Convolutional Neural Network Based American Sign Language Static Hand Gesture Recognition

Communicating through hand gestures with each other is simply called the language of signs. It is an acceptable language for communication among deaf and dumb people in this society. The society of the deaf and dumb admits a lot of obstacles in day to day life in communicating with their acquaintanc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of ambient computing and intelligence Vol. 10; no. 3; pp. 60 - 73
Main Authors Ahuja, Ravinder, Jain, Daksh, Sachdeva, Deepanshu, Garg, Archit, Rajput, Chirag
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.07.2019
Subjects
Online AccessGet full text
ISSN1941-6237
1941-6245
DOI10.4018/IJACI.2019070104

Cover

Abstract Communicating through hand gestures with each other is simply called the language of signs. It is an acceptable language for communication among deaf and dumb people in this society. The society of the deaf and dumb admits a lot of obstacles in day to day life in communicating with their acquaintances. The most recent study done by the World Health Organization reports that very large section (around 360 million folks) present in the world have hearing loss, i.e. 5.3% of the earth's total population. This gives us a need for the invention of an automated system which converts hand gestures into meaningful words and sentences. The Convolutional Neural Network (CNN) is used on 24 hand signals of American Sign Language in order to enhance the ease of communication. OpenCV was used in order to follow up on further execution techniques like image preprocessing. The results demonstrated that CNN has an accuracy of 99.7% utilizing the database found on kaggle.com.
AbstractList Communicating through hand gestures with each other is simply called the language of signs. It is an acceptable language for communication among deaf and dumb people in this society. The society of the deaf and dumb admits a lot of obstacles in day to day life in communicating with their acquaintances. The most recent study done by the World Health Organization reports that very large section (around 360 million folks) present in the world have hearing loss, i.e. 5.3% of the earth's total population. This gives us a need for the invention of an automated system which converts hand gestures into meaningful words and sentences. The Convolutional Neural Network (CNN) is used on 24 hand signals of American Sign Language in order to enhance the ease of communication. OpenCV was used in order to follow up on further execution techniques like image preprocessing. The results demonstrated that CNN has an accuracy of 99.7% utilizing the database found on kaggle.com.
Audience Academic
Author Garg, Archit
Jain, Daksh
Sachdeva, Deepanshu
Rajput, Chirag
Ahuja, Ravinder
AuthorAffiliation Jaypee Institute of Information Technology Noida, Hansi, India
Jaypee Institute of Information Technology Noida, Ghaziabad, India
Jaypee Institute of Information Technology Noida, Delhi, India
Jaypee Institute of Information Technology Noida, New Delhi, India
AuthorAffiliation_xml – name: Jaypee Institute of Information Technology Noida, New Delhi, India
– name: Jaypee Institute of Information Technology Noida, Delhi, India
– name: Jaypee Institute of Information Technology Noida, Ghaziabad, India
– name: Jaypee Institute of Information Technology Noida, Hansi, India
Author_xml – sequence: 1
  givenname: Ravinder
  surname: Ahuja
  fullname: Ahuja, Ravinder
  organization: Jaypee Institute of Information Technology Noida, Hansi, India
– sequence: 2
  givenname: Daksh
  surname: Jain
  fullname: Jain, Daksh
  organization: Jaypee Institute of Information Technology Noida, Delhi, India
– sequence: 3
  givenname: Deepanshu
  surname: Sachdeva
  fullname: Sachdeva, Deepanshu
  organization: Jaypee Institute of Information Technology Noida, Delhi, India
– sequence: 4
  givenname: Archit
  surname: Garg
  fullname: Garg, Archit
  organization: Jaypee Institute of Information Technology Noida, Ghaziabad, India
– sequence: 5
  givenname: Chirag
  surname: Rajput
  fullname: Rajput, Chirag
  organization: Jaypee Institute of Information Technology Noida, New Delhi, India
BookMark eNp9kc1PwyAYxonRxPlx90jixYObUKC0x7noNrNo4sfBE4EWKlphQqvxv7dbjSZGvfCS8HuevDzPDth03mkADjAaUYSzk_nFeDIfJQjniCOM6AYY4JziYZpQtvl1J3wb7MT4iFDKEOMDcD_x7tXXbWO9kzW81G1Yj-bNhyd4KqMu4fhZB1tIB29s5eBCuqqVlYY3jWxsAWfSlXCqY9MGDa914StnV257YMvIOur9z7kL7s7Pbiez4eJqOp-MF8OCItYMVZppJlViDMap5hliuSoxpZwwRUutTKZymiiTIpTnxvDukSujKOFYyizVZBcc9r7L4F_abg_x6NvQfSaKJCc444xkSUcd91Qlay1UG63TsTuirR6aWMk2RjHmLCeMJoR2OOrxIvgYgzZiGeyzDO8CI7HKW6zzFt95d5L0h6Swq4S8a4K09X_CaS-0lf3e_asT0XciPjv50wejzunoF6efoFiWhnwA77qqvg
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106775
crossref_primary_10_3390_s22176621
crossref_primary_10_3390_s23125555
crossref_primary_10_1007_s11042_023_15397_8
crossref_primary_10_1016_j_iswa_2024_200384
crossref_primary_10_1371_journal_pone_0298699
crossref_primary_10_1007_s41870_021_00617_x
crossref_primary_10_1016_j_jvcir_2023_103783
crossref_primary_10_1016_j_eswa_2021_114797
crossref_primary_10_1007_s11042_022_12411_3
crossref_primary_10_3390_app132212204
crossref_primary_10_1016_j_ecoinf_2021_101540
crossref_primary_10_1080_0952813X_2023_2183269
crossref_primary_10_1109_TSMC_2022_3220080
Cites_doi 10.1504/IJBIDM.2018.088428
10.1109/ISS1.2017.8389446
10.1109/CCAA.2017.8229808
10.1007/978-3-319-38771-0_54
10.1109/ICARCV.2016.7838572
10.1109/ICICES.2013.6508395
10.1016/j.ijleo.2013.07.167
10.1145/1531326.1531369
10.1109/IMSNA.2013.6743432
10.1109/ICMLC.2007.4370514
10.1109/ICACCCT.2014.7019293
10.1504/IJBRA.2007.011832
10.1109/ICCES.2013.6707218
10.1109/ICAEE.2017.8255454
10.1007/978-3-319-28854-3_8
10.1109/ISEMANTIC.2016.7873837
10.1109/CYBER.2016.7574872
10.1007/978-3-642-17881-8_5
10.1109/INTELSE.2016.7475155
10.1109/TENCON.2004.1414484
10.1109/ICCIC.2016.7919572
10.1109/ICCITECHN.2017.8281818
10.1109/ICTS.2017.8265648
10.1016/j.procs.2015.07.362
10.1109/ICENCO.2016.7856452
10.1109/SmartTechCon.2017.8358363
10.1109/CCWC.2018.8301631
10.1109/ICIVC.2016.7571278
10.1109/72.554195
10.1109/CSCI.2016.0165
10.1109/TENCON.2014.7022345
10.1109/5.726791
10.1109/ICIIECS.2017.8275907
10.1109/WCSE.2009.769
10.1109/ICIIECS.2017.8276111
10.1109/UPCON.2017.8251049
ContentType Journal Article
Copyright COPYRIGHT 2019 IGI Global
Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: COPYRIGHT 2019 IGI Global
– notice: Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
N95
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.4018/IJACI.2019070104
DatabaseName CrossRef
Gale Business: Insights
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (ProQuest)
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1941-6245
EndPage 73
ExternalDocumentID A759354234
10_4018_IJACI_2019070104
olutional_Neural_Network_10_4018_IJACI_201907010410
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 0R
ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
COVLG
EBS
EJD
H13
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
4.4
AAYVP
AAYXX
ABJCF
ACOJC
AFKRA
ARAPS
BAAKF
BENPR
BGLVJ
BTFVE
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CITATION
CNQXE
CTSEY
HCIFZ
HZ~
IAO
ICD
IMI
ITC
K7-
M7S
N95
PHGZM
PHGZT
PTHSS
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c405t-b68e5ab2ff116e78059bd144735b4debf8b942bf60099ff7bd17bfb4371aa86e3
IEDL.DBID 8FG
ISSN 1941-6237
IngestDate Fri Jul 25 11:55:14 EDT 2025
Fri May 23 02:28:42 EDT 2025
Tue Jul 01 01:40:28 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Tue Jan 05 23:27:06 EST 2021
Fri Jan 15 00:06:42 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-b68e5ab2ff116e78059bd144735b4debf8b942bf60099ff7bd17bfb4371aa86e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2931875382
PQPubID 2045866
PageCount 14
ParticipantIDs gale_businessinsightsgauss_A759354234
igi_journals_olutional_Neural_Network_10_4018_IJACI_201907010410
crossref_primary_10_4018_IJACI_2019070104
proquest_journals_2931875382
crossref_citationtrail_10_4018_IJACI_2019070104
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of ambient computing and intelligence
PublicationYear 2019
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJACI.2019070104-27
IJACI.2019070104-28
IJACI.2019070104-29
IJACI.2019070104-23
IJACI.2019070104-24
IJACI.2019070104-25
IJACI.2019070104-26
IJACI.2019070104-20
IJACI.2019070104-21
IJACI.2019070104-22
IJACI.2019070104-6
IJACI.2019070104-5
IJACI.2019070104-3
IJACI.2019070104-40
A.Chaudhary (IJACI.2019070104-4) 2011
IJACI.2019070104-9
IJACI.2019070104-8
IJACI.2019070104-7
S. R.Ghorpade (IJACI.2019070104-10) 2015; 5
IJACI.2019070104-16
IJACI.2019070104-38
IJACI.2019070104-17
IJACI.2019070104-39
IJACI.2019070104-18
IJACI.2019070104-19
IJACI.2019070104-12
IJACI.2019070104-34
IJACI.2019070104-13
IJACI.2019070104-35
IJACI.2019070104-14
IJACI.2019070104-36
IJACI.2019070104-15
IJACI.2019070104-37
IJACI.2019070104-2
IJACI.2019070104-30
IJACI.2019070104-1
IJACI.2019070104-31
IJACI.2019070104-0
IJACI.2019070104-32
IJACI.2019070104-11
IJACI.2019070104-33
References_xml – ident: IJACI.2019070104-3
  doi: 10.1504/IJBIDM.2018.088428
– ident: IJACI.2019070104-35
  doi: 10.1109/ISS1.2017.8389446
– ident: IJACI.2019070104-21
  doi: 10.1109/CCAA.2017.8229808
– ident: IJACI.2019070104-16
  doi: 10.1007/978-3-319-38771-0_54
– ident: IJACI.2019070104-40
  doi: 10.1109/ICARCV.2016.7838572
– ident: IJACI.2019070104-25
  doi: 10.1109/ICICES.2013.6508395
– ident: IJACI.2019070104-30
  doi: 10.1016/j.ijleo.2013.07.167
– ident: IJACI.2019070104-36
  doi: 10.1145/1531326.1531369
– ident: IJACI.2019070104-8
  doi: 10.1109/IMSNA.2013.6743432
– ident: IJACI.2019070104-1
  doi: 10.1109/ICMLC.2007.4370514
– start-page: 118
  year: 2011
  ident: IJACI.2019070104-4
  article-title: A vision based real-time system to control remote robotic hand fingers.
  publication-title: Proceedings of the IEEE International Conference on Computer Control and Automation
– ident: IJACI.2019070104-26
  doi: 10.1109/ICACCCT.2014.7019293
– ident: IJACI.2019070104-29
  doi: 10.1504/IJBRA.2007.011832
– ident: IJACI.2019070104-9
  doi: 10.1109/ICCES.2013.6707218
– ident: IJACI.2019070104-13
  doi: 10.1109/ICAEE.2017.8255454
– ident: IJACI.2019070104-15
  doi: 10.1007/978-3-319-28854-3_8
– ident: IJACI.2019070104-19
  doi: 10.1109/ISEMANTIC.2016.7873837
– ident: IJACI.2019070104-17
– ident: IJACI.2019070104-38
  doi: 10.1109/CYBER.2016.7574872
– ident: IJACI.2019070104-5
  doi: 10.1007/978-3-642-17881-8_5
– ident: IJACI.2019070104-18
  doi: 10.1109/INTELSE.2016.7475155
– ident: IJACI.2019070104-20
  doi: 10.1109/TENCON.2004.1414484
– ident: IJACI.2019070104-34
  doi: 10.1109/ICCIC.2016.7919572
– ident: IJACI.2019070104-32
  doi: 10.1109/ICCITECHN.2017.8281818
– ident: IJACI.2019070104-37
  doi: 10.1109/ICTS.2017.8265648
– ident: IJACI.2019070104-33
  doi: 10.1016/j.procs.2015.07.362
– ident: IJACI.2019070104-0
  doi: 10.1109/ICENCO.2016.7856452
– ident: IJACI.2019070104-11
  doi: 10.1109/SmartTechCon.2017.8358363
– ident: IJACI.2019070104-31
  doi: 10.1109/CCWC.2018.8301631
– ident: IJACI.2019070104-28
  doi: 10.1109/ICIVC.2016.7571278
– ident: IJACI.2019070104-23
  doi: 10.1109/72.554195
– ident: IJACI.2019070104-6
– ident: IJACI.2019070104-14
  doi: 10.1109/CSCI.2016.0165
– ident: IJACI.2019070104-2
  doi: 10.1109/TENCON.2014.7022345
– ident: IJACI.2019070104-12
– ident: IJACI.2019070104-24
  doi: 10.1109/5.726791
– ident: IJACI.2019070104-27
  doi: 10.1109/ICIIECS.2017.8275907
– ident: IJACI.2019070104-39
  doi: 10.1109/WCSE.2009.769
– ident: IJACI.2019070104-7
  doi: 10.1109/ICIIECS.2017.8276111
– volume: 5
  issue: 5
  year: 2015
  ident: IJACI.2019070104-10
  article-title: Full Duplex Communication System for Deaf & Dumb People.
  publication-title: International Journal of Emerging Technology and Advanced Engineering
– ident: IJACI.2019070104-22
  doi: 10.1109/UPCON.2017.8251049
SSID ssj0065057
Score 2.3234236
Snippet Communicating through hand gestures with each other is simply called the language of signs. It is an acceptable language for communication among deaf and dumb...
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60
SubjectTerms Artificial neural networks
Communication
Deafness
Gesture recognition
Neural networks
Sign language
Title Convolutional Neural Network Based American Sign Language Static Hand Gesture Recognition
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.2019070104
https://www.proquest.com/docview/2931875382
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5qL158i9UqEfTgYWl3N_s6aVvsCxXxAXoKSTYpBdlWt_X3O7ObtYjoJXvYJITMZOabRzKEnCVRSzHmS0e5InCYn7YcIaBhiWSJ8WCQj7eRb-_CwTMbvQQv1uGW27TKSiYWgjqdKvSRN0EtuYitY-9y9u5g1SiMrtoSGquk5oKmQT6Pe_1KEocIvouoMnMdUPNRGaYEiyJuDkft7hAzu8A4RJPkh1qywnl1Mp78EtGF3ultkQ0LGGm7pPA2WdHZDtmsijFQezZ3yWt3mn1aPoL--OhG8SmyvGkHlFVKq_AMfZyMM3pjXZUUAedE0YHIUtqHJSw-NH2oEoum2R557l0_dQeOrZvgKIBfc0eGsQ6E9Ixx3VBj0YJEpmA4RX4gWaqliWXCPGlChIfGRPAzkkYyP3KFiEPt75O1bJrpA7zRbUDNiTRQLcOUwmupGHf0Q4AZXqLDOmlW28aVfVQca1u8cTAucKN5sdF8udF1cvE9YlY-qPFP33OkBLf1OKHJ0WORj8Uiz3k7ChI_ADgI_U6BVNyevvzXPHyWmjq5-tHnmyC8JAi3BPlzMW6rThoVLyznWfLl4f-_j8g6Tlam-jbI2vxjoY8B0MzlScG1J6TWub67f_gC_CzxdQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5BOLSXvqum0OJK5dDDKtld7-tQtSFAEwhRRUGiJ9fetaNI1SawCah_qr-xM7s2EULlxsV7WNuyZsaebzwzHoCPWdLNOQ-Vl_sy8nhYdD0pseGZ4pkJcFBI2cjH43hwxg_Po_M1-OtyYSis0p2J9UFdzHK6I--gWvIJW6fBl_mFR1WjyLvqSmg0YnGk_1yjyVZ9Hu4hf3eC4GD_tD_wbFUBL0dwsvBUnOpIqsAY3481PemfqQLNiiSMFC-0MqnKeKBMTODJmAR_JsooHia-lGmsQ5x3HTY4ZbS2YGN3f_z9xJ39McH92o_NfQ-BRdI4RtGGSTvDw15_SLFkaI6SEXRLEVp1sD6dTO8ohVrTHTyDJxaisl4jU89hTZcv4Kkr_8DsafASfvZn5ZWVXOxPz3zUnzqunO2ieiyYcwixH9NJyUb2cpQRxJ3mbCDLgn3DJSwvNTtxoUyz8hWcPQhNX0OrnJX6DeWQG1SssojyruF5Tomw5OkMYwQ2QabjNnQc2URunzGnahq_BZozRGhRE1qsCN2GTzcj5s0THvf03SFOCFsBFJuK7kiqiVxWleglURZGCECx3wdklbD7vbozj5gXpg1fb_W5YYhoGCIsQ_67GL_bhi0nC6t5Vjvh7f2_t-HR4PR4JEbD8dEmPKaJm0DjLWgtLpf6HcKphXpvZZjBr4feNv8ARhovNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Neural+Network+Based+American+Sign+Language+Static+Hand+Gesture+Recognition&rft.jtitle=International+journal+of+ambient+computing+and+intelligence&rft.au=Ahuja%2C+Ravinder&rft.au=Jain%2C+Daksh&rft.au=Sachdeva%2C+Deepanshu&rft.au=Garg%2C+Archit&rft.date=2019-07-01&rft.pub=IGI+Global&rft.issn=1941-6237&rft.volume=10&rft.issue=3&rft_id=info:doi/10.4018%2FIJACI.2019070104&rft.externalDBID=N95&rft.externalDocID=A759354234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-6237&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-6237&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-6237&client=summon