Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction

Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on radiation and plasma medical sciences Vol. 3; no. 2; pp. 109 - 119
Main Authors Lee, Hoyeon, Lee, Jongha, Kim, Hyeongseok, Cho, Byungchul, Cho, Seungryong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this paper, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach.
AbstractList Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this paper, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach.
Author Cho, Byungchul
Lee, Jongha
Lee, Hoyeon
Kim, Hyeongseok
Cho, Seungryong
Author_xml – sequence: 1
  givenname: Hoyeon
  orcidid: 0000-0002-1165-1509
  surname: Lee
  fullname: Lee, Hoyeon
  email: leehoy@kaist.ac.kr
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, South Korea
– sequence: 2
  givenname: Jongha
  orcidid: 0000-0002-1568-6733
  surname: Lee
  fullname: Lee, Jongha
  email: jongha.lee@kaist.ac.kr
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, South Korea
– sequence: 3
  givenname: Hyeongseok
  orcidid: 0000-0001-5666-0129
  surname: Kim
  fullname: Kim, Hyeongseok
  email: kimhs369@kaist.ac.kr
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, South Korea
– sequence: 4
  givenname: Byungchul
  orcidid: 0000-0003-3871-7114
  surname: Cho
  fullname: Cho, Byungchul
  email: cho.byungchul@gmail.com
  organization: Department of Radiation Oncology, Asan Medical Center, Seoul, South Korea
– sequence: 5
  givenname: Seungryong
  orcidid: 0000-0002-9409-3628
  surname: Cho
  fullname: Cho, Seungryong
  email: scho@kaist.ac.kr
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, South Korea
BookMark eNp9kMtOwzAQRS1UJErpD8AmEusUj-M49hLKq1J5qAlsIyedlJQ2Dnaiqn9PSisWLFjdWcyZxzklvcpUSMg50BEAVVfJ7PUpHjEKcsSkiATAEekzLpQfBTTo_dYAJ2To3JJSCpFkiod9ktwi1v4ztlavumg2xn76N9rh3IvLyiysXnvxtmo-0JXOK4z14lpbh_57iRtvnHiTtV6gN8PcVK6xbd6Upjojx4VeORweckDe7u-S8aM_fXmYjK-nfs5p2PhZKAPgGDIhQIhM8gJlEYUIRai0FvMMOA8xgoypQGaaa6oVB-A6p7SIchoMyOV-bm3NV4uuSZemtVW3MmVMdR5AcNV1yX1Xbo1zFos0Lxu9u7OxulylQNOdxvRHY7rTmB40dij7g9a2XGu7_R-62EMlIv4CkodMdQ9_A7Nkf38
CODEN ITRPFI
CitedBy_id crossref_primary_10_1016_j_nima_2021_165594
crossref_primary_10_1002_mp_15183
crossref_primary_10_1016_j_bspc_2024_106297
crossref_primary_10_3233_XST_230184
crossref_primary_10_1109_TRPMS_2020_3000789
crossref_primary_10_1109_TRPMS_2023_3309474
crossref_primary_10_1016_j_ejmp_2020_01_004
crossref_primary_10_1016_j_ultrasmedbio_2022_05_033
crossref_primary_10_1109_TRPMS_2020_2991887
crossref_primary_10_3390_tomography9030094
crossref_primary_10_1016_j_ymeth_2021_05_005
crossref_primary_10_1107_S1600577523008032
crossref_primary_10_3390_e26020101
crossref_primary_10_1007_s00259_021_05244_z
crossref_primary_10_3390_math11133021
crossref_primary_10_1016_j_compbiomed_2023_106809
crossref_primary_10_1016_j_compbiomed_2025_109900
crossref_primary_10_1080_10589759_2024_2305329
crossref_primary_10_1002_mp_17636
crossref_primary_10_1002_mp_15612
crossref_primary_10_1109_JBHI_2022_3225697
crossref_primary_10_1016_j_compbiomed_2023_106888
crossref_primary_10_1088_1361_6560_ac6560
crossref_primary_10_1109_TRPMS_2023_3316349
crossref_primary_10_1186_s12880_024_01216_5
crossref_primary_10_1093_rpd_ncab005
crossref_primary_10_1007_s00521_023_08847_9
crossref_primary_10_1109_JSTSP_2020_3007326
crossref_primary_10_1109_TRPMS_2024_3449155
crossref_primary_10_1007_s40747_022_00724_7
crossref_primary_10_1007_s10278_025_01390_0
crossref_primary_10_1007_s12350_020_02119_y
crossref_primary_10_1109_TMI_2024_3473970
crossref_primary_10_1111_vru_13162
crossref_primary_10_1109_TCI_2021_3062986
crossref_primary_10_3390_app13106051
crossref_primary_10_1016_j_mattod_2024_08_016
crossref_primary_10_1016_j_engfracmech_2025_111036
crossref_primary_10_1002_mp_15885
crossref_primary_10_3389_fradi_2024_1385742
crossref_primary_10_3390_tomography11030023
crossref_primary_10_1016_j_optlaseng_2024_108469
crossref_primary_10_1109_TCI_2020_3039385
crossref_primary_10_1097_RCT_0000000000000928
crossref_primary_10_1016_j_compbiomed_2023_107345
crossref_primary_10_1016_j_eswa_2024_125099
crossref_primary_10_1109_TRPMS_2023_3271627
crossref_primary_10_1007_s12194_022_00661_7
crossref_primary_10_1007_s13246_025_01535_z
crossref_primary_10_1007_s40846_025_00927_6
crossref_primary_10_1109_TRPMS_2022_3222213
crossref_primary_10_1109_TCI_2023_3281196
crossref_primary_10_1109_TMTT_2023_3234466
crossref_primary_10_2139_ssrn_4091180
crossref_primary_10_1002_mp_16048
crossref_primary_10_1016_j_bspc_2023_104637
crossref_primary_10_1016_j_media_2022_102382
crossref_primary_10_1016_j_compbiomed_2022_105710
crossref_primary_10_1109_TMI_2021_3097808
crossref_primary_10_1109_TRPMS_2023_3281148
crossref_primary_10_1038_s41598_022_04910_y
crossref_primary_10_1016_j_jmatprotec_2022_117530
crossref_primary_10_1109_TCI_2021_3125564
crossref_primary_10_3390_app14083397
crossref_primary_10_1088_1361_6560_ac0f9a
crossref_primary_10_1016_j_ejmp_2022_07_001
crossref_primary_10_1109_TIP_2019_2947790
crossref_primary_10_1177_08953996251319183
crossref_primary_10_1017_S0962492919000059
crossref_primary_10_1109_ACCESS_2020_3020406
crossref_primary_10_1016_j_bspc_2024_107182
crossref_primary_10_1088_2632_2153_ad1b8e
crossref_primary_10_1002_mp_16115
crossref_primary_10_1109_ACCESS_2021_3086839
crossref_primary_10_1109_TMI_2023_3280217
crossref_primary_10_1109_TNS_2023_3281268
crossref_primary_10_1109_TRPMS_2020_2989634
crossref_primary_10_1038_s41598_019_51779_5
crossref_primary_10_1088_1361_6560_acc2ab
crossref_primary_10_1038_s41598_021_83266_1
crossref_primary_10_3934_mbe_2023427
crossref_primary_10_3390_electronics12214503
crossref_primary_10_1186_s42492_023_00130_x
crossref_primary_10_1016_j_bspc_2024_107195
crossref_primary_10_1088_2057_1976_ac31cb
crossref_primary_10_1109_ACCESS_2020_3033795
crossref_primary_10_1088_1361_6560_ad8da2
crossref_primary_10_3233_XST_200716
crossref_primary_10_1088_1361_6560_ad31c7
crossref_primary_10_3390_app132011264
crossref_primary_10_1109_TRPMS_2020_2994041
crossref_primary_10_1007_s11340_024_01081_x
crossref_primary_10_1016_j_precisioneng_2024_02_020
crossref_primary_10_1109_TMI_2021_3066318
crossref_primary_10_1038_s41598_022_10256_2
crossref_primary_10_1088_1361_6560_ad2ee7
crossref_primary_10_1109_TRPMS_2022_3168970
crossref_primary_10_1002_mp_15806
crossref_primary_10_1007_s41870_024_01898_8
crossref_primary_10_1109_JPROC_2019_2936204
crossref_primary_10_1109_TRPMS_2021_3107454
crossref_primary_10_1109_TRPMS_2020_3029038
crossref_primary_10_1109_TRPMS_2024_3392248
crossref_primary_10_1088_1361_6560_ab857c
crossref_primary_10_1016_j_neunet_2024_106740
crossref_primary_10_1177_08953996241300016
crossref_primary_10_1016_j_bspc_2024_106593
crossref_primary_10_1016_j_neunet_2023_08_004
crossref_primary_10_1109_TRPMS_2020_3011413
crossref_primary_10_1007_s11042_022_12194_7
crossref_primary_10_1002_mp_16371
crossref_primary_10_1364_OE_545447
crossref_primary_10_1109_TMI_2021_3081824
crossref_primary_10_1109_TUFFC_2023_3299954
crossref_primary_10_1080_10589759_2023_2170374
crossref_primary_10_1088_1361_6560_ac3842
crossref_primary_10_1088_1361_6560_ac7bce
crossref_primary_10_1088_1361_6560_ad4a1b
crossref_primary_10_1109_TRPMS_2021_3133510
crossref_primary_10_1142_S1469026820500261
crossref_primary_10_1016_j_cmpb_2022_107168
crossref_primary_10_1186_s42492_019_0024_7
crossref_primary_10_7717_peerj_cs_1849
crossref_primary_10_1016_j_cmpb_2022_107167
crossref_primary_10_1109_TNS_2021_3079629
crossref_primary_10_3389_fonc_2021_751057
crossref_primary_10_3390_photonics9030186
crossref_primary_10_1109_TBME_2023_3243491
crossref_primary_10_1109_TUFFC_2020_2977210
crossref_primary_10_1109_TMI_2024_3355455
crossref_primary_10_1002_acm2_13121
crossref_primary_10_1109_TCI_2022_3216207
crossref_primary_10_1088_1361_6560_adb932
crossref_primary_10_1109_TIM_2024_3353877
crossref_primary_10_3934_ammc_2023006
crossref_primary_10_1088_1361_6560_ad360a
crossref_primary_10_1109_JPHOT_2023_3339148
crossref_primary_10_3390_tomography9060169
crossref_primary_10_1016_j_radmeas_2024_107167
crossref_primary_10_3390_bioengineering6040111
crossref_primary_10_1038_s41598_024_54649_x
crossref_primary_10_1109_TMI_2021_3090257
crossref_primary_10_1109_TMI_2021_3072568
crossref_primary_10_3934_mbe_2022200
crossref_primary_10_1109_TRPMS_2024_3471677
crossref_primary_10_3390_tomography10010011
crossref_primary_10_1021_acsami_3c06291
crossref_primary_10_1109_TMI_2021_3077187
crossref_primary_10_1109_TRPMS_2020_2995717
crossref_primary_10_3233_XST_210962
crossref_primary_10_1016_j_media_2021_102289
crossref_primary_10_1016_j_xinn_2023_100539
crossref_primary_10_1007_s10915_024_02638_7
crossref_primary_10_1016_j_compmedimag_2025_102508
crossref_primary_10_1109_TRPMS_2020_3028364
Cites_doi 10.1097/00004728-197811000-00010
10.1364/JOSAA.29.000153
10.1109/ICPR.2006.225
10.1259/bjr/01948454
10.1007/978-3-319-10593-2_13
10.1109/ICCV.2015.279
10.2217/iim.09.5
10.1002/mp.12344
10.1109/CVPR.2016.182
10.3233/XST-130401
10.1109/CVPR.2016.90
10.3233/XST-130367
10.1109/TIP.2003.819861
10.1007/s10044-017-0597-8
10.1056/NEJMra072149
10.1118/1.4942376
10.1371/journal.pone.0079709
10.1137/1.9780898719277
10.1177/016173468400600107
10.1088/0031-9155/53/17/021
10.4236/am.2014.53043
10.1371/journal.pone.0118261
10.1145/2733373.2807412
10.1109/TNS.2004.834816
10.1117/12.2293319
10.1109/CVPR.2016.181
10.1148/radiol.11101450
10.1016/j.rcl.2008.10.006
10.1109/TIP.2017.2713099
10.1016/j.ijleo.2014.01.003
10.1109/ICCV.2003.1238308
10.1109/TMI.2008.2011550
10.1364/BOE.8.000679
10.1109/CVPR.2016.265
10.1145/2647868.2654889
10.1088/0031-9155/27/9/005
10.1007/s10278-013-9622-7
10.1109/TNS.2016.2604343
10.1088/0031-9155/49/11/024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
DOI 10.1109/TRPMS.2018.2867611
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2469-7303
EndPage 119
ExternalDocumentID 10_1109_TRPMS_2018_2867611
8452958
Genre orig-research
GrantInformation_xml – fundername: Korea Evaluation Institute of Industrial Technology
  grantid: 10051357
  funderid: 10.13039/501100003662
– fundername: KAIST
  funderid: 10.13039/501100007107
– fundername: National Research Foundation of Korea
  grantid: NRF-2016M2A2A9A03913610; NRF-2016M3A9E9941837; NRF-2017M2A2A4A05065897
  funderid: 10.13039/501100003725
– fundername: NST
  grantid: CAP-13-3-KERI
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
ID FETCH-LOGICAL-c405t-b58314e5266166b84fe8f75e1f59aa6db1445e71b2938ba4a0a94114ac00f7c03
IEDL.DBID RIE
ISSN 2469-7311
IngestDate Mon Jun 30 18:02:58 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 03:04:13 EDT 2025
Wed Aug 27 02:29:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-b58314e5266166b84fe8f75e1f59aa6db1445e71b2938ba4a0a94114ac00f7c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1568-6733
0000-0003-3871-7114
0000-0002-9409-3628
0000-0002-1165-1509
0000-0001-5666-0129
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8452958
PQID 2296111649
PQPubID 4437208
PageCount 11
ParticipantIDs ieee_primary_8452958
crossref_citationtrail_10_1109_TRPMS_2018_2867611
proquest_journals_2296111649
crossref_primary_10_1109_TRPMS_2018_2867611
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on radiation and plasma medical sciences
PublicationTitleAbbrev TRPMS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
kingma (ref49) 2014
ref11
ref10
ref17
ref16
ref18
han (ref36) 2016
ref51
amaro (ref22) 0
ref45
ref48
ref47
ref41
sidky (ref52) 2006; 14
ref8
goodfellow (ref31) 0
ref7
ref9
ref4
ref3
ref6
ref5
lee (ref50) 2017
ronneberger (ref44) 0
ref40
kang (ref33) 2017
ref35
ref34
pohlmann (ref14) 2014
ref37
ref30
ref32
ref2
ref1
ref38
abadi (ref39) 2016
ref23
ref26
toumoulin (ref20) 2012; 29
ref25
subash (ref24) 2015; 8
ref21
lecun (ref42) 1995
ref28
ref27
ref29
glorot (ref43) 0
siltanen (ref19) 2014; 5
springenberg (ref46) 2014
References_xml – ident: ref11
  doi: 10.1097/00004728-197811000-00010
– volume: 29
  start-page: 153
  year: 2012
  ident: ref20
  article-title: Strategy of computed tomography sinogram inpainting based on sinusoid-like curve decomposition and eigenvector-guided interpolation
  publication-title: J Opt Soc Amer A Opt Image Sci
  doi: 10.1364/JOSAA.29.000153
– ident: ref13
  doi: 10.1109/ICPR.2006.225
– year: 0
  ident: ref22
  article-title: Evaluation of machine learning techniques for face detection and recognition
– ident: ref1
  doi: 10.1259/bjr/01948454
– ident: ref28
  doi: 10.1007/978-3-319-10593-2_13
– ident: ref29
  doi: 10.1109/ICCV.2015.279
– ident: ref3
  doi: 10.2217/iim.09.5
– ident: ref34
  doi: 10.1002/mp.12344
– ident: ref26
  doi: 10.1109/CVPR.2016.182
– start-page: 203
  year: 2014
  ident: ref14
  article-title: Estimation of missing fan-beam projections using frequency consistency conditions
  publication-title: Proc Int Conf Image Formation X-Ray Comput Tomography
– ident: ref16
  doi: 10.3233/XST-130401
– ident: ref45
  doi: 10.1109/CVPR.2016.90
– ident: ref7
  doi: 10.3233/XST-130367
– volume: 8
  start-page: 2335
  year: 2015
  ident: ref24
  article-title: Brain tumor classification using machine learning
  publication-title: Int J Comput Technol Appl
– ident: ref53
  doi: 10.1109/TIP.2003.819861
– ident: ref23
  doi: 10.1007/s10044-017-0597-8
– ident: ref2
  doi: 10.1056/NEJMra072149
– year: 0
  ident: ref43
  article-title: Deep sparse rectifier neural networks
– ident: ref18
  doi: 10.1118/1.4942376
– ident: ref5
  doi: 10.1371/journal.pone.0079709
– ident: ref51
  doi: 10.1137/1.9780898719277
– ident: ref9
  doi: 10.1177/016173468400600107
– ident: ref10
  doi: 10.1088/0031-9155/53/17/021
– volume: 5
  start-page: 423
  year: 2014
  ident: ref19
  article-title: Sinogram interpolation method for sparse-angle tomography
  publication-title: Appl Math
  doi: 10.4236/am.2014.53043
– ident: ref47
  doi: 10.1371/journal.pone.0118261
– ident: ref40
  doi: 10.1145/2733373.2807412
– ident: ref12
  doi: 10.1109/TNS.2004.834816
– ident: ref37
  doi: 10.1117/12.2293319
– year: 2017
  ident: ref33
  article-title: Deep convolutional framelet denoising for low-dose CT via wavelet residual network
  publication-title: arXiv preprint arXiv 1707 09562
– ident: ref27
  doi: 10.1109/CVPR.2016.181
– year: 2016
  ident: ref36
  article-title: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis
  publication-title: arXiv preprint arXiv 1611 06391
– ident: ref8
  doi: 10.1148/radiol.11101450
– year: 2014
  ident: ref46
  article-title: Striving for simplicity: The all convolutional net
  publication-title: arXiv preprint arXiv 1412 6806
– ident: ref4
  doi: 10.1016/j.rcl.2008.10.006
– ident: ref35
  doi: 10.1109/TIP.2017.2713099
– ident: ref17
  doi: 10.1016/j.ijleo.2014.01.003
– ident: ref25
  doi: 10.1109/ICCV.2003.1238308
– start-page: 255
  year: 1995
  ident: ref42
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– ident: ref15
  doi: 10.1109/TMI.2008.2011550
– year: 0
  ident: ref31
  article-title: Generative adversarial nets
– year: 2016
  ident: ref39
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv preprint arXiv 1603 04467
– ident: ref32
  doi: 10.1364/BOE.8.000679
– ident: ref30
  doi: 10.1109/CVPR.2016.265
– ident: ref38
  doi: 10.1145/2647868.2654889
– ident: ref21
  doi: 10.1088/0031-9155/27/9/005
– ident: ref41
  doi: 10.1007/s10278-013-9622-7
– year: 0
  ident: ref44
  article-title: U-Net: Convolutional networks for biomedical image segmentation
– start-page: 1
  year: 2017
  ident: ref50
  article-title: View-interpolation of sparsely sampled sinogram using convolutional neural network
  publication-title: Proc SPIE Med Imag
– volume: 14
  start-page: 119
  year: 2006
  ident: ref52
  article-title: Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT
  publication-title: J X-Ray Sci Technol
– ident: ref6
  doi: 10.1109/TNS.2016.2604343
– ident: ref48
  doi: 10.1088/0031-9155/49/11/024
– year: 2014
  ident: ref49
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv 1412 6980
SSID ssj0001782945
Score 2.5136123
Snippet Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Algorithms
Artificial neural networks
Commercialization
Computed tomography
Convolution
Data sampling
Deep learning
Image processing
Image reconstruction
Interpolation
Iterative algorithms
Iterative methods
low-dose computed tomography (CT)
Machine learning
Mathematical analysis
Medical imaging
Missing data
Neural networks
Scanners
sparse-view CT
Synthesis
Training
view interpolation
Title Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction
URI https://ieeexplore.ieee.org/document/8452958
https://www.proquest.com/docview/2296111649
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED61k5D2AoOCKNuQH3gDt3GcxPbjVqgKEry0nfoWxc5FqhhppbZC26_f2UlbMSbEU_Lgs6w723ef_fkO4EOs00oKm3CMY8WTKlLcktfjsoxFZiVKWlOebfEjm8yTb4t00YFPh7cwiBjIZzjwv-Euv1y5nT8qG2p_S5jqLnQJuDVvtY7nKeTqTKhJHBPi40oKsX8jE5nhjED81BO59CDWGUF38YcfCoVV_tqNg4sZv4Dv-8E1zJKfg93WDtz9o7yN_zv6M3jexprsqpkcL6GD9St4FjifbtOD2WfEdcjOUdzSJ9DB-TV5tZJNl3WgbbHpXU0R4ma5YRTcsumaYDDymyX-ZqMZ-_qLNiPmAewxDe1rmI-_zEYT3hZZ4I5itS23qZYiwdQ76iyzOqlQVypFUaWmKLLSEuJKUQlLcYG2RVJEhUkIRBUuiirlIvkGTupVjW-BmTIjaaUIpFC7IjFOSqdVicJhRUCsD2Kv8ty1Gch9IYzbPCCRyOTBTLk3U96aqQ8fDzLrJv_GP1v3vN4PLVuV9-Fib9m8XaKbPI4NSRBaNO-eljqHU-rbNISzCzghReIlRSBb-z5MvQe0YtX1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RTxQxEJ4ghMgLokg4ROiDb9pju91u20dFyaHAyy2Gt822O5tcgOWSO0L01zvt7h0RjfFp96GTNjNtZ7726wzAu9SoRgqXcUxTzbMm0dyR1-OyTkXuJEpaU4FtcZGPLrOvV-pqBT4s38IgYiSf4TD8xrv8-s7fh6OyIxNuCZV5Bmvk95XoXms9nqiQs7OxKnFKmI9rKcTilUxijwqC8eNA5TLD1OQE3sVvniiWVvljP45O5uQFnC-G13FLrof3czf0P59kbvzf8W_BZh9tso_d9HgJK9i-gvXI-vSzbSg-I05jfo7qhj6REM4_kV-r2XjSRuIWG_9oKUacTWaMwls2nhIQRv59gg_suGCnt7QdsQBhHxPRvobLky_F8Yj3ZRa4p2htzp0yUmSogqvOc2eyBk2jFYpG2arKa0eYS6EWjiID46qsSiqbEYyqfJI02idyB1bbuxZ3gdk6J2mtCaZQuyqzXkpvdI3CY0NQbABiofLS9znIQymMmzJikcSW0UxlMFPZm2kA75cy0y4Dxz9bbwe9L1v2Kh_A_sKyZb9IZ2WaWpIgvGj3_i51CM9HxflZeXZ68e0NbFA_tqOf7cMqKRXfUjwydwdxGv4CCSXZPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Neural-Network-Based+Sinogram+Synthesis+for+Sparse-View+CT+Image+Reconstruction&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Lee%2C+Hoyeon&rft.au=Lee%2C+Jongha&rft.au=Kim%2C+Hyeongseok&rft.au=Cho%2C+Byungchul&rft.date=2019-03-01&rft.issn=2469-7311&rft.eissn=2469-7303&rft.volume=3&rft.issue=2&rft.spage=109&rft.epage=119&rft_id=info:doi/10.1109%2FTRPMS.2018.2867611&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRPMS_2018_2867611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon