Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction
Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option t...
Saved in:
Published in | IEEE transactions on radiation and plasma medical sciences Vol. 3; no. 2; pp. 109 - 119 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this paper, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach. |
---|---|
AbstractList | Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this paper, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach. |
Author | Cho, Byungchul Lee, Jongha Lee, Hoyeon Kim, Hyeongseok Cho, Seungryong |
Author_xml | – sequence: 1 givenname: Hoyeon orcidid: 0000-0002-1165-1509 surname: Lee fullname: Lee, Hoyeon email: leehoy@kaist.ac.kr organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, South Korea – sequence: 2 givenname: Jongha orcidid: 0000-0002-1568-6733 surname: Lee fullname: Lee, Jongha email: jongha.lee@kaist.ac.kr organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, South Korea – sequence: 3 givenname: Hyeongseok orcidid: 0000-0001-5666-0129 surname: Kim fullname: Kim, Hyeongseok email: kimhs369@kaist.ac.kr organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, South Korea – sequence: 4 givenname: Byungchul orcidid: 0000-0003-3871-7114 surname: Cho fullname: Cho, Byungchul email: cho.byungchul@gmail.com organization: Department of Radiation Oncology, Asan Medical Center, Seoul, South Korea – sequence: 5 givenname: Seungryong orcidid: 0000-0002-9409-3628 surname: Cho fullname: Cho, Seungryong email: scho@kaist.ac.kr organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, South Korea |
BookMark | eNp9kMtOwzAQRS1UJErpD8AmEusUj-M49hLKq1J5qAlsIyedlJQ2Dnaiqn9PSisWLFjdWcyZxzklvcpUSMg50BEAVVfJ7PUpHjEKcsSkiATAEekzLpQfBTTo_dYAJ2To3JJSCpFkiod9ktwi1v4ztlavumg2xn76N9rh3IvLyiysXnvxtmo-0JXOK4z14lpbh_57iRtvnHiTtV6gN8PcVK6xbd6Upjojx4VeORweckDe7u-S8aM_fXmYjK-nfs5p2PhZKAPgGDIhQIhM8gJlEYUIRai0FvMMOA8xgoypQGaaa6oVB-A6p7SIchoMyOV-bm3NV4uuSZemtVW3MmVMdR5AcNV1yX1Xbo1zFos0Lxu9u7OxulylQNOdxvRHY7rTmB40dij7g9a2XGu7_R-62EMlIv4CkodMdQ9_A7Nkf38 |
CODEN | ITRPFI |
CitedBy_id | crossref_primary_10_1016_j_nima_2021_165594 crossref_primary_10_1002_mp_15183 crossref_primary_10_1016_j_bspc_2024_106297 crossref_primary_10_3233_XST_230184 crossref_primary_10_1109_TRPMS_2020_3000789 crossref_primary_10_1109_TRPMS_2023_3309474 crossref_primary_10_1016_j_ejmp_2020_01_004 crossref_primary_10_1016_j_ultrasmedbio_2022_05_033 crossref_primary_10_1109_TRPMS_2020_2991887 crossref_primary_10_3390_tomography9030094 crossref_primary_10_1016_j_ymeth_2021_05_005 crossref_primary_10_1107_S1600577523008032 crossref_primary_10_3390_e26020101 crossref_primary_10_1007_s00259_021_05244_z crossref_primary_10_3390_math11133021 crossref_primary_10_1016_j_compbiomed_2023_106809 crossref_primary_10_1016_j_compbiomed_2025_109900 crossref_primary_10_1080_10589759_2024_2305329 crossref_primary_10_1002_mp_17636 crossref_primary_10_1002_mp_15612 crossref_primary_10_1109_JBHI_2022_3225697 crossref_primary_10_1016_j_compbiomed_2023_106888 crossref_primary_10_1088_1361_6560_ac6560 crossref_primary_10_1109_TRPMS_2023_3316349 crossref_primary_10_1186_s12880_024_01216_5 crossref_primary_10_1093_rpd_ncab005 crossref_primary_10_1007_s00521_023_08847_9 crossref_primary_10_1109_JSTSP_2020_3007326 crossref_primary_10_1109_TRPMS_2024_3449155 crossref_primary_10_1007_s40747_022_00724_7 crossref_primary_10_1007_s10278_025_01390_0 crossref_primary_10_1007_s12350_020_02119_y crossref_primary_10_1109_TMI_2024_3473970 crossref_primary_10_1111_vru_13162 crossref_primary_10_1109_TCI_2021_3062986 crossref_primary_10_3390_app13106051 crossref_primary_10_1016_j_mattod_2024_08_016 crossref_primary_10_1016_j_engfracmech_2025_111036 crossref_primary_10_1002_mp_15885 crossref_primary_10_3389_fradi_2024_1385742 crossref_primary_10_3390_tomography11030023 crossref_primary_10_1016_j_optlaseng_2024_108469 crossref_primary_10_1109_TCI_2020_3039385 crossref_primary_10_1097_RCT_0000000000000928 crossref_primary_10_1016_j_compbiomed_2023_107345 crossref_primary_10_1016_j_eswa_2024_125099 crossref_primary_10_1109_TRPMS_2023_3271627 crossref_primary_10_1007_s12194_022_00661_7 crossref_primary_10_1007_s13246_025_01535_z crossref_primary_10_1007_s40846_025_00927_6 crossref_primary_10_1109_TRPMS_2022_3222213 crossref_primary_10_1109_TCI_2023_3281196 crossref_primary_10_1109_TMTT_2023_3234466 crossref_primary_10_2139_ssrn_4091180 crossref_primary_10_1002_mp_16048 crossref_primary_10_1016_j_bspc_2023_104637 crossref_primary_10_1016_j_media_2022_102382 crossref_primary_10_1016_j_compbiomed_2022_105710 crossref_primary_10_1109_TMI_2021_3097808 crossref_primary_10_1109_TRPMS_2023_3281148 crossref_primary_10_1038_s41598_022_04910_y crossref_primary_10_1016_j_jmatprotec_2022_117530 crossref_primary_10_1109_TCI_2021_3125564 crossref_primary_10_3390_app14083397 crossref_primary_10_1088_1361_6560_ac0f9a crossref_primary_10_1016_j_ejmp_2022_07_001 crossref_primary_10_1109_TIP_2019_2947790 crossref_primary_10_1177_08953996251319183 crossref_primary_10_1017_S0962492919000059 crossref_primary_10_1109_ACCESS_2020_3020406 crossref_primary_10_1016_j_bspc_2024_107182 crossref_primary_10_1088_2632_2153_ad1b8e crossref_primary_10_1002_mp_16115 crossref_primary_10_1109_ACCESS_2021_3086839 crossref_primary_10_1109_TMI_2023_3280217 crossref_primary_10_1109_TNS_2023_3281268 crossref_primary_10_1109_TRPMS_2020_2989634 crossref_primary_10_1038_s41598_019_51779_5 crossref_primary_10_1088_1361_6560_acc2ab crossref_primary_10_1038_s41598_021_83266_1 crossref_primary_10_3934_mbe_2023427 crossref_primary_10_3390_electronics12214503 crossref_primary_10_1186_s42492_023_00130_x crossref_primary_10_1016_j_bspc_2024_107195 crossref_primary_10_1088_2057_1976_ac31cb crossref_primary_10_1109_ACCESS_2020_3033795 crossref_primary_10_1088_1361_6560_ad8da2 crossref_primary_10_3233_XST_200716 crossref_primary_10_1088_1361_6560_ad31c7 crossref_primary_10_3390_app132011264 crossref_primary_10_1109_TRPMS_2020_2994041 crossref_primary_10_1007_s11340_024_01081_x crossref_primary_10_1016_j_precisioneng_2024_02_020 crossref_primary_10_1109_TMI_2021_3066318 crossref_primary_10_1038_s41598_022_10256_2 crossref_primary_10_1088_1361_6560_ad2ee7 crossref_primary_10_1109_TRPMS_2022_3168970 crossref_primary_10_1002_mp_15806 crossref_primary_10_1007_s41870_024_01898_8 crossref_primary_10_1109_JPROC_2019_2936204 crossref_primary_10_1109_TRPMS_2021_3107454 crossref_primary_10_1109_TRPMS_2020_3029038 crossref_primary_10_1109_TRPMS_2024_3392248 crossref_primary_10_1088_1361_6560_ab857c crossref_primary_10_1016_j_neunet_2024_106740 crossref_primary_10_1177_08953996241300016 crossref_primary_10_1016_j_bspc_2024_106593 crossref_primary_10_1016_j_neunet_2023_08_004 crossref_primary_10_1109_TRPMS_2020_3011413 crossref_primary_10_1007_s11042_022_12194_7 crossref_primary_10_1002_mp_16371 crossref_primary_10_1364_OE_545447 crossref_primary_10_1109_TMI_2021_3081824 crossref_primary_10_1109_TUFFC_2023_3299954 crossref_primary_10_1080_10589759_2023_2170374 crossref_primary_10_1088_1361_6560_ac3842 crossref_primary_10_1088_1361_6560_ac7bce crossref_primary_10_1088_1361_6560_ad4a1b crossref_primary_10_1109_TRPMS_2021_3133510 crossref_primary_10_1142_S1469026820500261 crossref_primary_10_1016_j_cmpb_2022_107168 crossref_primary_10_1186_s42492_019_0024_7 crossref_primary_10_7717_peerj_cs_1849 crossref_primary_10_1016_j_cmpb_2022_107167 crossref_primary_10_1109_TNS_2021_3079629 crossref_primary_10_3389_fonc_2021_751057 crossref_primary_10_3390_photonics9030186 crossref_primary_10_1109_TBME_2023_3243491 crossref_primary_10_1109_TUFFC_2020_2977210 crossref_primary_10_1109_TMI_2024_3355455 crossref_primary_10_1002_acm2_13121 crossref_primary_10_1109_TCI_2022_3216207 crossref_primary_10_1088_1361_6560_adb932 crossref_primary_10_1109_TIM_2024_3353877 crossref_primary_10_3934_ammc_2023006 crossref_primary_10_1088_1361_6560_ad360a crossref_primary_10_1109_JPHOT_2023_3339148 crossref_primary_10_3390_tomography9060169 crossref_primary_10_1016_j_radmeas_2024_107167 crossref_primary_10_3390_bioengineering6040111 crossref_primary_10_1038_s41598_024_54649_x crossref_primary_10_1109_TMI_2021_3090257 crossref_primary_10_1109_TMI_2021_3072568 crossref_primary_10_3934_mbe_2022200 crossref_primary_10_1109_TRPMS_2024_3471677 crossref_primary_10_3390_tomography10010011 crossref_primary_10_1021_acsami_3c06291 crossref_primary_10_1109_TMI_2021_3077187 crossref_primary_10_1109_TRPMS_2020_2995717 crossref_primary_10_3233_XST_210962 crossref_primary_10_1016_j_media_2021_102289 crossref_primary_10_1016_j_xinn_2023_100539 crossref_primary_10_1007_s10915_024_02638_7 crossref_primary_10_1016_j_compmedimag_2025_102508 crossref_primary_10_1109_TRPMS_2020_3028364 |
Cites_doi | 10.1097/00004728-197811000-00010 10.1364/JOSAA.29.000153 10.1109/ICPR.2006.225 10.1259/bjr/01948454 10.1007/978-3-319-10593-2_13 10.1109/ICCV.2015.279 10.2217/iim.09.5 10.1002/mp.12344 10.1109/CVPR.2016.182 10.3233/XST-130401 10.1109/CVPR.2016.90 10.3233/XST-130367 10.1109/TIP.2003.819861 10.1007/s10044-017-0597-8 10.1056/NEJMra072149 10.1118/1.4942376 10.1371/journal.pone.0079709 10.1137/1.9780898719277 10.1177/016173468400600107 10.1088/0031-9155/53/17/021 10.4236/am.2014.53043 10.1371/journal.pone.0118261 10.1145/2733373.2807412 10.1109/TNS.2004.834816 10.1117/12.2293319 10.1109/CVPR.2016.181 10.1148/radiol.11101450 10.1016/j.rcl.2008.10.006 10.1109/TIP.2017.2713099 10.1016/j.ijleo.2014.01.003 10.1109/ICCV.2003.1238308 10.1109/TMI.2008.2011550 10.1364/BOE.8.000679 10.1109/CVPR.2016.265 10.1145/2647868.2654889 10.1088/0031-9155/27/9/005 10.1007/s10278-013-9622-7 10.1109/TNS.2016.2604343 10.1088/0031-9155/49/11/024 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QO 8FD F28 FR3 K9. NAPCQ P64 |
DOI | 10.1109/TRPMS.2018.2867611 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Biotechnology Research Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2469-7303 |
EndPage | 119 |
ExternalDocumentID | 10_1109_TRPMS_2018_2867611 8452958 |
Genre | orig-research |
GrantInformation_xml | – fundername: Korea Evaluation Institute of Industrial Technology grantid: 10051357 funderid: 10.13039/501100003662 – fundername: KAIST funderid: 10.13039/501100007107 – fundername: National Research Foundation of Korea grantid: NRF-2016M2A2A9A03913610; NRF-2016M3A9E9941837; NRF-2017M2A2A4A05065897 funderid: 10.13039/501100003725 – fundername: NST grantid: CAP-13-3-KERI |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG 7QO 8FD F28 FR3 K9. NAPCQ P64 |
ID | FETCH-LOGICAL-c405t-b58314e5266166b84fe8f75e1f59aa6db1445e71b2938ba4a0a94114ac00f7c03 |
IEDL.DBID | RIE |
ISSN | 2469-7311 |
IngestDate | Mon Jun 30 18:02:58 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 03:04:13 EDT 2025 Wed Aug 27 02:29:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-b58314e5266166b84fe8f75e1f59aa6db1445e71b2938ba4a0a94114ac00f7c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1568-6733 0000-0003-3871-7114 0000-0002-9409-3628 0000-0002-1165-1509 0000-0001-5666-0129 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8452958 |
PQID | 2296111649 |
PQPubID | 4437208 |
PageCount | 11 |
ParticipantIDs | ieee_primary_8452958 crossref_citationtrail_10_1109_TRPMS_2018_2867611 proquest_journals_2296111649 crossref_primary_10_1109_TRPMS_2018_2867611 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on radiation and plasma medical sciences |
PublicationTitleAbbrev | TRPMS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref53 kingma (ref49) 2014 ref11 ref10 ref17 ref16 ref18 han (ref36) 2016 ref51 amaro (ref22) 0 ref45 ref48 ref47 ref41 sidky (ref52) 2006; 14 ref8 goodfellow (ref31) 0 ref7 ref9 ref4 ref3 ref6 ref5 lee (ref50) 2017 ronneberger (ref44) 0 ref40 kang (ref33) 2017 ref35 ref34 pohlmann (ref14) 2014 ref37 ref30 ref32 ref2 ref1 ref38 abadi (ref39) 2016 ref23 ref26 toumoulin (ref20) 2012; 29 ref25 subash (ref24) 2015; 8 ref21 lecun (ref42) 1995 ref28 ref27 ref29 glorot (ref43) 0 siltanen (ref19) 2014; 5 springenberg (ref46) 2014 |
References_xml | – ident: ref11 doi: 10.1097/00004728-197811000-00010 – volume: 29 start-page: 153 year: 2012 ident: ref20 article-title: Strategy of computed tomography sinogram inpainting based on sinusoid-like curve decomposition and eigenvector-guided interpolation publication-title: J Opt Soc Amer A Opt Image Sci doi: 10.1364/JOSAA.29.000153 – ident: ref13 doi: 10.1109/ICPR.2006.225 – year: 0 ident: ref22 article-title: Evaluation of machine learning techniques for face detection and recognition – ident: ref1 doi: 10.1259/bjr/01948454 – ident: ref28 doi: 10.1007/978-3-319-10593-2_13 – ident: ref29 doi: 10.1109/ICCV.2015.279 – ident: ref3 doi: 10.2217/iim.09.5 – ident: ref34 doi: 10.1002/mp.12344 – ident: ref26 doi: 10.1109/CVPR.2016.182 – start-page: 203 year: 2014 ident: ref14 article-title: Estimation of missing fan-beam projections using frequency consistency conditions publication-title: Proc Int Conf Image Formation X-Ray Comput Tomography – ident: ref16 doi: 10.3233/XST-130401 – ident: ref45 doi: 10.1109/CVPR.2016.90 – ident: ref7 doi: 10.3233/XST-130367 – volume: 8 start-page: 2335 year: 2015 ident: ref24 article-title: Brain tumor classification using machine learning publication-title: Int J Comput Technol Appl – ident: ref53 doi: 10.1109/TIP.2003.819861 – ident: ref23 doi: 10.1007/s10044-017-0597-8 – ident: ref2 doi: 10.1056/NEJMra072149 – year: 0 ident: ref43 article-title: Deep sparse rectifier neural networks – ident: ref18 doi: 10.1118/1.4942376 – ident: ref5 doi: 10.1371/journal.pone.0079709 – ident: ref51 doi: 10.1137/1.9780898719277 – ident: ref9 doi: 10.1177/016173468400600107 – ident: ref10 doi: 10.1088/0031-9155/53/17/021 – volume: 5 start-page: 423 year: 2014 ident: ref19 article-title: Sinogram interpolation method for sparse-angle tomography publication-title: Appl Math doi: 10.4236/am.2014.53043 – ident: ref47 doi: 10.1371/journal.pone.0118261 – ident: ref40 doi: 10.1145/2733373.2807412 – ident: ref12 doi: 10.1109/TNS.2004.834816 – ident: ref37 doi: 10.1117/12.2293319 – year: 2017 ident: ref33 article-title: Deep convolutional framelet denoising for low-dose CT via wavelet residual network publication-title: arXiv preprint arXiv 1707 09562 – ident: ref27 doi: 10.1109/CVPR.2016.181 – year: 2016 ident: ref36 article-title: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis publication-title: arXiv preprint arXiv 1611 06391 – ident: ref8 doi: 10.1148/radiol.11101450 – year: 2014 ident: ref46 article-title: Striving for simplicity: The all convolutional net publication-title: arXiv preprint arXiv 1412 6806 – ident: ref4 doi: 10.1016/j.rcl.2008.10.006 – ident: ref35 doi: 10.1109/TIP.2017.2713099 – ident: ref17 doi: 10.1016/j.ijleo.2014.01.003 – ident: ref25 doi: 10.1109/ICCV.2003.1238308 – start-page: 255 year: 1995 ident: ref42 article-title: Convolutional networks for images, speech, and time series publication-title: The Handbook of Brain Theory and Neural Networks – ident: ref15 doi: 10.1109/TMI.2008.2011550 – year: 0 ident: ref31 article-title: Generative adversarial nets – year: 2016 ident: ref39 article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems publication-title: arXiv preprint arXiv 1603 04467 – ident: ref32 doi: 10.1364/BOE.8.000679 – ident: ref30 doi: 10.1109/CVPR.2016.265 – ident: ref38 doi: 10.1145/2647868.2654889 – ident: ref21 doi: 10.1088/0031-9155/27/9/005 – ident: ref41 doi: 10.1007/s10278-013-9622-7 – year: 0 ident: ref44 article-title: U-Net: Convolutional networks for biomedical image segmentation – start-page: 1 year: 2017 ident: ref50 article-title: View-interpolation of sparsely sampled sinogram using convolutional neural network publication-title: Proc SPIE Med Imag – volume: 14 start-page: 119 year: 2006 ident: ref52 article-title: Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT publication-title: J X-Ray Sci Technol – ident: ref6 doi: 10.1109/TNS.2016.2604343 – ident: ref48 doi: 10.1088/0031-9155/49/11/024 – year: 2014 ident: ref49 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint arXiv 1412 6980 |
SSID | ssj0001782945 |
Score | 2.5136123 |
Snippet | Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109 |
SubjectTerms | Algorithms Artificial neural networks Commercialization Computed tomography Convolution Data sampling Deep learning Image processing Image reconstruction Interpolation Iterative algorithms Iterative methods low-dose computed tomography (CT) Machine learning Mathematical analysis Medical imaging Missing data Neural networks Scanners sparse-view CT Synthesis Training view interpolation |
Title | Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction |
URI | https://ieeexplore.ieee.org/document/8452958 https://www.proquest.com/docview/2296111649 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED61k5D2AoOCKNuQH3gDt3GcxPbjVqgKEry0nfoWxc5FqhhppbZC26_f2UlbMSbEU_Lgs6w723ef_fkO4EOs00oKm3CMY8WTKlLcktfjsoxFZiVKWlOebfEjm8yTb4t00YFPh7cwiBjIZzjwv-Euv1y5nT8qG2p_S5jqLnQJuDVvtY7nKeTqTKhJHBPi40oKsX8jE5nhjED81BO59CDWGUF38YcfCoVV_tqNg4sZv4Dv-8E1zJKfg93WDtz9o7yN_zv6M3jexprsqpkcL6GD9St4FjifbtOD2WfEdcjOUdzSJ9DB-TV5tZJNl3WgbbHpXU0R4ma5YRTcsumaYDDymyX-ZqMZ-_qLNiPmAewxDe1rmI-_zEYT3hZZ4I5itS23qZYiwdQ76iyzOqlQVypFUaWmKLLSEuJKUQlLcYG2RVJEhUkIRBUuiirlIvkGTupVjW-BmTIjaaUIpFC7IjFOSqdVicJhRUCsD2Kv8ty1Gch9IYzbPCCRyOTBTLk3U96aqQ8fDzLrJv_GP1v3vN4PLVuV9-Fib9m8XaKbPI4NSRBaNO-eljqHU-rbNISzCzghReIlRSBb-z5MvQe0YtX1 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RTxQxEJ4ghMgLokg4ROiDb9pju91u20dFyaHAyy2Gt822O5tcgOWSO0L01zvt7h0RjfFp96GTNjNtZ7726wzAu9SoRgqXcUxTzbMm0dyR1-OyTkXuJEpaU4FtcZGPLrOvV-pqBT4s38IgYiSf4TD8xrv8-s7fh6OyIxNuCZV5Bmvk95XoXms9nqiQs7OxKnFKmI9rKcTilUxijwqC8eNA5TLD1OQE3sVvniiWVvljP45O5uQFnC-G13FLrof3czf0P59kbvzf8W_BZh9tso_d9HgJK9i-gvXI-vSzbSg-I05jfo7qhj6REM4_kV-r2XjSRuIWG_9oKUacTWaMwls2nhIQRv59gg_suGCnt7QdsQBhHxPRvobLky_F8Yj3ZRa4p2htzp0yUmSogqvOc2eyBk2jFYpG2arKa0eYS6EWjiID46qsSiqbEYyqfJI02idyB1bbuxZ3gdk6J2mtCaZQuyqzXkpvdI3CY0NQbABiofLS9znIQymMmzJikcSW0UxlMFPZm2kA75cy0y4Dxz9bbwe9L1v2Kh_A_sKyZb9IZ2WaWpIgvGj3_i51CM9HxflZeXZ68e0NbFA_tqOf7cMqKRXfUjwydwdxGv4CCSXZPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Neural-Network-Based+Sinogram+Synthesis+for+Sparse-View+CT+Image+Reconstruction&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Lee%2C+Hoyeon&rft.au=Lee%2C+Jongha&rft.au=Kim%2C+Hyeongseok&rft.au=Cho%2C+Byungchul&rft.date=2019-03-01&rft.issn=2469-7311&rft.eissn=2469-7303&rft.volume=3&rft.issue=2&rft.spage=109&rft.epage=119&rft_id=info:doi/10.1109%2FTRPMS.2018.2867611&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRPMS_2018_2867611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon |