DNA nanostructure-based nucleic acid probes: construction and biological applications

In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 12; no. 22; pp. 762 - 7622
Main Authors Wang, Dong-Xia, Wang, Jing, Wang, Ya-Xin, Du, Yi-Chen, Huang, Yan, Tang, An-Na, Cui, Yun-Xi, Kong, De-Ming
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.06.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed. In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties.
AbstractList In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed. In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties.
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.
Author Kong, De-Ming
Huang, Yan
Wang, Ya-Xin
Tang, An-Na
Wang, Dong-Xia
Du, Yi-Chen
Wang, Jing
Cui, Yun-Xi
AuthorAffiliation Nankai University
State Key Laboratory of Medicinal Chemical Biology
College of Chemistry
Research Centre for Analytical Sciences
College of Life Sciences
Tianjin Key Laboratory of Biosensing and Molecular Recognition
AuthorAffiliation_xml – name: Tianjin Key Laboratory of Biosensing and Molecular Recognition
– name: College of Life Sciences
– name: Research Centre for Analytical Sciences
– name: College of Chemistry
– name: State Key Laboratory of Medicinal Chemical Biology
– name: Nankai University
Author_xml – sequence: 1
  givenname: Dong-Xia
  surname: Wang
  fullname: Wang, Dong-Xia
– sequence: 2
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 3
  givenname: Ya-Xin
  surname: Wang
  fullname: Wang, Ya-Xin
– sequence: 4
  givenname: Yi-Chen
  surname: Du
  fullname: Du, Yi-Chen
– sequence: 5
  givenname: Yan
  surname: Huang
  fullname: Huang, Yan
– sequence: 6
  givenname: An-Na
  surname: Tang
  fullname: Tang, An-Na
– sequence: 7
  givenname: Yun-Xi
  surname: Cui
  fullname: Cui, Yun-Xi
– sequence: 8
  givenname: De-Ming
  surname: Kong
  fullname: Kong, De-Ming
BookMark eNptkk1rGzEQhkVISBw3l9wLC72UwCbS6mOlHgLG-YSQHtqchVaSUxlZ2kq7hfz7yLFxSOhcNDDPvLyjmWOwH2KwAJwieI4gFhcGZQ0h5a3aA5MGElQzisX-Lm_gETjJeQlLYIxo0x6CI0wQ4xy1E_B09TirggoxD2nUw5hs3alsTRVG7a3TldLOVH2Knc0_Kh3DhnMxVCqYqnPRx2enla9U3_uSrEv5CzhYKJ_tyfadgqeb69_zu_rh5-39fPZQawLpUHeCGSUo4Uq0RJCmY4Iw1ArCNWtbijExijNODUUYM8ZxB4tpKqCxXBuzwFNwudHtx25ljbZhSMrLPrmVSi8yKic_VoL7I5_jP8kR5xShIvB9K5Di39HmQa5c1tZ7FWwcs2wooVS0sJiZgm-f0GUcUyjjFQoLSERDYKHONpROMedkFzszCMr1wuQV-jV_W9iswPATrN3w9oPFrPP_b_m6aUlZ76TfbwC_AoK1ob0
CitedBy_id crossref_primary_10_1021_acsami_2c11923
crossref_primary_10_1016_j_snb_2023_133660
crossref_primary_10_3390_molecules29245896
crossref_primary_10_1016_j_cbi_2024_111031
crossref_primary_10_1016_j_aca_2024_342743
crossref_primary_10_1021_acsnano_3c10162
crossref_primary_10_1021_acsabm_2c00128
crossref_primary_10_1039_D3AN01915B
crossref_primary_10_1016_j_microc_2023_109316
crossref_primary_10_1016_j_microc_2024_111356
crossref_primary_10_1016_j_jhazmat_2024_135115
crossref_primary_10_1002_VIW_20230062
crossref_primary_10_1016_j_trac_2024_117775
crossref_primary_10_1038_s41428_022_00623_1
crossref_primary_10_1021_acssensors_3c02776
crossref_primary_10_3389_fmed_2024_1467530
crossref_primary_10_1016_j_cej_2022_135590
crossref_primary_10_3390_molecules29010267
crossref_primary_10_1039_D3QM00395G
crossref_primary_10_1007_s00604_023_05848_2
crossref_primary_10_3390_bios13070693
crossref_primary_10_1109_JSEN_2024_3388460
crossref_primary_10_1016_j_nantod_2023_102127
crossref_primary_10_3390_bios14120605
crossref_primary_10_1002_asia_202101315
crossref_primary_10_1039_D3NR03940D
crossref_primary_10_1021_acs_analchem_4c03409
crossref_primary_10_1002_adfm_202309070
crossref_primary_10_1016_j_snb_2023_134452
crossref_primary_10_3390_ijms24021592
crossref_primary_10_1021_jacs_3c00861
crossref_primary_10_14348_molcells_2021_0182
crossref_primary_10_1002_adtp_202200042
crossref_primary_10_1002_adfm_202401711
crossref_primary_10_1021_cbmi_3c00012
crossref_primary_10_1039_D3TB01984E
crossref_primary_10_1039_D4CC01049C
crossref_primary_10_1016_j_csbj_2025_02_002
crossref_primary_10_1186_s12951_023_01943_x
crossref_primary_10_1002_adma_202303092
crossref_primary_10_1021_acs_analchem_2c03223
crossref_primary_10_1016_j_snb_2023_134215
crossref_primary_10_1016_j_tifs_2024_104350
crossref_primary_10_1039_D1CC04691H
crossref_primary_10_1002_cbic_202400936
crossref_primary_10_1016_j_bios_2024_116412
crossref_primary_10_1063_5_0121820
crossref_primary_10_1039_D4SD00206G
crossref_primary_10_1021_acs_analchem_3c04920
crossref_primary_10_3390_bios13100922
crossref_primary_10_1002_slct_202203004
crossref_primary_10_1021_cbe_4c00164
crossref_primary_10_1016_j_aca_2022_340643
crossref_primary_10_1016_j_bios_2023_115994
crossref_primary_10_1002_adsr_202200102
crossref_primary_10_1016_j_bios_2023_115517
crossref_primary_10_1021_acs_analchem_4c00473
crossref_primary_10_1002_smtd_202401559
crossref_primary_10_3390_gels9070545
crossref_primary_10_1021_acs_analchem_3c03923
crossref_primary_10_1016_j_ccr_2022_214648
crossref_primary_10_1039_D2SC06968G
crossref_primary_10_1002_advs_202400517
crossref_primary_10_1016_j_microc_2024_112084
crossref_primary_10_1039_D4SD00373J
crossref_primary_10_1039_D3AN01871G
crossref_primary_10_1002_smll_202406814
crossref_primary_10_1002_smll_202408384
crossref_primary_10_1021_acs_analchem_2c02577
crossref_primary_10_1039_D2OB01095J
crossref_primary_10_3390_cancers15072151
crossref_primary_10_1002_mco2_775
crossref_primary_10_3390_bios14030146
crossref_primary_10_1021_acs_analchem_2c03658
crossref_primary_10_1016_j_talanta_2021_122846
crossref_primary_10_1021_acsbiomaterials_1c00868
crossref_primary_10_1021_acs_analchem_2c05200
crossref_primary_10_1039_D3AN01707A
crossref_primary_10_1039_D4NJ02280G
crossref_primary_10_1002_agt2_166
crossref_primary_10_1002_smtd_202401102
crossref_primary_10_1016_j_cej_2023_145951
crossref_primary_10_1016_j_bios_2022_114077
crossref_primary_10_1016_j_bios_2023_115584
crossref_primary_10_1021_acsanm_3c00151
crossref_primary_10_1002_adfm_202201172
crossref_primary_10_1021_acs_chemrev_3c00377
crossref_primary_10_1002_advs_202404112
crossref_primary_10_1002_smsc_202400471
crossref_primary_10_3390_chemistry5030124
crossref_primary_10_1016_j_ijbiomac_2022_01_039
crossref_primary_10_1016_j_ijbiomac_2022_11_084
crossref_primary_10_1021_acs_analchem_2c03015
crossref_primary_10_3390_chemistry5030129
crossref_primary_10_1016_j_jconrel_2022_07_043
crossref_primary_10_1021_acsabm_3c01190
crossref_primary_10_3390_polym15081850
crossref_primary_10_1016_j_trac_2023_117387
crossref_primary_10_1021_acs_analchem_1c04113
Cites_doi 10.1039/C9SC04823E
10.1021/jacs.9b11001
10.1002/anie.202004805
10.1038/nature06597
10.1126/science.1214081
10.1038/s41563-020-0793-6
10.1038/s41467-020-16112-z
10.1021/acsnano.5b07671
10.1002/anie.202005624
10.1038/s43586-020-00009-8
10.1021/acssynbio.0c00235
10.1016/j.csbj.2018.09.002
10.1002/anie.202012916
10.1021/acs.nanolett.0c03671
10.1002/anie.202009263
10.1038/nnano.2015.180
10.1038/s41596-020-0326-4
10.1021/acs.analchem.9b01487
10.1038/s41557-019-0251-8
10.1021/acsnano.7b06200
10.3390/molecules25081823
10.1038/nature07971
10.1021/acs.analchem.9b02614
10.1002/anie.202004206
10.1021/jacs.9b04725
10.1038/nature24650
10.1021/acsnano.0c03362
10.1038/s41557-020-0539-8
10.1021/acsami.8b20144
10.1016/j.biomaterials.2017.09.014
10.1021/acsnano.0c00602
10.1038/s41565-020-0719-0
10.1002/smll.201602983
10.1126/science.1120367
10.1002/anie.201801195
10.1039/D0CC03596C
10.1021/acsnano.0c06136
10.1002/advs.202001669
10.1002/adfm.202006305
10.1021/jacs.0c01962
10.1126/sciadv.aba2983
10.1126/science.aaw5122
10.1021/jacs.0c01580
10.1002/anie.201807029
10.1038/nature08274
10.1039/C9SC01199D
10.1021/acs.analchem.0c03746
10.1021/acsnano.9b09995
10.1021/acs.nanolett.0c00445
10.1016/j.bios.2016.05.058
10.1002/anie.201802890
10.1002/anie.202005974
10.1021/acs.analchem.9b03453
10.1016/j.snb.2020.129335
10.1021/jacs.6b07676
10.1038/nmat1741
10.1002/admi.202000292
10.1021/acsnano.9b01857
10.1021/acs.analchem.8b02826
10.1039/b402293a
10.1021/acs.analchem.9b05304
10.1016/j.chempr.2020.06.012
10.1021/acs.chemrev.6b00825
10.1021/acs.analchem.0c03764
10.1002/adma.201901743
10.1038/s41467-020-20638-7
10.1126/science.1174251
10.1002/adfm.202000532
10.1038/s41570-021-00251-y
10.1021/jacs.0c04978
10.1021/acscentsci.0c00763
10.1021/acs.analchem.8b02847
10.1021/acsami.0c03360
10.1021/jacs.9b01510
10.1021/ja038381e
10.1039/C9SC03469B
10.1002/anie.201916390
10.1111/cas.14548
10.1039/D0AN00101E
10.1002/anie.201913958
10.1038/nature04586
10.1021/jacs.0c09558
10.1038/nmat1045
10.1126/science.2200121
10.1021/acs.analchem.8b05778
10.1038/nature08016
10.1021/nn202774x
10.1021/acsami.9b02695
10.1002/adma.201002767
10.1093/nar/gkaa683
10.1021/ja0665141
10.1002/adma.201703721
10.1021/acs.analchem.8b05706
10.1021/jacs.8b10795
10.1039/C8SC02943A
10.1038/nature24651
10.1021/nn5011914
10.1073/pnas.0803841105
10.1021/acsami.9b21778
10.1039/C9NH00529C
10.1126/sciadv.1602803
10.1111/cas.14266
10.1016/0022-5193(82)90002-9
10.1021/jacs.5b04007
10.1021/ja1108886
10.1021/jacs.8b04319
10.1021/acsnano.8b09147
10.1021/jacs.9b09782
10.1038/nnano.2014.58
10.1038/nature11247
10.1002/anie.202002020
10.1038/nbt.4071
10.1039/C9SC02281C
10.1002/cbic.201500686
10.1021/jacs.8b04648
10.1002/adhm.201700692
10.1002/anie.201907380
10.1021/acs.analchem.9b02115
10.1021/bi00064a003
10.1002/anie.201912574
10.1002/anie.202008413
10.1002/anie.201802701
10.1002/chem.202100784
10.1002/anie.201202356
10.1021/jacs.9b09043
10.1021/acsami.9b14186
10.1038/ncomms15654
10.1021/acs.analchem.0c02146
10.1002/anie.201916432
10.1038/s41592-019-0404-0
10.1038/nprot.2015.078
10.1002/adfm.201906253
10.1021/jacs.7b07485
10.1126/sciadv.aay9948
10.1021/jacs.7b09789
10.1002/advs.202000647
10.1039/C8BM01249K
10.1021/acs.nanolett.8b00660
10.1039/C8SC04756A
10.1021/acsnano.9b01324
10.1021/ar500034y
10.1021/acsnano.0c04031
10.1021/jacs.9b01550
10.1021/acs.analchem.9b04493
10.1016/j.snb.2020.127943
10.1021/acsami.9b05358
10.1002/adma.201705737
10.1038/s41467-020-15297-7
10.1038/s41557-019-0369-8
10.1038/nature02307
10.1021/ja075966q
10.1038/s41467-019-09029-9
10.1038/350631a0
10.1021/acsami.9b21443
10.1038/nprot.2014.154
10.1021/ja993393e
10.1038/nature14586
10.1002/anie.201506030
10.1021/acs.analchem.7b02763
10.1039/C8SC01001C
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d1sc00587a
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 7622
ExternalDocumentID PMC8188511
10_1039_D1SC00587A
d1sc00587a
GrantInformation_xml – fundername: ;
  grantid: 22074068; 21874075
– fundername: ;
  grantid: 2019YFA0210103
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAJAE
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
HZ~
PGMZT
RAOCF
RNS
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c405t-b96da9548a974942b694617948c6775334da8685d51336683b0817590de8cddf3
ISSN 2041-6520
IngestDate Thu Aug 21 18:03:11 EDT 2025
Fri Jul 11 04:35:21 EDT 2025
Fri Jul 25 04:36:31 EDT 2025
Tue Jul 01 03:46:51 EDT 2025
Thu Apr 24 22:54:22 EDT 2025
Mon Apr 25 05:28:03 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-b96da9548a974942b694617948c6775334da8685d51336683b0817590de8cddf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5411-9216
0000-0002-3830-3336
0000-0002-9216-8040
OpenAccessLink http://dx.doi.org/10.1039/d1sc00587a
PMID 34168817
PQID 2539049240
PQPubID 2047492
PageCount 21
ParticipantIDs proquest_miscellaneous_2545597075
crossref_primary_10_1039_D1SC00587A
rsc_primary_d1sc00587a
proquest_journals_2539049240
crossref_citationtrail_10_1039_D1SC00587A
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8188511
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-14
PublicationDateYYYYMMDD 2021-06-14
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-14
  day: 14
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Rizzuto (D1SC00587A-(cit9)/*[position()=1]) 2020; 6
Zhang (D1SC00587A-(cit128)/*[position()=1]) 2020; 59
Lacroix (D1SC00587A-(cit2)/*[position()=1]) 2021; 15
tai tNummelin (D1SC00587A-(cit91)/*[position()=1]) 2020; 9
Zhang (D1SC00587A-(cit133)/*[position()=1]) 2019; 11
Sun (D1SC00587A-(cit156)/*[position()=1]) 2015; 54
Huang (D1SC00587A-(cit98)/*[position()=1]) 2018; 9
Wei (D1SC00587A-(cit21)/*[position()=1]) 2018; 9
Zhou (D1SC00587A-(cit125)/*[position()=1]) 2016; 85
Ramakrishnan (D1SC00587A-(cit57)/*[position()=1]) 2018; 16
Yang (D1SC00587A-(cit114)/*[position()=1]) 2020; 143
Chen (D1SC00587A-(cit33)/*[position()=1]) 1991; 350
Liu (D1SC00587A-(cit75)/*[position()=1]) 2018; 57
Zhong (D1SC00587A-(cit35)/*[position()=1]) 2018; 90
Ma (D1SC00587A-(cit70)/*[position()=1]) 2018; 57
Goodman (D1SC00587A-(cit34)/*[position()=1]) 2004
Shen (D1SC00587A-(cit48)/*[position()=1]) 2004; 126
Green (D1SC00587A-(cit52)/*[position()=1]) 2019; 11
Yue (D1SC00587A-(cit124)/*[position()=1]) 2020; 312
Wan (D1SC00587A-(cit118)/*[position()=1]) 2019; 91
Qi (D1SC00587A-(cit143)/*[position()=1]) 2020; 14
LaBean (D1SC00587A-(cit27)/*[position()=1]) 2000; 122
Zou (D1SC00587A-(cit46)/*[position()=1]) 2020; 145
Lv (D1SC00587A-(cit42)/*[position()=1]) 2015; 10
Zhang (D1SC00587A-(cit129)/*[position()=1]) 2020; 20
Liu (D1SC00587A-(cit62)/*[position()=1]) 2019; 141
Consortium (D1SC00587A-(cit1)/*[position()=1]) 2012; 489
Li (D1SC00587A-(cit137)/*[position()=1]) 2011; 5
Keller (D1SC00587A-(cit159)/*[position()=1]) 2020; 59
Pei (D1SC00587A-(cit65)/*[position()=1]) 2010; 22
Wu (D1SC00587A-(cit44)/*[position()=1]) 2020; 56
Jiao (D1SC00587A-(cit68)/*[position()=1]) 2020; 142
Wiraja (D1SC00587A-(cit140)/*[position()=1]) 2019; 10
Ni (D1SC00587A-(cit155)/*[position()=1]) 2018; 30
Um (D1SC00587A-(cit41)/*[position()=1]) 2006; 5
Lin (D1SC00587A-(cit47)/*[position()=1]) 2020; 92
Aldaye (D1SC00587A-(cit37)/*[position()=1]) 2007; 129
Veneziano (D1SC00587A-(cit89)/*[position()=1]) 2020; 15
Gong (D1SC00587A-(cit45)/*[position()=1]) 2020; 59
Sun (D1SC00587A-(cit134)/*[position()=1]) 2019; 11
Andersen (D1SC00587A-(cit39)/*[position()=1]) 2009; 459
Li (D1SC00587A-(cit64)/*[position()=1]) 2018; 36
Zhang (D1SC00587A-(cit93)/*[position()=1]) 2019; 141
Yin (D1SC00587A-(cit103)/*[position()=1]) 2020; 59
Yang (D1SC00587A-(cit16)/*[position()=1]) 2015; 137
Kwon (D1SC00587A-(cit32)/*[position()=1]) 2020; 12
Yue (D1SC00587A-(cit43)/*[position()=1]) 2019; 10
Zhao (D1SC00587A-(cit60)/*[position()=1]) 2021; 12
Tuerk (D1SC00587A-(cit17)/*[position()=1]) 1990; 249
Zhang (D1SC00587A-(cit19)/*[position()=1]) 2020; 59
Funck (D1SC00587A-(cit117)/*[position()=1]) 2018; 57
Dietz (D1SC00587A-(cit81)/*[position()=1]) 2009; 325
Xin (D1SC00587A-(cit86)/*[position()=1]) 2021
Peng (D1SC00587A-(cit115)/*[position()=1]) 2017; 139
nDeLuca (D1SC00587A-(cit90)/*[position()=1]) 2020; 5
Shih (D1SC00587A-(cit36)/*[position()=1]) 2004; 427
Kuzyk (D1SC00587A-(cit116)/*[position()=1]) 2017; 3
English (D1SC00587A-(cit97)/*[position()=1]) 2019; 365
Benson (D1SC00587A-(cit84)/*[position()=1]) 2015; 523
Zeng (D1SC00587A-(cit79)/*[position()=1]) 2020; 92
Zhou (D1SC00587A-(cit72)/*[position()=1]) 2020; 14
Wang (D1SC00587A-(cit112)/*[position()=1]) 2019; 91
Yata (D1SC00587A-(cit141)/*[position()=1]) 2017; 146
Hu (D1SC00587A-(cit102)/*[position()=1]) 2019; 91
Zhuang (D1SC00587A-(cit105)/*[position()=1]) 2020; 48
Bila (D1SC00587A-(cit158)/*[position()=1]) 2019; 7
Wang (D1SC00587A-(cit74)/*[position()=1]) 2020; 59
Xie (D1SC00587A-(cit8)/*[position()=1]) 2019; 13
Kishi (D1SC00587A-(cit14)/*[position()=1]) 2019; 16
Li (D1SC00587A-(cit126)/*[position()=1]) 2019; 141
Lu (D1SC00587A-(cit10)/*[position()=1]) 2021; 60
Rothemund (D1SC00587A-(cit30)/*[position()=1]) 2006; 440
Wang (D1SC00587A-(cit67)/*[position()=1]) 2021; 330
He (D1SC00587A-(cit51)/*[position()=1]) 2008; 452
Peng (D1SC00587A-(cit113)/*[position()=1]) 2018; 140
Chandrasekaran (D1SC00587A-(cit160)/*[position()=1]) 2021; 5
Li (D1SC00587A-(cit104)/*[position()=1]) 2020; 11
Wang (D1SC00587A-(cit111)/*[position()=1]) 2019; 10
Qin (D1SC00587A-(cit132)/*[position()=1]) 2020
Jiang (D1SC00587A-(cit71)/*[position()=1]) 2016; 17
Li (D1SC00587A-(cit100)/*[position()=1]) 2019; 91
Fu (D1SC00587A-(cit77)/*[position()=1]) 2020; 11
Su (D1SC00587A-(cit138)/*[position()=1]) 2020; 11
Zhang (D1SC00587A-(cit139)/*[position()=1]) 2020; 12
Chu (D1SC00587A-(cit150)/*[position()=1]) 2020; 12
Nicolson (D1SC00587A-(cit4)/*[position()=1]) 2020; 7
Ebrahimi (D1SC00587A-(cit5)/*[position()=1]) 2020; 142
Zhang (D1SC00587A-(cit109)/*[position()=1]) 2018; 140
Ge (D1SC00587A-(cit127)/*[position()=1]) 2020; 142
Huang (D1SC00587A-(cit99)/*[position()=1]) 2019; 91
Piskunen (D1SC00587A-(cit83)/*[position()=1]) 2020; 25
e shiAmir (D1SC00587A-(cit88)/*[position()=1]) 2014; 9
Shi (D1SC00587A-(cit101)/*[position()=1]) 2020; 59
Wile (D1SC00587A-(cit15)/*[position()=1]) 2014; 9
Ouyang (D1SC00587A-(cit135)/*[position()=1]) 2020; 142
Li (D1SC00587A-(cit142)/*[position()=1]) 2020; 30
Liu (D1SC00587A-(cit63)/*[position()=1]) 2020; 20
He (D1SC00587A-(cit49)/*[position()=1]) 2006; 128
Goodman (D1SC00587A-(cit69)/*[position()=1]) 2005; 310
Wang (D1SC00587A-(cit119)/*[position()=1]) 2020; 59
Majumder (D1SC00587A-(cit50)/*[position()=1]) 2011; 133
Duangrat (D1SC00587A-(cit7)/*[position()=1]) 2020; 111
Surana (D1SC00587A-(cit144)/*[position()=1]) 2015; 10
Zhang (D1SC00587A-(cit38)/*[position()=1]) 2008; 105
Samanta (D1SC00587A-(cit3)/*[position()=1]) 2020; 32
Yao (D1SC00587A-(cit130)/*[position()=1]) 2020; 142
Yang (D1SC00587A-(cit24)/*[position()=1]) 2019; 91
Wagenbauer (D1SC00587A-(cit85)/*[position()=1]) 2017; 552
Amodio (D1SC00587A-(cit54)/*[position()=1]) 2016; 138
Auvinen (D1SC00587A-(cit145)/*[position()=1]) 2017; 6
Gačanin (D1SC00587A-(cit11)/*[position()=1]) 2019; 30
Thai (D1SC00587A-(cit154)/*[position()=1]) 2020; 6
Liu (D1SC00587A-(cit6)/*[position()=1]) 2020; 14
Liu (D1SC00587A-(cit76)/*[position()=1]) 2019; 91
Ren (D1SC00587A-(cit23)/*[position()=1]) 2018; 12
Hong (D1SC00587A-(cit13)/*[position()=1]) 2017; 117
Dey (D1SC00587A-(cit12)/*[position()=1]) 2021; 1
Cheng (D1SC00587A-(cit152)/*[position()=1]) 2019; 11
Ponnuswamy (D1SC00587A-(cit147)/*[position()=1]) 2017; 8
Cui (D1SC00587A-(cit149)/*[position()=1]) 2020
Praetorius (D1SC00587A-(cit157)/*[position()=1]) 2017; 552
Du (D1SC00587A-(cit95)/*[position()=1]) 2020
Zhang (D1SC00587A-(cit56)/*[position()=1]) 2020; 59
Kielar (D1SC00587A-(cit59)/*[position()=1]) 2018; 57
Xing (D1SC00587A-(cit53)/*[position()=1]) 2020; 12
Sun (D1SC00587A-(cit94)/*[position()=1]) 2020; 6
Li (D1SC00587A-(cit28)/*[position()=1]) 2004; 3
Fu (D1SC00587A-(cit26)/*[position()=1]) 1993; 32
Ye (D1SC00587A-(cit131)/*[position()=1]) 2020; 15
Yao (D1SC00587A-(cit87)/*[position()=1]) 2020; 12
Loo (D1SC00587A-(cit148)/*[position()=1]) 2020; 111
Seeman (D1SC00587A-(cit25)/*[position()=1]) 1982; 99
Wu (D1SC00587A-(cit29)/*[position()=1]) 2019; 11
Pan (D1SC00587A-(cit92)/*[position()=1]) 2020; 59
Nummelin (D1SC00587A-(cit80)/*[position()=1]) 2018; 30
Liu (D1SC00587A-(cit123)/*[position()=1]) 2020; 92
Zheng (D1SC00587A-(cit31)/*[position()=1]) 2009; 461
Bastings (D1SC00587A-(cit58)/*[position()=1]) 2018; 18
Zhang (D1SC00587A-(cit136)/*[position()=1]) 2019; 58
Bui (D1SC00587A-(cit20)/*[position()=1]) 2017; 13
Zhang (D1SC00587A-(cit96)/*[position()=1]) 2020; 20
Chen (D1SC00587A-(cit107)/*[position()=1]) 2019; 11
Xue (D1SC00587A-(cit22)/*[position()=1]) 2020; 59
Jiao (D1SC00587A-(cit18)/*[position()=1]) 2020; 92
Ijas (D1SC00587A-(cit110)/*[position()=1]) 2019; 13
Pei (D1SC00587A-(cit66)/*[position()=1]) 2012; 51
He (D1SC00587A-(cit121)/*[position()=1]) 2018; 140
Wang (D1SC00587A-(cit61)/*[position()=1]) 2020; 6
Agarwal (D1SC00587A-(cit55)/*[position()=1]) 2019; 141
Douglas (D1SC00587A-(cit82)/*[position()=1]) 2009; 459
Lu (D1SC00587A-(cit108)/*[position()=1]) 2019; 10
Yang (D1SC00587A-(cit120)/*[position()=1]) 2020; 92
Du (D1SC00587A-(cit78)/*[position()=1]) 2019; 13
Douglas (D1SC00587A-(cit40)/*[position()=1]) 2012; 335
Perrault (D1SC00587A-(cit146)/*[position()=1]) 2014; 8
Zhuang (D1SC00587A-(cit153)/*[position()=1]) 2016; 10
Torring (D1SC00587A-(cit151)/*[position()=1]) 2014; 47
Lin (D1SC00587A-(cit106)/*[position()=1]) 2019; 141
Mao (D1SC00587A-(cit73)/*[position()=1]) 2020; 14
Zheng (D1SC00587A-(cit122)/*[position()=1]) 2017; 89
References_xml – volume: 11
  start-page: 80
  year: 2020
  ident: D1SC00587A-(cit138)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC04823E
– volume: 142
  start-page: 3422
  year: 2020
  ident: D1SC00587A-(cit130)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11001
– volume: 59
  start-page: 17540
  year: 2020
  ident: D1SC00587A-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202004805
– volume: 452
  start-page: 198
  year: 2008
  ident: D1SC00587A-(cit51)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06597
– volume: 335
  start-page: 831
  year: 2012
  ident: D1SC00587A-(cit40)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1214081
– volume: 20
  start-page: 421
  year: 2020
  ident: D1SC00587A-(cit63)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0793-6
– volume: 11
  start-page: 2185
  year: 2020
  ident: D1SC00587A-(cit104)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16112-z
– volume: 10
  start-page: 3486
  year: 2016
  ident: D1SC00587A-(cit153)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07671
– volume: 59
  start-page: 14584
  year: 2020
  ident: D1SC00587A-(cit56)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005624
– volume: 1
  start-page: 13
  year: 2021
  ident: D1SC00587A-(cit12)/*[position()=1]
  publication-title: Nature Reviews Methods Primers
  doi: 10.1038/s43586-020-00009-8
– volume: 9
  start-page: 1923
  year: 2020
  ident: D1SC00587A-(cit91)/*[position()=1]
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.0c00235
– volume: 16
  start-page: 342
  year: 2018
  ident: D1SC00587A-(cit57)/*[position()=1]
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2018.09.002
– volume: 60
  start-page: 5377
  year: 2021
  ident: D1SC00587A-(cit10)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202012916
– volume: 20
  start-page: 8399
  year: 2020
  ident: D1SC00587A-(cit96)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c03671
– volume: 59
  start-page: 21454
  year: 2020
  ident: D1SC00587A-(cit19)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009263
– volume: 10
  start-page: 741
  year: 2015
  ident: D1SC00587A-(cit144)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.180
– volume: 15
  start-page: 2163
  year: 2020
  ident: D1SC00587A-(cit131)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0326-4
– volume: 91
  start-page: 9828
  year: 2019
  ident: D1SC00587A-(cit24)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b01487
– volume: 11
  start-page: 510
  year: 2019
  ident: D1SC00587A-(cit52)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0251-8
– volume: 12
  start-page: 263
  year: 2018
  ident: D1SC00587A-(cit23)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06200
– volume: 25
  start-page: 1823
  year: 2020
  ident: D1SC00587A-(cit83)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules25081823
– volume: 459
  start-page: 73
  year: 2009
  ident: D1SC00587A-(cit39)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature07971
– volume: 91
  start-page: 11374
  year: 2019
  ident: D1SC00587A-(cit102)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b02614
– volume: 59
  start-page: 11892
  year: 2020
  ident: D1SC00587A-(cit101)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202004206
– volume: 141
  start-page: 18013
  year: 2019
  ident: D1SC00587A-(cit126)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04725
– volume: 552
  start-page: 84
  year: 2017
  ident: D1SC00587A-(cit157)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature24650
– volume: 14
  start-page: 8776
  year: 2020
  ident: D1SC00587A-(cit73)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03362
– volume: 12
  start-page: 1067
  year: 2020
  ident: D1SC00587A-(cit87)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0539-8
– volume: 11
  start-page: 3745
  year: 2019
  ident: D1SC00587A-(cit107)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20144
– volume: 146
  start-page: 136
  year: 2017
  ident: D1SC00587A-(cit141)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.09.014
– volume: 14
  start-page: 4727
  year: 2020
  ident: D1SC00587A-(cit143)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00602
– volume: 15
  start-page: 716
  year: 2020
  ident: D1SC00587A-(cit89)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0719-0
– volume: 13
  start-page: 1602983
  year: 2017
  ident: D1SC00587A-(cit20)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201602983
– volume: 310
  start-page: 1661
  year: 2005
  ident: D1SC00587A-(cit69)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1120367
– volume: 57
  start-page: 5389
  year: 2018
  ident: D1SC00587A-(cit70)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801195
– volume: 56
  start-page: 8782
  year: 2020
  ident: D1SC00587A-(cit44)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC03596C
– volume: 15
  start-page: 3631
  year: 2021
  ident: D1SC00587A-(cit2)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06136
– volume: 7
  start-page: 2001669
  year: 2020
  ident: D1SC00587A-(cit4)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001669
– start-page: 2006305
  year: 2020
  ident: D1SC00587A-(cit95)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006305
– volume: 142
  start-page: 10739
  year: 2020
  ident: D1SC00587A-(cit68)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01962
– volume: 6
  start-page: eaba2983
  year: 2020
  ident: D1SC00587A-(cit94)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba2983
– volume: 365
  start-page: 780
  year: 2019
  ident: D1SC00587A-(cit97)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaw5122
– volume: 142
  start-page: 8800
  year: 2020
  ident: D1SC00587A-(cit127)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01580
– volume: 57
  start-page: 13495
  year: 2018
  ident: D1SC00587A-(cit117)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201807029
– volume: 461
  start-page: 74
  year: 2009
  ident: D1SC00587A-(cit31)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08274
– volume: 10
  start-page: 5025
  year: 2019
  ident: D1SC00587A-(cit108)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC01199D
– volume: 92
  start-page: 15179
  year: 2020
  ident: D1SC00587A-(cit47)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c03746
– volume: 14
  start-page: 9572
  year: 2020
  ident: D1SC00587A-(cit6)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09995
– volume: 20
  start-page: 3521
  year: 2020
  ident: D1SC00587A-(cit129)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00445
– volume: 85
  start-page: 573
  year: 2016
  ident: D1SC00587A-(cit125)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.05.058
– volume: 57
  start-page: 9470
  year: 2018
  ident: D1SC00587A-(cit59)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802890
– volume: 59
  start-page: 14115
  year: 2020
  ident: D1SC00587A-(cit128)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005974
– volume: 91
  start-page: 13165
  year: 2019
  ident: D1SC00587A-(cit112)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b03453
– volume: 330
  start-page: 129335
  year: 2021
  ident: D1SC00587A-(cit67)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2020.129335
– volume: 138
  start-page: 12735
  year: 2016
  ident: D1SC00587A-(cit54)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07676
– volume: 5
  start-page: 797
  year: 2006
  ident: D1SC00587A-(cit41)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1741
– start-page: 2000292
  year: 2020
  ident: D1SC00587A-(cit149)/*[position()=1]
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000292
– volume: 13
  start-page: 5959
  year: 2019
  ident: D1SC00587A-(cit110)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01857
– volume: 91
  start-page: 2626
  year: 2019
  ident: D1SC00587A-(cit118)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b02826
– start-page: 1372
  year: 2004
  ident: D1SC00587A-(cit34)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b402293a
– volume: 92
  start-page: 4411
  year: 2020
  ident: D1SC00587A-(cit120)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05304
– volume: 6
  start-page: 1560
  year: 2020
  ident: D1SC00587A-(cit9)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.06.012
– volume: 117
  start-page: 12584
  year: 2017
  ident: D1SC00587A-(cit13)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00825
– volume: 92
  start-page: 15194
  year: 2020
  ident: D1SC00587A-(cit79)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c03764
– volume: 32
  start-page: e1901743
  year: 2020
  ident: D1SC00587A-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901743
– volume: 12
  start-page: 358
  year: 2021
  ident: D1SC00587A-(cit60)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20638-7
– volume: 325
  start-page: 725
  year: 2009
  ident: D1SC00587A-(cit81)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1174251
– volume: 30
  start-page: 2000532
  year: 2020
  ident: D1SC00587A-(cit142)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000532
– volume: 5
  start-page: 225
  year: 2021
  ident: D1SC00587A-(cit160)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-021-00251-y
– volume: 142
  start-page: 11343
  year: 2020
  ident: D1SC00587A-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04978
– volume: 6
  start-page: 2250
  year: 2020
  ident: D1SC00587A-(cit154)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00763
– volume: 90
  start-page: 12059
  year: 2018
  ident: D1SC00587A-(cit35)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b02847
– volume: 12
  start-page: 21441
  year: 2020
  ident: D1SC00587A-(cit139)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03360
– volume: 141
  start-page: 6797
  year: 2019
  ident: D1SC00587A-(cit106)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01510
– volume: 126
  start-page: 1666
  year: 2004
  ident: D1SC00587A-(cit48)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038381e
– volume: 11
  start-page: 62
  year: 2019
  ident: D1SC00587A-(cit29)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03469B
– volume: 59
  start-page: 15818
  year: 2020
  ident: D1SC00587A-(cit159)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916390
– volume: 111
  start-page: 3164
  year: 2020
  ident: D1SC00587A-(cit7)/*[position()=1]
  publication-title: Cancer Sci.
  doi: 10.1111/cas.14548
– volume: 145
  start-page: 2562
  year: 2020
  ident: D1SC00587A-(cit46)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/D0AN00101E
– volume: 59
  start-page: 6389
  year: 2020
  ident: D1SC00587A-(cit74)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913958
– volume: 440
  start-page: 297
  year: 2006
  ident: D1SC00587A-(cit30)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04586
– volume: 143
  start-page: 232
  year: 2020
  ident: D1SC00587A-(cit114)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09558
– volume: 3
  start-page: 38
  year: 2004
  ident: D1SC00587A-(cit28)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1045
– volume: 249
  start-page: 505
  year: 1990
  ident: D1SC00587A-(cit17)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.2200121
– volume: 91
  start-page: 3675
  year: 2019
  ident: D1SC00587A-(cit76)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b05778
– volume: 459
  start-page: 414
  year: 2009
  ident: D1SC00587A-(cit82)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08016
– volume: 5
  start-page: 8783
  year: 2011
  ident: D1SC00587A-(cit137)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn202774x
– volume: 11
  start-page: 13158
  year: 2019
  ident: D1SC00587A-(cit152)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02695
– volume: 22
  start-page: 4754
  year: 2010
  ident: D1SC00587A-(cit65)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002767
– volume: 48
  start-page: 8870
  year: 2020
  ident: D1SC00587A-(cit105)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa683
– volume: 128
  start-page: 15978
  year: 2006
  ident: D1SC00587A-(cit49)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0665141
– volume: 30
  start-page: 1703721
  year: 2018
  ident: D1SC00587A-(cit80)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703721
– volume: 91
  start-page: 2610
  year: 2019
  ident: D1SC00587A-(cit100)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b05706
– volume: 141
  start-page: 4282
  year: 2019
  ident: D1SC00587A-(cit93)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10795
– volume: 9
  start-page: 7802
  year: 2018
  ident: D1SC00587A-(cit21)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02943A
– volume: 552
  start-page: 78
  year: 2017
  ident: D1SC00587A-(cit85)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature24651
– volume: 8
  start-page: 5132
  year: 2014
  ident: D1SC00587A-(cit146)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn5011914
– volume: 105
  start-page: 10665
  year: 2008
  ident: D1SC00587A-(cit38)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0803841105
– volume: 12
  start-page: 6336
  year: 2020
  ident: D1SC00587A-(cit53)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21778
– volume: 5
  start-page: 182
  year: 2020
  ident: D1SC00587A-(cit90)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00529C
– volume: 3
  start-page: e1602803
  year: 2017
  ident: D1SC00587A-(cit116)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602803
– volume: 111
  start-page: 304
  year: 2020
  ident: D1SC00587A-(cit148)/*[position()=1]
  publication-title: Cancer Sci.
  doi: 10.1111/cas.14266
– volume: 99
  start-page: 237
  year: 1982
  ident: D1SC00587A-(cit25)/*[position()=1]
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(82)90002-9
– volume: 137
  start-page: 8340
  year: 2015
  ident: D1SC00587A-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04007
– volume: 133
  start-page: 3843
  year: 2011
  ident: D1SC00587A-(cit50)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1108886
– volume: 140
  start-page: 9793
  year: 2018
  ident: D1SC00587A-(cit113)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04319
– volume: 13
  start-page: 4174
  year: 2019
  ident: D1SC00587A-(cit8)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09147
– volume: 142
  start-page: 1265
  year: 2020
  ident: D1SC00587A-(cit135)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09782
– volume: 9
  start-page: 353
  year: 2014
  ident: D1SC00587A-(cit88)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.58
– volume: 489
  start-page: 57
  year: 2012
  ident: D1SC00587A-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 59
  start-page: 10406
  year: 2020
  ident: D1SC00587A-(cit103)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002020
– volume: 36
  start-page: 258
  year: 2018
  ident: D1SC00587A-(cit64)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4071
– volume: 10
  start-page: 9758
  year: 2019
  ident: D1SC00587A-(cit111)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02281C
– volume: 17
  start-page: 1156
  year: 2016
  ident: D1SC00587A-(cit71)/*[position()=1]
  publication-title: Chembiochem
  doi: 10.1002/cbic.201500686
– volume: 140
  start-page: 9361
  year: 2018
  ident: D1SC00587A-(cit109)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04648
– volume: 6
  start-page: 1700692
  year: 2017
  ident: D1SC00587A-(cit145)/*[position()=1]
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201700692
– volume: 58
  start-page: 13794
  year: 2019
  ident: D1SC00587A-(cit136)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907380
– volume: 91
  start-page: 9361
  year: 2019
  ident: D1SC00587A-(cit99)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b02115
– volume: 32
  start-page: 3211
  year: 1993
  ident: D1SC00587A-(cit26)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi00064a003
– volume: 59
  start-page: 1897
  year: 2020
  ident: D1SC00587A-(cit92)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201912574
– volume: 59
  start-page: 21648
  year: 2020
  ident: D1SC00587A-(cit45)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202008413
– volume: 57
  start-page: 7131
  year: 2018
  ident: D1SC00587A-(cit75)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802701
– year: 2021
  ident: D1SC00587A-(cit86)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.202100784
– volume: 51
  start-page: 9020
  year: 2012
  ident: D1SC00587A-(cit66)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201202356
– volume: 141
  start-page: 19032
  year: 2019
  ident: D1SC00587A-(cit62)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09043
– volume: 11
  start-page: 39624
  year: 2019
  ident: D1SC00587A-(cit133)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14186
– volume: 8
  start-page: 15654
  year: 2017
  ident: D1SC00587A-(cit147)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15654
– volume: 92
  start-page: 12394
  year: 2020
  ident: D1SC00587A-(cit18)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c02146
– volume: 59
  start-page: 6099
  year: 2020
  ident: D1SC00587A-(cit119)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916432
– volume: 16
  start-page: 533
  year: 2019
  ident: D1SC00587A-(cit14)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0404-0
– volume: 10
  start-page: 1508
  year: 2015
  ident: D1SC00587A-(cit42)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.078
– volume: 30
  start-page: 1906253
  year: 2019
  ident: D1SC00587A-(cit11)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906253
– volume: 139
  start-page: 12410
  year: 2017
  ident: D1SC00587A-(cit115)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07485
– volume: 6
  start-page: eaay9948
  year: 2020
  ident: D1SC00587A-(cit61)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay9948
– volume: 140
  start-page: 258
  year: 2018
  ident: D1SC00587A-(cit121)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09789
– start-page: 2000647
  year: 2020
  ident: D1SC00587A-(cit132)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000647
– volume: 7
  start-page: 532
  year: 2019
  ident: D1SC00587A-(cit158)/*[position()=1]
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM01249K
– volume: 18
  start-page: 3557
  year: 2018
  ident: D1SC00587A-(cit58)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00660
– volume: 10
  start-page: 1651
  year: 2019
  ident: D1SC00587A-(cit43)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04756A
– volume: 13
  start-page: 5778
  year: 2019
  ident: D1SC00587A-(cit78)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01324
– volume: 47
  start-page: 1799
  year: 2014
  ident: D1SC00587A-(cit151)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500034y
– volume: 14
  start-page: 9021
  year: 2020
  ident: D1SC00587A-(cit72)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04031
– volume: 141
  start-page: 7831
  year: 2019
  ident: D1SC00587A-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01550
– volume: 92
  start-page: 3620
  year: 2020
  ident: D1SC00587A-(cit123)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b04493
– volume: 312
  start-page: 127943
  year: 2020
  ident: D1SC00587A-(cit124)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2020.127943
– volume: 11
  start-page: 14684
  year: 2019
  ident: D1SC00587A-(cit134)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05358
– volume: 30
  start-page: 1705737
  year: 2018
  ident: D1SC00587A-(cit155)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705737
– volume: 11
  start-page: 1518
  year: 2020
  ident: D1SC00587A-(cit77)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15297-7
– volume: 12
  start-page: 26
  year: 2020
  ident: D1SC00587A-(cit32)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0369-8
– volume: 427
  start-page: 618
  year: 2004
  ident: D1SC00587A-(cit36)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature02307
– volume: 129
  start-page: 13376
  year: 2007
  ident: D1SC00587A-(cit37)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja075966q
– volume: 10
  start-page: 1147
  year: 2019
  ident: D1SC00587A-(cit140)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09029-9
– volume: 350
  start-page: 631
  year: 1991
  ident: D1SC00587A-(cit33)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/350631a0
– volume: 12
  start-page: 7575
  year: 2020
  ident: D1SC00587A-(cit150)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21443
– volume: 9
  start-page: 2411
  year: 2014
  ident: D1SC00587A-(cit15)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.154
– volume: 122
  start-page: 1848
  year: 2000
  ident: D1SC00587A-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993393e
– volume: 523
  start-page: 441
  year: 2015
  ident: D1SC00587A-(cit84)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature14586
– volume: 54
  start-page: 12029
  year: 2015
  ident: D1SC00587A-(cit156)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506030
– volume: 89
  start-page: 10941
  year: 2017
  ident: D1SC00587A-(cit122)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b02763
– volume: 9
  start-page: 4892
  year: 2018
  ident: D1SC00587A-(cit98)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01001C
SSID ssj0000331527
Score 2.6186965
SecondaryResourceType review_article
Snippet In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug...
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug...
SourceID pubmedcentral
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 762
SubjectTerms Biocompatibility
Biosensors
Chemistry
Nanostructure
Nanotechnology
Nucleic acids
Pharmacology
Self-assembly
Title DNA nanostructure-based nucleic acid probes: construction and biological applications
URI https://www.proquest.com/docview/2539049240
https://www.proquest.com/docview/2545597075
https://pubmed.ncbi.nlm.nih.gov/PMC8188511
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gAXxNdE2JiM4IJQILFTJ-FWtZsmNIoEDbSnyHFcqIQStLWXXfnHeS92EneqEHCJqsRKI7-f7ff5e4S8lBxMLh7Fvk6Y9FHh9YtUhb7SclUESVqwpk3nh5m4yKL3i9FiMPjlZC1tN8UbdbO3ruR_pAr3QK5YJfsPku1eCjfgN8gXriBhuP6VjKez8etKVrUhgd1eaR8PJYznw0AkYlVrZAGoC5P4puqeLrYJGhgGJsMX4ASyXYW1IxRo638w6tvWeTluhGldffMXJvP2q7THYeOotym_6_7eUsLI6vbI5dqf2FKR6dZ1RrAmaSrsnZHG5dHmmzb5JLZrXb-tsSAKfTFiJhqj3XuG1qjbl5mDP1O8bHfZWATMObFhP2d7T4OAI5lqGV4r7J4YO2deG-effczPs8vLfH62mB-QQwa2BhuSw09fssWyc9UFnNvmv923t0S3PH3bv35XtentldvZtgdXbXOZRomZ3yf3rPVBxwZKD8hAVw_JnW76HpEMIEX3QIpaSFGEFDWQekddQFEAFO0BRV1APSbZ-dl8cuHbzhu-AgV-A8tVlBKpACWYm2nECpFGArfuRIk4xurtUiYiGZXYHUiIhMOyBj00DUqdqLJc8SMyrOpKPyEUsxmxiVCsEhatipHEuK8GM2IVICUt98irdtJyZWnpsTvKj7xJj-BpPg0_T5oJHnvkRTf2pyFj2TvqpJ373C7W65wBuMAYBv3VI8-7xzC5GB-Tla63OCZC-xqUaI_EOzLr_g3J2HefVOvvDSk7KL5ovHjkCKTbje_B8fTPX3VM7vbr6YQMQXj6Gai7m-K0cROdWlD-Bg1_rWk
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+nanostructure-based+nucleic+acid+probes%3A+construction+and+biological+applications&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Dong-Xia%2C+Wang&rft.au=Wang%2C+Jing&rft.au=Ya-Xin%2C+Wang&rft.au=Yi-Chen%2C+Du&rft.date=2021-06-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=22&rft.spage=7602&rft.epage=7622&rft_id=info:doi/10.1039%2Fd1sc00587a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon