Optimizing ontology alignments through a Memetic Algorithm using both MatchFmeasure and Unanimous Improvement Ratio
There are three main drawbacks of current evolutionary approaches for determining the weights of ontology matching system. The first drawback is that it is difficult to simultaneously deal with several pairs of ontologies, i.e. finding a universal weight configuration that can be used for different...
Saved in:
Published in | Artificial intelligence Vol. 223; pp. 65 - 81 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are three main drawbacks of current evolutionary approaches for determining the weights of ontology matching system. The first drawback is that it is difficult to simultaneously deal with several pairs of ontologies, i.e. finding a universal weight configuration that can be used for different ontology pairs without adjustment. The second one is that a reference alignment between two ontologies to be aligned should be given in advance which could be very expensive to obtain especially when the scale of ontologies is considerably large. The last one arises from f-measure, a generally used evaluation metric of the alignment's quality, which may cause the bias improvement of the solution. To overcome these three defects, in this paper, we propose to use both MatchFmeasure, a rough evaluation metric on no reference alignment to approximate f-measure, and Unanimous Improvement Ratio (UIR), a measure that complements MatchFmeasure, in the process of optimizing the ontology alignments by Memetic Algorithm (MA). The experimental results have shown that the MA using both MatchFmeasure and UIR is effective to simultaneously align multiple pairs of ontologies and avoid the bias improvement caused by MatchFeasure. Moreover, the comparison with state-of-the-art ontology matching systems further indicates the effectiveness of the proposed method. |
---|---|
AbstractList | There are three main drawbacks of current evolutionary approaches for determining the weights of ontology matching system. The first drawback is that it is difficult to simultaneously deal with several pairs of ontologies, i.e. finding a universal weight configuration that can be used for different ontology pairs without adjustment. The second one is that a reference alignment between two ontologies to be aligned should be given in advance which could be very expensive to obtain especially when the scale of ontologies is considerably large. The last one arises from f-measure, a generally used evaluation metric of the alignment's quality, which may cause the bias improvement of the solution. To overcome these three defects, in this paper, we propose to use both MatchFmeasure, a rough evaluation metric on no reference alignment to approximate f-measure, and Unanimous Improvement Ratio (UIR), a measure that complements MatchFmeasure, in the process of optimizing the ontology alignments by Memetic Algorithm (MA). The experimental results have shown that the MA using both MatchFmeasure and UIR is effective to simultaneously align multiple pairs of ontologies and avoid the bias improvement caused by MatchFeasure. Moreover, the comparison with state-of-the-art ontology matching systems further indicates the effectiveness of the proposed method. |
Author | Wang, Yuping Xue, Xingsi |
Author_xml | – sequence: 1 givenname: Xingsi surname: Xue fullname: Xue, Xingsi organization: School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China – sequence: 2 givenname: Yuping surname: Wang fullname: Wang, Yuping email: ywang@xidian.edu.cn organization: School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China |
BookMark | eNqFkE1r3DAQhkVJoJuk_6AHHXOxM5Lttd1DIIR8QUKgNGehHc_aWixpI8mBza-vzfbUQ3saBt7nneE5YyfOO2Lsu4BcgFhf7XIdknEplyCqHIocQHxhK9HUMqtbKU7YCgDKrKhBfmVnMe7mtWhbsWLxdZ-MNZ_G9dy75EffH7geTe8suRR5GoKf-oFr_kKWkkF-M_Y-mDRYPsWF2vg08BedcLi3pOMUiGvX8TennbF-ivzJ7oP_oKWP_9TJ-At2utVjpG9_5jl7u7_7dfuYPb8-PN3ePGdYQpWyDdC6xS1qvZECSmykJto2VUtdi21dyqYCLKgBwrWUBbZNtca67ARKoRFFcc4uj73z_feJYlLWRKRx1I7mx5SoayhE08hqjv44RjH4GANtFZq0_OpS0GZUAtRiWu3U0bRaTCso1Gx6hsu_4H0wVofD_7DrI0azgw9DQUU05JA6EwiT6rz5d8Fv-pqfwg |
CitedBy_id | crossref_primary_10_1155_2022_1634432 crossref_primary_10_1016_j_eswa_2022_117371 crossref_primary_10_1016_j_eswa_2021_114578 crossref_primary_10_1155_2021_2002307 crossref_primary_10_1016_j_seta_2022_102442 crossref_primary_10_1007_s00500_018_03672_y crossref_primary_10_1155_2021_6649127 crossref_primary_10_1007_s10115_020_01443_6 crossref_primary_10_1007_s10115_021_01613_0 crossref_primary_10_1080_21642583_2019_1647898 crossref_primary_10_1587_transinf_2022DLP0050 crossref_primary_10_1016_j_neucom_2019_09_119 crossref_primary_10_1016_j_neucom_2019_11_124 crossref_primary_10_1155_2018_2309587 crossref_primary_10_1155_2022_7942353 crossref_primary_10_1155_2020_4716286 crossref_primary_10_3934_mbe_2021247 crossref_primary_10_1155_2022_9639304 crossref_primary_10_1111_exsy_12936 crossref_primary_10_1016_j_asoc_2018_08_003 crossref_primary_10_1080_09540091_2021_1933906 crossref_primary_10_1007_s00500_021_05895_y crossref_primary_10_1007_s10489_022_03618_w crossref_primary_10_1016_j_asoc_2022_109516 crossref_primary_10_1155_2021_5510055 crossref_primary_10_3390_biology10121287 crossref_primary_10_1109_ACCESS_2021_3057081 crossref_primary_10_3233_JIFS_179650 crossref_primary_10_1080_09540091_2021_1991278 crossref_primary_10_3389_fpls_2022_877120 crossref_primary_10_1142_S0218001421520224 crossref_primary_10_1142_S0218348X23401059 crossref_primary_10_1155_2021_6625184 crossref_primary_10_1007_s13369_018_3448_z crossref_primary_10_7717_peerj_cs_763 crossref_primary_10_1155_2020_8815001 crossref_primary_10_1109_ACCESS_2020_3047875 crossref_primary_10_1007_s10115_023_01845_2 crossref_primary_10_1109_ACCESS_2020_2979738 crossref_primary_10_1155_2021_4856265 crossref_primary_10_1109_ACCESS_2019_2903861 crossref_primary_10_1145_3314948 crossref_primary_10_1088_1742_6596_1314_1_012145 crossref_primary_10_1142_S0218001422570026 crossref_primary_10_1155_2022_3572404 crossref_primary_10_1007_s10489_021_02208_6 crossref_primary_10_1016_j_knosys_2017_09_017 crossref_primary_10_1142_S0218001420500317 crossref_primary_10_1142_S0218001416590060 crossref_primary_10_1142_S0218001421590205 crossref_primary_10_1016_j_knosys_2020_106050 crossref_primary_10_1155_2021_4439861 crossref_primary_10_1007_s10115_016_1018_9 crossref_primary_10_1016_j_neucom_2020_03_122 crossref_primary_10_3233_SW_223085 crossref_primary_10_1155_2020_6666228 crossref_primary_10_1007_s10115_017_1101_x crossref_primary_10_1371_journal_pone_0215147 crossref_primary_10_1016_j_knosys_2018_09_018 crossref_primary_10_1155_2022_8587896 crossref_primary_10_1177_1550147721992881 crossref_primary_10_1051_wujns_2022273240 crossref_primary_10_1109_TKDE_2022_3152928 crossref_primary_10_1016_j_eswa_2021_116025 crossref_primary_10_1155_2022_2136933 crossref_primary_10_7717_peerj_cs_602 crossref_primary_10_1177_1550147716664245 crossref_primary_10_1155_2022_2207252 crossref_primary_10_3390_math10122077 crossref_primary_10_1016_j_jii_2024_100637 crossref_primary_10_3390_s23115069 crossref_primary_10_4018_IJSIR_2018040101 crossref_primary_10_1155_2021_5574732 crossref_primary_10_1155_2020_8586058 crossref_primary_10_1145_3439772 crossref_primary_10_1155_2020_8822288 crossref_primary_10_1016_j_ijmedinf_2019_104002 crossref_primary_10_1155_2022_7237099 crossref_primary_10_1109_ACCESS_2020_2977763 crossref_primary_10_1049_trit_2019_0014 crossref_primary_10_1109_ACCESS_2019_2920881 crossref_primary_10_1142_S0218001420590181 crossref_primary_10_3390_s20072056 crossref_primary_10_4018_JDM_321758 crossref_primary_10_1155_2021_9977884 crossref_primary_10_1142_S0218001417500392 crossref_primary_10_1016_j_neucom_2020_04_149 crossref_primary_10_1155_2021_5594553 crossref_primary_10_1007_s12293_018_0255_8 |
Cites_doi | 10.1007/s007780100057 10.1109/TSMCB.2006.883274 10.1016/j.ins.2010.08.013 10.1108/eb026584 10.1145/219717.219748 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1016/j.artint.2015.03.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7921 |
EndPage | 81 |
ExternalDocumentID | 10_1016_j_artint_2015_03_001 S0004370215000399 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 6TJ 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AAKPC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACWUS ACZNC ADBBV ADEZE ADMUD AEBSH AECPX AEFWE AEKER AENEX AETEA AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE IXB J1W JJJVA KOM KQ8 LG9 LY7 M41 MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 TR2 TWZ UPT UQL VQA WH7 WUQ XFK XJE XJT XPP XSW ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c405t-b0e69cfcaab2104c82aeef859ed9c9742850c3e80ec6223c9856c74d1c21acc13 |
IEDL.DBID | .~1 |
ISSN | 0004-3702 |
IngestDate | Fri Jul 11 14:49:30 EDT 2025 Tue Jul 01 04:00:12 EDT 2025 Thu Apr 24 23:01:04 EDT 2025 Fri Feb 23 02:31:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MatchFmeasure Unanimous Improvement Ratio Memetic Algorithm Ontology alignment |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-b0e69cfcaab2104c82aeef859ed9c9742850c3e80ec6223c9856c74d1c21acc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0004370215000399 |
PQID | 1770318825 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1770318825 crossref_citationtrail_10_1016_j_artint_2015_03_001 crossref_primary_10_1016_j_artint_2015_03_001 elsevier_sciencedirect_doi_10_1016_j_artint_2015_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Artificial intelligence |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Miller (br0120) 1995; 38 Fang, Wang (br0140) 1994 Euzenat, Shvaiko (br0340) 2007 Radcliffe, Surry (br0040) 1994; vol. 865 Levenshtein (br0100) 1966; 10 Melnik, Garcia-Molina, Rahm (br0310) 2002 Grau, Dragisic, Eckert (br0370) 2013 Vitiello, Persiano, Loia, Acampora (br0380) 2013 Rahm, Bernstein (br0300) 2001; 10 Ritze, Paulheim (br0320) 2011; vol. 814 Amigo, Gonzalo, Artiles, Verdejo (br0020) 2011; 42 Ginsca, Iftene (br0080) 2010 Moscato, Norman (br0030) 1992 Acampora, Kaymak, Loia (br0290) 2013 Winkler (br0110) 1999 Stoilos, Stamou, Kollias (br0160) 2005 Garcia, Molina, Lozano, Herrera (br0240) 2009; 15 Martinez-Gil, Alba, Aldana-Montes (br0060) 2008; vol. 419 Demsar (br0260) 2006; 7 Euzenat, Valtchev (br0010) 2004 Bock, Hettenhausen (br0280) 2012; 192 Stumme, Ehrig, Handschuh (br0330) 2003 Naya, Romero, Loureiro (br0070) 2010 Merz, Freisleben (br0050) 2011; 14 Ong, Krasnogor, Ishibuchi (br0360) 2007; 37 Sheskin (br0250) 2000 Amigo, Artiles, Gonzalo (br0350) 2009 Kirsten, Thor, Rahm (br0170) 2007 Van Rijsbergen (br0130) 1974; 34 br0150 Kirsten (10.1016/j.artint.2015.03.001_br0170) 2007 Martinez-Gil (10.1016/j.artint.2015.03.001_br0060) 2008; vol. 419 Garcia (10.1016/j.artint.2015.03.001_br0240) 2009; 15 Miller (10.1016/j.artint.2015.03.001_br0120) 1995; 38 Sheskin (10.1016/j.artint.2015.03.001_br0250) 2000 Van Rijsbergen (10.1016/j.artint.2015.03.001_br0130) 1974; 34 Ginsca (10.1016/j.artint.2015.03.001_br0080) 2010 Ritze (10.1016/j.artint.2015.03.001_br0320) 2011; vol. 814 Melnik (10.1016/j.artint.2015.03.001_br0310) 2002 Levenshtein (10.1016/j.artint.2015.03.001_br0100) 1966; 10 Euzenat (10.1016/j.artint.2015.03.001_br0010) 2004 Amigo (10.1016/j.artint.2015.03.001_br0020) 2011; 42 Naya (10.1016/j.artint.2015.03.001_br0070) 2010 Stoilos (10.1016/j.artint.2015.03.001_br0160) 2005 Vitiello (10.1016/j.artint.2015.03.001_br0380) 2013 Radcliffe (10.1016/j.artint.2015.03.001_br0040) 1994; vol. 865 Euzenat (10.1016/j.artint.2015.03.001_br0340) 2007 Merz (10.1016/j.artint.2015.03.001_br0050) 2011; 14 Rahm (10.1016/j.artint.2015.03.001_br0300) 2001; 10 Moscato (10.1016/j.artint.2015.03.001_br0030) 1992 Grau (10.1016/j.artint.2015.03.001_br0370) 2013 Bock (10.1016/j.artint.2015.03.001_br0280) 2012; 192 Stumme (10.1016/j.artint.2015.03.001_br0330) 2003 Ong (10.1016/j.artint.2015.03.001_br0360) 2007; 37 Demsar (10.1016/j.artint.2015.03.001_br0260) 2006; 7 Winkler (10.1016/j.artint.2015.03.001_br0110) 1999 Fang (10.1016/j.artint.2015.03.001_br0140) 1994 Acampora (10.1016/j.artint.2015.03.001_br0290) 2013 Amigo (10.1016/j.artint.2015.03.001_br0350) 2009 |
References_xml | – ident: br0150 article-title: Ontology alignment evaluation initiative (OAEI) – year: 2013 ident: br0370 article-title: Results of the ontology alignment evaluation initiative 2013 publication-title: Proceedings of 8th ISWC Workshop on Ontology Matching – start-page: 172 year: 2007 end-page: 187 ident: br0170 article-title: Instance-based matching of large life science ontologies publication-title: DILS'07 Proceedings of the 4th International Conference on Data Integration in the Life Sciences – start-page: 333 year: 2004 end-page: 337 ident: br0010 article-title: Similarity-based ontology alignment in OWL-Lite publication-title: Proceedings of the Sixteenth European Conference on Artificial Intelligence – start-page: 177 year: 1992 end-page: 186 ident: br0030 article-title: A Memetic approach for the travelling salesman problem — implementation of a computational ecology for combinatorial optimization on message-passing systems publication-title: Proceedings of the International Conference on Parallel Computing and Transputer Applications – volume: vol. 814 start-page: 37 year: 2011 ident: br0320 article-title: Towards an automatic parameterization of ontology matching tools based on example mappings publication-title: Proceedings of the Sixth International Workshop on Ontology Matching at ISWC – volume: vol. 419 start-page: 31 year: 2008 end-page: 45 ident: br0060 article-title: Optimizing ontology alignments by using genetic algorithms publication-title: Nature Inspired Reasoning for the Semantic Web – year: 1994 ident: br0140 article-title: Number-Theoretic Methods in Statistics – volume: 15 start-page: 617 year: 2009 end-page: 644 ident: br0240 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization publication-title: J. Heuristics – volume: 14 start-page: 197 year: 2011 end-page: 345 ident: br0050 article-title: Memetic algorithms for the traveling salesman problem publication-title: Complex Syst. – volume: 42 start-page: 689 year: 2011 end-page: 718 ident: br0020 article-title: Combining evaluation metrics via the unanimous improvement ratio and its application to clustering tasks publication-title: J. Artif. Intell. Res. – start-page: 1 year: 2010 end-page: 16 ident: br0070 article-title: Improving ontology alignment through genetic algorithms publication-title: Soft Computing Methods for Practical Environment Solutions: Techniques and Studies – volume: 10 start-page: 334 year: 2001 end-page: 350 ident: br0300 article-title: A survey of approaches to automatic schema matching publication-title: VLDB J. – volume: 37 start-page: 2 year: 2007 end-page: 5 ident: br0360 article-title: Special issue on memetic algorithms publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern. – year: 2009 ident: br0350 article-title: Combining evaluation metrics with a unanimous improvement ratio and its application to the web people search clustering task publication-title: Proceedings of the 2nd Web People Search Evaluation Workshop – start-page: 117 year: 2002 end-page: 128 ident: br0310 article-title: Similarity flooding: a versatile graph matching algorithm and its application to schema matching publication-title: 18th International Conference on Data Engineering – year: 2003 ident: br0330 article-title: The Karlsruhe view on ontologies – year: 2000 ident: br0250 article-title: Handbook of Parametric and Nonparametric Statistical Procedures – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: br0260 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 39 year: 1995 end-page: 41 ident: br0120 article-title: WordNet: a lexical database for English publication-title: Commun. ACM – start-page: 623 year: 2005 end-page: 637 ident: br0160 article-title: A string metric for ontology alignment publication-title: Proceedings of 4th International Semantic Web Conference – start-page: 1098 year: 2013 end-page: 1103 ident: br0290 article-title: Applying NSGA-II for solving the ontology alignment problem publication-title: IEEE International Conference on Systems, Man and Cybernetics (SMC) – year: 2013 ident: br0380 article-title: Memetic algorithms for ontology alignment – start-page: 118 year: 2010 end-page: 122 ident: br0080 article-title: Using a genetic algorithm for optimizing the similarity aggregation step in the process of ontology alignment publication-title: 9th Roedunet Int. Conf. – year: 1999 ident: br0110 article-title: The state record linkage and current research problems – year: 2007 ident: br0340 article-title: Ontology Matching – volume: 192 start-page: 152 year: 2012 end-page: 173 ident: br0280 article-title: Discrete particle swarm optimisation for ontology alignment publication-title: Inf. Sci. – volume: 10 start-page: 707 year: 1966 end-page: 710 ident: br0100 article-title: Binary codes capable of correcting deletions, insertions and reversals publication-title: Sov. Phys. Dokl. – volume: 34 start-page: 365 year: 1974 end-page: 373 ident: br0130 article-title: Foundation of evaluation publication-title: J. Doc. – volume: vol. 865 start-page: 1 year: 1994 end-page: 16 ident: br0040 article-title: Formal memetic algorithms publication-title: Evolutionary Computing: AISB Workshop – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.artint.2015.03.001_br0260 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – year: 2013 ident: 10.1016/j.artint.2015.03.001_br0380 – year: 1999 ident: 10.1016/j.artint.2015.03.001_br0110 – volume: 10 start-page: 334 issue: 4 year: 2001 ident: 10.1016/j.artint.2015.03.001_br0300 article-title: A survey of approaches to automatic schema matching publication-title: VLDB J. doi: 10.1007/s007780100057 – volume: vol. 419 start-page: 31 year: 2008 ident: 10.1016/j.artint.2015.03.001_br0060 article-title: Optimizing ontology alignments by using genetic algorithms – volume: 37 start-page: 2 issue: 1 year: 2007 ident: 10.1016/j.artint.2015.03.001_br0360 article-title: Special issue on memetic algorithms publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern. doi: 10.1109/TSMCB.2006.883274 – start-page: 1 year: 2010 ident: 10.1016/j.artint.2015.03.001_br0070 article-title: Improving ontology alignment through genetic algorithms – volume: 15 start-page: 617 year: 2009 ident: 10.1016/j.artint.2015.03.001_br0240 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization publication-title: J. Heuristics – volume: 192 start-page: 152 year: 2012 ident: 10.1016/j.artint.2015.03.001_br0280 article-title: Discrete particle swarm optimisation for ontology alignment publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.08.013 – start-page: 117 year: 2002 ident: 10.1016/j.artint.2015.03.001_br0310 article-title: Similarity flooding: a versatile graph matching algorithm and its application to schema matching – volume: 34 start-page: 365 year: 1974 ident: 10.1016/j.artint.2015.03.001_br0130 article-title: Foundation of evaluation publication-title: J. Doc. doi: 10.1108/eb026584 – start-page: 172 year: 2007 ident: 10.1016/j.artint.2015.03.001_br0170 article-title: Instance-based matching of large life science ontologies – year: 2013 ident: 10.1016/j.artint.2015.03.001_br0370 article-title: Results of the ontology alignment evaluation initiative 2013 – start-page: 1098 year: 2013 ident: 10.1016/j.artint.2015.03.001_br0290 article-title: Applying NSGA-II for solving the ontology alignment problem – volume: 14 start-page: 197 year: 2011 ident: 10.1016/j.artint.2015.03.001_br0050 article-title: Memetic algorithms for the traveling salesman problem publication-title: Complex Syst. – volume: vol. 865 start-page: 1 year: 1994 ident: 10.1016/j.artint.2015.03.001_br0040 article-title: Formal memetic algorithms – year: 2009 ident: 10.1016/j.artint.2015.03.001_br0350 article-title: Combining evaluation metrics with a unanimous improvement ratio and its application to the web people search clustering task – volume: 38 start-page: 39 year: 1995 ident: 10.1016/j.artint.2015.03.001_br0120 article-title: WordNet: a lexical database for English publication-title: Commun. ACM doi: 10.1145/219717.219748 – volume: 10 start-page: 707 year: 1966 ident: 10.1016/j.artint.2015.03.001_br0100 article-title: Binary codes capable of correcting deletions, insertions and reversals publication-title: Sov. Phys. Dokl. – year: 2003 ident: 10.1016/j.artint.2015.03.001_br0330 – start-page: 623 year: 2005 ident: 10.1016/j.artint.2015.03.001_br0160 article-title: A string metric for ontology alignment – start-page: 333 year: 2004 ident: 10.1016/j.artint.2015.03.001_br0010 article-title: Similarity-based ontology alignment in OWL-Lite – year: 2007 ident: 10.1016/j.artint.2015.03.001_br0340 – start-page: 177 year: 1992 ident: 10.1016/j.artint.2015.03.001_br0030 article-title: A Memetic approach for the travelling salesman problem — implementation of a computational ecology for combinatorial optimization on message-passing systems – volume: 42 start-page: 689 year: 2011 ident: 10.1016/j.artint.2015.03.001_br0020 article-title: Combining evaluation metrics via the unanimous improvement ratio and its application to clustering tasks publication-title: J. Artif. Intell. Res. – year: 1994 ident: 10.1016/j.artint.2015.03.001_br0140 – volume: vol. 814 start-page: 37 year: 2011 ident: 10.1016/j.artint.2015.03.001_br0320 article-title: Towards an automatic parameterization of ontology matching tools based on example mappings – year: 2000 ident: 10.1016/j.artint.2015.03.001_br0250 – start-page: 118 year: 2010 ident: 10.1016/j.artint.2015.03.001_br0080 article-title: Using a genetic algorithm for optimizing the similarity aggregation step in the process of ontology alignment |
SSID | ssj0003991 |
Score | 2.5049298 |
Snippet | There are three main drawbacks of current evolutionary approaches for determining the weights of ontology matching system. The first drawback is that it is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 65 |
SubjectTerms | Algorithms Alignment Approximation Bias Expert systems Knowledge representation MatchFmeasure Matching Memetic Algorithm Ontology alignment Optimization Unanimous Improvement Ratio |
Title | Optimizing ontology alignments through a Memetic Algorithm using both MatchFmeasure and Unanimous Improvement Ratio |
URI | https://dx.doi.org/10.1016/j.artint.2015.03.001 https://www.proquest.com/docview/1770318825 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFy--xfooEbyu7vtxrGKpShXEQm8hO5ttV7qraL148Lc7k2QVBSl4zG6yj0wyr3wzw9hJEZe4UhLXgQh8NFA85SDPozP4MAlk6Aa-Lgc0vI0Ho_B6HI2X2EUbC0OwSsv7DU_X3NpeObOzefZcVRTjS3l5SGbpCFMK4sMX0Co__fiGeeANWzUvdKh3Gz6nMV46Up8QlV5kUp16f4mnX4xaS5_-BluzaiPvmS_bZEuq2WLrbUkGbnfoNnu9QxZQV-8okDhlJiCfOUdVe2JC2bgty8MlH6qa4hd5bzZ5eqnm05oTBH7CcyQdHyKDnvZr4z_ksin4qJFNRW4CbtwQ2qvI74muO2zUv3y4GDi2roIDqJ7NndxVcQYlSJmjwRdC6kulyjTKVJEB2hd-GrkQqNRVEKP2AFkaxZCEhQe-JwG8YJctN0-N2mNcFTIEOveNSa-CLMu9qEwyF_uXofT9Dgva6RRgk45T7YuZaNFlj8IQQRARhBsQyK7DnK9RzybpxoL-SUsp8WPxCJQLC0Yet4QVuK_osEQ2CidT4D8Rv0MDev_fTz9gq9QyyLJDtjx_eVNHqMPM865epF220ru6Gdxi62p8_glxYvPh |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHODCGzGeQeJa6CN9HdHENGAbEmIStyh101HEChrjwoHfjt2kIJAQEtcmqdo4-ew4n23GjvOowJUSuw6E4OMBxdMOYh7dwYs4UMIN_Loc0GAY9Ubi8i68a7FOEwtDtEqL_QbTa7S2T07tbJ4-lyXF-FJeHtJZdYRpOscWBG5fKmNw8v7F88AWWzZPONS9iZ-rSV51qD5RKr3Q5Dr1ftNPP5C6Vj_dVbZs7UZ-Zj5tjbV0tc5WmpoM3G7RDfZyjRgwKd9QI3FKTUBOc4629tjEsnFbl4crPtATCmDkZ4_jp2k5u59w4sCPeYay4wNE6PvuxDgQuapyPqpUVZKfgBs_RO1W5Dck2E026p7fdnqOLazgANpnMydzdZRCAUpleOITkPhK6yIJU52ngAcMPwldCHTiaojQfIA0CSOIRe6B7ykAL9hi89VTpbcZ17kSQBe_ERlWkKaZFxZx6mL_Qijfb7OgmU4JNus4Fb94lA297EEaIUgSgnQDYtm1mfM56tlk3fijf9xISn5bPRIVwx8jjxrBStxYdFuiKo2TKfGfCPDwBL3z77cfssXe7aAv-xfDq122RC2GZrbH5mfTV72PBs0sO6gX7AdJL_Rr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+ontology+alignments+through+a+Memetic+Algorithm+using+both+MatchFmeasure+and+Unanimous+Improvement+Ratio&rft.jtitle=Artificial+intelligence&rft.au=Xue%2C+Xingsi&rft.au=Wang%2C+Yuping&rft.date=2015-06-01&rft.pub=Elsevier+B.V&rft.issn=0004-3702&rft.eissn=1872-7921&rft.volume=223&rft.spage=65&rft.epage=81&rft_id=info:doi/10.1016%2Fj.artint.2015.03.001&rft.externalDocID=S0004370215000399 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon |