Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice
We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1/3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state....
Saved in:
Published in | Physical review letters Vol. 120; no. 11; p. 115702 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
16.03.2018
|
Online Access | Get more information |
ISSN | 1079-7114 |
DOI | 10.1103/PhysRevLett.120.115702 |
Cover
Loading…
Abstract | We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1/3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact CP^{1} gauge theory describing the phase transition at 1/3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1/3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality. |
---|---|
AbstractList | We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1/3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact CP^{1} gauge theory describing the phase transition at 1/3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1/3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality. |
Author | He, Yin-Chen Moessner, Roderich Zhang, Xue-Feng Pollmann, Frank Eggert, Sebastian |
Author_xml | – sequence: 1 givenname: Xue-Feng surname: Zhang fullname: Zhang, Xue-Feng organization: Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany – sequence: 2 givenname: Yin-Chen surname: He fullname: He, Yin-Chen organization: Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada – sequence: 3 givenname: Sebastian surname: Eggert fullname: Eggert, Sebastian organization: Physics Department and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany – sequence: 4 givenname: Roderich surname: Moessner fullname: Moessner, Roderich organization: Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany – sequence: 5 givenname: Frank surname: Pollmann fullname: Pollmann, Frank organization: Department of Physics, Technical University of Munich, 85748 Garching, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29601746$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j91Kw0AQRhdR7I--QtkXSJ3ZbLLNpdRaxYBF6nWZbCZ2pdmU7Ebo21tR4YMD5-LANxGXvvMsxAxhjgjp3WZ_Cm_8VXKMc1Q_MjOgLsQYwRSJQdQjMQnhEwBQ5YtrMVJFDmh0PhbrZeej80M3BLmicEo2B_IsH9h2vnGea7nZU2C57ckHF13n5Xlxz_KFPrqWZUkxOss34qqhQ-DbP07F--Nqu3xKytf18_K-TKyGLCYVmBRrrlATpVmKdsFIzaLQRmlFDCYzKldUAaW1xtoiZEox5k1lsbBIaipmv93jULVc7469a6k_7f4fqW-eZU_5 |
CitedBy_id | crossref_primary_10_1103_PhysRevB_109_L140404 crossref_primary_10_1103_PhysRevB_100_064427 crossref_primary_10_1016_j_actamat_2024_119756 crossref_primary_10_1103_PhysRevApplied_22_034031 crossref_primary_10_1103_PhysRevResearch_2_023175 crossref_primary_10_1103_PhysRevB_109_L241109 crossref_primary_10_1103_PhysRevLett_122_175701 crossref_primary_10_1103_PhysRevD_105_065019 crossref_primary_10_1103_PhysRevB_108_195107 crossref_primary_10_1103_PhysRevLett_129_227203 crossref_primary_10_1007_JHEP05_2019_214 crossref_primary_10_1103_PhysRevB_99_205153 crossref_primary_10_1103_PhysRevB_99_195110 crossref_primary_10_1103_PhysRevA_97_053821 crossref_primary_10_1038_s41534_023_00755_z crossref_primary_10_1103_PhysRevB_104_L081110 crossref_primary_10_1103_PhysRevB_103_054418 crossref_primary_10_1103_PhysRevB_107_085130 crossref_primary_10_1002_pssb_201800639 crossref_primary_10_1103_PhysRevB_97_214433 crossref_primary_10_21468_SciPostPhys_17_1_010 crossref_primary_10_1103_PhysRevB_100_224413 crossref_primary_10_1103_PhysRevB_105_104420 crossref_primary_10_1103_PhysRevB_111_075158 crossref_primary_10_1103_PhysRevB_98_115163 crossref_primary_10_1103_PhysRevLett_122_080601 crossref_primary_10_1103_PhysRevX_9_021034 crossref_primary_10_1103_PhysRevX_12_031039 crossref_primary_10_1016_j_scib_2023_11_057 crossref_primary_10_1103_PhysRevLett_121_057202 crossref_primary_10_1103_PhysRevLett_132_156503 crossref_primary_10_1103_PhysRevLett_133_026502 crossref_primary_10_1088_1361_648X_ac75a0 crossref_primary_10_1038_s42005_024_01680_z crossref_primary_10_1103_PhysRevB_102_195135 crossref_primary_10_1103_PhysRevE_104_064121 crossref_primary_10_1103_PhysRevB_108_245152 crossref_primary_10_1103_PhysRevB_98_174421 crossref_primary_10_1103_PhysRevX_9_041037 crossref_primary_10_1088_1674_1056_abf3b8 crossref_primary_10_1103_PhysRevB_101_085105 crossref_primary_10_1103_PhysRevB_98_235108 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevLett.120.115702 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 29601746 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM OK1 P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c405t-b0731deb14aa3531c8e1af8947242ae0757262ab0a3d41dc10522e16fbc19c1a2 |
IngestDate | Thu Jan 02 23:11:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-b0731deb14aa3531c8e1af8947242ae0757262ab0a3d41dc10522e16fbc19c1a2 |
PMID | 29601746 |
ParticipantIDs | pubmed_primary_29601746 |
PublicationCentury | 2000 |
PublicationDate | 2018-Mar-16 |
PublicationDateYYYYMMDD | 2018-03-16 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-Mar-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2018 |
SSID | ssj0001268 |
Score | 2.5386379 |
Snippet | We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 115702 |
Title | Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29601746 |
Volume | 120 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5TEXwR73fJg2-SudSul0eRqXhDvMDeJG3SbaCdYBUUf7xfLl2nTrzAKKOhoc335eScQ74TQrbCJPZh-TMGX1UiQIkzFmWeZM2QcxXLQCqziebsPDi68Y_bzXat9jasLimSevo6UlfyH1RxD7hqlewfkB10ihv4D3xxBcK4_gpjXVqqlz_pXawt8fjC9AlEeh8QYtwM3qPcvuhikbIFzHvWNbS7Gk9Ep3-vtk9FUe59Kx3UixI3p2m5M3KfgeM9yC-3nxTDWHSqXKox5r2c7XcrdVmr03GaoCuF9bIY4uJZHzbWqW0u9YFsPZdTcykIbjR53BWwtmazEcYM6Pof7KrXGCYQHzKTusKPEVqPsOANXUlCf-yletaSpjr6qX99AEg83BtcPQRhiKuCn1s_VdYum8bIGGIMfWiqzvRMlfm5IHKKcrzSzugX0qWkXSefwhLjnlzPkGkXV9A9S5JZUlP5HJm0aD7Ok8OKKrSiCq2oQg1VaEUVih-oQi1VqKPKArk5aF3vHzF3hgZL4YoXLIEJ5xILsi_ELuxtGikusij2Q8xQoeAwhl7giaQhdqXPZQp32_MUD7Ik5XHKhbdIxvN-rpYJVRKfGmFOJz76DgUii2aSNZVKAxFIKVbIkh2B2wdbKOW2HJvVb1vWyFRFqHUykWFmqg24eUWyafB4B_GAUlQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Easy-Plane+Deconfined+Phase+Transition+on+the+Kagome+Lattice&rft.jtitle=Physical+review+letters&rft.au=Zhang%2C+Xue-Feng&rft.au=He%2C+Yin-Chen&rft.au=Eggert%2C+Sebastian&rft.au=Moessner%2C+Roderich&rft.date=2018-03-16&rft.eissn=1079-7114&rft.volume=120&rft.issue=11&rft.spage=115702&rft_id=info:doi/10.1103%2FPhysRevLett.120.115702&rft_id=info%3Apmid%2F29601746&rft_id=info%3Apmid%2F29601746&rft.externalDocID=29601746 |