DNA nanostructure-based nucleic acid probes: construction and biological applications
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing...
Saved in:
Published in | Chemical science (Cambridge) Vol. 12; no. 22; pp. 762 - 7622 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.06.2021
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing,
in vivo
imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved
in vitro
and
in vivo
applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing,
in vivo
imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. |
---|---|
AbstractList | In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed. In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed. In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed. In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed. |
Author | Kong, De-Ming Huang, Yan Wang, Ya-Xin Tang, An-Na Wang, Dong-Xia Du, Yi-Chen Wang, Jing Cui, Yun-Xi |
AuthorAffiliation | Nankai University State Key Laboratory of Medicinal Chemical Biology College of Chemistry Research Centre for Analytical Sciences College of Life Sciences Tianjin Key Laboratory of Biosensing and Molecular Recognition |
AuthorAffiliation_xml | – name: Tianjin Key Laboratory of Biosensing and Molecular Recognition – name: College of Life Sciences – name: Research Centre for Analytical Sciences – name: College of Chemistry – name: State Key Laboratory of Medicinal Chemical Biology – name: Nankai University |
Author_xml | – sequence: 1 givenname: Dong-Xia surname: Wang fullname: Wang, Dong-Xia – sequence: 2 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 3 givenname: Ya-Xin surname: Wang fullname: Wang, Ya-Xin – sequence: 4 givenname: Yi-Chen surname: Du fullname: Du, Yi-Chen – sequence: 5 givenname: Yan surname: Huang fullname: Huang, Yan – sequence: 6 givenname: An-Na surname: Tang fullname: Tang, An-Na – sequence: 7 givenname: Yun-Xi surname: Cui fullname: Cui, Yun-Xi – sequence: 8 givenname: De-Ming surname: Kong fullname: Kong, De-Ming |
BookMark | eNptkk1rGzEQhkVISBw3l9wLC72UwCbS6mOlHgLG-YSQHtqchVaSUxlZ2kq7hfz7yLFxSOhcNDDPvLyjmWOwH2KwAJwieI4gFhcGZQ0h5a3aA5MGElQzisX-Lm_gETjJeQlLYIxo0x6CI0wQ4xy1E_B09TirggoxD2nUw5hs3alsTRVG7a3TldLOVH2Knc0_Kh3DhnMxVCqYqnPRx2enla9U3_uSrEv5CzhYKJ_tyfadgqeb69_zu_rh5-39fPZQawLpUHeCGSUo4Uq0RJCmY4Iw1ArCNWtbijExijNODUUYM8ZxB4tpKqCxXBuzwFNwudHtx25ljbZhSMrLPrmVSi8yKic_VoL7I5_jP8kR5xShIvB9K5Di39HmQa5c1tZ7FWwcs2wooVS0sJiZgm-f0GUcUyjjFQoLSERDYKHONpROMedkFzszCMr1wuQV-jV_W9iswPATrN3w9oPFrPP_b_m6aUlZ76TfbwC_AoK1ob0 |
CitedBy_id | crossref_primary_10_1021_acsami_2c11923 crossref_primary_10_1016_j_snb_2023_133660 crossref_primary_10_3390_molecules29245896 crossref_primary_10_1016_j_cbi_2024_111031 crossref_primary_10_1016_j_aca_2024_342743 crossref_primary_10_1021_acsnano_3c10162 crossref_primary_10_1021_acsabm_2c00128 crossref_primary_10_1039_D3AN01915B crossref_primary_10_1016_j_microc_2023_109316 crossref_primary_10_1016_j_microc_2024_111356 crossref_primary_10_1016_j_jhazmat_2024_135115 crossref_primary_10_1002_VIW_20230062 crossref_primary_10_1016_j_trac_2024_117775 crossref_primary_10_1038_s41428_022_00623_1 crossref_primary_10_1021_acssensors_3c02776 crossref_primary_10_3389_fmed_2024_1467530 crossref_primary_10_1016_j_cej_2022_135590 crossref_primary_10_3390_molecules29010267 crossref_primary_10_1039_D3QM00395G crossref_primary_10_1007_s00604_023_05848_2 crossref_primary_10_3390_bios13070693 crossref_primary_10_1109_JSEN_2024_3388460 crossref_primary_10_1016_j_nantod_2023_102127 crossref_primary_10_3390_bios14120605 crossref_primary_10_1002_asia_202101315 crossref_primary_10_1039_D3NR03940D crossref_primary_10_1021_acs_analchem_4c03409 crossref_primary_10_1002_adfm_202309070 crossref_primary_10_1016_j_snb_2023_134452 crossref_primary_10_3390_ijms24021592 crossref_primary_10_1021_jacs_3c00861 crossref_primary_10_14348_molcells_2021_0182 crossref_primary_10_1002_adtp_202200042 crossref_primary_10_1002_adfm_202401711 crossref_primary_10_1021_cbmi_3c00012 crossref_primary_10_1039_D3TB01984E crossref_primary_10_1039_D4CC01049C crossref_primary_10_1016_j_csbj_2025_02_002 crossref_primary_10_1186_s12951_023_01943_x crossref_primary_10_1002_adma_202303092 crossref_primary_10_1021_acs_analchem_2c03223 crossref_primary_10_1016_j_snb_2023_134215 crossref_primary_10_1016_j_tifs_2024_104350 crossref_primary_10_1039_D1CC04691H crossref_primary_10_1002_cbic_202400936 crossref_primary_10_1016_j_bios_2024_116412 crossref_primary_10_1063_5_0121820 crossref_primary_10_1039_D4SD00206G crossref_primary_10_1021_acs_analchem_3c04920 crossref_primary_10_3390_bios13100922 crossref_primary_10_1002_slct_202203004 crossref_primary_10_1021_cbe_4c00164 crossref_primary_10_1016_j_aca_2022_340643 crossref_primary_10_1016_j_bios_2023_115994 crossref_primary_10_1002_adsr_202200102 crossref_primary_10_1016_j_bios_2023_115517 crossref_primary_10_1021_acs_analchem_4c00473 crossref_primary_10_1002_smtd_202401559 crossref_primary_10_3390_gels9070545 crossref_primary_10_1021_acs_analchem_3c03923 crossref_primary_10_1016_j_ccr_2022_214648 crossref_primary_10_1039_D2SC06968G crossref_primary_10_1002_advs_202400517 crossref_primary_10_1016_j_microc_2024_112084 crossref_primary_10_1039_D4SD00373J crossref_primary_10_1039_D3AN01871G crossref_primary_10_1002_smll_202406814 crossref_primary_10_1002_smll_202408384 crossref_primary_10_1021_acs_analchem_2c02577 crossref_primary_10_1039_D2OB01095J crossref_primary_10_3390_cancers15072151 crossref_primary_10_1002_mco2_775 crossref_primary_10_3390_bios14030146 crossref_primary_10_1021_acs_analchem_2c03658 crossref_primary_10_1016_j_talanta_2021_122846 crossref_primary_10_1021_acsbiomaterials_1c00868 crossref_primary_10_1021_acs_analchem_2c05200 crossref_primary_10_1039_D3AN01707A crossref_primary_10_1039_D4NJ02280G crossref_primary_10_1002_agt2_166 crossref_primary_10_1002_smtd_202401102 crossref_primary_10_1016_j_cej_2023_145951 crossref_primary_10_1016_j_bios_2022_114077 crossref_primary_10_1016_j_bios_2023_115584 crossref_primary_10_1021_acsanm_3c00151 crossref_primary_10_1002_adfm_202201172 crossref_primary_10_1021_acs_chemrev_3c00377 crossref_primary_10_1002_advs_202404112 crossref_primary_10_1002_smsc_202400471 crossref_primary_10_3390_chemistry5030124 crossref_primary_10_1016_j_ijbiomac_2022_01_039 crossref_primary_10_1016_j_ijbiomac_2022_11_084 crossref_primary_10_1021_acs_analchem_2c03015 crossref_primary_10_3390_chemistry5030129 crossref_primary_10_1016_j_jconrel_2022_07_043 crossref_primary_10_1021_acsabm_3c01190 crossref_primary_10_3390_polym15081850 crossref_primary_10_1016_j_trac_2023_117387 crossref_primary_10_1021_acs_analchem_1c04113 |
Cites_doi | 10.1039/C9SC04823E 10.1021/jacs.9b11001 10.1002/anie.202004805 10.1038/nature06597 10.1126/science.1214081 10.1038/s41563-020-0793-6 10.1038/s41467-020-16112-z 10.1021/acsnano.5b07671 10.1002/anie.202005624 10.1038/s43586-020-00009-8 10.1021/acssynbio.0c00235 10.1016/j.csbj.2018.09.002 10.1002/anie.202012916 10.1021/acs.nanolett.0c03671 10.1002/anie.202009263 10.1038/nnano.2015.180 10.1038/s41596-020-0326-4 10.1021/acs.analchem.9b01487 10.1038/s41557-019-0251-8 10.1021/acsnano.7b06200 10.3390/molecules25081823 10.1038/nature07971 10.1021/acs.analchem.9b02614 10.1002/anie.202004206 10.1021/jacs.9b04725 10.1038/nature24650 10.1021/acsnano.0c03362 10.1038/s41557-020-0539-8 10.1021/acsami.8b20144 10.1016/j.biomaterials.2017.09.014 10.1021/acsnano.0c00602 10.1038/s41565-020-0719-0 10.1002/smll.201602983 10.1126/science.1120367 10.1002/anie.201801195 10.1039/D0CC03596C 10.1021/acsnano.0c06136 10.1002/advs.202001669 10.1002/adfm.202006305 10.1021/jacs.0c01962 10.1126/sciadv.aba2983 10.1126/science.aaw5122 10.1021/jacs.0c01580 10.1002/anie.201807029 10.1038/nature08274 10.1039/C9SC01199D 10.1021/acs.analchem.0c03746 10.1021/acsnano.9b09995 10.1021/acs.nanolett.0c00445 10.1016/j.bios.2016.05.058 10.1002/anie.201802890 10.1002/anie.202005974 10.1021/acs.analchem.9b03453 10.1016/j.snb.2020.129335 10.1021/jacs.6b07676 10.1038/nmat1741 10.1002/admi.202000292 10.1021/acsnano.9b01857 10.1021/acs.analchem.8b02826 10.1039/b402293a 10.1021/acs.analchem.9b05304 10.1016/j.chempr.2020.06.012 10.1021/acs.chemrev.6b00825 10.1021/acs.analchem.0c03764 10.1002/adma.201901743 10.1038/s41467-020-20638-7 10.1126/science.1174251 10.1002/adfm.202000532 10.1038/s41570-021-00251-y 10.1021/jacs.0c04978 10.1021/acscentsci.0c00763 10.1021/acs.analchem.8b02847 10.1021/acsami.0c03360 10.1021/jacs.9b01510 10.1021/ja038381e 10.1039/C9SC03469B 10.1002/anie.201916390 10.1111/cas.14548 10.1039/D0AN00101E 10.1002/anie.201913958 10.1038/nature04586 10.1021/jacs.0c09558 10.1038/nmat1045 10.1126/science.2200121 10.1021/acs.analchem.8b05778 10.1038/nature08016 10.1021/nn202774x 10.1021/acsami.9b02695 10.1002/adma.201002767 10.1093/nar/gkaa683 10.1021/ja0665141 10.1002/adma.201703721 10.1021/acs.analchem.8b05706 10.1021/jacs.8b10795 10.1039/C8SC02943A 10.1038/nature24651 10.1021/nn5011914 10.1073/pnas.0803841105 10.1021/acsami.9b21778 10.1039/C9NH00529C 10.1126/sciadv.1602803 10.1111/cas.14266 10.1016/0022-5193(82)90002-9 10.1021/jacs.5b04007 10.1021/ja1108886 10.1021/jacs.8b04319 10.1021/acsnano.8b09147 10.1021/jacs.9b09782 10.1038/nnano.2014.58 10.1038/nature11247 10.1002/anie.202002020 10.1038/nbt.4071 10.1039/C9SC02281C 10.1002/cbic.201500686 10.1021/jacs.8b04648 10.1002/adhm.201700692 10.1002/anie.201907380 10.1021/acs.analchem.9b02115 10.1021/bi00064a003 10.1002/anie.201912574 10.1002/anie.202008413 10.1002/anie.201802701 10.1002/chem.202100784 10.1002/anie.201202356 10.1021/jacs.9b09043 10.1021/acsami.9b14186 10.1038/ncomms15654 10.1021/acs.analchem.0c02146 10.1002/anie.201916432 10.1038/s41592-019-0404-0 10.1038/nprot.2015.078 10.1002/adfm.201906253 10.1021/jacs.7b07485 10.1126/sciadv.aay9948 10.1021/jacs.7b09789 10.1002/advs.202000647 10.1039/C8BM01249K 10.1021/acs.nanolett.8b00660 10.1039/C8SC04756A 10.1021/acsnano.9b01324 10.1021/ar500034y 10.1021/acsnano.0c04031 10.1021/jacs.9b01550 10.1021/acs.analchem.9b04493 10.1016/j.snb.2020.127943 10.1021/acsami.9b05358 10.1002/adma.201705737 10.1038/s41467-020-15297-7 10.1038/s41557-019-0369-8 10.1038/nature02307 10.1021/ja075966q 10.1038/s41467-019-09029-9 10.1038/350631a0 10.1021/acsami.9b21443 10.1038/nprot.2014.154 10.1021/ja993393e 10.1038/nature14586 10.1002/anie.201506030 10.1021/acs.analchem.7b02763 10.1039/C8SC01001C |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d1sc00587a |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 7622 |
ExternalDocumentID | PMC8188511 10_1039_D1SC00587A d1sc00587a |
GrantInformation_xml | – fundername: ; grantid: 22074068; 21874075 – fundername: ; grantid: 2019YFA0210103 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAJAE AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AHGCF AKBGW APEMP CITATION HZ~ PGMZT RAOCF RNS 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c405t-b96da9548a974942b694617948c6775334da8685d51336683b0817590de8cddf3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:03:11 EDT 2025 Fri Jul 11 04:35:21 EDT 2025 Fri Jul 25 04:36:31 EDT 2025 Tue Jul 01 03:46:51 EDT 2025 Thu Apr 24 22:54:22 EDT 2025 Mon Apr 25 05:28:03 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-b96da9548a974942b694617948c6775334da8685d51336683b0817590de8cddf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5411-9216 0000-0002-3830-3336 0000-0002-9216-8040 |
OpenAccessLink | http://dx.doi.org/10.1039/d1sc00587a |
PMID | 34168817 |
PQID | 2539049240 |
PQPubID | 2047492 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2545597075 crossref_primary_10_1039_D1SC00587A rsc_primary_d1sc00587a proquest_journals_2539049240 crossref_citationtrail_10_1039_D1SC00587A pubmedcentral_primary_oai_pubmedcentral_nih_gov_8188511 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-14 |
PublicationDateYYYYMMDD | 2021-06-14 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Rizzuto (D1SC00587A-(cit9)/*[position()=1]) 2020; 6 Zhang (D1SC00587A-(cit128)/*[position()=1]) 2020; 59 Lacroix (D1SC00587A-(cit2)/*[position()=1]) 2021; 15 tai tNummelin (D1SC00587A-(cit91)/*[position()=1]) 2020; 9 Zhang (D1SC00587A-(cit133)/*[position()=1]) 2019; 11 Sun (D1SC00587A-(cit156)/*[position()=1]) 2015; 54 Huang (D1SC00587A-(cit98)/*[position()=1]) 2018; 9 Wei (D1SC00587A-(cit21)/*[position()=1]) 2018; 9 Zhou (D1SC00587A-(cit125)/*[position()=1]) 2016; 85 Ramakrishnan (D1SC00587A-(cit57)/*[position()=1]) 2018; 16 Yang (D1SC00587A-(cit114)/*[position()=1]) 2020; 143 Chen (D1SC00587A-(cit33)/*[position()=1]) 1991; 350 Liu (D1SC00587A-(cit75)/*[position()=1]) 2018; 57 Zhong (D1SC00587A-(cit35)/*[position()=1]) 2018; 90 Ma (D1SC00587A-(cit70)/*[position()=1]) 2018; 57 Goodman (D1SC00587A-(cit34)/*[position()=1]) 2004 Shen (D1SC00587A-(cit48)/*[position()=1]) 2004; 126 Green (D1SC00587A-(cit52)/*[position()=1]) 2019; 11 Yue (D1SC00587A-(cit124)/*[position()=1]) 2020; 312 Wan (D1SC00587A-(cit118)/*[position()=1]) 2019; 91 Qi (D1SC00587A-(cit143)/*[position()=1]) 2020; 14 LaBean (D1SC00587A-(cit27)/*[position()=1]) 2000; 122 Zou (D1SC00587A-(cit46)/*[position()=1]) 2020; 145 Lv (D1SC00587A-(cit42)/*[position()=1]) 2015; 10 Zhang (D1SC00587A-(cit129)/*[position()=1]) 2020; 20 Liu (D1SC00587A-(cit62)/*[position()=1]) 2019; 141 Consortium (D1SC00587A-(cit1)/*[position()=1]) 2012; 489 Li (D1SC00587A-(cit137)/*[position()=1]) 2011; 5 Keller (D1SC00587A-(cit159)/*[position()=1]) 2020; 59 Pei (D1SC00587A-(cit65)/*[position()=1]) 2010; 22 Wu (D1SC00587A-(cit44)/*[position()=1]) 2020; 56 Jiao (D1SC00587A-(cit68)/*[position()=1]) 2020; 142 Wiraja (D1SC00587A-(cit140)/*[position()=1]) 2019; 10 Ni (D1SC00587A-(cit155)/*[position()=1]) 2018; 30 Um (D1SC00587A-(cit41)/*[position()=1]) 2006; 5 Lin (D1SC00587A-(cit47)/*[position()=1]) 2020; 92 Aldaye (D1SC00587A-(cit37)/*[position()=1]) 2007; 129 Veneziano (D1SC00587A-(cit89)/*[position()=1]) 2020; 15 Gong (D1SC00587A-(cit45)/*[position()=1]) 2020; 59 Sun (D1SC00587A-(cit134)/*[position()=1]) 2019; 11 Andersen (D1SC00587A-(cit39)/*[position()=1]) 2009; 459 Li (D1SC00587A-(cit64)/*[position()=1]) 2018; 36 Zhang (D1SC00587A-(cit93)/*[position()=1]) 2019; 141 Yin (D1SC00587A-(cit103)/*[position()=1]) 2020; 59 Yang (D1SC00587A-(cit16)/*[position()=1]) 2015; 137 Kwon (D1SC00587A-(cit32)/*[position()=1]) 2020; 12 Yue (D1SC00587A-(cit43)/*[position()=1]) 2019; 10 Zhao (D1SC00587A-(cit60)/*[position()=1]) 2021; 12 Tuerk (D1SC00587A-(cit17)/*[position()=1]) 1990; 249 Zhang (D1SC00587A-(cit19)/*[position()=1]) 2020; 59 Funck (D1SC00587A-(cit117)/*[position()=1]) 2018; 57 Dietz (D1SC00587A-(cit81)/*[position()=1]) 2009; 325 Xin (D1SC00587A-(cit86)/*[position()=1]) 2021 Peng (D1SC00587A-(cit115)/*[position()=1]) 2017; 139 nDeLuca (D1SC00587A-(cit90)/*[position()=1]) 2020; 5 Shih (D1SC00587A-(cit36)/*[position()=1]) 2004; 427 Kuzyk (D1SC00587A-(cit116)/*[position()=1]) 2017; 3 English (D1SC00587A-(cit97)/*[position()=1]) 2019; 365 Benson (D1SC00587A-(cit84)/*[position()=1]) 2015; 523 Zeng (D1SC00587A-(cit79)/*[position()=1]) 2020; 92 Zhou (D1SC00587A-(cit72)/*[position()=1]) 2020; 14 Wang (D1SC00587A-(cit112)/*[position()=1]) 2019; 91 Yata (D1SC00587A-(cit141)/*[position()=1]) 2017; 146 Hu (D1SC00587A-(cit102)/*[position()=1]) 2019; 91 Zhuang (D1SC00587A-(cit105)/*[position()=1]) 2020; 48 Bila (D1SC00587A-(cit158)/*[position()=1]) 2019; 7 Wang (D1SC00587A-(cit74)/*[position()=1]) 2020; 59 Xie (D1SC00587A-(cit8)/*[position()=1]) 2019; 13 Kishi (D1SC00587A-(cit14)/*[position()=1]) 2019; 16 Li (D1SC00587A-(cit126)/*[position()=1]) 2019; 141 Lu (D1SC00587A-(cit10)/*[position()=1]) 2021; 60 Rothemund (D1SC00587A-(cit30)/*[position()=1]) 2006; 440 Wang (D1SC00587A-(cit67)/*[position()=1]) 2021; 330 He (D1SC00587A-(cit51)/*[position()=1]) 2008; 452 Peng (D1SC00587A-(cit113)/*[position()=1]) 2018; 140 Chandrasekaran (D1SC00587A-(cit160)/*[position()=1]) 2021; 5 Li (D1SC00587A-(cit104)/*[position()=1]) 2020; 11 Wang (D1SC00587A-(cit111)/*[position()=1]) 2019; 10 Qin (D1SC00587A-(cit132)/*[position()=1]) 2020 Jiang (D1SC00587A-(cit71)/*[position()=1]) 2016; 17 Li (D1SC00587A-(cit100)/*[position()=1]) 2019; 91 Fu (D1SC00587A-(cit77)/*[position()=1]) 2020; 11 Su (D1SC00587A-(cit138)/*[position()=1]) 2020; 11 Zhang (D1SC00587A-(cit139)/*[position()=1]) 2020; 12 Chu (D1SC00587A-(cit150)/*[position()=1]) 2020; 12 Nicolson (D1SC00587A-(cit4)/*[position()=1]) 2020; 7 Ebrahimi (D1SC00587A-(cit5)/*[position()=1]) 2020; 142 Zhang (D1SC00587A-(cit109)/*[position()=1]) 2018; 140 Ge (D1SC00587A-(cit127)/*[position()=1]) 2020; 142 Huang (D1SC00587A-(cit99)/*[position()=1]) 2019; 91 Piskunen (D1SC00587A-(cit83)/*[position()=1]) 2020; 25 e shiAmir (D1SC00587A-(cit88)/*[position()=1]) 2014; 9 Shi (D1SC00587A-(cit101)/*[position()=1]) 2020; 59 Wile (D1SC00587A-(cit15)/*[position()=1]) 2014; 9 Ouyang (D1SC00587A-(cit135)/*[position()=1]) 2020; 142 Li (D1SC00587A-(cit142)/*[position()=1]) 2020; 30 Liu (D1SC00587A-(cit63)/*[position()=1]) 2020; 20 He (D1SC00587A-(cit49)/*[position()=1]) 2006; 128 Goodman (D1SC00587A-(cit69)/*[position()=1]) 2005; 310 Wang (D1SC00587A-(cit119)/*[position()=1]) 2020; 59 Majumder (D1SC00587A-(cit50)/*[position()=1]) 2011; 133 Duangrat (D1SC00587A-(cit7)/*[position()=1]) 2020; 111 Surana (D1SC00587A-(cit144)/*[position()=1]) 2015; 10 Zhang (D1SC00587A-(cit38)/*[position()=1]) 2008; 105 Samanta (D1SC00587A-(cit3)/*[position()=1]) 2020; 32 Yao (D1SC00587A-(cit130)/*[position()=1]) 2020; 142 Yang (D1SC00587A-(cit24)/*[position()=1]) 2019; 91 Wagenbauer (D1SC00587A-(cit85)/*[position()=1]) 2017; 552 Amodio (D1SC00587A-(cit54)/*[position()=1]) 2016; 138 Auvinen (D1SC00587A-(cit145)/*[position()=1]) 2017; 6 Gačanin (D1SC00587A-(cit11)/*[position()=1]) 2019; 30 Thai (D1SC00587A-(cit154)/*[position()=1]) 2020; 6 Liu (D1SC00587A-(cit6)/*[position()=1]) 2020; 14 Liu (D1SC00587A-(cit76)/*[position()=1]) 2019; 91 Ren (D1SC00587A-(cit23)/*[position()=1]) 2018; 12 Hong (D1SC00587A-(cit13)/*[position()=1]) 2017; 117 Dey (D1SC00587A-(cit12)/*[position()=1]) 2021; 1 Cheng (D1SC00587A-(cit152)/*[position()=1]) 2019; 11 Ponnuswamy (D1SC00587A-(cit147)/*[position()=1]) 2017; 8 Cui (D1SC00587A-(cit149)/*[position()=1]) 2020 Praetorius (D1SC00587A-(cit157)/*[position()=1]) 2017; 552 Du (D1SC00587A-(cit95)/*[position()=1]) 2020 Zhang (D1SC00587A-(cit56)/*[position()=1]) 2020; 59 Kielar (D1SC00587A-(cit59)/*[position()=1]) 2018; 57 Xing (D1SC00587A-(cit53)/*[position()=1]) 2020; 12 Sun (D1SC00587A-(cit94)/*[position()=1]) 2020; 6 Li (D1SC00587A-(cit28)/*[position()=1]) 2004; 3 Fu (D1SC00587A-(cit26)/*[position()=1]) 1993; 32 Ye (D1SC00587A-(cit131)/*[position()=1]) 2020; 15 Yao (D1SC00587A-(cit87)/*[position()=1]) 2020; 12 Loo (D1SC00587A-(cit148)/*[position()=1]) 2020; 111 Seeman (D1SC00587A-(cit25)/*[position()=1]) 1982; 99 Wu (D1SC00587A-(cit29)/*[position()=1]) 2019; 11 Pan (D1SC00587A-(cit92)/*[position()=1]) 2020; 59 Nummelin (D1SC00587A-(cit80)/*[position()=1]) 2018; 30 Liu (D1SC00587A-(cit123)/*[position()=1]) 2020; 92 Zheng (D1SC00587A-(cit31)/*[position()=1]) 2009; 461 Bastings (D1SC00587A-(cit58)/*[position()=1]) 2018; 18 Zhang (D1SC00587A-(cit136)/*[position()=1]) 2019; 58 Bui (D1SC00587A-(cit20)/*[position()=1]) 2017; 13 Zhang (D1SC00587A-(cit96)/*[position()=1]) 2020; 20 Chen (D1SC00587A-(cit107)/*[position()=1]) 2019; 11 Xue (D1SC00587A-(cit22)/*[position()=1]) 2020; 59 Jiao (D1SC00587A-(cit18)/*[position()=1]) 2020; 92 Ijas (D1SC00587A-(cit110)/*[position()=1]) 2019; 13 Pei (D1SC00587A-(cit66)/*[position()=1]) 2012; 51 He (D1SC00587A-(cit121)/*[position()=1]) 2018; 140 Wang (D1SC00587A-(cit61)/*[position()=1]) 2020; 6 Agarwal (D1SC00587A-(cit55)/*[position()=1]) 2019; 141 Douglas (D1SC00587A-(cit82)/*[position()=1]) 2009; 459 Lu (D1SC00587A-(cit108)/*[position()=1]) 2019; 10 Yang (D1SC00587A-(cit120)/*[position()=1]) 2020; 92 Du (D1SC00587A-(cit78)/*[position()=1]) 2019; 13 Douglas (D1SC00587A-(cit40)/*[position()=1]) 2012; 335 Perrault (D1SC00587A-(cit146)/*[position()=1]) 2014; 8 Zhuang (D1SC00587A-(cit153)/*[position()=1]) 2016; 10 Torring (D1SC00587A-(cit151)/*[position()=1]) 2014; 47 Lin (D1SC00587A-(cit106)/*[position()=1]) 2019; 141 Mao (D1SC00587A-(cit73)/*[position()=1]) 2020; 14 Zheng (D1SC00587A-(cit122)/*[position()=1]) 2017; 89 |
References_xml | – volume: 11 start-page: 80 year: 2020 ident: D1SC00587A-(cit138)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC04823E – volume: 142 start-page: 3422 year: 2020 ident: D1SC00587A-(cit130)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11001 – volume: 59 start-page: 17540 year: 2020 ident: D1SC00587A-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202004805 – volume: 452 start-page: 198 year: 2008 ident: D1SC00587A-(cit51)/*[position()=1] publication-title: Nature doi: 10.1038/nature06597 – volume: 335 start-page: 831 year: 2012 ident: D1SC00587A-(cit40)/*[position()=1] publication-title: Science doi: 10.1126/science.1214081 – volume: 20 start-page: 421 year: 2020 ident: D1SC00587A-(cit63)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-020-0793-6 – volume: 11 start-page: 2185 year: 2020 ident: D1SC00587A-(cit104)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-16112-z – volume: 10 start-page: 3486 year: 2016 ident: D1SC00587A-(cit153)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b07671 – volume: 59 start-page: 14584 year: 2020 ident: D1SC00587A-(cit56)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005624 – volume: 1 start-page: 13 year: 2021 ident: D1SC00587A-(cit12)/*[position()=1] publication-title: Nature Reviews Methods Primers doi: 10.1038/s43586-020-00009-8 – volume: 9 start-page: 1923 year: 2020 ident: D1SC00587A-(cit91)/*[position()=1] publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.0c00235 – volume: 16 start-page: 342 year: 2018 ident: D1SC00587A-(cit57)/*[position()=1] publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2018.09.002 – volume: 60 start-page: 5377 year: 2021 ident: D1SC00587A-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202012916 – volume: 20 start-page: 8399 year: 2020 ident: D1SC00587A-(cit96)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03671 – volume: 59 start-page: 21454 year: 2020 ident: D1SC00587A-(cit19)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009263 – volume: 10 start-page: 741 year: 2015 ident: D1SC00587A-(cit144)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.180 – volume: 15 start-page: 2163 year: 2020 ident: D1SC00587A-(cit131)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0326-4 – volume: 91 start-page: 9828 year: 2019 ident: D1SC00587A-(cit24)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b01487 – volume: 11 start-page: 510 year: 2019 ident: D1SC00587A-(cit52)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-019-0251-8 – volume: 12 start-page: 263 year: 2018 ident: D1SC00587A-(cit23)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b06200 – volume: 25 start-page: 1823 year: 2020 ident: D1SC00587A-(cit83)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules25081823 – volume: 459 start-page: 73 year: 2009 ident: D1SC00587A-(cit39)/*[position()=1] publication-title: Nature doi: 10.1038/nature07971 – volume: 91 start-page: 11374 year: 2019 ident: D1SC00587A-(cit102)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02614 – volume: 59 start-page: 11892 year: 2020 ident: D1SC00587A-(cit101)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202004206 – volume: 141 start-page: 18013 year: 2019 ident: D1SC00587A-(cit126)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04725 – volume: 552 start-page: 84 year: 2017 ident: D1SC00587A-(cit157)/*[position()=1] publication-title: Nature doi: 10.1038/nature24650 – volume: 14 start-page: 8776 year: 2020 ident: D1SC00587A-(cit73)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.0c03362 – volume: 12 start-page: 1067 year: 2020 ident: D1SC00587A-(cit87)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-020-0539-8 – volume: 11 start-page: 3745 year: 2019 ident: D1SC00587A-(cit107)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20144 – volume: 146 start-page: 136 year: 2017 ident: D1SC00587A-(cit141)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.09.014 – volume: 14 start-page: 4727 year: 2020 ident: D1SC00587A-(cit143)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.0c00602 – volume: 15 start-page: 716 year: 2020 ident: D1SC00587A-(cit89)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0719-0 – volume: 13 start-page: 1602983 year: 2017 ident: D1SC00587A-(cit20)/*[position()=1] publication-title: Small doi: 10.1002/smll.201602983 – volume: 310 start-page: 1661 year: 2005 ident: D1SC00587A-(cit69)/*[position()=1] publication-title: Science doi: 10.1126/science.1120367 – volume: 57 start-page: 5389 year: 2018 ident: D1SC00587A-(cit70)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801195 – volume: 56 start-page: 8782 year: 2020 ident: D1SC00587A-(cit44)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/D0CC03596C – volume: 15 start-page: 3631 year: 2021 ident: D1SC00587A-(cit2)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.0c06136 – volume: 7 start-page: 2001669 year: 2020 ident: D1SC00587A-(cit4)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.202001669 – start-page: 2006305 year: 2020 ident: D1SC00587A-(cit95)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006305 – volume: 142 start-page: 10739 year: 2020 ident: D1SC00587A-(cit68)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01962 – volume: 6 start-page: eaba2983 year: 2020 ident: D1SC00587A-(cit94)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aba2983 – volume: 365 start-page: 780 year: 2019 ident: D1SC00587A-(cit97)/*[position()=1] publication-title: Science doi: 10.1126/science.aaw5122 – volume: 142 start-page: 8800 year: 2020 ident: D1SC00587A-(cit127)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01580 – volume: 57 start-page: 13495 year: 2018 ident: D1SC00587A-(cit117)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201807029 – volume: 461 start-page: 74 year: 2009 ident: D1SC00587A-(cit31)/*[position()=1] publication-title: Nature doi: 10.1038/nature08274 – volume: 10 start-page: 5025 year: 2019 ident: D1SC00587A-(cit108)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC01199D – volume: 92 start-page: 15179 year: 2020 ident: D1SC00587A-(cit47)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03746 – volume: 14 start-page: 9572 year: 2020 ident: D1SC00587A-(cit6)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b09995 – volume: 20 start-page: 3521 year: 2020 ident: D1SC00587A-(cit129)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00445 – volume: 85 start-page: 573 year: 2016 ident: D1SC00587A-(cit125)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.05.058 – volume: 57 start-page: 9470 year: 2018 ident: D1SC00587A-(cit59)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802890 – volume: 59 start-page: 14115 year: 2020 ident: D1SC00587A-(cit128)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005974 – volume: 91 start-page: 13165 year: 2019 ident: D1SC00587A-(cit112)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b03453 – volume: 330 start-page: 129335 year: 2021 ident: D1SC00587A-(cit67)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2020.129335 – volume: 138 start-page: 12735 year: 2016 ident: D1SC00587A-(cit54)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07676 – volume: 5 start-page: 797 year: 2006 ident: D1SC00587A-(cit41)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1741 – start-page: 2000292 year: 2020 ident: D1SC00587A-(cit149)/*[position()=1] publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000292 – volume: 13 start-page: 5959 year: 2019 ident: D1SC00587A-(cit110)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b01857 – volume: 91 start-page: 2626 year: 2019 ident: D1SC00587A-(cit118)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b02826 – start-page: 1372 year: 2004 ident: D1SC00587A-(cit34)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b402293a – volume: 92 start-page: 4411 year: 2020 ident: D1SC00587A-(cit120)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05304 – volume: 6 start-page: 1560 year: 2020 ident: D1SC00587A-(cit9)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2020.06.012 – volume: 117 start-page: 12584 year: 2017 ident: D1SC00587A-(cit13)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00825 – volume: 92 start-page: 15194 year: 2020 ident: D1SC00587A-(cit79)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03764 – volume: 32 start-page: e1901743 year: 2020 ident: D1SC00587A-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201901743 – volume: 12 start-page: 358 year: 2021 ident: D1SC00587A-(cit60)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-20638-7 – volume: 325 start-page: 725 year: 2009 ident: D1SC00587A-(cit81)/*[position()=1] publication-title: Science doi: 10.1126/science.1174251 – volume: 30 start-page: 2000532 year: 2020 ident: D1SC00587A-(cit142)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000532 – volume: 5 start-page: 225 year: 2021 ident: D1SC00587A-(cit160)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-021-00251-y – volume: 142 start-page: 11343 year: 2020 ident: D1SC00587A-(cit5)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04978 – volume: 6 start-page: 2250 year: 2020 ident: D1SC00587A-(cit154)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00763 – volume: 90 start-page: 12059 year: 2018 ident: D1SC00587A-(cit35)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b02847 – volume: 12 start-page: 21441 year: 2020 ident: D1SC00587A-(cit139)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03360 – volume: 141 start-page: 6797 year: 2019 ident: D1SC00587A-(cit106)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01510 – volume: 126 start-page: 1666 year: 2004 ident: D1SC00587A-(cit48)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038381e – volume: 11 start-page: 62 year: 2019 ident: D1SC00587A-(cit29)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC03469B – volume: 59 start-page: 15818 year: 2020 ident: D1SC00587A-(cit159)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916390 – volume: 111 start-page: 3164 year: 2020 ident: D1SC00587A-(cit7)/*[position()=1] publication-title: Cancer Sci. doi: 10.1111/cas.14548 – volume: 145 start-page: 2562 year: 2020 ident: D1SC00587A-(cit46)/*[position()=1] publication-title: Analyst doi: 10.1039/D0AN00101E – volume: 59 start-page: 6389 year: 2020 ident: D1SC00587A-(cit74)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913958 – volume: 440 start-page: 297 year: 2006 ident: D1SC00587A-(cit30)/*[position()=1] publication-title: Nature doi: 10.1038/nature04586 – volume: 143 start-page: 232 year: 2020 ident: D1SC00587A-(cit114)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09558 – volume: 3 start-page: 38 year: 2004 ident: D1SC00587A-(cit28)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1045 – volume: 249 start-page: 505 year: 1990 ident: D1SC00587A-(cit17)/*[position()=1] publication-title: Science doi: 10.1126/science.2200121 – volume: 91 start-page: 3675 year: 2019 ident: D1SC00587A-(cit76)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b05778 – volume: 459 start-page: 414 year: 2009 ident: D1SC00587A-(cit82)/*[position()=1] publication-title: Nature doi: 10.1038/nature08016 – volume: 5 start-page: 8783 year: 2011 ident: D1SC00587A-(cit137)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn202774x – volume: 11 start-page: 13158 year: 2019 ident: D1SC00587A-(cit152)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02695 – volume: 22 start-page: 4754 year: 2010 ident: D1SC00587A-(cit65)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201002767 – volume: 48 start-page: 8870 year: 2020 ident: D1SC00587A-(cit105)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa683 – volume: 128 start-page: 15978 year: 2006 ident: D1SC00587A-(cit49)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0665141 – volume: 30 start-page: 1703721 year: 2018 ident: D1SC00587A-(cit80)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703721 – volume: 91 start-page: 2610 year: 2019 ident: D1SC00587A-(cit100)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b05706 – volume: 141 start-page: 4282 year: 2019 ident: D1SC00587A-(cit93)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10795 – volume: 9 start-page: 7802 year: 2018 ident: D1SC00587A-(cit21)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC02943A – volume: 552 start-page: 78 year: 2017 ident: D1SC00587A-(cit85)/*[position()=1] publication-title: Nature doi: 10.1038/nature24651 – volume: 8 start-page: 5132 year: 2014 ident: D1SC00587A-(cit146)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn5011914 – volume: 105 start-page: 10665 year: 2008 ident: D1SC00587A-(cit38)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0803841105 – volume: 12 start-page: 6336 year: 2020 ident: D1SC00587A-(cit53)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21778 – volume: 5 start-page: 182 year: 2020 ident: D1SC00587A-(cit90)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00529C – volume: 3 start-page: e1602803 year: 2017 ident: D1SC00587A-(cit116)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1602803 – volume: 111 start-page: 304 year: 2020 ident: D1SC00587A-(cit148)/*[position()=1] publication-title: Cancer Sci. doi: 10.1111/cas.14266 – volume: 99 start-page: 237 year: 1982 ident: D1SC00587A-(cit25)/*[position()=1] publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(82)90002-9 – volume: 137 start-page: 8340 year: 2015 ident: D1SC00587A-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04007 – volume: 133 start-page: 3843 year: 2011 ident: D1SC00587A-(cit50)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1108886 – volume: 140 start-page: 9793 year: 2018 ident: D1SC00587A-(cit113)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04319 – volume: 13 start-page: 4174 year: 2019 ident: D1SC00587A-(cit8)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b09147 – volume: 142 start-page: 1265 year: 2020 ident: D1SC00587A-(cit135)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09782 – volume: 9 start-page: 353 year: 2014 ident: D1SC00587A-(cit88)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.58 – volume: 489 start-page: 57 year: 2012 ident: D1SC00587A-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature11247 – volume: 59 start-page: 10406 year: 2020 ident: D1SC00587A-(cit103)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202002020 – volume: 36 start-page: 258 year: 2018 ident: D1SC00587A-(cit64)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4071 – volume: 10 start-page: 9758 year: 2019 ident: D1SC00587A-(cit111)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC02281C – volume: 17 start-page: 1156 year: 2016 ident: D1SC00587A-(cit71)/*[position()=1] publication-title: Chembiochem doi: 10.1002/cbic.201500686 – volume: 140 start-page: 9361 year: 2018 ident: D1SC00587A-(cit109)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04648 – volume: 6 start-page: 1700692 year: 2017 ident: D1SC00587A-(cit145)/*[position()=1] publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201700692 – volume: 58 start-page: 13794 year: 2019 ident: D1SC00587A-(cit136)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907380 – volume: 91 start-page: 9361 year: 2019 ident: D1SC00587A-(cit99)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02115 – volume: 32 start-page: 3211 year: 1993 ident: D1SC00587A-(cit26)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi00064a003 – volume: 59 start-page: 1897 year: 2020 ident: D1SC00587A-(cit92)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912574 – volume: 59 start-page: 21648 year: 2020 ident: D1SC00587A-(cit45)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202008413 – volume: 57 start-page: 7131 year: 2018 ident: D1SC00587A-(cit75)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802701 – year: 2021 ident: D1SC00587A-(cit86)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.202100784 – volume: 51 start-page: 9020 year: 2012 ident: D1SC00587A-(cit66)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201202356 – volume: 141 start-page: 19032 year: 2019 ident: D1SC00587A-(cit62)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09043 – volume: 11 start-page: 39624 year: 2019 ident: D1SC00587A-(cit133)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14186 – volume: 8 start-page: 15654 year: 2017 ident: D1SC00587A-(cit147)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15654 – volume: 92 start-page: 12394 year: 2020 ident: D1SC00587A-(cit18)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02146 – volume: 59 start-page: 6099 year: 2020 ident: D1SC00587A-(cit119)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916432 – volume: 16 start-page: 533 year: 2019 ident: D1SC00587A-(cit14)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/s41592-019-0404-0 – volume: 10 start-page: 1508 year: 2015 ident: D1SC00587A-(cit42)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.078 – volume: 30 start-page: 1906253 year: 2019 ident: D1SC00587A-(cit11)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906253 – volume: 139 start-page: 12410 year: 2017 ident: D1SC00587A-(cit115)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07485 – volume: 6 start-page: eaay9948 year: 2020 ident: D1SC00587A-(cit61)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aay9948 – volume: 140 start-page: 258 year: 2018 ident: D1SC00587A-(cit121)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09789 – start-page: 2000647 year: 2020 ident: D1SC00587A-(cit132)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.202000647 – volume: 7 start-page: 532 year: 2019 ident: D1SC00587A-(cit158)/*[position()=1] publication-title: Biomater. Sci. doi: 10.1039/C8BM01249K – volume: 18 start-page: 3557 year: 2018 ident: D1SC00587A-(cit58)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00660 – volume: 10 start-page: 1651 year: 2019 ident: D1SC00587A-(cit43)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC04756A – volume: 13 start-page: 5778 year: 2019 ident: D1SC00587A-(cit78)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b01324 – volume: 47 start-page: 1799 year: 2014 ident: D1SC00587A-(cit151)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar500034y – volume: 14 start-page: 9021 year: 2020 ident: D1SC00587A-(cit72)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.0c04031 – volume: 141 start-page: 7831 year: 2019 ident: D1SC00587A-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01550 – volume: 92 start-page: 3620 year: 2020 ident: D1SC00587A-(cit123)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04493 – volume: 312 start-page: 127943 year: 2020 ident: D1SC00587A-(cit124)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2020.127943 – volume: 11 start-page: 14684 year: 2019 ident: D1SC00587A-(cit134)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05358 – volume: 30 start-page: 1705737 year: 2018 ident: D1SC00587A-(cit155)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705737 – volume: 11 start-page: 1518 year: 2020 ident: D1SC00587A-(cit77)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-15297-7 – volume: 12 start-page: 26 year: 2020 ident: D1SC00587A-(cit32)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-019-0369-8 – volume: 427 start-page: 618 year: 2004 ident: D1SC00587A-(cit36)/*[position()=1] publication-title: Nature doi: 10.1038/nature02307 – volume: 129 start-page: 13376 year: 2007 ident: D1SC00587A-(cit37)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075966q – volume: 10 start-page: 1147 year: 2019 ident: D1SC00587A-(cit140)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09029-9 – volume: 350 start-page: 631 year: 1991 ident: D1SC00587A-(cit33)/*[position()=1] publication-title: Nature doi: 10.1038/350631a0 – volume: 12 start-page: 7575 year: 2020 ident: D1SC00587A-(cit150)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21443 – volume: 9 start-page: 2411 year: 2014 ident: D1SC00587A-(cit15)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.154 – volume: 122 start-page: 1848 year: 2000 ident: D1SC00587A-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993393e – volume: 523 start-page: 441 year: 2015 ident: D1SC00587A-(cit84)/*[position()=1] publication-title: Nature doi: 10.1038/nature14586 – volume: 54 start-page: 12029 year: 2015 ident: D1SC00587A-(cit156)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506030 – volume: 89 start-page: 10941 year: 2017 ident: D1SC00587A-(cit122)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b02763 – volume: 9 start-page: 4892 year: 2018 ident: D1SC00587A-(cit98)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC01001C |
SSID | ssj0000331527 |
Score | 2.6186965 |
SecondaryResourceType | review_article |
Snippet | In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing,
in vivo
imaging, drug... In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug... |
SourceID | pubmedcentral proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 762 |
SubjectTerms | Biocompatibility Biosensors Chemistry Nanostructure Nanotechnology Nucleic acids Pharmacology Self-assembly |
Title | DNA nanostructure-based nucleic acid probes: construction and biological applications |
URI | https://www.proquest.com/docview/2539049240 https://www.proquest.com/docview/2545597075 https://pubmed.ncbi.nlm.nih.gov/PMC8188511 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gAXxNdE2JiM4IJQILFTJ-FWtZsmNIoEDbSnyHFcqIQStLWXXfnHeS92EneqEHCJqsRKI7-f7ff5e4S8lBxMLh7Fvk6Y9FHh9YtUhb7SclUESVqwpk3nh5m4yKL3i9FiMPjlZC1tN8UbdbO3ruR_pAr3QK5YJfsPku1eCjfgN8gXriBhuP6VjKez8etKVrUhgd1eaR8PJYznw0AkYlVrZAGoC5P4puqeLrYJGhgGJsMX4ASyXYW1IxRo638w6tvWeTluhGldffMXJvP2q7THYeOotym_6_7eUsLI6vbI5dqf2FKR6dZ1RrAmaSrsnZHG5dHmmzb5JLZrXb-tsSAKfTFiJhqj3XuG1qjbl5mDP1O8bHfZWATMObFhP2d7T4OAI5lqGV4r7J4YO2deG-effczPs8vLfH62mB-QQwa2BhuSw09fssWyc9UFnNvmv923t0S3PH3bv35XtentldvZtgdXbXOZRomZ3yf3rPVBxwZKD8hAVw_JnW76HpEMIEX3QIpaSFGEFDWQekddQFEAFO0BRV1APSbZ-dl8cuHbzhu-AgV-A8tVlBKpACWYm2nECpFGArfuRIk4xurtUiYiGZXYHUiIhMOyBj00DUqdqLJc8SMyrOpKPyEUsxmxiVCsEhatipHEuK8GM2IVICUt98irdtJyZWnpsTvKj7xJj-BpPg0_T5oJHnvkRTf2pyFj2TvqpJ373C7W65wBuMAYBv3VI8-7xzC5GB-Tla63OCZC-xqUaI_EOzLr_g3J2HefVOvvDSk7KL5ovHjkCKTbje_B8fTPX3VM7vbr6YQMQXj6Gai7m-K0cROdWlD-Bg1_rWk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+nanostructure-based+nucleic+acid+probes%3A+construction+and+biological+applications&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Dong-Xia%2C+Wang&rft.au=Wang%2C+Jing&rft.au=Ya-Xin%2C+Wang&rft.au=Yi-Chen%2C+Du&rft.date=2021-06-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=22&rft.spage=7602&rft.epage=7622&rft_id=info:doi/10.1039%2Fd1sc00587a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |