A universal result in almost sure central limit theory

The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561–574; Schatte, Math. Nachr. 137 (1988) 249–256) revealed a new phenomenon in classical central limit theory and has led to an extensive literature in the past decade. In particular, a....

Full description

Saved in:
Bibliographic Details
Published inStochastic processes and their applications Vol. 94; no. 1; pp. 105 - 134
Main Authors Berkes, István, Csáki, Endre
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2001
Elsevier Science
Elsevier
SeriesStochastic Processes and their Applications
Subjects
Online AccessGet full text
ISSN0304-4149
1879-209X
DOI10.1016/S0304-4149(01)00078-3

Cover

Loading…
Abstract The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561–574; Schatte, Math. Nachr. 137 (1988) 249–256) revealed a new phenomenon in classical central limit theory and has led to an extensive literature in the past decade. In particular, a.s. central limit theorems and various related ‘logarithmic’ limit theorems have been obtained for several classes of independent and dependent random variables. In this paper we extend this theory and show that not only the central limit theorem, but every weak limit theorem for independent random variables, subject to minor technical conditions, has an analogous almost sure version. For many classical limit theorems this involves logarithmic averaging, as in the case of the CLT, but we need radically different averaging processes for ‘more sensitive’ limit theorems. Several examples of such a.s. limit theorems are discussed.
AbstractList The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561–574; Schatte, Math. Nachr. 137 (1988) 249–256) revealed a new phenomenon in classical central limit theory and has led to an extensive literature in the past decade. In particular, a.s. central limit theorems and various related ‘logarithmic’ limit theorems have been obtained for several classes of independent and dependent random variables. In this paper we extend this theory and show that not only the central limit theorem, but every weak limit theorem for independent random variables, subject to minor technical conditions, has an analogous almost sure version. For many classical limit theorems this involves logarithmic averaging, as in the case of the CLT, but we need radically different averaging processes for ‘more sensitive’ limit theorems. Several examples of such a.s. limit theorems are discussed.
The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561-574; Schatte, Math. Nachr. 137 (1988) 249-256) revealed a new phenomenon in classical central limit theory and has led to an extensive literature in the past decade. In particular, a.s. central limit theorems and various related 'logarithmic' limit theorems have been obtained for several classes of independent and dependent random variables. In this paper we extend this theory and show that not only the central limit theorem, but every weak limit theorem for independent random variables, subject to minor technical conditions, has an analogous almost sure version. For many classical limit theorems this involves logarithmic averaging, as in the case of the CLT, but we need radically different averaging processes for 'more sensitive' limit theorems. Several examples of such a.s. limit theorems are discussed.
Author Csáki, Endre
Berkes, István
Author_xml – sequence: 1
  givenname: István
  surname: Berkes
  fullname: Berkes, István
  email: berkes@renyi.hu
– sequence: 2
  givenname: Endre
  surname: Csáki
  fullname: Csáki, Endre
  email: csaki@renyi.hu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1084914$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeespapps/v_3a94_3ay_3a2001_3ai_3a1_3ap_3a105-134.htm$$DView record in RePEc
BookMark eNqFkM1KAzEUhYMo2FYfQZiFC12MJpOkncGFlOIvBRcquAvJ7R0amc4MSVro25vpSAUXurg5kJzzXXKG5LBuaiTkjNErRtn4-pVyKlLBRHFB2SWldJKn_IAMWD4p0owWH4dksLcck6H3n9HEsowNyHiarGu7Qed1lTj06yoktk50tWp8SPzaYQJYBxdfK7uyIQlLbNz2hByVuvJ4-q0j8n5_9zZ7TOcvD0-z6TwFQWVIjcBMYiG44ZpTWVBNc27AmGwxkZJDaeRYjKXgHAqBRgAD4BDvNC1NbiZ8RJ57rsMWQbXOrrTbKkT0rW5brzaK60LEYxsni7-KYuN02nZKpWJcqGVYRdh5D2u1B12VTtdg_R7KaC4KJqLtpreBa7x3WCqwQQfbdDXYKvpUV7va1a66TlVcu6td8ZiWv9I__L9zt30OY50bi055sFgDLqxDCGrR2H8IX2yUmuI
CODEN STOPB7
CitedBy_id crossref_primary_10_1007_s00184_009_0265_0
crossref_primary_10_1007_s11766_014_2891_1
crossref_primary_10_1080_15598608_2014_886312
crossref_primary_10_1186_1029_242X_2012_223
crossref_primary_10_1007_s11401_011_0691_y
crossref_primary_10_1016_j_camwa_2012_06_005
crossref_primary_10_1007_s10986_024_09645_z
crossref_primary_10_3103_S1066369X1002009X
crossref_primary_10_1007_s10986_009_9051_y
crossref_primary_10_1016_j_spl_2005_07_015
crossref_primary_10_1080_03610926_2012_763092
crossref_primary_10_1016_j_camwa_2011_05_044
crossref_primary_10_1016_j_spa_2025_104570
crossref_primary_10_2139_ssrn_4154107
crossref_primary_10_3390_math12101482
crossref_primary_10_1016_j_jmaa_2010_01_007
crossref_primary_10_1007_s10959_007_0080_3
crossref_primary_10_1016_j_jmaa_2011_01_068
crossref_primary_10_1002_acs_3013
crossref_primary_10_1080_03610926_2015_1069353
crossref_primary_10_1007_s42519_021_00194_z
crossref_primary_10_1007_s10959_008_0181_7
crossref_primary_10_1186_s13660_016_1096_y
crossref_primary_10_1002_mana_200610760
crossref_primary_10_1016_S0167_7152_02_00156_6
crossref_primary_10_1016_j_spl_2018_02_066
crossref_primary_10_1088_1751_8121_ab4b5f
crossref_primary_10_1186_1029_242X_2013_129
crossref_primary_10_1007_s10687_007_0042_2
crossref_primary_10_1016_j_spl_2007_09_008
crossref_primary_10_1142_S0219493711500262
crossref_primary_10_3103_S1066369X09110115
crossref_primary_10_1007_s10959_023_01245_w
crossref_primary_10_1515_dema_2013_0383
crossref_primary_10_1080_02331888_2013_869596
crossref_primary_10_1142_S0219493722400391
crossref_primary_10_1186_s13660_015_0740_2
crossref_primary_10_1080_17442508_2019_1641090
crossref_primary_10_1016_j_spl_2005_08_007
crossref_primary_10_1016_S0167_7152_01_00166_3
crossref_primary_10_1016_j_spa_2017_09_012
crossref_primary_10_4236_am_2015_69140
crossref_primary_10_1016_j_spl_2019_06_016
crossref_primary_10_1080_17442508_2016_1146281
crossref_primary_10_1016_j_spl_2008_01_065
crossref_primary_10_1155_2010_856495
crossref_primary_10_1155_2011_576301
crossref_primary_10_1007_s13398_015_0259_x
crossref_primary_10_1080_03610926_2021_2004426
crossref_primary_10_1007_s10986_017_9340_9
crossref_primary_10_1186_s13660_015_0634_3
crossref_primary_10_1007_s00440_006_0021_6
crossref_primary_10_1556_sscmath_2007_1047
crossref_primary_10_1155_2013_656257
crossref_primary_10_1007_s10959_007_0074_1
crossref_primary_10_1214_08_EJS303
crossref_primary_10_5351_CSAM_2013_20_3_193
crossref_primary_10_1007_s10492_012_0037_4
crossref_primary_10_1080_03610926_2014_963619
crossref_primary_10_1002_mana_200310091
crossref_primary_10_1007_s10114_011_8616_y
crossref_primary_10_1080_1726037X_2009_10698562
crossref_primary_10_1007_s00440_018_0871_8
crossref_primary_10_1016_j_spl_2004_06_019
crossref_primary_10_1016_j_spl_2017_04_023
crossref_primary_10_1016_j_spl_2019_02_014
crossref_primary_10_1016_S0167_7152_02_00128_1
crossref_primary_10_1214_23_ECP517
crossref_primary_10_1016_j_jmaa_2007_09_043
crossref_primary_10_1017_S1446788708000797
crossref_primary_10_1007_s10958_006_0249_9
crossref_primary_10_1016_j_spl_2021_109149
crossref_primary_10_1137_S0040585X97984905
crossref_primary_10_1214_19_ECP212
crossref_primary_10_1007_s10687_008_0075_1
crossref_primary_10_1080_03610926_2011_581790
crossref_primary_10_3103_S1063454118020115
crossref_primary_10_1007_s10474_006_0532_8
crossref_primary_10_1007_s10687_009_0095_5
crossref_primary_10_2478_v10062_011_0006_5
crossref_primary_10_1134_S199508021003011X
crossref_primary_10_1080_03610926_2015_1006786
crossref_primary_10_1007_s12044_011_0003_1
crossref_primary_10_1556_sscmath_42_2005_2_4
crossref_primary_10_1016_j_spl_2019_02_009
crossref_primary_10_1016_j_spa_2002_10_001
crossref_primary_10_1007_s10114_013_1388_9
crossref_primary_10_1016_j_spl_2011_02_003
crossref_primary_10_1080_02331888_2013_801974
crossref_primary_10_1007_s10687_011_0143_9
crossref_primary_10_1515_dema_2013_0100
crossref_primary_10_1007_s10687_011_0140_z
crossref_primary_10_1080_03610926_2019_1710761
crossref_primary_10_1515_math_2017_0085
crossref_primary_10_1007_s10474_007_6070_1
crossref_primary_10_1214_09_EJS443
crossref_primary_10_1155_2012_329391
crossref_primary_10_1016_j_jmaa_2014_01_022
crossref_primary_10_1007_s11766_012_2823_x
crossref_primary_10_1007_s10959_015_0663_3
crossref_primary_10_1007_s10959_007_0078_x
crossref_primary_10_1080_02331888_2018_1425864
crossref_primary_10_1051_ps_2001106
crossref_primary_10_1155_2010_234964
crossref_primary_10_1214_ECP_v12_1273
crossref_primary_10_1016_j_spl_2008_01_022
crossref_primary_10_1186_s13660_019_2261_x
crossref_primary_10_1017_apr_2020_15
crossref_primary_10_1214_ECP_v14_1461
crossref_primary_10_4213_tvp4226
crossref_primary_10_3390_math8040618
crossref_primary_10_1080_03610926_2018_1543767
crossref_primary_10_1016_j_spa_2010_05_004
crossref_primary_10_1556_012_2019_56_2_1426
crossref_primary_10_1080_17442508_2022_2088236
crossref_primary_10_1007_s12044_008_0021_9
crossref_primary_10_1016_j_spl_2008_11_005
crossref_primary_10_1186_1029_242X_2012_17
crossref_primary_10_1007_s12044_022_00662_x
Cites_doi 10.1017/S0305004100070870
10.1017/S0305004100065750
10.1016/0304-4149(95)00045-9
10.1214/aop/1176994906
10.1016/0167-7152(94)00075-J
10.1090/memo/0161
10.1016/0304-4149(95)00021-X
10.1007/BF01295218
10.1007/BF00535672
10.1137/S0040585X97977562
10.1214/aop/1176991985
10.1002/mana.19981900104
10.1007/BFb0077509
10.1007/BF02213575
10.1016/S0167-7152(97)00121-1
10.1016/S0167-7152(99)00037-1
10.1215/S0012-7094-56-02313-4
10.1214/aop/1176989135
10.1016/0167-7152(90)90056-D
10.1214/aop/1176988850
10.1214/aoms/1177728174
10.1007/BF00354762
10.1525/9780520411586-026
10.1016/S0167-7152(98)00134-5
10.1090/S0002-9947-1957-0084222-7
10.1002/mana.19881370117
ContentType Journal Article
Copyright 2001 Elsevier Science B.V.
2001 INIST-CNRS
Copyright_xml – notice: 2001 Elsevier Science B.V.
– notice: 2001 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DKI
X2L
DOI 10.1016/S0304-4149(01)00078-3
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-209X
EndPage 134
ExternalDocumentID eeespapps_v_3a94_3ay_3a2001_3ai_3a1_3ap_3a105_134_htm
1084914
10_1016_S0304_4149_01_00078_3
S0304414901000783
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
3R3
4.4
457
4G.
5VS
63O
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HX~
HZ~
IHE
IXB
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
0R
1
8P
ADACO
ADALY
DKI
G-
HX
HZ
IPNFZ
K
M
STF
X
X2L
ID FETCH-LOGICAL-c405t-b4e25e943b3a30590a083bcbb2d7553cfb56465433c94eb4c1cc3c564a0fb8b73
IEDL.DBID .~1
ISSN 0304-4149
IngestDate Wed Aug 18 03:10:07 EDT 2021
Mon Jul 21 09:10:02 EDT 2025
Tue Jul 01 03:23:48 EDT 2025
Thu Apr 24 23:10:23 EDT 2025
Fri Feb 23 02:21:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords primary 60F15
Logarithmic averages
secondary 60F05
Almost sure central limit theorem
Summation methods
Almost sure convergence
Central limit theorem
Summation
Probability theory
Limit theorem
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-b4e25e943b3a30590a083bcbb2d7553cfb56465433c94eb4c1cc3c564a0fb8b73
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304414901000783
PageCount 30
ParticipantIDs repec_primary_eeespapps_v_3a94_3ay_3a2001_3ai_3a1_3ap_3a105_134_htm
pascalfrancis_primary_1084914
crossref_citationtrail_10_1016_S0304_4149_01_00078_3
crossref_primary_10_1016_S0304_4149_01_00078_3
elsevier_sciencedirect_doi_10_1016_S0304_4149_01_00078_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-07-01
PublicationDateYYYYMMDD 2001-07-01
PublicationDate_xml – month: 07
  year: 2001
  text: 2001-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Stochastic Processes and their Applications
PublicationTitle Stochastic processes and their applications
PublicationYear 2001
Publisher Elsevier B.V
Elsevier Science
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
– name: Elsevier
References Ibragimov, I.A., 1996. On almost sure versions of limit theorems. Dokl. Akad. Nauk 350, 301–303 (in Russian).
Schatte (BIB43) 1988; 137
Feller (BIB24) 1943; 54
Denker (BIB18) 1985
Ibragimov, Lifshits (BIB29) 1998; 40
Lacey, Philipp (BIB33) 1990; 9
Darling, Kac (BIB17) 1957; 84
Cheng, Peng, Qi (BIB13) 1998; 190
Berkes, Dehling (BIB7) 1993; 21
Bingham, Rogers (BIB10) 1991
Móri (BIB37) 1993; 36
Csáki, Földes (BIB14) 1995; 22
Einmahl (BIB21) 1987; 15
Peligrad, Révész (BIB39) 1991
Dvoretzky, Kiefer, Wolfowitz (BIB20) 1956; 27
Lifshits, M., 2000a. On the difference between CLT and ASCLT. Zapiski Seminarov POMI 260, 186–201 (in Russian).
Chandrasekharan, Minakshisundaram (BIB12) 1952
Serfling (BIB44) 1980
Atlagh, Weber (BIB3) 1996
Strassen, V., 1967. Almost sure behavior of sums of independent random variables and martingales. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol II, Part I, Univ. of California Press, pp. 315–343.
Berkes, Csáki, Csörgő (BIB6) 1999; 45
Kesten, Spitzer (BIB31) 1979; 50
Dvoretzky, A., Erdős, P., 1951. Some problems on random walk in space. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 353–367.
Fisher, A., 1989. A pathwise central limit theorem for random walks. Preprint.
Rodzik, Rychlik (BIB42) 1996; 12
Ibragimov, Lifshits (BIB30) 1999; 44
Oodaira, H., 1976. Some limit theorems for the maximum of normalized sums of weakly dependent random variables. Proceedings of Third Japan–USSR Symposium on Probability Theory, Lecture Notes in Mathematics, Vol. 550, Springer, Berlin, pp. 467–474.
Atlagh (BIB1) 1993; 316
Horváth, Khoshnevisan (BIB27) 1995; 59
Marcus, Rosen (BIB36) 1995; 59
Rodzik, Rychlik (BIB41) 1994; 30
Atlagh, Weber (BIB2) 1992; 315
Fahrner, Stadtmüller (BIB23) 1998; 37
Lifshits, M., 2000b. An almost sure limit theorem for sums of random vectors. Preprint.
Weigl, A., 1989. Zwei Sätze über die Belegungszeit beim Random Walk. Diplomarbeit, TU Wien.
Shorack (BIB45) 1979; 7
Darling, Erdős (BIB16) 1956; 23
Einmahl (BIB22) 1989; 82
Berkes, Dehling (BIB8) 1994; 7
Berkes (BIB4) 1995; 102
Csörgő, Horváth (BIB15) 1992; 112
Berkes (BIB5) 1998
Berkes, Dehling, Móri (BIB9) 1991; 26
Giné, Zinn (BIB26) 1994; 22
Philipp, W., Stout, W., 1975. Almost sure invariance principles for partial sums of weakly dependent random variables. Memoirs of the AMS, No. 161.
Koroljuk, Borovskich (BIB32) 1994
Brosamler (BIB11) 1988; 104
Rodzik (10.1016/S0304-4149(01)00078-3_BIB42) 1996; 12
10.1016/S0304-4149(01)00078-3_BIB38
10.1016/S0304-4149(01)00078-3_BIB35
Berkes (10.1016/S0304-4149(01)00078-3_BIB9) 1991; 26
10.1016/S0304-4149(01)00078-3_BIB34
Dvoretzky (10.1016/S0304-4149(01)00078-3_BIB20) 1956; 27
Giné (10.1016/S0304-4149(01)00078-3_BIB26) 1994; 22
10.1016/S0304-4149(01)00078-3_BIB19
Atlagh (10.1016/S0304-4149(01)00078-3_BIB2) 1992; 315
Cheng (10.1016/S0304-4149(01)00078-3_BIB13) 1998; 190
Kesten (10.1016/S0304-4149(01)00078-3_BIB31) 1979; 50
Chandrasekharan (10.1016/S0304-4149(01)00078-3_BIB12) 1952
Berkes (10.1016/S0304-4149(01)00078-3_BIB4) 1995; 102
Koroljuk (10.1016/S0304-4149(01)00078-3_BIB32) 1994
Atlagh (10.1016/S0304-4149(01)00078-3_BIB1) 1993; 316
Móri (10.1016/S0304-4149(01)00078-3_BIB37) 1993; 36
10.1016/S0304-4149(01)00078-3_BIB40
Berkes (10.1016/S0304-4149(01)00078-3_BIB6) 1999; 45
Fahrner (10.1016/S0304-4149(01)00078-3_BIB23) 1998; 37
Ibragimov (10.1016/S0304-4149(01)00078-3_BIB30) 1999; 44
Einmahl (10.1016/S0304-4149(01)00078-3_BIB21) 1987; 15
Denker (10.1016/S0304-4149(01)00078-3_BIB18) 1985
Bingham (10.1016/S0304-4149(01)00078-3_BIB10) 1991
Ibragimov (10.1016/S0304-4149(01)00078-3_BIB29) 1998; 40
10.1016/S0304-4149(01)00078-3_BIB46
10.1016/S0304-4149(01)00078-3_BIB25
10.1016/S0304-4149(01)00078-3_BIB47
Berkes (10.1016/S0304-4149(01)00078-3_BIB7) 1993; 21
Csáki (10.1016/S0304-4149(01)00078-3_BIB14) 1995; 22
Berkes (10.1016/S0304-4149(01)00078-3_BIB8) 1994; 7
Csörgő (10.1016/S0304-4149(01)00078-3_BIB15) 1992; 112
Atlagh (10.1016/S0304-4149(01)00078-3_BIB3) 1996
Feller (10.1016/S0304-4149(01)00078-3_BIB24) 1943; 54
Darling (10.1016/S0304-4149(01)00078-3_BIB16) 1956; 23
Berkes (10.1016/S0304-4149(01)00078-3_BIB5) 1998
10.1016/S0304-4149(01)00078-3_BIB28
Peligrad (10.1016/S0304-4149(01)00078-3_BIB39) 1991
Darling (10.1016/S0304-4149(01)00078-3_BIB17) 1957; 84
Horváth (10.1016/S0304-4149(01)00078-3_BIB27) 1995; 59
Shorack (10.1016/S0304-4149(01)00078-3_BIB45) 1979; 7
Serfling (10.1016/S0304-4149(01)00078-3_BIB44) 1980
Einmahl (10.1016/S0304-4149(01)00078-3_BIB22) 1989; 82
Lacey (10.1016/S0304-4149(01)00078-3_BIB33) 1990; 9
Rodzik (10.1016/S0304-4149(01)00078-3_BIB41) 1994; 30
Brosamler (10.1016/S0304-4149(01)00078-3_BIB11) 1988; 104
Marcus (10.1016/S0304-4149(01)00078-3_BIB36) 1995; 59
Schatte (10.1016/S0304-4149(01)00078-3_BIB43) 1988; 137
References_xml – volume: 37
  start-page: 229
  year: 1998
  end-page: 236
  ident: BIB23
  article-title: On almost sure max-limit theorems
  publication-title: Statist. Probab. Lett.
– reference: Weigl, A., 1989. Zwei Sätze über die Belegungszeit beim Random Walk. Diplomarbeit, TU Wien.
– volume: 104
  start-page: 561
  year: 1988
  end-page: 574
  ident: BIB11
  article-title: An almost everywhere central limit theorem
  publication-title: Math. Proc. Cambridge Philos. Soc.
– volume: 315
  start-page: 203
  year: 1992
  end-page: 206
  ident: BIB2
  article-title: Un théorème central limite presque sûr relatif à des sous-suites
  publication-title: C. R. Acad. Sci. Paris Sér. I
– start-page: 59
  year: 1998
  end-page: 96
  ident: BIB5
  article-title: Results and problems related to the pointwise central limit theorem
  publication-title: Asymptotic Results in Probability and Statistics (a volume in honour of Miklós Csörgő).
– volume: 22
  start-page: 117
  year: 1994
  end-page: 125
  ident: BIB26
  article-title: A remark on convergence in distribution of U-statistics
  publication-title: Ann. Probab.
– volume: 112
  start-page: 195
  year: 1992
  end-page: 205
  ident: BIB15
  article-title: Invariance principles for logarithmic averages
  publication-title: Math. Proc. Cambridge Phil. Soc.
– year: 1985
  ident: BIB18
  article-title: Asymptotic Distribution Theory in Nonparametric Statistics.
– volume: 44
  start-page: 254
  year: 1999
  end-page: 272
  ident: BIB30
  article-title: On almost sure limit theorems
  publication-title: Theory Probab. Appl.
– reference: Philipp, W., Stout, W., 1975. Almost sure invariance principles for partial sums of weakly dependent random variables. Memoirs of the AMS, No. 161.
– reference: Strassen, V., 1967. Almost sure behavior of sums of independent random variables and martingales. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol II, Part I, Univ. of California Press, pp. 315–343.
– start-page: 41
  year: 1996
  end-page: 62
  ident: BIB3
  article-title: Une nouvelle loi forte des grandes nombres
  publication-title: Convergence in Ergodic Theory and Probability.
– volume: 84
  start-page: 444
  year: 1957
  end-page: 458
  ident: BIB17
  article-title: On occupation times for Markoff processes
  publication-title: Trans. Amer. Math. Soc.
– year: 1980
  ident: BIB44
  publication-title: Approximation Theorems of Mathematical Statistics.
– volume: 50
  start-page: 5
  year: 1979
  end-page: 25
  ident: BIB31
  article-title: A limit theorem related to a new class of self similar processes
  publication-title: Z. Wahrsch. Verw. Gebiete
– volume: 36
  start-page: 35
  year: 1993
  end-page: 46
  ident: BIB37
  article-title: On the strong law of large numbers for logarithmically weighted sums
  publication-title: Ann. Univ. Sci. Budapest. Sect. Math.
– volume: 190
  start-page: 43
  year: 1998
  end-page: 50
  ident: BIB13
  article-title: Almost sure convergence in extreme value theory
  publication-title: Math. Nachr.
– reference: Dvoretzky, A., Erdős, P., 1951. Some problems on random walk in space. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 353–367.
– reference: Lifshits, M., 2000b. An almost sure limit theorem for sums of random vectors. Preprint.
– start-page: 209
  year: 1991
  end-page: 225
  ident: BIB39
  article-title: On the almost sure central limit theorem.
  publication-title: Almost Everywhere Convergence II.
– start-page: 69
  year: 1991
  end-page: 83
  ident: BIB10
  article-title: Summability methods and almost sure convergence
  publication-title: Almost Everywhere Convergence II.
– volume: 30
  start-page: 1
  year: 1994
  end-page: 11
  ident: BIB41
  article-title: An almost sure central limit theorem for independent random variables
  publication-title: Ann. Inst. H. Poincaré
– year: 1952
  ident: BIB12
  publication-title: Typical Means.
– volume: 54
  start-page: 361
  year: 1943
  end-page: 372
  ident: BIB24
  article-title: Generalization of a probability limit theorem of Cramér
  publication-title: Trans. Amer. Math. Soc.
– volume: 316
  start-page: 929
  year: 1993
  end-page: 933
  ident: BIB1
  article-title: Théorème central limite presque sûr et loi du logarithme itéré pour des sommes de variables aléatoires indépendantes
  publication-title: C. R. Acad. Sci. Paris Sér. I.
– reference: Ibragimov, I.A., 1996. On almost sure versions of limit theorems. Dokl. Akad. Nauk 350, 301–303 (in Russian).
– reference: Fisher, A., 1989. A pathwise central limit theorem for random walks. Preprint.
– volume: 59
  start-page: 105
  year: 1995
  end-page: 123
  ident: BIB27
  article-title: Weight functions and pathwise local central limit theorems
  publication-title: Stochastic Process. Appl.
– volume: 9
  start-page: 201
  year: 1990
  end-page: 205
  ident: BIB33
  article-title: A note on the almost everywhere central limit theorem
  publication-title: Statist. Probab. Lett.
– volume: 21
  start-page: 1640
  year: 1993
  end-page: 1670
  ident: BIB7
  article-title: Some limit theorems in log density
  publication-title: Ann. Probab.
– reference: Lifshits, M., 2000a. On the difference between CLT and ASCLT. Zapiski Seminarov POMI 260, 186–201 (in Russian).
– volume: 27
  start-page: 642
  year: 1956
  end-page: 649
  ident: BIB20
  article-title: Asymptotic minimax character of the sample distribution function and the classical multinomial estimator
  publication-title: Ann. Math. Statist.
– volume: 15
  start-page: 1419
  year: 1987
  end-page: 1440
  ident: BIB21
  article-title: Strong invariance principles for partial sums of independent random vectors
  publication-title: Ann. Probab.
– reference: Oodaira, H., 1976. Some limit theorems for the maximum of normalized sums of weakly dependent random variables. Proceedings of Third Japan–USSR Symposium on Probability Theory, Lecture Notes in Mathematics, Vol. 550, Springer, Berlin, pp. 467–474.
– volume: 102
  start-page: 1
  year: 1995
  end-page: 18
  ident: BIB4
  article-title: On the almost sure central limit theorem and domains of attraction
  publication-title: Probab. Theory Related Fields
– volume: 45
  start-page: 23
  year: 1999
  end-page: 30
  ident: BIB6
  article-title: Almost sure limit theorems for the St. Petersburg game
  publication-title: Statist. Probab. Lett.
– volume: 7
  start-page: 667
  year: 1994
  end-page: 680
  ident: BIB8
  article-title: On the almost sure central limit theorem for random variables with infinite variance
  publication-title: J. Theoret. Probab.
– volume: 12
  start-page: 299
  year: 1996
  end-page: 309
  ident: BIB42
  article-title: On the central limit theorem for independent random variables with almost sure convergence
  publication-title: Probab. Math. Statist.
– volume: 137
  start-page: 249
  year: 1988
  end-page: 256
  ident: BIB43
  article-title: On strong versions of the central limit theorem
  publication-title: Math. Nachr.
– volume: 26
  start-page: 153
  year: 1991
  end-page: 164
  ident: BIB9
  article-title: Counterexamples related to the a.s. central limit theorem
  publication-title: Studia Sci. Math. Hungar.
– volume: 40
  start-page: 343
  year: 1998
  end-page: 351
  ident: BIB29
  article-title: On the convergence of generalized moments in almost sure central limit theorem
  publication-title: Statist. Probab. Lett.
– volume: 82
  start-page: 241
  year: 1989
  end-page: 257
  ident: BIB22
  article-title: The Darling-Erdős theorem for sums of i.i.d. random variables
  publication-title: Probab. Theory Related Fields
– volume: 7
  start-page: 1092
  year: 1979
  end-page: 1096
  ident: BIB45
  article-title: Extension of the Darling and Erdös theorem on the maximum of normalized sums
  publication-title: Ann. Probab.
– volume: 59
  start-page: 175
  year: 1995
  end-page: 184
  ident: BIB36
  article-title: Logarithmic averages for the local time of recurrent random walks and Levy processes
  publication-title: Stochastic Process. Appl.
– volume: 22
  start-page: 261
  year: 1995
  end-page: 268
  ident: BIB14
  article-title: On the logarithmic average of additive functionals
  publication-title: Statist. Probab. Lett.
– volume: 23
  start-page: 143
  year: 1956
  end-page: 155
  ident: BIB16
  article-title: A limit theorem for the maximum of normalized sums of independent random variables
  publication-title: Duke Math. J.
– year: 1994
  ident: BIB32
  publication-title: Theory of U-statistics
– volume: 54
  start-page: 361
  year: 1943
  ident: 10.1016/S0304-4149(01)00078-3_BIB24
  article-title: Generalization of a probability limit theorem of Cramér
  publication-title: Trans. Amer. Math. Soc.
– ident: 10.1016/S0304-4149(01)00078-3_BIB34
– start-page: 41
  year: 1996
  ident: 10.1016/S0304-4149(01)00078-3_BIB3
  article-title: Une nouvelle loi forte des grandes nombres
– volume: 112
  start-page: 195
  year: 1992
  ident: 10.1016/S0304-4149(01)00078-3_BIB15
  article-title: Invariance principles for logarithmic averages
  publication-title: Math. Proc. Cambridge Phil. Soc.
  doi: 10.1017/S0305004100070870
– volume: 104
  start-page: 561
  year: 1988
  ident: 10.1016/S0304-4149(01)00078-3_BIB11
  article-title: An almost everywhere central limit theorem
  publication-title: Math. Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004100065750
– year: 1994
  ident: 10.1016/S0304-4149(01)00078-3_BIB32
– volume: 59
  start-page: 175
  year: 1995
  ident: 10.1016/S0304-4149(01)00078-3_BIB36
  article-title: Logarithmic averages for the local time of recurrent random walks and Levy processes
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/0304-4149(95)00045-9
– volume: 7
  start-page: 1092
  year: 1979
  ident: 10.1016/S0304-4149(01)00078-3_BIB45
  article-title: Extension of the Darling and Erdös theorem on the maximum of normalized sums
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176994906
– volume: 22
  start-page: 261
  year: 1995
  ident: 10.1016/S0304-4149(01)00078-3_BIB14
  article-title: On the logarithmic average of additive functionals
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/0167-7152(94)00075-J
– ident: 10.1016/S0304-4149(01)00078-3_BIB28
– ident: 10.1016/S0304-4149(01)00078-3_BIB40
  doi: 10.1090/memo/0161
– volume: 59
  start-page: 105
  year: 1995
  ident: 10.1016/S0304-4149(01)00078-3_BIB27
  article-title: Weight functions and pathwise local central limit theorems
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/0304-4149(95)00021-X
– start-page: 209
  year: 1991
  ident: 10.1016/S0304-4149(01)00078-3_BIB39
  article-title: On the almost sure central limit theorem.
– volume: 12
  start-page: 299
  year: 1996
  ident: 10.1016/S0304-4149(01)00078-3_BIB42
  article-title: On the central limit theorem for independent random variables with almost sure convergence
  publication-title: Probab. Math. Statist.
– volume: 102
  start-page: 1
  year: 1995
  ident: 10.1016/S0304-4149(01)00078-3_BIB4
  article-title: On the almost sure central limit theorem and domains of attraction
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/BF01295218
– start-page: 59
  year: 1998
  ident: 10.1016/S0304-4149(01)00078-3_BIB5
  article-title: Results and problems related to the pointwise central limit theorem
– volume: 50
  start-page: 5
  year: 1979
  ident: 10.1016/S0304-4149(01)00078-3_BIB31
  article-title: A limit theorem related to a new class of self similar processes
  publication-title: Z. Wahrsch. Verw. Gebiete
  doi: 10.1007/BF00535672
– volume: 315
  start-page: 203
  year: 1992
  ident: 10.1016/S0304-4149(01)00078-3_BIB2
  article-title: Un théorème central limite presque sûr relatif à des sous-suites
  publication-title: C. R. Acad. Sci. Paris Sér. I
– volume: 44
  start-page: 254
  year: 1999
  ident: 10.1016/S0304-4149(01)00078-3_BIB30
  article-title: On almost sure limit theorems
  publication-title: Theory Probab. Appl.
  doi: 10.1137/S0040585X97977562
– ident: 10.1016/S0304-4149(01)00078-3_BIB47
– volume: 15
  start-page: 1419
  year: 1987
  ident: 10.1016/S0304-4149(01)00078-3_BIB21
  article-title: Strong invariance principles for partial sums of independent random vectors
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176991985
– volume: 190
  start-page: 43
  year: 1998
  ident: 10.1016/S0304-4149(01)00078-3_BIB13
  article-title: Almost sure convergence in extreme value theory
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19981900104
– volume: 26
  start-page: 153
  year: 1991
  ident: 10.1016/S0304-4149(01)00078-3_BIB9
  article-title: Counterexamples related to the a.s. central limit theorem
  publication-title: Studia Sci. Math. Hungar.
– year: 1980
  ident: 10.1016/S0304-4149(01)00078-3_BIB44
– ident: 10.1016/S0304-4149(01)00078-3_BIB38
  doi: 10.1007/BFb0077509
– volume: 7
  start-page: 667
  year: 1994
  ident: 10.1016/S0304-4149(01)00078-3_BIB8
  article-title: On the almost sure central limit theorem for random variables with infinite variance
  publication-title: J. Theoret. Probab.
  doi: 10.1007/BF02213575
– ident: 10.1016/S0304-4149(01)00078-3_BIB35
– volume: 37
  start-page: 229
  year: 1998
  ident: 10.1016/S0304-4149(01)00078-3_BIB23
  article-title: On almost sure max-limit theorems
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/S0167-7152(97)00121-1
– volume: 45
  start-page: 23
  year: 1999
  ident: 10.1016/S0304-4149(01)00078-3_BIB6
  article-title: Almost sure limit theorems for the St. Petersburg game
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/S0167-7152(99)00037-1
– volume: 23
  start-page: 143
  year: 1956
  ident: 10.1016/S0304-4149(01)00078-3_BIB16
  article-title: A limit theorem for the maximum of normalized sums of independent random variables
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-56-02313-4
– volume: 21
  start-page: 1640
  year: 1993
  ident: 10.1016/S0304-4149(01)00078-3_BIB7
  article-title: Some limit theorems in log density
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176989135
– year: 1985
  ident: 10.1016/S0304-4149(01)00078-3_BIB18
– volume: 36
  start-page: 35
  year: 1993
  ident: 10.1016/S0304-4149(01)00078-3_BIB37
  article-title: On the strong law of large numbers for logarithmically weighted sums
  publication-title: Ann. Univ. Sci. Budapest. Sect. Math.
– volume: 9
  start-page: 201
  year: 1990
  ident: 10.1016/S0304-4149(01)00078-3_BIB33
  article-title: A note on the almost everywhere central limit theorem
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/0167-7152(90)90056-D
– year: 1952
  ident: 10.1016/S0304-4149(01)00078-3_BIB12
– volume: 30
  start-page: 1
  year: 1994
  ident: 10.1016/S0304-4149(01)00078-3_BIB41
  article-title: An almost sure central limit theorem for independent random variables
  publication-title: Ann. Inst. H. Poincaré
– volume: 22
  start-page: 117
  year: 1994
  ident: 10.1016/S0304-4149(01)00078-3_BIB26
  article-title: A remark on convergence in distribution of U-statistics
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176988850
– ident: 10.1016/S0304-4149(01)00078-3_BIB46
– ident: 10.1016/S0304-4149(01)00078-3_BIB25
– volume: 27
  start-page: 642
  year: 1956
  ident: 10.1016/S0304-4149(01)00078-3_BIB20
  article-title: Asymptotic minimax character of the sample distribution function and the classical multinomial estimator
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177728174
– volume: 82
  start-page: 241
  year: 1989
  ident: 10.1016/S0304-4149(01)00078-3_BIB22
  article-title: The Darling-Erdős theorem for sums of i.i.d. random variables
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/BF00354762
– ident: 10.1016/S0304-4149(01)00078-3_BIB19
  doi: 10.1525/9780520411586-026
– volume: 40
  start-page: 343
  year: 1998
  ident: 10.1016/S0304-4149(01)00078-3_BIB29
  article-title: On the convergence of generalized moments in almost sure central limit theorem
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/S0167-7152(98)00134-5
– start-page: 69
  year: 1991
  ident: 10.1016/S0304-4149(01)00078-3_BIB10
  article-title: Summability methods and almost sure convergence
– volume: 84
  start-page: 444
  year: 1957
  ident: 10.1016/S0304-4149(01)00078-3_BIB17
  article-title: On occupation times for Markoff processes
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1957-0084222-7
– volume: 137
  start-page: 249
  year: 1988
  ident: 10.1016/S0304-4149(01)00078-3_BIB43
  article-title: On strong versions of the central limit theorem
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19881370117
– volume: 316
  start-page: 929
  year: 1993
  ident: 10.1016/S0304-4149(01)00078-3_BIB1
  article-title: Théorème central limite presque sûr et loi du logarithme itéré pour des sommes de variables aléatoires indépendantes
  publication-title: C. R. Acad. Sci. Paris Sér. I.
SSID ssj0001221
Score 1.9763702
Snippet The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561–574; Schatte, Math. Nachr. 137 (1988)...
The discovery of the almost sure central limit theorem (Brosamler, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561-574; Schatte, Math. Nachr. 137 (1988)...
SourceID repec
pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 105
SubjectTerms Almost sure central limit theorem
Almost sure central limit theorem Logarithmic averages Summation methods
Exact sciences and technology
Limit theorems
Logarithmic averages
Mathematics
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Summation methods
Title A universal result in almost sure central limit theory
URI https://dx.doi.org/10.1016/S0304-4149(01)00078-3
http://econpapers.repec.org/article/eeespapps/v_3a94_3ay_3a2001_3ai_3a1_3ap_3a105-134.htm
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYQuzBNaGObVjaQDzuwQ2gcvzTJsetA7RBcNqTeLD_X0SqVEpEUict--95z0hYOCGkH28qT7VjPlv3F-d57QnwdzFSZqNJGhePbKpunUe4zyhAsej1LEQPb4mowvoaf03S6I0ZrWximVXZ7f7unh926k_Q7bfar-bz_i3_qAQH8WIWDjj1-AmTsP__075bmoZJge8WVI669teJpewjCk1h9C51E-rnz6U1la9Ja2Ya7ICh75yvvHp1F52_Ffgci5bAd5zux45cH4vXlxgNr_V4MhnLVci6oIn1SrxaNnC-lXdzc1o3ka0HZ8TLlgm2cZLBofPggrs_Pfo_GURcjIXIEtZoIwSepL0CjtpoNSS1hKnSIySxLU-1KTAfsMk1rV4BHcMo57Uhm4xJzzPRHsbu8XfpPQiYZWsIjCAlQ0g4J280I30BSOiSc1hOw1oxxnQNxjmOxMFumGCnUsEJNrExQqNE9cbppVrUeNF5qkK_Vbp4sBUO7_EtNj55M06MX5lAo6IlRmLaN3Htfc0C12twbbQug7IESE82omFPisuIyTo3SYP40N4f_P8DPYq8lsTHf94vYbe5W_ohQTYPHYdkei1fDycX4ip5-XEwon0y__wNepPCA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3S5NCWUvpJt21aHXpoD85alrS2j2Fp2KRJLk0gN6HRymRhszGxt5BLf3tnZO9uciiBHCTBINliJEbP8psZgG-jqawyWbmk9Hxb5QqTFCGnCrXDoKYGMbItTkeTc310YS62YLzyhWFaZW_7O5serXUvGfbaHNaz2fA3_9TTBPBTGQ869QR2tFE5b-29vxueh8yi8xX3Trj7xo2ne0QUfk_lj_iURP3vgHpRu4bUVnX5LgjL3oQ6-DuH0cEreNmjSLHfTfQ1bIXFG3h-sg7B2ryF0b5YdqQL6kjf1Mt5K2YL4eZX100r-F5Q9MRMMWcnJxFdGm_fwfnBz7PxJOmTJCSesFaboA6ZCaVWqJxiT1JHoAo9YjbNjVG-QjPimGlK-VIH1F56rzzJXFphgbl6D9uL60X4ACLL0REgQZ1pKsojgbspARydVR4JqA1ArzRjfR9BnBNZzO2GKkYKtaxQm0obFWrVAPbWw-ouhMZDA4qV2u29vWDJzD80dPfeMt15YaFLqQcwjsu2locQGs6o1tg_VrlSU3VLhZlm1MyocFtzmxorlbaX7dXHx0_wKzydnJ0c2-PD01-f4FnHaGPy72fYbm-WYZcgTotf4hb-B7sD8Bk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+result+in+almost+sure+central+limit+theory&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=BERKES%2C+Istvan&rft.au=CSAKI%2C+Endre&rft.date=2001-07-01&rft.pub=Elsevier+Science&rft.issn=0304-4149&rft.volume=94&rft.issue=1&rft.spage=105&rft.epage=134&rft_id=info:doi/10.1016%2FS0304-4149%2801%2900078-3&rft.externalDBID=n%2Fa&rft.externalDocID=1084914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon