Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice

We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1/3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state....

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 120; no. 11; p. 115702
Main Authors Zhang, Xue-Feng, He, Yin-Chen, Eggert, Sebastian, Moessner, Roderich, Pollmann, Frank
Format Journal Article
LanguageEnglish
Published United States 16.03.2018
Online AccessGet more information
ISSN1079-7114
DOI10.1103/PhysRevLett.120.115702

Cover

Loading…
Abstract We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1/3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact CP^{1} gauge theory describing the phase transition at 1/3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1/3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality.
AbstractList We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1/3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact CP^{1} gauge theory describing the phase transition at 1/3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1/3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality.
Author He, Yin-Chen
Moessner, Roderich
Zhang, Xue-Feng
Pollmann, Frank
Eggert, Sebastian
Author_xml – sequence: 1
  givenname: Xue-Feng
  surname: Zhang
  fullname: Zhang, Xue-Feng
  organization: Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
– sequence: 2
  givenname: Yin-Chen
  surname: He
  fullname: He, Yin-Chen
  organization: Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
– sequence: 3
  givenname: Sebastian
  surname: Eggert
  fullname: Eggert, Sebastian
  organization: Physics Department and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
– sequence: 4
  givenname: Roderich
  surname: Moessner
  fullname: Moessner, Roderich
  organization: Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
– sequence: 5
  givenname: Frank
  surname: Pollmann
  fullname: Pollmann, Frank
  organization: Department of Physics, Technical University of Munich, 85748 Garching, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29601746$$D View this record in MEDLINE/PubMed
BookMark eNo1j91Kw0AQRhdR7I--QtkXSJ3ZbLLNpdRaxYBF6nWZbCZ2pdmU7Ebo21tR4YMD5-LANxGXvvMsxAxhjgjp3WZ_Cm_8VXKMc1Q_MjOgLsQYwRSJQdQjMQnhEwBQ5YtrMVJFDmh0PhbrZeej80M3BLmicEo2B_IsH9h2vnGea7nZU2C57ckHF13n5Xlxz_KFPrqWZUkxOss34qqhQ-DbP07F--Nqu3xKytf18_K-TKyGLCYVmBRrrlATpVmKdsFIzaLQRmlFDCYzKldUAaW1xtoiZEox5k1lsbBIaipmv93jULVc7469a6k_7f4fqW-eZU_5
CitedBy_id crossref_primary_10_1103_PhysRevB_109_L140404
crossref_primary_10_1103_PhysRevB_100_064427
crossref_primary_10_1016_j_actamat_2024_119756
crossref_primary_10_1103_PhysRevApplied_22_034031
crossref_primary_10_1103_PhysRevResearch_2_023175
crossref_primary_10_1103_PhysRevB_109_L241109
crossref_primary_10_1103_PhysRevLett_122_175701
crossref_primary_10_1103_PhysRevD_105_065019
crossref_primary_10_1103_PhysRevB_108_195107
crossref_primary_10_1103_PhysRevLett_129_227203
crossref_primary_10_1007_JHEP05_2019_214
crossref_primary_10_1103_PhysRevB_99_205153
crossref_primary_10_1103_PhysRevB_99_195110
crossref_primary_10_1103_PhysRevA_97_053821
crossref_primary_10_1038_s41534_023_00755_z
crossref_primary_10_1103_PhysRevB_104_L081110
crossref_primary_10_1103_PhysRevB_103_054418
crossref_primary_10_1103_PhysRevB_107_085130
crossref_primary_10_1002_pssb_201800639
crossref_primary_10_1103_PhysRevB_97_214433
crossref_primary_10_21468_SciPostPhys_17_1_010
crossref_primary_10_1103_PhysRevB_100_224413
crossref_primary_10_1103_PhysRevB_105_104420
crossref_primary_10_1103_PhysRevB_111_075158
crossref_primary_10_1103_PhysRevB_98_115163
crossref_primary_10_1103_PhysRevLett_122_080601
crossref_primary_10_1103_PhysRevX_9_021034
crossref_primary_10_1103_PhysRevX_12_031039
crossref_primary_10_1016_j_scib_2023_11_057
crossref_primary_10_1103_PhysRevLett_121_057202
crossref_primary_10_1103_PhysRevLett_132_156503
crossref_primary_10_1103_PhysRevLett_133_026502
crossref_primary_10_1088_1361_648X_ac75a0
crossref_primary_10_1038_s42005_024_01680_z
crossref_primary_10_1103_PhysRevB_102_195135
crossref_primary_10_1103_PhysRevE_104_064121
crossref_primary_10_1103_PhysRevB_108_245152
crossref_primary_10_1103_PhysRevB_98_174421
crossref_primary_10_1103_PhysRevX_9_041037
crossref_primary_10_1088_1674_1056_abf3b8
crossref_primary_10_1103_PhysRevB_101_085105
crossref_primary_10_1103_PhysRevB_98_235108
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.120.115702
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 29601746
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c405t-b0731deb14aa3531c8e1af8947242ae0757262ab0a3d41dc10522e16fbc19c1a2
IngestDate Thu Jan 02 23:11:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-b0731deb14aa3531c8e1af8947242ae0757262ab0a3d41dc10522e16fbc19c1a2
PMID 29601746
ParticipantIDs pubmed_primary_29601746
PublicationCentury 2000
PublicationDate 2018-Mar-16
PublicationDateYYYYMMDD 2018-03-16
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-Mar-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2018
SSID ssj0001268
Score 2.5386379
Snippet We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong...
SourceID pubmed
SourceType Index Database
StartPage 115702
Title Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice
URI https://www.ncbi.nlm.nih.gov/pubmed/29601746
Volume 120
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5TEXwR73fJg2-SudSul0eRqXhDvMDeJG3SbaCdYBUUf7xfLl2nTrzAKKOhoc335eScQ74TQrbCJPZh-TMGX1UiQIkzFmWeZM2QcxXLQCqziebsPDi68Y_bzXat9jasLimSevo6UlfyH1RxD7hqlewfkB10ihv4D3xxBcK4_gpjXVqqlz_pXawt8fjC9AlEeh8QYtwM3qPcvuhikbIFzHvWNbS7Gk9Ep3-vtk9FUe59Kx3UixI3p2m5M3KfgeM9yC-3nxTDWHSqXKox5r2c7XcrdVmr03GaoCuF9bIY4uJZHzbWqW0u9YFsPZdTcykIbjR53BWwtmazEcYM6Pof7KrXGCYQHzKTusKPEVqPsOANXUlCf-yletaSpjr6qX99AEg83BtcPQRhiKuCn1s_VdYum8bIGGIMfWiqzvRMlfm5IHKKcrzSzugX0qWkXSefwhLjnlzPkGkXV9A9S5JZUlP5HJm0aD7Ok8OKKrSiCq2oQg1VaEUVih-oQi1VqKPKArk5aF3vHzF3hgZL4YoXLIEJ5xILsi_ELuxtGikusij2Q8xQoeAwhl7giaQhdqXPZQp32_MUD7Ik5XHKhbdIxvN-rpYJVRKfGmFOJz76DgUii2aSNZVKAxFIKVbIkh2B2wdbKOW2HJvVb1vWyFRFqHUykWFmqg24eUWyafB4B_GAUlQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Easy-Plane+Deconfined+Phase+Transition+on+the+Kagome+Lattice&rft.jtitle=Physical+review+letters&rft.au=Zhang%2C+Xue-Feng&rft.au=He%2C+Yin-Chen&rft.au=Eggert%2C+Sebastian&rft.au=Moessner%2C+Roderich&rft.date=2018-03-16&rft.eissn=1079-7114&rft.volume=120&rft.issue=11&rft.spage=115702&rft_id=info:doi/10.1103%2FPhysRevLett.120.115702&rft_id=info%3Apmid%2F29601746&rft_id=info%3Apmid%2F29601746&rft.externalDocID=29601746