Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate

► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V)5Si3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated. Approximate...

Full description

Saved in:
Bibliographic Details
Published inMaterials in engineering Vol. 41; pp. 338 - 343
Main Authors Huang, Can, Zhang, Yongzhong, Vilar, Rui, Shen, Jianyun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V)5Si3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated. Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti–6Al–4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V)5Si3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V)5Si3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions.
AbstractList ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V)5Si3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated. Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti–6Al–4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V)5Si3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V)5Si3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions.
Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti-6Al-4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V)5Si3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V)5Si3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti-6Al-4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions.
Author Shen, Jianyun
Huang, Can
Vilar, Rui
Zhang, Yongzhong
Author_xml – sequence: 1
  givenname: Can
  surname: Huang
  fullname: Huang, Can
  email: markhuang120@hotmail.com
  organization: General Research Institute for Nonferrous Metals, Beijing 100088, China
– sequence: 2
  givenname: Yongzhong
  surname: Zhang
  fullname: Zhang, Yongzhong
  email: yyzhang@grinm.com
  organization: General Research Institute for Nonferrous Metals, Beijing 100088, China
– sequence: 3
  givenname: Rui
  surname: Vilar
  fullname: Vilar, Rui
  organization: Instituto Superior Técnico, ICEMS – Instituto de Ciencia e Engenharia de Materiais e Superfícies, Lisboa 1049-001, Portugal
– sequence: 4
  givenname: Jianyun
  surname: Shen
  fullname: Shen, Jianyun
  organization: General Research Institute for Nonferrous Metals, Beijing 100088, China
BookMark eNqFkLtOAzEQRV2ABAT-gMIlTYK99j5MgRSFp4REQaC1vN4xceSsg-0EpeMf-EO-BEehogBpNNOce6U5R2iv9z0gdErJiBJanc9HC5U6iKOC0GJEeB6xhw5JUdEhI5U4QEcxzgmhNaXFIZpdhQ2Ozna2f8XvoAJuYabW1gfsDXYqQsDaqQ5P7cskjN2TxTP7OsPQp-CXG6yc8xusvUq5IGLfZ_Dr47Mau7z5C46rNqagEhyjfaNchJOfO0DPN9fTyd3w4fH2fjJ-GGpOyjRUphPaCF7WgrXCcCoa05pKF6ZhDbCqZiUDwpuiqWrKSFmVHWkzXHMuCBMtG6CzXe8y-LcVxCQXNmpwTvXgV1FSwhqW1ZAyoxc7VAcfYwAjtU35EZ9_U9ZlVG6VyrncKZVbpZLwPCKH-a_wMtiFCpv_Ype7GGQHawtBRm2h19DZADrJztu_C74BFFGXtQ
CitedBy_id crossref_primary_10_1142_S0217984921500378
crossref_primary_10_1007_s11665_020_04621_3
crossref_primary_10_1007_s00170_018_2106_7
crossref_primary_10_1016_j_mspro_2014_07_311
crossref_primary_10_1007_s00339_024_08044_y
crossref_primary_10_1515_secm_2015_0032
crossref_primary_10_3390_coatings14060760
crossref_primary_10_1016_j_jmrt_2024_09_089
crossref_primary_10_1016_j_jallcom_2023_172631
crossref_primary_10_1016_j_mtcomm_2015_02_005
crossref_primary_10_1016_j_intermet_2020_106941
crossref_primary_10_1016_j_apsusc_2014_05_196
crossref_primary_10_1016_j_jallcom_2014_02_121
crossref_primary_10_1016_j_actamat_2015_11_040
crossref_primary_10_1142_S0218625X18501639
crossref_primary_10_1088_2053_1591_aad161
crossref_primary_10_1016_j_optlastec_2023_109220
crossref_primary_10_1016_j_surfcoat_2022_128757
crossref_primary_10_1155_2015_647351
crossref_primary_10_3390_met10111464
crossref_primary_10_3390_e20120915
crossref_primary_10_1016_j_jallcom_2015_05_081
crossref_primary_10_1179_1743294415Y_0000000054
crossref_primary_10_12677_MEng_2018_51003
crossref_primary_10_2139_ssrn_4171854
crossref_primary_10_1016_j_msea_2019_138802
crossref_primary_10_1016_j_intermet_2018_11_015
crossref_primary_10_1016_j_surfcoat_2017_09_083
crossref_primary_10_1007_s11661_022_06761_8
crossref_primary_10_1016_j_matchemphys_2021_124341
crossref_primary_10_1016_j_matpr_2020_12_010
crossref_primary_10_1016_j_jmapro_2022_02_006
crossref_primary_10_1134_S2070205124701600
crossref_primary_10_1590_1980_5373_MR_2015_0536
crossref_primary_10_3390_ma15103699
crossref_primary_10_1016_j_intermet_2018_09_005
crossref_primary_10_1016_j_physb_2018_09_014
crossref_primary_10_1002_adem_202101548
crossref_primary_10_3390_coatings14010127
crossref_primary_10_1016_j_triboint_2023_109228
crossref_primary_10_3390_e21010002
crossref_primary_10_1007_s11666_015_0303_6
crossref_primary_10_1016_j_matpr_2018_06_176
crossref_primary_10_1016_j_jmst_2018_11_023
crossref_primary_10_1016_j_wear_2020_203209
crossref_primary_10_1016_j_jallcom_2016_12_196
crossref_primary_10_1080_21663831_2018_1434248
crossref_primary_10_3390_coatings13030496
crossref_primary_10_1088_1361_6463_aa86fc
crossref_primary_10_1016_j_jmrt_2024_04_136
crossref_primary_10_3390_e20120937
crossref_primary_10_1016_j_surfcoat_2023_129569
crossref_primary_10_1016_j_intermet_2024_108535
crossref_primary_10_5781_JWJ_2017_35_4_9
crossref_primary_10_1016_j_surfcoat_2020_125337
crossref_primary_10_1016_j_surfin_2023_103288
crossref_primary_10_1016_j_msea_2018_07_045
crossref_primary_10_1016_j_wear_2018_12_048
crossref_primary_10_1007_s12598_021_01940_9
crossref_primary_10_1016_j_jallcom_2022_164526
crossref_primary_10_1007_s13369_014_1378_y
crossref_primary_10_1039_C5RA14732H
crossref_primary_10_1007_s11837_014_1036_6
crossref_primary_10_1016_j_matdes_2015_05_005
crossref_primary_10_1016_j_scriptamat_2020_09_022
crossref_primary_10_1002_advs_202301053
crossref_primary_10_1002_adem_202301934
crossref_primary_10_3390_met14121432
crossref_primary_10_1108_WJE_01_2021_0040
crossref_primary_10_1016_j_pmatsci_2023_101106
crossref_primary_10_1080_02670844_2019_1631510
crossref_primary_10_3390_met8080603
crossref_primary_10_1016_j_matdes_2012_11_001
crossref_primary_10_1016_j_matlet_2021_131131
crossref_primary_10_1016_j_optlastec_2015_10_005
crossref_primary_10_1590_1980_5373_mr_2021_0080
crossref_primary_10_4028_www_scientific_net_AMR_989_994_246
crossref_primary_10_1016_j_matchemphys_2023_128331
crossref_primary_10_3390_met8020126
crossref_primary_10_1016_j_ceramint_2022_04_049
crossref_primary_10_1016_j_surfcoat_2017_02_068
crossref_primary_10_1007_s12598_018_1194_8
crossref_primary_10_1016_j_actamat_2016_08_081
crossref_primary_10_1016_j_jmrt_2022_01_013
crossref_primary_10_1080_10667857_2022_2151696
crossref_primary_10_1108_RPJ_09_2018_0256
crossref_primary_10_1016_j_apsusc_2018_03_135
crossref_primary_10_3390_cryst11091096
crossref_primary_10_1016_j_mtcomm_2024_109597
crossref_primary_10_1016_j_optlaseng_2017_07_006
crossref_primary_10_1088_1402_4896_ad8382
crossref_primary_10_1016_j_msea_2025_147993
crossref_primary_10_1007_s11663_018_1477_3
crossref_primary_10_1016_j_surfcoat_2014_12_013
crossref_primary_10_1016_j_corsci_2024_112393
crossref_primary_10_1016_j_apsusc_2019_03_338
crossref_primary_10_1007_s11666_022_01463_4
crossref_primary_10_1016_j_jmatprotec_2020_116671
crossref_primary_10_1080_21663831_2019_1604443
crossref_primary_10_1016_j_jallcom_2024_177509
crossref_primary_10_1016_j_surfcoat_2017_01_012
crossref_primary_10_1007_s10853_020_04806_0
crossref_primary_10_1590_1980_5373_mr_2022_0154
crossref_primary_10_1016_j_optlastec_2021_107518
crossref_primary_10_1016_j_surfcoat_2022_129073
crossref_primary_10_1007_s11665_018_3654_6
crossref_primary_10_1007_s11666_022_01342_y
crossref_primary_10_1016_j_micron_2017_10_001
crossref_primary_10_1016_j_actamat_2018_01_014
crossref_primary_10_1007_s11837_023_06314_3
crossref_primary_10_4028_www_scientific_net_AMM_644_650_4766
crossref_primary_10_1016_j_surfcoat_2023_130105
crossref_primary_10_1016_j_surfcoat_2019_01_044
crossref_primary_10_1038_s41598_017_02168_3
crossref_primary_10_1016_j_matchemphys_2020_123571
crossref_primary_10_1016_j_matchar_2022_112115
crossref_primary_10_1007_s12540_022_01370_x
crossref_primary_10_1016_j_apsusc_2016_11_176
crossref_primary_10_1016_j_surfin_2023_103293
crossref_primary_10_1038_s41598_020_66701_7
crossref_primary_10_1557_jmr_2018_330
crossref_primary_10_2320_matertrans_M2015443
crossref_primary_10_1016_j_apsusc_2014_02_140
crossref_primary_10_1007_s12540_020_00873_9
crossref_primary_10_1016_j_jmrt_2023_12_011
crossref_primary_10_3390_ma10111248
crossref_primary_10_3390_met8110934
crossref_primary_10_1016_j_jallcom_2022_168002
crossref_primary_10_1016_j_jmrt_2022_05_107
crossref_primary_10_1016_j_ceramint_2022_10_093
crossref_primary_10_1039_D1NR02459K
crossref_primary_10_1016_j_jmrt_2023_01_162
crossref_primary_10_1016_j_jallcom_2022_163905
crossref_primary_10_1016_j_jmrt_2022_03_046
crossref_primary_10_3390_coatings11121446
crossref_primary_10_3390_coatings13030635
crossref_primary_10_1080_08927022_2019_1566606
crossref_primary_10_1007_s40735_021_00530_7
crossref_primary_10_1016_j_matdes_2016_12_007
crossref_primary_10_3390_ma13214882
crossref_primary_10_1007_s00170_020_04931_9
crossref_primary_10_1016_j_matpr_2023_08_052
crossref_primary_10_1016_j_optlastec_2021_107447
crossref_primary_10_1016_j_jallcom_2019_02_254
crossref_primary_10_1016_j_matchar_2023_113021
crossref_primary_10_1016_j_vacuum_2022_110928
crossref_primary_10_1016_j_jmrt_2024_01_107
crossref_primary_10_1016_j_matdes_2015_07_158
crossref_primary_10_1016_j_mtcomm_2025_111498
crossref_primary_10_1007_s11661_020_06034_2
crossref_primary_10_1016_j_jmst_2021_12_055
crossref_primary_10_3390_coatings9010016
crossref_primary_10_2139_ssrn_4145607
crossref_primary_10_1016_j_surfcoat_2024_131644
crossref_primary_10_1088_2631_8695_ad8066
crossref_primary_10_1016_j_intermet_2021_107457
crossref_primary_10_1007_s12540_020_00900_9
crossref_primary_10_1016_j_surfcoat_2024_130437
crossref_primary_10_1002_advs_202100870
crossref_primary_10_1007_s00340_019_7231_y
crossref_primary_10_4028_www_scientific_net_KEM_871_134
crossref_primary_10_1016_j_matpr_2021_11_234
crossref_primary_10_1007_s11665_022_07301_6
crossref_primary_10_1016_j_apsusc_2020_145307
crossref_primary_10_1016_j_physb_2018_08_044
crossref_primary_10_1007_s11837_020_04005_x
crossref_primary_10_1016_j_surfcoat_2018_08_067
crossref_primary_10_1016_j_jallcom_2016_05_274
crossref_primary_10_1016_j_matchar_2017_09_007
crossref_primary_10_1016_j_ceramint_2018_12_076
crossref_primary_10_1080_02670844_2019_1570611
crossref_primary_10_20964_2022_08_15
crossref_primary_10_1016_j_optlastec_2023_110197
crossref_primary_10_1016_j_apsusc_2020_146084
crossref_primary_10_3390_cryst12091229
crossref_primary_10_1007_s11666_023_01629_8
crossref_primary_10_1016_j_vacuum_2019_109060
crossref_primary_10_1016_j_optlastec_2022_108188
crossref_primary_10_1016_j_compositesb_2022_109795
crossref_primary_10_3390_lubricants10100263
crossref_primary_10_1088_2631_7990_abcca8
crossref_primary_10_1007_s40870_024_00445_7
crossref_primary_10_4028_p_B7oLNl
crossref_primary_10_1016_j_wear_2019_01_112
crossref_primary_10_3390_coatings13010131
crossref_primary_10_1016_j_surfcoat_2014_08_012
crossref_primary_10_1080_02670836_2015_1117194
crossref_primary_10_1016_j_matdes_2012_08_055
crossref_primary_10_1016_j_jallcom_2020_158405
crossref_primary_10_1016_j_apmt_2021_101233
crossref_primary_10_1142_S0218625X20300038
crossref_primary_10_1016_j_jallcom_2020_156342
crossref_primary_10_1016_j_jmrt_2023_11_138
crossref_primary_10_1179_1743294413Y_0000000147
crossref_primary_10_1016_j_matdes_2021_110161
crossref_primary_10_1557_jmr_2019_57
crossref_primary_10_1088_2053_1591_ad75e8
crossref_primary_10_1016_j_matpr_2020_08_763
crossref_primary_10_1016_j_optlastec_2014_10_009
crossref_primary_10_1016_j_matchar_2022_112306
crossref_primary_10_1016_j_jmapro_2021_03_061
crossref_primary_10_1016_j_jallcom_2019_152479
crossref_primary_10_1016_j_ijmecsci_2025_109942
crossref_primary_10_3390_app10020545
crossref_primary_10_3390_met13121987
crossref_primary_10_1016_j_optlastec_2017_09_012
crossref_primary_10_1016_j_surfin_2017_06_012
crossref_primary_10_1016_j_jmst_2020_11_029
crossref_primary_10_1016_j_jallcom_2024_176469
crossref_primary_10_1016_j_physe_2017_07_006
crossref_primary_10_1595_205651324X17219214368431
crossref_primary_10_1016_j_jmapro_2021_06_041
crossref_primary_10_1007_s12598_022_02152_5
crossref_primary_10_1080_1478422X_2022_2057273
crossref_primary_10_1007_s12540_017_6583_2
crossref_primary_10_1016_j_physb_2020_412272
crossref_primary_10_1016_j_jmrt_2022_10_144
crossref_primary_10_1016_j_matchar_2021_111115
crossref_primary_10_1080_02670836_2018_1444921
crossref_primary_10_1016_j_matdes_2013_09_038
crossref_primary_10_1016_j_msea_2019_138681
crossref_primary_10_1016_j_vacuum_2018_06_020
crossref_primary_10_1080_02670836_2023_2227459
crossref_primary_10_3390_ma16083250
crossref_primary_10_1016_j_mtcomm_2023_106098
crossref_primary_10_1016_j_intermet_2025_108744
crossref_primary_10_1016_j_matchar_2016_09_011
crossref_primary_10_3390_met12030460
crossref_primary_10_1080_10402004_2015_1044148
crossref_primary_10_1080_02670844_2016_1213784
crossref_primary_10_1179_1432891714Z_000000000517
crossref_primary_10_1016_j_triboint_2020_106177
crossref_primary_10_1016_j_matdes_2016_12_076
crossref_primary_10_1007_s12598_017_0912_y
crossref_primary_10_3389_fmats_2022_825276
crossref_primary_10_3390_coatings12071023
crossref_primary_10_1007_s40544_024_0884_5
crossref_primary_10_2139_ssrn_4167663
crossref_primary_10_1016_j_optlaseng_2019_03_001
crossref_primary_10_3390_e25010073
crossref_primary_10_3390_met11121980
Cites_doi 10.1016/j.apsusc.2004.08.011
10.1007/BF02667489
10.1016/j.matdes.2011.04.067
10.1016/j.surfcoat.2008.01.014
10.1016/j.matdes.2011.08.020
10.1016/j.surfcoat.2010.08.021
10.1016/j.matdes.2006.10.020
10.1016/j.surfcoat.2011.08.063
10.1016/S0257-8972(01)01512-2
10.1016/j.matdes.2011.12.008
10.1016/S0257-8972(00)00904-X
10.2351/1.1340337
10.2351/1.521888
10.1016/S0257-8972(00)01082-3
10.1016/j.surfcoat.2008.11.012
10.1016/j.surfcoat.2009.01.004
10.1002/adem.200900057
10.1007/BF02667488
10.1016/S0257-8972(02)00006-3
10.1016/j.wear.2009.06.009
10.1016/0043-1648(89)90187-7
10.1016/j.matdes.2009.09.016
10.1002/adem.200300567
10.1016/j.matdes.2010.12.001
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.matdes.2012.04.049
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 343
ExternalDocumentID 10_1016_j_matdes_2012_04_049
S0261306912002920
GroupedDBID -~X
4G.
5VS
7-5
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAKOC
AALRI
AAOAW
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACNNM
ACRLP
ADMUD
ADTZH
AEBSH
AECPX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BKOJK
BLXMC
EFJIC
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FYGXN
G-2
IHE
J1W
M24
M41
OAUVE
Q38
R2-
ROL
SDF
SMS
SPC
SSM
SST
SSZ
T5K
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
7SR
8BQ
8FD
AFXIZ
JG9
ID FETCH-LOGICAL-c405t-afd9cf945793b9f4198fbf6c2f838e367353e0482867130565d0b5797449039b3
IEDL.DBID AIKHN
ISSN 0261-3069
IngestDate Fri Jul 11 07:34:05 EDT 2025
Tue Jul 01 04:23:05 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Fri Feb 23 02:21:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Laser cladding
High-entropy alloy coating
Wear behavior
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-afd9cf945793b9f4198fbf6c2f838e367353e0482867130565d0b5797449039b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1038301205
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1038301205
crossref_citationtrail_10_1016_j_matdes_2012_04_049
crossref_primary_10_1016_j_matdes_2012_04_049
elsevier_sciencedirect_doi_10_1016_j_matdes_2012_04_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2012
2012-10-00
20121001
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: October 2012
PublicationDecade 2010
PublicationTitle Materials in engineering
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Pan, He (b0080) 2011; 32
Huang, Zhang, Vilar (b0005) 2010; 205
Huang, Zhang, Shen, Vilar (b0085) 2011; 206
Wang, Li, Fu (b0105) 2009; 11
Sun, Mao, Yang (b0035) 2002; 155
Sanders, Miodownik (b0125) 1998
Hu, Zhan, Zhang, She, Li (b0060) 2010; 31
ASTM G133–05. Standard test method for linearly reciprocating ball-on-flat sliding wear designation. ASTM International; 2010.
Molian, Hualun (b0025) 1989; 130
Lai, Cheng, Lin, Yeh (b0075) 2008; 202
Ludema (b0135) 1996
Jenabali Jahromi, Khajeh, Mahmoudi (b0010) 2012; 34
Enomoto (b0120) 1992; 13
Lin, Cho (b0110) 2009; 203
Sexton, Byrne, Watkins (b0095) 2001; 13
Zhou, Wang, Liu, Meng, Dai (b0130) 2009; 267
Sun, Yang, Guo, Dong (b0045) 2001; 135
Sun, Lei, Niu (b0030) 2009; 203
Jendrzejewski, Navas, Conde, De Damborenea, śliwiński (b0015) 2008; 29
Tsao, Chen, Chu (b0140) 2012; 36
Vilar (b0100) 1999; 11
Sun, Mao, Yang (b0040) 2002; 150
Tian, Chen, Li, Huo (b0020) 2005; 242
Enomoto (b0115) 1992; 13
Sun, Yang, Guo, Dong (b0050) 2000; 132
Liu, Zhang, Xuan, Wang, Tu (b0055) 2012; 37
Yeh, Chen, Lin, Gan, Chin, Shun (b0070) 2004; 6
Wang (10.1016/j.matdes.2012.04.049_b0105) 2009; 11
Huang (10.1016/j.matdes.2012.04.049_b0005) 2010; 205
Liu (10.1016/j.matdes.2012.04.049_b0055) 2012; 37
Sun (10.1016/j.matdes.2012.04.049_b0030) 2009; 203
Sun (10.1016/j.matdes.2012.04.049_b0035) 2002; 155
Ludema (10.1016/j.matdes.2012.04.049_b0135) 1996
Enomoto (10.1016/j.matdes.2012.04.049_b0120) 1992; 13
Tian (10.1016/j.matdes.2012.04.049_b0020) 2005; 242
Zhou (10.1016/j.matdes.2012.04.049_b0130) 2009; 267
Jenabali Jahromi (10.1016/j.matdes.2012.04.049_b0010) 2012; 34
Zhang (10.1016/j.matdes.2012.04.049_b0080) 2011; 32
Molian (10.1016/j.matdes.2012.04.049_b0025) 1989; 130
Sun (10.1016/j.matdes.2012.04.049_b0040) 2002; 150
Vilar (10.1016/j.matdes.2012.04.049_b0100) 1999; 11
Sun (10.1016/j.matdes.2012.04.049_b0045) 2001; 135
10.1016/j.matdes.2012.04.049_b0090
Yeh (10.1016/j.matdes.2012.04.049_b0070) 2004; 6
Huang (10.1016/j.matdes.2012.04.049_b0085) 2011; 206
Enomoto (10.1016/j.matdes.2012.04.049_b0115) 1992; 13
Jendrzejewski (10.1016/j.matdes.2012.04.049_b0015) 2008; 29
Hu (10.1016/j.matdes.2012.04.049_b0060) 2010; 31
Sun (10.1016/j.matdes.2012.04.049_b0050) 2000; 132
Lai (10.1016/j.matdes.2012.04.049_b0075) 2008; 202
Lin (10.1016/j.matdes.2012.04.049_b0110) 2009; 203
Tsao (10.1016/j.matdes.2012.04.049_b0140) 2012; 36
Sexton (10.1016/j.matdes.2012.04.049_b0095) 2001; 13
Sanders (10.1016/j.matdes.2012.04.049_b0125) 1998
References_xml – volume: 206
  start-page: 1389
  year: 2011
  end-page: 1395
  ident: b0085
  article-title: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy
  publication-title: Surf Coat Technol
– reference: ASTM G133–05. Standard test method for linearly reciprocating ball-on-flat sliding wear designation. ASTM International; 2010.
– volume: 29
  start-page: 187
  year: 2008
  end-page: 192
  ident: b0015
  article-title: Properties of laser-cladded stellite coatings prepared on preheated chromium steel
  publication-title: Mater Des
– volume: 36
  start-page: 854
  year: 2012
  end-page: 858
  ident: b0140
  article-title: Age hardening reaction of the Al
  publication-title: Mater Des
– year: 1996
  ident: b0135
  article-title: Friction, wear, lubrication: a textbook in tribology
– volume: 130
  start-page: 337
  year: 1989
  end-page: 352
  ident: b0025
  article-title: Laser cladding of Ti–6Al–4V with BN for improved wear performance
  publication-title: Wear
– volume: 135
  start-page: 307
  year: 2001
  end-page: 312
  ident: b0045
  article-title: Laser cladding of Ti–6Al–4V alloy with TiC and TiC+NiCrBSi powders
  publication-title: Surf Coat Technol
– volume: 203
  start-page: 1694
  year: 2009
  end-page: 1701
  ident: b0110
  article-title: Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ
  publication-title: Surf Coat Technol
– volume: 242
  start-page: 177
  year: 2005
  end-page: 184
  ident: b0020
  article-title: Research progress on laser surface modification of titanium alloys
  publication-title: Appl Surf Sci
– volume: 150
  start-page: 199
  year: 2002
  end-page: 204
  ident: b0040
  article-title: Microstructural characterization of NiCrBSiC laser clad layer on titanium alloy substrate
  publication-title: Surf Coat Technol
– volume: 11
  start-page: 64
  year: 1999
  ident: b0100
  article-title: Laser cladding
  publication-title: J Laser Appl
– volume: 205
  start-page: 835
  year: 2010
  end-page: 840
  ident: b0005
  article-title: Microstructure and anti-oxidation behavior of laser clad Ni–20Cr coating on molybdenum surface
  publication-title: Surf Coat Technol
– volume: 13
  start-page: 201
  year: 1992
  end-page: 205
  ident: b0115
  article-title: The Si–Ti–V system (silicon–titanium–vanadium)
  publication-title: J Phase Equilib
– volume: 267
  start-page: 1581
  year: 2009
  end-page: 1588
  ident: b0130
  article-title: Friction and wear properties of duplex MAO/CrN coatings sliding against Si
  publication-title: Wear
– volume: 203
  start-page: 1395
  year: 2009
  end-page: 1399
  ident: b0030
  article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO
  publication-title: Surf Coat Technol
– volume: 32
  start-page: 1910
  year: 2011
  end-page: 1915
  ident: b0080
  article-title: Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding
  publication-title: Mater Des
– year: 1998
  ident: b0125
  article-title: CALPHAD, Calculation of phase diagram: a comprehensive guide
– volume: 13
  start-page: 2
  year: 2001
  ident: b0095
  article-title: Alloy development by laser cladding: an overview
  publication-title: J Laser Appl
– volume: 13
  start-page: 195
  year: 1992
  end-page: 200
  ident: b0120
  article-title: The Cr–Ti–V system (chromium–titanium–vanadium)
  publication-title: J Phase Equilib
– volume: 132
  start-page: 251
  year: 2000
  end-page: 255
  ident: b0050
  article-title: Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate
  publication-title: Surf Coat Technol
– volume: 155
  start-page: 203
  year: 2002
  end-page: 207
  ident: b0035
  article-title: Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC–TiC layer on titanium alloy substrate
  publication-title: Surf Coat Technol
– volume: 202
  start-page: 3732
  year: 2008
  end-page: 3738
  ident: b0075
  article-title: Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings
  publication-title: Surf Coat Technol
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: b0070
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv Eng Mater
– volume: 11
  start-page: 641
  year: 2009
  end-page: 644
  ident: b0105
  article-title: Solid solution or intermetallics in a high-entropy alloy
  publication-title: Adv Eng Mater
– volume: 31
  start-page: 1599
  year: 2010
  end-page: 1602
  ident: b0060
  article-title: Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys
  publication-title: Mater Des
– volume: 37
  start-page: 268
  year: 2012
  end-page: 273
  ident: b0055
  article-title: In situ synthesis of TiN/Ti
  publication-title: Mater Des
– volume: 34
  start-page: 857
  year: 2012
  end-page: 862
  ident: b0010
  article-title: Effect of different pre-heat treatment processes on the hardness of AISI 410 martensitic stainless steels surface-treated using pulsed neodymium-doped yttrium aluminum garnet laser
  publication-title: Mater Des
– volume: 242
  start-page: 177
  year: 2005
  ident: 10.1016/j.matdes.2012.04.049_b0020
  article-title: Research progress on laser surface modification of titanium alloys
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2004.08.011
– volume: 13
  start-page: 201
  year: 1992
  ident: 10.1016/j.matdes.2012.04.049_b0115
  article-title: The Si–Ti–V system (silicon–titanium–vanadium)
  publication-title: J Phase Equilib
  doi: 10.1007/BF02667489
– volume: 36
  start-page: 854
  year: 2012
  ident: 10.1016/j.matdes.2012.04.049_b0140
  article-title: Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2011.04.067
– volume: 202
  start-page: 3732
  year: 2008
  ident: 10.1016/j.matdes.2012.04.049_b0075
  article-title: Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2008.01.014
– volume: 34
  start-page: 857
  year: 2012
  ident: 10.1016/j.matdes.2012.04.049_b0010
  article-title: Effect of different pre-heat treatment processes on the hardness of AISI 410 martensitic stainless steels surface-treated using pulsed neodymium-doped yttrium aluminum garnet laser
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2011.08.020
– volume: 205
  start-page: 835
  year: 2010
  ident: 10.1016/j.matdes.2012.04.049_b0005
  article-title: Microstructure and anti-oxidation behavior of laser clad Ni–20Cr coating on molybdenum surface
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2010.08.021
– volume: 29
  start-page: 187
  year: 2008
  ident: 10.1016/j.matdes.2012.04.049_b0015
  article-title: Properties of laser-cladded stellite coatings prepared on preheated chromium steel
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2006.10.020
– volume: 206
  start-page: 1389
  year: 2011
  ident: 10.1016/j.matdes.2012.04.049_b0085
  article-title: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2011.08.063
– year: 1998
  ident: 10.1016/j.matdes.2012.04.049_b0125
– ident: 10.1016/j.matdes.2012.04.049_b0090
– volume: 150
  start-page: 199
  year: 2002
  ident: 10.1016/j.matdes.2012.04.049_b0040
  article-title: Microstructural characterization of NiCrBSiC laser clad layer on titanium alloy substrate
  publication-title: Surf Coat Technol
  doi: 10.1016/S0257-8972(01)01512-2
– volume: 37
  start-page: 268
  year: 2012
  ident: 10.1016/j.matdes.2012.04.049_b0055
  article-title: In situ synthesis of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2011.12.008
– volume: 132
  start-page: 251
  year: 2000
  ident: 10.1016/j.matdes.2012.04.049_b0050
  article-title: Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate
  publication-title: Surf Coat Technol
  doi: 10.1016/S0257-8972(00)00904-X
– year: 1996
  ident: 10.1016/j.matdes.2012.04.049_b0135
– volume: 13
  start-page: 2
  year: 2001
  ident: 10.1016/j.matdes.2012.04.049_b0095
  article-title: Alloy development by laser cladding: an overview
  publication-title: J Laser Appl
  doi: 10.2351/1.1340337
– volume: 11
  start-page: 64
  year: 1999
  ident: 10.1016/j.matdes.2012.04.049_b0100
  article-title: Laser cladding
  publication-title: J Laser Appl
  doi: 10.2351/1.521888
– volume: 135
  start-page: 307
  year: 2001
  ident: 10.1016/j.matdes.2012.04.049_b0045
  article-title: Laser cladding of Ti–6Al–4V alloy with TiC and TiC+NiCrBSi powders
  publication-title: Surf Coat Technol
  doi: 10.1016/S0257-8972(00)01082-3
– volume: 203
  start-page: 1395
  year: 2009
  ident: 10.1016/j.matdes.2012.04.049_b0030
  article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2008.11.012
– volume: 203
  start-page: 1694
  year: 2009
  ident: 10.1016/j.matdes.2012.04.049_b0110
  article-title: Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2009.01.004
– volume: 11
  start-page: 641
  year: 2009
  ident: 10.1016/j.matdes.2012.04.049_b0105
  article-title: Solid solution or intermetallics in a high-entropy alloy
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200900057
– volume: 13
  start-page: 195
  year: 1992
  ident: 10.1016/j.matdes.2012.04.049_b0120
  article-title: The Cr–Ti–V system (chromium–titanium–vanadium)
  publication-title: J Phase Equilib
  doi: 10.1007/BF02667488
– volume: 155
  start-page: 203
  year: 2002
  ident: 10.1016/j.matdes.2012.04.049_b0035
  article-title: Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC–TiC layer on titanium alloy substrate
  publication-title: Surf Coat Technol
  doi: 10.1016/S0257-8972(02)00006-3
– volume: 267
  start-page: 1581
  year: 2009
  ident: 10.1016/j.matdes.2012.04.049_b0130
  article-title: Friction and wear properties of duplex MAO/CrN coatings sliding against Si3N4 ceramic balls in air, water and oil
  publication-title: Wear
  doi: 10.1016/j.wear.2009.06.009
– volume: 130
  start-page: 337
  year: 1989
  ident: 10.1016/j.matdes.2012.04.049_b0025
  article-title: Laser cladding of Ti–6Al–4V with BN for improved wear performance
  publication-title: Wear
  doi: 10.1016/0043-1648(89)90187-7
– volume: 31
  start-page: 1599
  year: 2010
  ident: 10.1016/j.matdes.2012.04.049_b0060
  article-title: Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2009.09.016
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.matdes.2012.04.049_b0070
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200300567
– volume: 32
  start-page: 1910
  year: 2011
  ident: 10.1016/j.matdes.2012.04.049_b0080
  article-title: Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.12.001
SSID ssj0017112
Score 2.5097015
Snippet ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V)5Si3 forms because the formation is accompanied of large...
Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti-6Al-4V alloy. The analysis of the microstructure...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 338
SubjectTerms Coatings
Dispersion
Entropy
Frictional wear
High-entropy alloy coating
Laser beam cladding
Laser cladding
Sliding friction
Titanium base alloys
Wear behavior
Wear resistance
Title Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate
URI https://dx.doi.org/10.1016/j.matdes.2012.04.049
https://www.proquest.com/docview/1038301205
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA6lfdEH8cR6EcHXpdtN9sjjUi1VsS896FvI7iZYKbulB9I3_4P_0F_izB5FBRGEsLBLsoTJZI7MzBdCbmzVdhOVOBYzSllcaNsSys5dFdBeCIvLscD5qe_1Rvxh4k5qpFPVwmBaZSn7C5meS-vyS6ukZms-nbYG6D2AwSvamGcgHPDbGw4THrB2I7x_7PW3wQS_nQc9y6MWT1QVdHmaF9iFiUbcbjwU5NDEbxrqh6zOFVB3n-yVliMNi8kdkJpOD8nuFzzBI_J8u9hQMBxRH9FX4GFaVeHTzFCwk_WCxjOV0OF03FmEs8GUIlwxxRPebL6hGITf0DhTmAu9pFkKHT_e3r1wBk8-pkuQMjma7TEZde-GnZ5VXqVgxWCRrSxlEhEbwV3YjpEwvC0CExkvdkzAAs08n7lMw2Z2EO4OvQo3sSPo7HMubCYidkLqaZbqU0L9KNCKJ442iNbmgHsYMVvEcRAY43ATNQmryCfjEmccr7uYySqh7EUWRJdIdGlzaKJJrO2oeYGz8Ud_v1oZ-Y1fJKiCP0ZeVwspYSthfESlOlsvJWLFMywmds_-_fdzsoNvRbrfBamvFmt9CWbLKroq2fITaYzr2Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH8Yn1uYLX0DS7eeyxVEu1tRereFs2yS5WQlLaivTmf_Af-kucyaOoIAUh5JDshjC7O_PNzsy3hFzaquXGKnYsZpSyuNC2JZSduypgvZAWl2OB893Q6z3w2yf3qUY6VS0MplWWur_Q6bm2Lp80S2k2J-Nx8x69BwC8ooV5BsIBv30N2ancOllr3_R7w2UwwW_lQc9yq8UTVQVdnuYFuDDWyNuNm4IcLvGXhfqlq3MD1N0mWyVypO3i53ZITae7ZPMbn-Aeeb6aLigAR7RH9A3mMK2q8GlmKOBkPaVRomI6Gj92pu3kfkyRrpjiDm82WVAMwi9olCnMhZ7RLIWGn-8fXjuBO3-kM9AyOZvtPnnoXo86Pas8SsGKAJHNLWViERnBXViOoTC8JQITGi9yTMACzTyfuUzDYnaQ7g69Cje2Q2jscy5sJkJ2QOpplupDQv0w0IrHjjbI1uaAexgyW0RREBjjcBM2CKvEJ6OSZxyPu0hklVD2IguhSxS6tDlcokGsZa9JwbOxor1fjYz8MV8kmIIVPS-qgZSwlDA-olKdvc4kcsUzLCZ2j_799XOy3hvdDeTgZtg_Jhv4pkj9OyH1-fRVnwKEmYdn5RT9Ao347r8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dry+sliding+wear+behavior+of+laser+clad+TiVCrAlSi+high+entropy+alloy+coatings+on+Ti%E2%80%936Al%E2%80%934V+substrate&rft.jtitle=Materials+in+engineering&rft.au=Huang%2C+Can&rft.au=Zhang%2C+Yongzhong&rft.au=Vilar%2C+Rui&rft.au=Shen%2C+Jianyun&rft.date=2012-10-01&rft.pub=Elsevier+Ltd&rft.issn=0261-3069&rft.volume=41&rft.spage=338&rft.epage=343&rft_id=info:doi/10.1016%2Fj.matdes.2012.04.049&rft.externalDocID=S0261306912002920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon