A universal result in almost sure central limit theory
The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561–574; Schatte, Math. Nachr. 137 (1988) 249–256) revealed a new phenomenon in classical central limit theory and has led to an extensive literature in the past decade. In particular, a....
Saved in:
Published in | Stochastic processes and their applications Vol. 94; no. 1; pp. 105 - 134 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2001
Elsevier Science Elsevier |
Series | Stochastic Processes and their Applications |
Subjects | |
Online Access | Get full text |
ISSN | 0304-4149 1879-209X |
DOI | 10.1016/S0304-4149(01)00078-3 |
Cover
Loading…
Abstract | The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561–574; Schatte, Math. Nachr. 137 (1988) 249–256) revealed a new phenomenon in classical central limit theory and has led to an extensive literature in the past decade. In particular, a.s. central limit theorems and various related ‘logarithmic’ limit theorems have been obtained for several classes of independent and dependent random variables. In this paper we extend this theory and show that not only the central limit theorem, but
every weak limit theorem for independent random variables, subject to minor technical conditions, has an analogous almost sure version. For many classical limit theorems this involves logarithmic averaging, as in the case of the CLT, but we need radically different averaging processes for ‘more sensitive’ limit theorems. Several examples of such a.s. limit theorems are discussed. |
---|---|
AbstractList | The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561–574; Schatte, Math. Nachr. 137 (1988) 249–256) revealed a new phenomenon in classical central limit theory and has led to an extensive literature in the past decade. In particular, a.s. central limit theorems and various related ‘logarithmic’ limit theorems have been obtained for several classes of independent and dependent random variables. In this paper we extend this theory and show that not only the central limit theorem, but
every weak limit theorem for independent random variables, subject to minor technical conditions, has an analogous almost sure version. For many classical limit theorems this involves logarithmic averaging, as in the case of the CLT, but we need radically different averaging processes for ‘more sensitive’ limit theorems. Several examples of such a.s. limit theorems are discussed. The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561-574; Schatte, Math. Nachr. 137 (1988) 249-256) revealed a new phenomenon in classical central limit theory and has led to an extensive literature in the past decade. In particular, a.s. central limit theorems and various related 'logarithmic' limit theorems have been obtained for several classes of independent and dependent random variables. In this paper we extend this theory and show that not only the central limit theorem, but every weak limit theorem for independent random variables, subject to minor technical conditions, has an analogous almost sure version. For many classical limit theorems this involves logarithmic averaging, as in the case of the CLT, but we need radically different averaging processes for 'more sensitive' limit theorems. Several examples of such a.s. limit theorems are discussed. |
Author | Csáki, Endre Berkes, István |
Author_xml | – sequence: 1 givenname: István surname: Berkes fullname: Berkes, István email: berkes@renyi.hu – sequence: 2 givenname: Endre surname: Csáki fullname: Csáki, Endre email: csaki@renyi.hu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1084914$$DView record in Pascal Francis http://econpapers.repec.org/article/eeespapps/v_3a94_3ay_3a2001_3ai_3a1_3ap_3a105-134.htm$$DView record in RePEc |
BookMark | eNqFkM1KAzEUhYMo2FYfQZiFC12MJpOkncGFlOIvBRcquAvJ7R0amc4MSVro25vpSAUXurg5kJzzXXKG5LBuaiTkjNErRtn4-pVyKlLBRHFB2SWldJKn_IAMWD4p0owWH4dksLcck6H3n9HEsowNyHiarGu7Qed1lTj06yoktk50tWp8SPzaYQJYBxdfK7uyIQlLbNz2hByVuvJ4-q0j8n5_9zZ7TOcvD0-z6TwFQWVIjcBMYiG44ZpTWVBNc27AmGwxkZJDaeRYjKXgHAqBRgAD4BDvNC1NbiZ8RJ57rsMWQbXOrrTbKkT0rW5brzaK60LEYxsni7-KYuN02nZKpWJcqGVYRdh5D2u1B12VTtdg_R7KaC4KJqLtpreBa7x3WCqwQQfbdDXYKvpUV7va1a66TlVcu6td8ZiWv9I__L9zt30OY50bi055sFgDLqxDCGrR2H8IX2yUmuI |
CODEN | STOPB7 |
CitedBy_id | crossref_primary_10_1007_s00184_009_0265_0 crossref_primary_10_1007_s11766_014_2891_1 crossref_primary_10_1080_15598608_2014_886312 crossref_primary_10_1186_1029_242X_2012_223 crossref_primary_10_1007_s11401_011_0691_y crossref_primary_10_1016_j_camwa_2012_06_005 crossref_primary_10_1007_s10986_024_09645_z crossref_primary_10_3103_S1066369X1002009X crossref_primary_10_1007_s10986_009_9051_y crossref_primary_10_1016_j_spl_2005_07_015 crossref_primary_10_1080_03610926_2012_763092 crossref_primary_10_1016_j_camwa_2011_05_044 crossref_primary_10_1016_j_spa_2025_104570 crossref_primary_10_2139_ssrn_4154107 crossref_primary_10_3390_math12101482 crossref_primary_10_1016_j_jmaa_2010_01_007 crossref_primary_10_1007_s10959_007_0080_3 crossref_primary_10_1016_j_jmaa_2011_01_068 crossref_primary_10_1002_acs_3013 crossref_primary_10_1080_03610926_2015_1069353 crossref_primary_10_1007_s42519_021_00194_z crossref_primary_10_1007_s10959_008_0181_7 crossref_primary_10_1186_s13660_016_1096_y crossref_primary_10_1002_mana_200610760 crossref_primary_10_1016_S0167_7152_02_00156_6 crossref_primary_10_1016_j_spl_2018_02_066 crossref_primary_10_1088_1751_8121_ab4b5f crossref_primary_10_1186_1029_242X_2013_129 crossref_primary_10_1007_s10687_007_0042_2 crossref_primary_10_1016_j_spl_2007_09_008 crossref_primary_10_1142_S0219493711500262 crossref_primary_10_3103_S1066369X09110115 crossref_primary_10_1007_s10959_023_01245_w crossref_primary_10_1515_dema_2013_0383 crossref_primary_10_1080_02331888_2013_869596 crossref_primary_10_1142_S0219493722400391 crossref_primary_10_1186_s13660_015_0740_2 crossref_primary_10_1080_17442508_2019_1641090 crossref_primary_10_1016_j_spl_2005_08_007 crossref_primary_10_1016_S0167_7152_01_00166_3 crossref_primary_10_1016_j_spa_2017_09_012 crossref_primary_10_4236_am_2015_69140 crossref_primary_10_1016_j_spl_2019_06_016 crossref_primary_10_1080_17442508_2016_1146281 crossref_primary_10_1016_j_spl_2008_01_065 crossref_primary_10_1155_2010_856495 crossref_primary_10_1155_2011_576301 crossref_primary_10_1007_s13398_015_0259_x crossref_primary_10_1080_03610926_2021_2004426 crossref_primary_10_1007_s10986_017_9340_9 crossref_primary_10_1186_s13660_015_0634_3 crossref_primary_10_1007_s00440_006_0021_6 crossref_primary_10_1556_sscmath_2007_1047 crossref_primary_10_1155_2013_656257 crossref_primary_10_1007_s10959_007_0074_1 crossref_primary_10_1214_08_EJS303 crossref_primary_10_5351_CSAM_2013_20_3_193 crossref_primary_10_1007_s10492_012_0037_4 crossref_primary_10_1080_03610926_2014_963619 crossref_primary_10_1002_mana_200310091 crossref_primary_10_1007_s10114_011_8616_y crossref_primary_10_1080_1726037X_2009_10698562 crossref_primary_10_1007_s00440_018_0871_8 crossref_primary_10_1016_j_spl_2004_06_019 crossref_primary_10_1016_j_spl_2017_04_023 crossref_primary_10_1016_j_spl_2019_02_014 crossref_primary_10_1016_S0167_7152_02_00128_1 crossref_primary_10_1214_23_ECP517 crossref_primary_10_1016_j_jmaa_2007_09_043 crossref_primary_10_1017_S1446788708000797 crossref_primary_10_1007_s10958_006_0249_9 crossref_primary_10_1016_j_spl_2021_109149 crossref_primary_10_1137_S0040585X97984905 crossref_primary_10_1214_19_ECP212 crossref_primary_10_1007_s10687_008_0075_1 crossref_primary_10_1080_03610926_2011_581790 crossref_primary_10_3103_S1063454118020115 crossref_primary_10_1007_s10474_006_0532_8 crossref_primary_10_1007_s10687_009_0095_5 crossref_primary_10_2478_v10062_011_0006_5 crossref_primary_10_1134_S199508021003011X crossref_primary_10_1080_03610926_2015_1006786 crossref_primary_10_1007_s12044_011_0003_1 crossref_primary_10_1556_sscmath_42_2005_2_4 crossref_primary_10_1016_j_spl_2019_02_009 crossref_primary_10_1016_j_spa_2002_10_001 crossref_primary_10_1007_s10114_013_1388_9 crossref_primary_10_1016_j_spl_2011_02_003 crossref_primary_10_1080_02331888_2013_801974 crossref_primary_10_1007_s10687_011_0143_9 crossref_primary_10_1515_dema_2013_0100 crossref_primary_10_1007_s10687_011_0140_z crossref_primary_10_1080_03610926_2019_1710761 crossref_primary_10_1515_math_2017_0085 crossref_primary_10_1007_s10474_007_6070_1 crossref_primary_10_1214_09_EJS443 crossref_primary_10_1155_2012_329391 crossref_primary_10_1016_j_jmaa_2014_01_022 crossref_primary_10_1007_s11766_012_2823_x crossref_primary_10_1007_s10959_015_0663_3 crossref_primary_10_1007_s10959_007_0078_x crossref_primary_10_1080_02331888_2018_1425864 crossref_primary_10_1051_ps_2001106 crossref_primary_10_1155_2010_234964 crossref_primary_10_1214_ECP_v12_1273 crossref_primary_10_1016_j_spl_2008_01_022 crossref_primary_10_1186_s13660_019_2261_x crossref_primary_10_1017_apr_2020_15 crossref_primary_10_1214_ECP_v14_1461 crossref_primary_10_4213_tvp4226 crossref_primary_10_3390_math8040618 crossref_primary_10_1080_03610926_2018_1543767 crossref_primary_10_1016_j_spa_2010_05_004 crossref_primary_10_1556_012_2019_56_2_1426 crossref_primary_10_1080_17442508_2022_2088236 crossref_primary_10_1007_s12044_008_0021_9 crossref_primary_10_1016_j_spl_2008_11_005 crossref_primary_10_1186_1029_242X_2012_17 crossref_primary_10_1007_s12044_022_00662_x |
Cites_doi | 10.1017/S0305004100070870 10.1017/S0305004100065750 10.1016/0304-4149(95)00045-9 10.1214/aop/1176994906 10.1016/0167-7152(94)00075-J 10.1090/memo/0161 10.1016/0304-4149(95)00021-X 10.1007/BF01295218 10.1007/BF00535672 10.1137/S0040585X97977562 10.1214/aop/1176991985 10.1002/mana.19981900104 10.1007/BFb0077509 10.1007/BF02213575 10.1016/S0167-7152(97)00121-1 10.1016/S0167-7152(99)00037-1 10.1215/S0012-7094-56-02313-4 10.1214/aop/1176989135 10.1016/0167-7152(90)90056-D 10.1214/aop/1176988850 10.1214/aoms/1177728174 10.1007/BF00354762 10.1525/9780520411586-026 10.1016/S0167-7152(98)00134-5 10.1090/S0002-9947-1957-0084222-7 10.1002/mana.19881370117 |
ContentType | Journal Article |
Copyright | 2001 Elsevier Science B.V. 2001 INIST-CNRS |
Copyright_xml | – notice: 2001 Elsevier Science B.V. – notice: 2001 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW DKI X2L |
DOI | 10.1016/S0304-4149(01)00078-3 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis RePEc IDEAS RePEc |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-209X |
EndPage | 134 |
ExternalDocumentID | eeespapps_v_3a94_3ay_3a2001_3ai_3a1_3ap_3a105_134_htm 1084914 10_1016_S0304_4149_01_00078_3 S0304414901000783 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1OL 1RT 1~. 1~5 29Q 3R3 4.4 457 4G. 5VS 63O 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HX~ HZ~ IHE IXB J1W KOM LY1 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SSW SSZ T5K TN5 UNMZH WH7 WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 0R 1 8P ADACO ADALY DKI G- HX HZ IPNFZ K M STF X X2L |
ID | FETCH-LOGICAL-c405t-b4e25e943b3a30590a083bcbb2d7553cfb56465433c94eb4c1cc3c564a0fb8b73 |
IEDL.DBID | .~1 |
ISSN | 0304-4149 |
IngestDate | Wed Aug 18 03:10:07 EDT 2021 Mon Jul 21 09:10:02 EDT 2025 Tue Jul 01 03:23:48 EDT 2025 Thu Apr 24 23:10:23 EDT 2025 Fri Feb 23 02:21:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | primary 60F15 Logarithmic averages secondary 60F05 Almost sure central limit theorem Summation methods Almost sure convergence Central limit theorem Summation Probability theory Limit theorem |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-b4e25e943b3a30590a083bcbb2d7553cfb56465433c94eb4c1cc3c564a0fb8b73 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0304414901000783 |
PageCount | 30 |
ParticipantIDs | repec_primary_eeespapps_v_3a94_3ay_3a2001_3ai_3a1_3ap_3a105_134_htm pascalfrancis_primary_1084914 crossref_citationtrail_10_1016_S0304_4149_01_00078_3 crossref_primary_10_1016_S0304_4149_01_00078_3 elsevier_sciencedirect_doi_10_1016_S0304_4149_01_00078_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-07-01 |
PublicationDateYYYYMMDD | 2001-07-01 |
PublicationDate_xml | – month: 07 year: 2001 text: 2001-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | Stochastic Processes and their Applications |
PublicationTitle | Stochastic processes and their applications |
PublicationYear | 2001 |
Publisher | Elsevier B.V Elsevier Science Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science – name: Elsevier |
References | Ibragimov, I.A., 1996. On almost sure versions of limit theorems. Dokl. Akad. Nauk 350, 301–303 (in Russian). Schatte (BIB43) 1988; 137 Feller (BIB24) 1943; 54 Denker (BIB18) 1985 Ibragimov, Lifshits (BIB29) 1998; 40 Lacey, Philipp (BIB33) 1990; 9 Darling, Kac (BIB17) 1957; 84 Cheng, Peng, Qi (BIB13) 1998; 190 Berkes, Dehling (BIB7) 1993; 21 Bingham, Rogers (BIB10) 1991 Móri (BIB37) 1993; 36 Csáki, Földes (BIB14) 1995; 22 Einmahl (BIB21) 1987; 15 Peligrad, Révész (BIB39) 1991 Dvoretzky, Kiefer, Wolfowitz (BIB20) 1956; 27 Lifshits, M., 2000a. On the difference between CLT and ASCLT. Zapiski Seminarov POMI 260, 186–201 (in Russian). Chandrasekharan, Minakshisundaram (BIB12) 1952 Serfling (BIB44) 1980 Atlagh, Weber (BIB3) 1996 Strassen, V., 1967. Almost sure behavior of sums of independent random variables and martingales. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol II, Part I, Univ. of California Press, pp. 315–343. Berkes, Csáki, Csörgő (BIB6) 1999; 45 Kesten, Spitzer (BIB31) 1979; 50 Dvoretzky, A., Erdős, P., 1951. Some problems on random walk in space. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 353–367. Fisher, A., 1989. A pathwise central limit theorem for random walks. Preprint. Rodzik, Rychlik (BIB42) 1996; 12 Ibragimov, Lifshits (BIB30) 1999; 44 Oodaira, H., 1976. Some limit theorems for the maximum of normalized sums of weakly dependent random variables. Proceedings of Third Japan–USSR Symposium on Probability Theory, Lecture Notes in Mathematics, Vol. 550, Springer, Berlin, pp. 467–474. Atlagh (BIB1) 1993; 316 Horváth, Khoshnevisan (BIB27) 1995; 59 Marcus, Rosen (BIB36) 1995; 59 Rodzik, Rychlik (BIB41) 1994; 30 Atlagh, Weber (BIB2) 1992; 315 Fahrner, Stadtmüller (BIB23) 1998; 37 Lifshits, M., 2000b. An almost sure limit theorem for sums of random vectors. Preprint. Weigl, A., 1989. Zwei Sätze über die Belegungszeit beim Random Walk. Diplomarbeit, TU Wien. Shorack (BIB45) 1979; 7 Darling, Erdős (BIB16) 1956; 23 Einmahl (BIB22) 1989; 82 Berkes, Dehling (BIB8) 1994; 7 Berkes (BIB4) 1995; 102 Csörgő, Horváth (BIB15) 1992; 112 Berkes (BIB5) 1998 Berkes, Dehling, Móri (BIB9) 1991; 26 Giné, Zinn (BIB26) 1994; 22 Philipp, W., Stout, W., 1975. Almost sure invariance principles for partial sums of weakly dependent random variables. Memoirs of the AMS, No. 161. Koroljuk, Borovskich (BIB32) 1994 Brosamler (BIB11) 1988; 104 Rodzik (10.1016/S0304-4149(01)00078-3_BIB42) 1996; 12 10.1016/S0304-4149(01)00078-3_BIB38 10.1016/S0304-4149(01)00078-3_BIB35 Berkes (10.1016/S0304-4149(01)00078-3_BIB9) 1991; 26 10.1016/S0304-4149(01)00078-3_BIB34 Dvoretzky (10.1016/S0304-4149(01)00078-3_BIB20) 1956; 27 Giné (10.1016/S0304-4149(01)00078-3_BIB26) 1994; 22 10.1016/S0304-4149(01)00078-3_BIB19 Atlagh (10.1016/S0304-4149(01)00078-3_BIB2) 1992; 315 Cheng (10.1016/S0304-4149(01)00078-3_BIB13) 1998; 190 Kesten (10.1016/S0304-4149(01)00078-3_BIB31) 1979; 50 Chandrasekharan (10.1016/S0304-4149(01)00078-3_BIB12) 1952 Berkes (10.1016/S0304-4149(01)00078-3_BIB4) 1995; 102 Koroljuk (10.1016/S0304-4149(01)00078-3_BIB32) 1994 Atlagh (10.1016/S0304-4149(01)00078-3_BIB1) 1993; 316 Móri (10.1016/S0304-4149(01)00078-3_BIB37) 1993; 36 10.1016/S0304-4149(01)00078-3_BIB40 Berkes (10.1016/S0304-4149(01)00078-3_BIB6) 1999; 45 Fahrner (10.1016/S0304-4149(01)00078-3_BIB23) 1998; 37 Ibragimov (10.1016/S0304-4149(01)00078-3_BIB30) 1999; 44 Einmahl (10.1016/S0304-4149(01)00078-3_BIB21) 1987; 15 Denker (10.1016/S0304-4149(01)00078-3_BIB18) 1985 Bingham (10.1016/S0304-4149(01)00078-3_BIB10) 1991 Ibragimov (10.1016/S0304-4149(01)00078-3_BIB29) 1998; 40 10.1016/S0304-4149(01)00078-3_BIB46 10.1016/S0304-4149(01)00078-3_BIB25 10.1016/S0304-4149(01)00078-3_BIB47 Berkes (10.1016/S0304-4149(01)00078-3_BIB7) 1993; 21 Csáki (10.1016/S0304-4149(01)00078-3_BIB14) 1995; 22 Berkes (10.1016/S0304-4149(01)00078-3_BIB8) 1994; 7 Csörgő (10.1016/S0304-4149(01)00078-3_BIB15) 1992; 112 Atlagh (10.1016/S0304-4149(01)00078-3_BIB3) 1996 Feller (10.1016/S0304-4149(01)00078-3_BIB24) 1943; 54 Darling (10.1016/S0304-4149(01)00078-3_BIB16) 1956; 23 Berkes (10.1016/S0304-4149(01)00078-3_BIB5) 1998 10.1016/S0304-4149(01)00078-3_BIB28 Peligrad (10.1016/S0304-4149(01)00078-3_BIB39) 1991 Darling (10.1016/S0304-4149(01)00078-3_BIB17) 1957; 84 Horváth (10.1016/S0304-4149(01)00078-3_BIB27) 1995; 59 Shorack (10.1016/S0304-4149(01)00078-3_BIB45) 1979; 7 Serfling (10.1016/S0304-4149(01)00078-3_BIB44) 1980 Einmahl (10.1016/S0304-4149(01)00078-3_BIB22) 1989; 82 Lacey (10.1016/S0304-4149(01)00078-3_BIB33) 1990; 9 Rodzik (10.1016/S0304-4149(01)00078-3_BIB41) 1994; 30 Brosamler (10.1016/S0304-4149(01)00078-3_BIB11) 1988; 104 Marcus (10.1016/S0304-4149(01)00078-3_BIB36) 1995; 59 Schatte (10.1016/S0304-4149(01)00078-3_BIB43) 1988; 137 |
References_xml | – volume: 37 start-page: 229 year: 1998 end-page: 236 ident: BIB23 article-title: On almost sure max-limit theorems publication-title: Statist. Probab. Lett. – reference: Weigl, A., 1989. Zwei Sätze über die Belegungszeit beim Random Walk. Diplomarbeit, TU Wien. – volume: 104 start-page: 561 year: 1988 end-page: 574 ident: BIB11 article-title: An almost everywhere central limit theorem publication-title: Math. Proc. Cambridge Philos. Soc. – volume: 315 start-page: 203 year: 1992 end-page: 206 ident: BIB2 article-title: Un théorème central limite presque sûr relatif à des sous-suites publication-title: C. R. Acad. Sci. Paris Sér. I – start-page: 59 year: 1998 end-page: 96 ident: BIB5 article-title: Results and problems related to the pointwise central limit theorem publication-title: Asymptotic Results in Probability and Statistics (a volume in honour of Miklós Csörgő). – volume: 22 start-page: 117 year: 1994 end-page: 125 ident: BIB26 article-title: A remark on convergence in distribution of U-statistics publication-title: Ann. Probab. – volume: 112 start-page: 195 year: 1992 end-page: 205 ident: BIB15 article-title: Invariance principles for logarithmic averages publication-title: Math. Proc. Cambridge Phil. Soc. – year: 1985 ident: BIB18 article-title: Asymptotic Distribution Theory in Nonparametric Statistics. – volume: 44 start-page: 254 year: 1999 end-page: 272 ident: BIB30 article-title: On almost sure limit theorems publication-title: Theory Probab. Appl. – reference: Philipp, W., Stout, W., 1975. Almost sure invariance principles for partial sums of weakly dependent random variables. Memoirs of the AMS, No. 161. – reference: Strassen, V., 1967. Almost sure behavior of sums of independent random variables and martingales. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol II, Part I, Univ. of California Press, pp. 315–343. – start-page: 41 year: 1996 end-page: 62 ident: BIB3 article-title: Une nouvelle loi forte des grandes nombres publication-title: Convergence in Ergodic Theory and Probability. – volume: 84 start-page: 444 year: 1957 end-page: 458 ident: BIB17 article-title: On occupation times for Markoff processes publication-title: Trans. Amer. Math. Soc. – year: 1980 ident: BIB44 publication-title: Approximation Theorems of Mathematical Statistics. – volume: 50 start-page: 5 year: 1979 end-page: 25 ident: BIB31 article-title: A limit theorem related to a new class of self similar processes publication-title: Z. Wahrsch. Verw. Gebiete – volume: 36 start-page: 35 year: 1993 end-page: 46 ident: BIB37 article-title: On the strong law of large numbers for logarithmically weighted sums publication-title: Ann. Univ. Sci. Budapest. Sect. Math. – volume: 190 start-page: 43 year: 1998 end-page: 50 ident: BIB13 article-title: Almost sure convergence in extreme value theory publication-title: Math. Nachr. – reference: Dvoretzky, A., Erdős, P., 1951. Some problems on random walk in space. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 353–367. – reference: Lifshits, M., 2000b. An almost sure limit theorem for sums of random vectors. Preprint. – start-page: 209 year: 1991 end-page: 225 ident: BIB39 article-title: On the almost sure central limit theorem. publication-title: Almost Everywhere Convergence II. – start-page: 69 year: 1991 end-page: 83 ident: BIB10 article-title: Summability methods and almost sure convergence publication-title: Almost Everywhere Convergence II. – volume: 30 start-page: 1 year: 1994 end-page: 11 ident: BIB41 article-title: An almost sure central limit theorem for independent random variables publication-title: Ann. Inst. H. Poincaré – year: 1952 ident: BIB12 publication-title: Typical Means. – volume: 54 start-page: 361 year: 1943 end-page: 372 ident: BIB24 article-title: Generalization of a probability limit theorem of Cramér publication-title: Trans. Amer. Math. Soc. – volume: 316 start-page: 929 year: 1993 end-page: 933 ident: BIB1 article-title: Théorème central limite presque sûr et loi du logarithme itéré pour des sommes de variables aléatoires indépendantes publication-title: C. R. Acad. Sci. Paris Sér. I. – reference: Ibragimov, I.A., 1996. On almost sure versions of limit theorems. Dokl. Akad. Nauk 350, 301–303 (in Russian). – reference: Fisher, A., 1989. A pathwise central limit theorem for random walks. Preprint. – volume: 59 start-page: 105 year: 1995 end-page: 123 ident: BIB27 article-title: Weight functions and pathwise local central limit theorems publication-title: Stochastic Process. Appl. – volume: 9 start-page: 201 year: 1990 end-page: 205 ident: BIB33 article-title: A note on the almost everywhere central limit theorem publication-title: Statist. Probab. Lett. – volume: 21 start-page: 1640 year: 1993 end-page: 1670 ident: BIB7 article-title: Some limit theorems in log density publication-title: Ann. Probab. – reference: Lifshits, M., 2000a. On the difference between CLT and ASCLT. Zapiski Seminarov POMI 260, 186–201 (in Russian). – volume: 27 start-page: 642 year: 1956 end-page: 649 ident: BIB20 article-title: Asymptotic minimax character of the sample distribution function and the classical multinomial estimator publication-title: Ann. Math. Statist. – volume: 15 start-page: 1419 year: 1987 end-page: 1440 ident: BIB21 article-title: Strong invariance principles for partial sums of independent random vectors publication-title: Ann. Probab. – reference: Oodaira, H., 1976. Some limit theorems for the maximum of normalized sums of weakly dependent random variables. Proceedings of Third Japan–USSR Symposium on Probability Theory, Lecture Notes in Mathematics, Vol. 550, Springer, Berlin, pp. 467–474. – volume: 102 start-page: 1 year: 1995 end-page: 18 ident: BIB4 article-title: On the almost sure central limit theorem and domains of attraction publication-title: Probab. Theory Related Fields – volume: 45 start-page: 23 year: 1999 end-page: 30 ident: BIB6 article-title: Almost sure limit theorems for the St. Petersburg game publication-title: Statist. Probab. Lett. – volume: 7 start-page: 667 year: 1994 end-page: 680 ident: BIB8 article-title: On the almost sure central limit theorem for random variables with infinite variance publication-title: J. Theoret. Probab. – volume: 12 start-page: 299 year: 1996 end-page: 309 ident: BIB42 article-title: On the central limit theorem for independent random variables with almost sure convergence publication-title: Probab. Math. Statist. – volume: 137 start-page: 249 year: 1988 end-page: 256 ident: BIB43 article-title: On strong versions of the central limit theorem publication-title: Math. Nachr. – volume: 26 start-page: 153 year: 1991 end-page: 164 ident: BIB9 article-title: Counterexamples related to the a.s. central limit theorem publication-title: Studia Sci. Math. Hungar. – volume: 40 start-page: 343 year: 1998 end-page: 351 ident: BIB29 article-title: On the convergence of generalized moments in almost sure central limit theorem publication-title: Statist. Probab. Lett. – volume: 82 start-page: 241 year: 1989 end-page: 257 ident: BIB22 article-title: The Darling-Erdős theorem for sums of i.i.d. random variables publication-title: Probab. Theory Related Fields – volume: 7 start-page: 1092 year: 1979 end-page: 1096 ident: BIB45 article-title: Extension of the Darling and Erdös theorem on the maximum of normalized sums publication-title: Ann. Probab. – volume: 59 start-page: 175 year: 1995 end-page: 184 ident: BIB36 article-title: Logarithmic averages for the local time of recurrent random walks and Levy processes publication-title: Stochastic Process. Appl. – volume: 22 start-page: 261 year: 1995 end-page: 268 ident: BIB14 article-title: On the logarithmic average of additive functionals publication-title: Statist. Probab. Lett. – volume: 23 start-page: 143 year: 1956 end-page: 155 ident: BIB16 article-title: A limit theorem for the maximum of normalized sums of independent random variables publication-title: Duke Math. J. – year: 1994 ident: BIB32 publication-title: Theory of U-statistics – volume: 54 start-page: 361 year: 1943 ident: 10.1016/S0304-4149(01)00078-3_BIB24 article-title: Generalization of a probability limit theorem of Cramér publication-title: Trans. Amer. Math. Soc. – ident: 10.1016/S0304-4149(01)00078-3_BIB34 – start-page: 41 year: 1996 ident: 10.1016/S0304-4149(01)00078-3_BIB3 article-title: Une nouvelle loi forte des grandes nombres – volume: 112 start-page: 195 year: 1992 ident: 10.1016/S0304-4149(01)00078-3_BIB15 article-title: Invariance principles for logarithmic averages publication-title: Math. Proc. Cambridge Phil. Soc. doi: 10.1017/S0305004100070870 – volume: 104 start-page: 561 year: 1988 ident: 10.1016/S0304-4149(01)00078-3_BIB11 article-title: An almost everywhere central limit theorem publication-title: Math. Proc. Cambridge Philos. Soc. doi: 10.1017/S0305004100065750 – year: 1994 ident: 10.1016/S0304-4149(01)00078-3_BIB32 – volume: 59 start-page: 175 year: 1995 ident: 10.1016/S0304-4149(01)00078-3_BIB36 article-title: Logarithmic averages for the local time of recurrent random walks and Levy processes publication-title: Stochastic Process. Appl. doi: 10.1016/0304-4149(95)00045-9 – volume: 7 start-page: 1092 year: 1979 ident: 10.1016/S0304-4149(01)00078-3_BIB45 article-title: Extension of the Darling and Erdös theorem on the maximum of normalized sums publication-title: Ann. Probab. doi: 10.1214/aop/1176994906 – volume: 22 start-page: 261 year: 1995 ident: 10.1016/S0304-4149(01)00078-3_BIB14 article-title: On the logarithmic average of additive functionals publication-title: Statist. Probab. Lett. doi: 10.1016/0167-7152(94)00075-J – ident: 10.1016/S0304-4149(01)00078-3_BIB28 – ident: 10.1016/S0304-4149(01)00078-3_BIB40 doi: 10.1090/memo/0161 – volume: 59 start-page: 105 year: 1995 ident: 10.1016/S0304-4149(01)00078-3_BIB27 article-title: Weight functions and pathwise local central limit theorems publication-title: Stochastic Process. Appl. doi: 10.1016/0304-4149(95)00021-X – start-page: 209 year: 1991 ident: 10.1016/S0304-4149(01)00078-3_BIB39 article-title: On the almost sure central limit theorem. – volume: 12 start-page: 299 year: 1996 ident: 10.1016/S0304-4149(01)00078-3_BIB42 article-title: On the central limit theorem for independent random variables with almost sure convergence publication-title: Probab. Math. Statist. – volume: 102 start-page: 1 year: 1995 ident: 10.1016/S0304-4149(01)00078-3_BIB4 article-title: On the almost sure central limit theorem and domains of attraction publication-title: Probab. Theory Related Fields doi: 10.1007/BF01295218 – start-page: 59 year: 1998 ident: 10.1016/S0304-4149(01)00078-3_BIB5 article-title: Results and problems related to the pointwise central limit theorem – volume: 50 start-page: 5 year: 1979 ident: 10.1016/S0304-4149(01)00078-3_BIB31 article-title: A limit theorem related to a new class of self similar processes publication-title: Z. Wahrsch. Verw. Gebiete doi: 10.1007/BF00535672 – volume: 315 start-page: 203 year: 1992 ident: 10.1016/S0304-4149(01)00078-3_BIB2 article-title: Un théorème central limite presque sûr relatif à des sous-suites publication-title: C. R. Acad. Sci. Paris Sér. I – volume: 44 start-page: 254 year: 1999 ident: 10.1016/S0304-4149(01)00078-3_BIB30 article-title: On almost sure limit theorems publication-title: Theory Probab. Appl. doi: 10.1137/S0040585X97977562 – ident: 10.1016/S0304-4149(01)00078-3_BIB47 – volume: 15 start-page: 1419 year: 1987 ident: 10.1016/S0304-4149(01)00078-3_BIB21 article-title: Strong invariance principles for partial sums of independent random vectors publication-title: Ann. Probab. doi: 10.1214/aop/1176991985 – volume: 190 start-page: 43 year: 1998 ident: 10.1016/S0304-4149(01)00078-3_BIB13 article-title: Almost sure convergence in extreme value theory publication-title: Math. Nachr. doi: 10.1002/mana.19981900104 – volume: 26 start-page: 153 year: 1991 ident: 10.1016/S0304-4149(01)00078-3_BIB9 article-title: Counterexamples related to the a.s. central limit theorem publication-title: Studia Sci. Math. Hungar. – year: 1980 ident: 10.1016/S0304-4149(01)00078-3_BIB44 – ident: 10.1016/S0304-4149(01)00078-3_BIB38 doi: 10.1007/BFb0077509 – volume: 7 start-page: 667 year: 1994 ident: 10.1016/S0304-4149(01)00078-3_BIB8 article-title: On the almost sure central limit theorem for random variables with infinite variance publication-title: J. Theoret. Probab. doi: 10.1007/BF02213575 – ident: 10.1016/S0304-4149(01)00078-3_BIB35 – volume: 37 start-page: 229 year: 1998 ident: 10.1016/S0304-4149(01)00078-3_BIB23 article-title: On almost sure max-limit theorems publication-title: Statist. Probab. Lett. doi: 10.1016/S0167-7152(97)00121-1 – volume: 45 start-page: 23 year: 1999 ident: 10.1016/S0304-4149(01)00078-3_BIB6 article-title: Almost sure limit theorems for the St. Petersburg game publication-title: Statist. Probab. Lett. doi: 10.1016/S0167-7152(99)00037-1 – volume: 23 start-page: 143 year: 1956 ident: 10.1016/S0304-4149(01)00078-3_BIB16 article-title: A limit theorem for the maximum of normalized sums of independent random variables publication-title: Duke Math. J. doi: 10.1215/S0012-7094-56-02313-4 – volume: 21 start-page: 1640 year: 1993 ident: 10.1016/S0304-4149(01)00078-3_BIB7 article-title: Some limit theorems in log density publication-title: Ann. Probab. doi: 10.1214/aop/1176989135 – year: 1985 ident: 10.1016/S0304-4149(01)00078-3_BIB18 – volume: 36 start-page: 35 year: 1993 ident: 10.1016/S0304-4149(01)00078-3_BIB37 article-title: On the strong law of large numbers for logarithmically weighted sums publication-title: Ann. Univ. Sci. Budapest. Sect. Math. – volume: 9 start-page: 201 year: 1990 ident: 10.1016/S0304-4149(01)00078-3_BIB33 article-title: A note on the almost everywhere central limit theorem publication-title: Statist. Probab. Lett. doi: 10.1016/0167-7152(90)90056-D – year: 1952 ident: 10.1016/S0304-4149(01)00078-3_BIB12 – volume: 30 start-page: 1 year: 1994 ident: 10.1016/S0304-4149(01)00078-3_BIB41 article-title: An almost sure central limit theorem for independent random variables publication-title: Ann. Inst. H. Poincaré – volume: 22 start-page: 117 year: 1994 ident: 10.1016/S0304-4149(01)00078-3_BIB26 article-title: A remark on convergence in distribution of U-statistics publication-title: Ann. Probab. doi: 10.1214/aop/1176988850 – ident: 10.1016/S0304-4149(01)00078-3_BIB46 – ident: 10.1016/S0304-4149(01)00078-3_BIB25 – volume: 27 start-page: 642 year: 1956 ident: 10.1016/S0304-4149(01)00078-3_BIB20 article-title: Asymptotic minimax character of the sample distribution function and the classical multinomial estimator publication-title: Ann. Math. Statist. doi: 10.1214/aoms/1177728174 – volume: 82 start-page: 241 year: 1989 ident: 10.1016/S0304-4149(01)00078-3_BIB22 article-title: The Darling-Erdős theorem for sums of i.i.d. random variables publication-title: Probab. Theory Related Fields doi: 10.1007/BF00354762 – ident: 10.1016/S0304-4149(01)00078-3_BIB19 doi: 10.1525/9780520411586-026 – volume: 40 start-page: 343 year: 1998 ident: 10.1016/S0304-4149(01)00078-3_BIB29 article-title: On the convergence of generalized moments in almost sure central limit theorem publication-title: Statist. Probab. Lett. doi: 10.1016/S0167-7152(98)00134-5 – start-page: 69 year: 1991 ident: 10.1016/S0304-4149(01)00078-3_BIB10 article-title: Summability methods and almost sure convergence – volume: 84 start-page: 444 year: 1957 ident: 10.1016/S0304-4149(01)00078-3_BIB17 article-title: On occupation times for Markoff processes publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1957-0084222-7 – volume: 137 start-page: 249 year: 1988 ident: 10.1016/S0304-4149(01)00078-3_BIB43 article-title: On strong versions of the central limit theorem publication-title: Math. Nachr. doi: 10.1002/mana.19881370117 – volume: 316 start-page: 929 year: 1993 ident: 10.1016/S0304-4149(01)00078-3_BIB1 article-title: Théorème central limite presque sûr et loi du logarithme itéré pour des sommes de variables aléatoires indépendantes publication-title: C. R. Acad. Sci. Paris Sér. I. |
SSID | ssj0001221 |
Score | 1.9763702 |
Snippet | The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561–574; Schatte, Math. Nachr. 137 (1988)... The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561-574; Schatte, Math. Nachr. 137 (1988)... |
SourceID | repec pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 105 |
SubjectTerms | Almost sure central limit theorem Almost sure central limit theorem Logarithmic averages Summation methods Exact sciences and technology Limit theorems Logarithmic averages Mathematics Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Summation methods |
Title | A universal result in almost sure central limit theory |
URI | https://dx.doi.org/10.1016/S0304-4149(01)00078-3 http://econpapers.repec.org/article/eeespapps/v_3a94_3ay_3a2001_3ai_3a1_3ap_3a105-134.htm |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYQuzBNaGObVjaQDzuwQ2gcvzTJsetA7RBcNqTeLD_X0SqVEpEUict--95z0hYOCGkH28qT7VjPlv3F-d57QnwdzFSZqNJGhePbKpunUe4zyhAsej1LEQPb4mowvoaf03S6I0ZrWximVXZ7f7unh926k_Q7bfar-bz_i3_qAQH8WIWDjj1-AmTsP__075bmoZJge8WVI669teJpewjCk1h9C51E-rnz6U1la9Ja2Ya7ICh75yvvHp1F52_Ffgci5bAd5zux45cH4vXlxgNr_V4MhnLVci6oIn1SrxaNnC-lXdzc1o3ka0HZ8TLlgm2cZLBofPggrs_Pfo_GURcjIXIEtZoIwSepL0CjtpoNSS1hKnSIySxLU-1KTAfsMk1rV4BHcMo57Uhm4xJzzPRHsbu8XfpPQiYZWsIjCAlQ0g4J280I30BSOiSc1hOw1oxxnQNxjmOxMFumGCnUsEJNrExQqNE9cbppVrUeNF5qkK_Vbp4sBUO7_EtNj55M06MX5lAo6IlRmLaN3Htfc0C12twbbQug7IESE82omFPisuIyTo3SYP40N4f_P8DPYq8lsTHf94vYbe5W_ohQTYPHYdkei1fDycX4ip5-XEwon0y__wNepPCA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3S5NCWUvpJt21aHXpoD85alrS2j2Fp2KRJLk0gN6HRymRhszGxt5BLf3tnZO9uciiBHCTBINliJEbP8psZgG-jqawyWbmk9Hxb5QqTFCGnCrXDoKYGMbItTkeTc310YS62YLzyhWFaZW_7O5serXUvGfbaHNaz2fA3_9TTBPBTGQ869QR2tFE5b-29vxueh8yi8xX3Trj7xo2ne0QUfk_lj_iURP3vgHpRu4bUVnX5LgjL3oQ6-DuH0cEreNmjSLHfTfQ1bIXFG3h-sg7B2ryF0b5YdqQL6kjf1Mt5K2YL4eZX100r-F5Q9MRMMWcnJxFdGm_fwfnBz7PxJOmTJCSesFaboA6ZCaVWqJxiT1JHoAo9YjbNjVG-QjPimGlK-VIH1F56rzzJXFphgbl6D9uL60X4ACLL0REgQZ1pKsojgbspARydVR4JqA1ArzRjfR9BnBNZzO2GKkYKtaxQm0obFWrVAPbWw-ouhMZDA4qV2u29vWDJzD80dPfeMt15YaFLqQcwjsu2locQGs6o1tg_VrlSU3VLhZlm1MyocFtzmxorlbaX7dXHx0_wKzydnJ0c2-PD01-f4FnHaGPy72fYbm-WYZcgTotf4hb-B7sD8Bk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+result+in+almost+sure+central+limit+theory&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=BERKES%2C+Istvan&rft.au=CSAKI%2C+Endre&rft.date=2001-07-01&rft.pub=Elsevier+Science&rft.issn=0304-4149&rft.volume=94&rft.issue=1&rft.spage=105&rft.epage=134&rft_id=info:doi/10.1016%2FS0304-4149%2801%2900078-3&rft.externalDBID=n%2Fa&rft.externalDocID=1084914 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon |