot water processing of oil sands
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450650514
– volume: 308
  start-page: 344
  issue: 2
  year: 2007
  ident: 10.1016/j.mineng.2014.02.002_b0145
  article-title: A novel method of measuring electrophoretic mobility of gas bubbles
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.01.014
– volume: 78
  start-page: 11
  year: 2005
  ident: 10.1016/j.mineng.2014.02.002_b0220
  article-title: Nanobubbles, hydrophobic effect, heterocoagulation and hydrodynamics in flotation
  publication-title: Int. J. Mineral Process.
  doi: 10.1016/j.minpro.2005.07.002
– volume: 85
  start-page: 739
  issue: 5
  year: 2007
  ident: 10.1016/j.mineng.2014.02.002_b0075
  article-title: The limits of fine and coarse particle flotation
  publication-title: The Canadian J. Chem. Eng.
  doi: 10.1002/cjce.5450850519
– volume: 68
  start-page: 393
  issue: 3
  year: 1990
  ident: 10.1016/j.mineng.2014.02.002_b9025
  article-title: Effect on surface charges of bubbles and fine particles on air flotation process
  publication-title: The Canadian J. Chem. Eng.
  doi: 10.1002/cjce.5450680307
– volume: 98
  start-page: 118
  year: 2011
  ident: 10.1016/j.mineng.2014.02.002_b9030
  article-title: Zeta potential of single and polymer coated microbubbles using an adapted microelectrophoresis technique
  publication-title: Int. J. Mineral Process.
  doi: 10.1016/j.minpro.2010.10.006
– volume: 2
  start-page: 461
  issue: 4
  year: 1998
  ident: 10.1016/j.mineng.2014.02.002_b0085
  article-title: Zeta potential measurement of bubbles in DAF process and its effect on the removal efficiency
  publication-title: KSCE J. Civil Eng.
  doi: 10.1007/BF02830128
– volume: 243
  start-page: 128
  issue: 1
  year: 2001
  ident: 10.1016/j.mineng.2014.02.002_b0250
  article-title: Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2001.7842
– volume: 84
  start-page: 41
  year: 2007
  ident: 10.1016/j.mineng.2014.02.002_b0170
  article-title: Enhanced flotation of sulfide fines using the emulsified oil extender technique
  publication-title: Int. J. Mineral Process.
  doi: 10.1016/j.minpro.2007.04.002
– volume: 80
  start-page: 101
  issue: 2
  year: 2003
  ident: 10.1016/j.mineng.2014.02.002_b0190
  article-title: The influence of interfacial tension in the recovery of bitumen by water-based conditioning and flotation of Athabasca oil sands
  publication-title: Fuel Process. Technol.
  doi: 10.1016/S0378-3820(02)00224-2
– volume: 33
  start-page: 242
  year: 2013
  ident: 10.1016/j.mineng.2014.02.002_b0210
  article-title: High-efficiency nanobubble coal flotation
  publication-title: Int. J. Coal Prep. Utilization
  doi: 10.1080/19392699.2013.810623
– volume: 200
  start-page: 81
  issue: 1
  year: 1998
  ident: 10.1016/j.mineng.2014.02.002_b0180
  article-title: Zeta potential of air bubbles in solutions of binary mixtures of surfactants (mono distributed nonionic/anionic surfactant mixtures)
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1997.5361
– volume: 65
  start-page: 36
  issue: 1
  year: 1977
  ident: 10.1016/j.mineng.2014.02.002_b0240
  article-title: Zeta potential measurements of bubbles in aqueous surfactant solutions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(78)90256-4
– volume: 76
  start-page: 225
  year: 2005
  ident: 10.1016/j.mineng.2014.02.002_b9020
  article-title: Effect of frothers on bubble size
  publication-title: Int. J. Mineral Process.
  doi: 10.1016/j.minpro.2005.01.004
– volume: 104
  start-page: 75
  issue: 1–3
  year: 2003
  ident: 10.1016/j.mineng.2014.02.002_b0010
  article-title: Nanobubbles and the hydrophobic attraction
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(03)00037-X
– volume: 26
  start-page: 7
  issue: 1
  year: 1993
  ident: 10.1016/j.mineng.2014.02.002_b0110
  article-title: A study of the electrophoretic mobility of a very small inert gas bubble suspended in aqueous inorganic electrolyte and cationic surfactant solutions
  publication-title: J. Chem. Eng. Japan
  doi: 10.1252/jcej.26.7
– volume: 84
  start-page: 27
  issue: 1–3
  year: 2000
  ident: 10.1016/j.mineng.2014.02.002_b0155
  article-title: Electrical properties of free surface of water and aqueous solutions
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(99)00014-7
– volume: 314
  start-page: 696
  year: 2002
  ident: 10.1016/j.mineng.2014.02.002_b0015
  article-title: Nanobubbles: the big picture
  publication-title: Physica A
  doi: 10.1016/S0378-4371(02)01191-3
– volume: 108
  start-page: 104501
  year: 2012
  ident: 10.1016/j.mineng.2014.02.002_b0260
  article-title: Why surface nanobubbles live for hours
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.104501
– ident: 10.1016/j.mineng.2014.02.002_b0005
– volume: 223
  start-page: 285
  year: 2000
  ident: 10.1016/j.mineng.2014.02.002_b0100
  article-title: Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1999.6663
– volume: 95
  start-page: 362
  issue: 2
  year: 1983
  ident: 10.1016/j.mineng.2014.02.002_b0105
  article-title: A convenient experimental method for measurement of zeta-potentials generating on the bubble suspended in aqueous surfactant solutions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(83)90196-0
– volume: 113
  start-page: 430
  issue: 2
  year: 1986
  ident: 10.1016/j.mineng.2014.02.002_b0255
  article-title: Zeta-potential measurements on microbubbles generated using various surfactants
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(86)90178-5
– volume: 113
  start-page: 14146
  year: 2009
  ident: 10.1016/j.mineng.2014.02.002_b0040
  article-title: Strong specific hydroxide ion binding at the pristine oil/water and air/water Interfaces
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp906978v
– ident: 10.1016/j.mineng.2014.02.002_b0200
– volume: 4
  start-page: 325
  issue: 6
  year: 2010
  ident: 10.1016/j.mineng.2014.02.002_b0090
  article-title: Advances in fine and coarse particle flotation
  publication-title: Can. Metall. Q.
  doi: 10.1179/cmq.2010.49.4.325
– volume: 269
  start-page: 28
  year: 2005
  ident: 10.1016/j.mineng.2014.02.002_b0025
  article-title: Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions
  publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2005.06.063
– volume: 154
  start-page: 30
  issue: 1/2
  year: 2010
  ident: 10.1016/j.mineng.2014.02.002_b0080
  article-title: Nanobubbles and the nanobubble bridging capillary force
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2010.01.006
– volume: 63
  start-page: 69
  issue: 1
  year: 1978
  ident: 10.1016/j.mineng.2014.02.002_b0030
  article-title: A method for measuring the charge on small gas bubbles
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(78)90036-X
– volume: 8
  start-page: 5828
  year: 2013
  ident: 10.1016/j.mineng.2014.02.002_b9050
  article-title: Effect of Water Chemistry on Zeta Potential of Air Bubbles
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)14725-0
– volume: 124
  start-page: 109
  year: 2013
  ident: 10.1016/j.mineng.2014.02.002_b0205
  article-title: Nanobubble column flotation of fine coal particles and associated fundamentals
  publication-title: Int. J. Mineral Process.
  doi: 10.1016/j.minpro.2013.04.016
– volume: 458
  start-page: 299
  year: 2008
  ident: 10.1016/j.mineng.2014.02.002_b0285
  article-title: Forces between air–bubbles in electrolyte solution
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2008.04.099
– volume: 389
  start-page: 298
  year: 2013
  ident: 10.1016/j.mineng.2014.02.002_b0235
  article-title: An apparatus to measure electrical charge of bubble swarms
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.08.056
– volume: 412
  start-page: 120
  year: 2012
  ident: 10.1016/j.mineng.2014.02.002_b8000
  article-title: Surface charge at Teflon/aqueous solution of potassium chloride interfaces
  publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2012.07.025
– volume: 252
  start-page: 409
  issue: 2
  year: 2000
  ident: 10.1016/j.mineng.2014.02.002_b0135
  article-title: Bitumen-clay interactions in aqueous media studied by zeta potential distribution measurement
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2002.8471
– volume: 65
  start-page: 1296
  year: 2010
  ident: 10.1016/j.mineng.2014.02.002_b0150
  article-title: Physicochemical approach to nanobubble solutions
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.10.003
– volume: 361
  start-page: 31
  year: 2010
  ident: 10.1016/j.mineng.2014.02.002_b0230
  article-title: Evidence of the existence and the stability of nano-bubbles in water
  publication-title: Colloids Surfaces A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2010.03.005
– volume: 109
  start-page: 21858
  year: 2005
  ident: 10.1016/j.mineng.2014.02.002_b0225
  article-title: Potential of microbubbles in aqueous solutions: electrical properties of the gas–water interface
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0445270
– volume: 82
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.mineng.2014.02.002_b0165
  article-title: DAF-dissolved air flotation: potential applications in the mining and mineral processing industry
  publication-title: Int. J. Mineral Process.
  doi: 10.1016/j.minpro.2006.07.019
– volume: 182
  start-page: 395
  issue: 2
  year: 1996
  ident: 10.1016/j.mineng.2014.02.002_b0290
  article-title: Zeta potential of air bubbles in surfactant solutions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0479
– volume: 20
  start-page: 0317
  issue: 3
  year: 2010
  ident: 10.1016/j.mineng.2014.02.002_b0060
  article-title: Nanobubble generation and its application in froth flotation (part III): specially designed laboratory scale column flotation of phosphate
  publication-title: Mining Sci. Technol.
– volume: 124
  start-page: 8
  year: 2013
  ident: 10.1016/j.mineng.2014.02.002_b0020
  article-title: Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater
  publication-title: Int. J. Mineral Process.
  doi: 10.1016/j.minpro.2013.07.002
– volume: 281
  start-page: 386
  year: 2006
  ident: 10.1016/j.mineng.2014.02.002_b0115
  article-title: Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.04.007
– volume: 20
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.mineng.2014.02.002_b0050
  article-title: Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on the properties of microbubble and millimeter scale bubble solutions
  publication-title: Mining Sci. Technol.
– volume: 148
  start-page: 587
  issue: 2
  year: 1992
  ident: 10.1016/j.mineng.2014.02.002_b0125
  article-title: Reversal of bubble charge in multivalent inorganic salt solutions-effect of aluminum
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(92)90193-P
– volume: 11
  start-page: 10994
  year: 2009
  ident: 10.1016/j.mineng.2014.02.002_b0070
  article-title: An explanation for the charge on water’s surface
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b901806a
– ident: 10.1016/j.mineng.2014.02.002_b0065
– volume: 96
  start-page: 231
  issue: 1–3
  year: 2002
  ident: 10.1016/j.mineng.2014.02.002_b0095
  article-title: Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(01)00083-5
– start-page: 15
  year: 1989
  ident: 10.1016/j.mineng.2014.02.002_b0280
  article-title: The colloid chemistry and flotation properties of primary aliphatic amines
– volume: 260
  start-page: 332
  issue: 2
  year: 2003
  ident: 10.1016/j.mineng.2014.02.002_b0160
  article-title: Zeta potential measurement for air bubbles in protein solutions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(03)00086-9
SSID ssj0005789
Score 2.5083797
Snippet •Air nanobubbles were formed after depressurisation of saturated air in reagentized solutions.•Zeta potential values displayed sigmoidal pH behaviour between...
Nanobubbles, generations forms, basic studies and applications constitute a growing research area, included their usage in advanced mineral flotation. Yet,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Charging
Coalescence
Flotation
Liquids
Minerals
Nanobubbles
Nanostructure
Size
Stability
Surfactants
Zeta potential
Title On the nanobubbles interfacial properties and future applications in flotation
URI https://dx.doi.org/10.1016/j.mineng.2014.02.002
https://www.proquest.com/docview/1551080151
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn_gsEbzG7iOb7R5LsVTFetBCb2GySaRS09LH1d_uZB9SBSl43N3JsnzJznxJZr4QcpMprgQkwATwgPFEByxLQLO43cZoqzBCFYs5TwPRH_KHUTJqkG5dC-PTKivfX_r0wltXd1oVmq3ZeNx6CdpZJJBu4xTBV5j6Ij7OUz_Kbz_X0jzS4hg8b8y8dV0-V-R4fSCTc28-wYuXyp3RX-Hpl6Muok9vn-xVtJF2yi87IA3jDsnumpjgERk8O4psjjpwU7VSamIW1ItBzC34ZXE688vuc6-fSsFpWoqJ0PUNbDSndjItN-ePybB399rts-q0BJYj6VoyZZXlNheZtoJri3HG6DAB_IGtFhEokwFiEQodxiASgEDkoUm41joWIPIsPiFbburMKaGQ5thrSRoqg4TFpJBFxVQyRi6IjMmekbgGSeaVlLg_0WIi65yxd1lCKz20MogkQntG2HerWSmlscE-rfGXP4aERG-_oeV13V34dOG3QMCZ6WohPUFEjow05_zfb78gO_6qzBe7JFvL-cpcITNZqmYx9Jpku3P_2B98ARDZ46E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA4uB_UgrrgbwWvsLJlM5yhFqVs92EJv4WWSSKWmpcvV3-7LLFIFEbxOXobhS_LeN8nL9wi5zBRXAhJgAnjAeKIDliWgWdxsYrRVGKGKzZynjmj3-H0_6S-RVn0XxqdVVr6_9OmFt66eNCo0G-PBoPESNLNIIN3GXwR_wzRbJqscl68vY3D1sZDnkRZ18Lw18-b1_bkiyesdqZx79RlevJTujH6LTz88dRF-brfIZsUb6XX5adtkybgdsrGgJrhLOs-OIp2jDtxIzZUamin1ahATC35fnI79vvvEC6hScJqWaiJ08QQbzakdjsrT-T3Su73pttqsKpfAcmRdM6asstzmItNWcG0x0BgdJoAr2GoRgTIZIBah0GEMIgEIRB6ahGutYwEiz-J9suJGzhwQCmmOw5akoTLIWEwKWVT8S8ZIBpEy2UMS1yDJvNIS9yUthrJOGnuTJbTSQyuDSCK0h4R99RqXWhp_2Kc1_vLbnJDo7v_oeVEPF7ZO_RkIODOaT6VniEiSkecc_fvt52St3X16lI93nYdjsu5byuSxE7Iym8zNKdKUmTorpuEnWETlLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+nanobubbles+interfacial+properties+and+future+applications+in+flotation&rft.jtitle=Minerals+engineering&rft.au=Calgaroto%2C+S&rft.au=Wilberg%2C+K+Q&rft.au=Rubio%2C+J&rft.date=2014-06-01&rft.issn=0892-6875&rft.volume=60&rft.spage=33&rft.epage=40&rft_id=info:doi/10.1016%2Fj.mineng.2014.02.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon