Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate
► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V)5Si3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated. Approximate...
Saved in:
Published in | Materials in engineering Vol. 41; pp. 338 - 343 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V)5Si3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated.
Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti–6Al–4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V)5Si3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V)5Si3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions. |
---|---|
AbstractList | ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V)5Si3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated.
Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti–6Al–4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V)5Si3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V)5Si3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions. Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti-6Al-4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V)5Si3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V)5Si3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti-6Al-4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions. |
Author | Shen, Jianyun Huang, Can Vilar, Rui Zhang, Yongzhong |
Author_xml | – sequence: 1 givenname: Can surname: Huang fullname: Huang, Can email: markhuang120@hotmail.com organization: General Research Institute for Nonferrous Metals, Beijing 100088, China – sequence: 2 givenname: Yongzhong surname: Zhang fullname: Zhang, Yongzhong email: yyzhang@grinm.com organization: General Research Institute for Nonferrous Metals, Beijing 100088, China – sequence: 3 givenname: Rui surname: Vilar fullname: Vilar, Rui organization: Instituto Superior Técnico, ICEMS – Instituto de Ciencia e Engenharia de Materiais e Superfícies, Lisboa 1049-001, Portugal – sequence: 4 givenname: Jianyun surname: Shen fullname: Shen, Jianyun organization: General Research Institute for Nonferrous Metals, Beijing 100088, China |
BookMark | eNqFkLtOAzEQRV2ABAT-gMIlTYK99j5MgRSFp4REQaC1vN4xceSsg-0EpeMf-EO-BEehogBpNNOce6U5R2iv9z0gdErJiBJanc9HC5U6iKOC0GJEeB6xhw5JUdEhI5U4QEcxzgmhNaXFIZpdhQ2Ozna2f8XvoAJuYabW1gfsDXYqQsDaqQ5P7cskjN2TxTP7OsPQp-CXG6yc8xusvUq5IGLfZ_Dr47Mau7z5C46rNqagEhyjfaNchJOfO0DPN9fTyd3w4fH2fjJ-GGpOyjRUphPaCF7WgrXCcCoa05pKF6ZhDbCqZiUDwpuiqWrKSFmVHWkzXHMuCBMtG6CzXe8y-LcVxCQXNmpwTvXgV1FSwhqW1ZAyoxc7VAcfYwAjtU35EZ9_U9ZlVG6VyrncKZVbpZLwPCKH-a_wMtiFCpv_Ype7GGQHawtBRm2h19DZADrJztu_C74BFFGXtQ |
CitedBy_id | crossref_primary_10_1142_S0217984921500378 crossref_primary_10_1007_s11665_020_04621_3 crossref_primary_10_1007_s00170_018_2106_7 crossref_primary_10_1016_j_mspro_2014_07_311 crossref_primary_10_1007_s00339_024_08044_y crossref_primary_10_1515_secm_2015_0032 crossref_primary_10_3390_coatings14060760 crossref_primary_10_1016_j_jmrt_2024_09_089 crossref_primary_10_1016_j_jallcom_2023_172631 crossref_primary_10_1016_j_mtcomm_2015_02_005 crossref_primary_10_1016_j_intermet_2020_106941 crossref_primary_10_1016_j_apsusc_2014_05_196 crossref_primary_10_1016_j_jallcom_2014_02_121 crossref_primary_10_1016_j_actamat_2015_11_040 crossref_primary_10_1142_S0218625X18501639 crossref_primary_10_1088_2053_1591_aad161 crossref_primary_10_1016_j_optlastec_2023_109220 crossref_primary_10_1016_j_surfcoat_2022_128757 crossref_primary_10_1155_2015_647351 crossref_primary_10_3390_met10111464 crossref_primary_10_3390_e20120915 crossref_primary_10_1016_j_jallcom_2015_05_081 crossref_primary_10_1179_1743294415Y_0000000054 crossref_primary_10_12677_MEng_2018_51003 crossref_primary_10_2139_ssrn_4171854 crossref_primary_10_1016_j_msea_2019_138802 crossref_primary_10_1016_j_intermet_2018_11_015 crossref_primary_10_1016_j_surfcoat_2017_09_083 crossref_primary_10_1007_s11661_022_06761_8 crossref_primary_10_1016_j_matchemphys_2021_124341 crossref_primary_10_1016_j_matpr_2020_12_010 crossref_primary_10_1016_j_jmapro_2022_02_006 crossref_primary_10_1134_S2070205124701600 crossref_primary_10_1590_1980_5373_MR_2015_0536 crossref_primary_10_3390_ma15103699 crossref_primary_10_1016_j_intermet_2018_09_005 crossref_primary_10_1016_j_physb_2018_09_014 crossref_primary_10_1002_adem_202101548 crossref_primary_10_3390_coatings14010127 crossref_primary_10_1016_j_triboint_2023_109228 crossref_primary_10_3390_e21010002 crossref_primary_10_1007_s11666_015_0303_6 crossref_primary_10_1016_j_matpr_2018_06_176 crossref_primary_10_1016_j_jmst_2018_11_023 crossref_primary_10_1016_j_wear_2020_203209 crossref_primary_10_1016_j_jallcom_2016_12_196 crossref_primary_10_1080_21663831_2018_1434248 crossref_primary_10_3390_coatings13030496 crossref_primary_10_1088_1361_6463_aa86fc crossref_primary_10_1016_j_jmrt_2024_04_136 crossref_primary_10_3390_e20120937 crossref_primary_10_1016_j_surfcoat_2023_129569 crossref_primary_10_1016_j_intermet_2024_108535 crossref_primary_10_5781_JWJ_2017_35_4_9 crossref_primary_10_1016_j_surfcoat_2020_125337 crossref_primary_10_1016_j_surfin_2023_103288 crossref_primary_10_1016_j_msea_2018_07_045 crossref_primary_10_1016_j_wear_2018_12_048 crossref_primary_10_1007_s12598_021_01940_9 crossref_primary_10_1016_j_jallcom_2022_164526 crossref_primary_10_1007_s13369_014_1378_y crossref_primary_10_1039_C5RA14732H crossref_primary_10_1007_s11837_014_1036_6 crossref_primary_10_1016_j_matdes_2015_05_005 crossref_primary_10_1016_j_scriptamat_2020_09_022 crossref_primary_10_1002_advs_202301053 crossref_primary_10_1002_adem_202301934 crossref_primary_10_3390_met14121432 crossref_primary_10_1108_WJE_01_2021_0040 crossref_primary_10_1016_j_pmatsci_2023_101106 crossref_primary_10_1080_02670844_2019_1631510 crossref_primary_10_3390_met8080603 crossref_primary_10_1016_j_matdes_2012_11_001 crossref_primary_10_1016_j_matlet_2021_131131 crossref_primary_10_1016_j_optlastec_2015_10_005 crossref_primary_10_1590_1980_5373_mr_2021_0080 crossref_primary_10_4028_www_scientific_net_AMR_989_994_246 crossref_primary_10_1016_j_matchemphys_2023_128331 crossref_primary_10_3390_met8020126 crossref_primary_10_1016_j_ceramint_2022_04_049 crossref_primary_10_1016_j_surfcoat_2017_02_068 crossref_primary_10_1007_s12598_018_1194_8 crossref_primary_10_1016_j_actamat_2016_08_081 crossref_primary_10_1016_j_jmrt_2022_01_013 crossref_primary_10_1080_10667857_2022_2151696 crossref_primary_10_1108_RPJ_09_2018_0256 crossref_primary_10_1016_j_apsusc_2018_03_135 crossref_primary_10_3390_cryst11091096 crossref_primary_10_1016_j_mtcomm_2024_109597 crossref_primary_10_1016_j_optlaseng_2017_07_006 crossref_primary_10_1088_1402_4896_ad8382 crossref_primary_10_1016_j_msea_2025_147993 crossref_primary_10_1007_s11663_018_1477_3 crossref_primary_10_1016_j_surfcoat_2014_12_013 crossref_primary_10_1016_j_corsci_2024_112393 crossref_primary_10_1016_j_apsusc_2019_03_338 crossref_primary_10_1007_s11666_022_01463_4 crossref_primary_10_1016_j_jmatprotec_2020_116671 crossref_primary_10_1080_21663831_2019_1604443 crossref_primary_10_1016_j_jallcom_2024_177509 crossref_primary_10_1016_j_surfcoat_2017_01_012 crossref_primary_10_1007_s10853_020_04806_0 crossref_primary_10_1590_1980_5373_mr_2022_0154 crossref_primary_10_1016_j_optlastec_2021_107518 crossref_primary_10_1016_j_surfcoat_2022_129073 crossref_primary_10_1007_s11665_018_3654_6 crossref_primary_10_1007_s11666_022_01342_y crossref_primary_10_1016_j_micron_2017_10_001 crossref_primary_10_1016_j_actamat_2018_01_014 crossref_primary_10_1007_s11837_023_06314_3 crossref_primary_10_4028_www_scientific_net_AMM_644_650_4766 crossref_primary_10_1016_j_surfcoat_2023_130105 crossref_primary_10_1016_j_surfcoat_2019_01_044 crossref_primary_10_1038_s41598_017_02168_3 crossref_primary_10_1016_j_matchemphys_2020_123571 crossref_primary_10_1016_j_matchar_2022_112115 crossref_primary_10_1007_s12540_022_01370_x crossref_primary_10_1016_j_apsusc_2016_11_176 crossref_primary_10_1016_j_surfin_2023_103293 crossref_primary_10_1038_s41598_020_66701_7 crossref_primary_10_1557_jmr_2018_330 crossref_primary_10_2320_matertrans_M2015443 crossref_primary_10_1016_j_apsusc_2014_02_140 crossref_primary_10_1007_s12540_020_00873_9 crossref_primary_10_1016_j_jmrt_2023_12_011 crossref_primary_10_3390_ma10111248 crossref_primary_10_3390_met8110934 crossref_primary_10_1016_j_jallcom_2022_168002 crossref_primary_10_1016_j_jmrt_2022_05_107 crossref_primary_10_1016_j_ceramint_2022_10_093 crossref_primary_10_1039_D1NR02459K crossref_primary_10_1016_j_jmrt_2023_01_162 crossref_primary_10_1016_j_jallcom_2022_163905 crossref_primary_10_1016_j_jmrt_2022_03_046 crossref_primary_10_3390_coatings11121446 crossref_primary_10_3390_coatings13030635 crossref_primary_10_1080_08927022_2019_1566606 crossref_primary_10_1007_s40735_021_00530_7 crossref_primary_10_1016_j_matdes_2016_12_007 crossref_primary_10_3390_ma13214882 crossref_primary_10_1007_s00170_020_04931_9 crossref_primary_10_1016_j_matpr_2023_08_052 crossref_primary_10_1016_j_optlastec_2021_107447 crossref_primary_10_1016_j_jallcom_2019_02_254 crossref_primary_10_1016_j_matchar_2023_113021 crossref_primary_10_1016_j_vacuum_2022_110928 crossref_primary_10_1016_j_jmrt_2024_01_107 crossref_primary_10_1016_j_matdes_2015_07_158 crossref_primary_10_1016_j_mtcomm_2025_111498 crossref_primary_10_1007_s11661_020_06034_2 crossref_primary_10_1016_j_jmst_2021_12_055 crossref_primary_10_3390_coatings9010016 crossref_primary_10_2139_ssrn_4145607 crossref_primary_10_1016_j_surfcoat_2024_131644 crossref_primary_10_1088_2631_8695_ad8066 crossref_primary_10_1016_j_intermet_2021_107457 crossref_primary_10_1007_s12540_020_00900_9 crossref_primary_10_1016_j_surfcoat_2024_130437 crossref_primary_10_1002_advs_202100870 crossref_primary_10_1007_s00340_019_7231_y crossref_primary_10_4028_www_scientific_net_KEM_871_134 crossref_primary_10_1016_j_matpr_2021_11_234 crossref_primary_10_1007_s11665_022_07301_6 crossref_primary_10_1016_j_apsusc_2020_145307 crossref_primary_10_1016_j_physb_2018_08_044 crossref_primary_10_1007_s11837_020_04005_x crossref_primary_10_1016_j_surfcoat_2018_08_067 crossref_primary_10_1016_j_jallcom_2016_05_274 crossref_primary_10_1016_j_matchar_2017_09_007 crossref_primary_10_1016_j_ceramint_2018_12_076 crossref_primary_10_1080_02670844_2019_1570611 crossref_primary_10_20964_2022_08_15 crossref_primary_10_1016_j_optlastec_2023_110197 crossref_primary_10_1016_j_apsusc_2020_146084 crossref_primary_10_3390_cryst12091229 crossref_primary_10_1007_s11666_023_01629_8 crossref_primary_10_1016_j_vacuum_2019_109060 crossref_primary_10_1016_j_optlastec_2022_108188 crossref_primary_10_1016_j_compositesb_2022_109795 crossref_primary_10_3390_lubricants10100263 crossref_primary_10_1088_2631_7990_abcca8 crossref_primary_10_1007_s40870_024_00445_7 crossref_primary_10_4028_p_B7oLNl crossref_primary_10_1016_j_wear_2019_01_112 crossref_primary_10_3390_coatings13010131 crossref_primary_10_1016_j_surfcoat_2014_08_012 crossref_primary_10_1080_02670836_2015_1117194 crossref_primary_10_1016_j_matdes_2012_08_055 crossref_primary_10_1016_j_jallcom_2020_158405 crossref_primary_10_1016_j_apmt_2021_101233 crossref_primary_10_1142_S0218625X20300038 crossref_primary_10_1016_j_jallcom_2020_156342 crossref_primary_10_1016_j_jmrt_2023_11_138 crossref_primary_10_1179_1743294413Y_0000000147 crossref_primary_10_1016_j_matdes_2021_110161 crossref_primary_10_1557_jmr_2019_57 crossref_primary_10_1088_2053_1591_ad75e8 crossref_primary_10_1016_j_matpr_2020_08_763 crossref_primary_10_1016_j_optlastec_2014_10_009 crossref_primary_10_1016_j_matchar_2022_112306 crossref_primary_10_1016_j_jmapro_2021_03_061 crossref_primary_10_1016_j_jallcom_2019_152479 crossref_primary_10_1016_j_ijmecsci_2025_109942 crossref_primary_10_3390_app10020545 crossref_primary_10_3390_met13121987 crossref_primary_10_1016_j_optlastec_2017_09_012 crossref_primary_10_1016_j_surfin_2017_06_012 crossref_primary_10_1016_j_jmst_2020_11_029 crossref_primary_10_1016_j_jallcom_2024_176469 crossref_primary_10_1016_j_physe_2017_07_006 crossref_primary_10_1595_205651324X17219214368431 crossref_primary_10_1016_j_jmapro_2021_06_041 crossref_primary_10_1007_s12598_022_02152_5 crossref_primary_10_1080_1478422X_2022_2057273 crossref_primary_10_1007_s12540_017_6583_2 crossref_primary_10_1016_j_physb_2020_412272 crossref_primary_10_1016_j_jmrt_2022_10_144 crossref_primary_10_1016_j_matchar_2021_111115 crossref_primary_10_1080_02670836_2018_1444921 crossref_primary_10_1016_j_matdes_2013_09_038 crossref_primary_10_1016_j_msea_2019_138681 crossref_primary_10_1016_j_vacuum_2018_06_020 crossref_primary_10_1080_02670836_2023_2227459 crossref_primary_10_3390_ma16083250 crossref_primary_10_1016_j_mtcomm_2023_106098 crossref_primary_10_1016_j_intermet_2025_108744 crossref_primary_10_1016_j_matchar_2016_09_011 crossref_primary_10_3390_met12030460 crossref_primary_10_1080_10402004_2015_1044148 crossref_primary_10_1080_02670844_2016_1213784 crossref_primary_10_1179_1432891714Z_000000000517 crossref_primary_10_1016_j_triboint_2020_106177 crossref_primary_10_1016_j_matdes_2016_12_076 crossref_primary_10_1007_s12598_017_0912_y crossref_primary_10_3389_fmats_2022_825276 crossref_primary_10_3390_coatings12071023 crossref_primary_10_1007_s40544_024_0884_5 crossref_primary_10_2139_ssrn_4167663 crossref_primary_10_1016_j_optlaseng_2019_03_001 crossref_primary_10_3390_e25010073 crossref_primary_10_3390_met11121980 |
Cites_doi | 10.1016/j.apsusc.2004.08.011 10.1007/BF02667489 10.1016/j.matdes.2011.04.067 10.1016/j.surfcoat.2008.01.014 10.1016/j.matdes.2011.08.020 10.1016/j.surfcoat.2010.08.021 10.1016/j.matdes.2006.10.020 10.1016/j.surfcoat.2011.08.063 10.1016/S0257-8972(01)01512-2 10.1016/j.matdes.2011.12.008 10.1016/S0257-8972(00)00904-X 10.2351/1.1340337 10.2351/1.521888 10.1016/S0257-8972(00)01082-3 10.1016/j.surfcoat.2008.11.012 10.1016/j.surfcoat.2009.01.004 10.1002/adem.200900057 10.1007/BF02667488 10.1016/S0257-8972(02)00006-3 10.1016/j.wear.2009.06.009 10.1016/0043-1648(89)90187-7 10.1016/j.matdes.2009.09.016 10.1002/adem.200300567 10.1016/j.matdes.2010.12.001 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd |
Copyright_xml | – notice: 2012 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.matdes.2012.04.049 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 343 |
ExternalDocumentID | 10_1016_j_matdes_2012_04_049 S0261306912002920 |
GroupedDBID | -~X 4G. 5VS 7-5 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAKOC AALRI AAOAW AAQXK AAXUO ABEFU ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACNNM ACRLP ADMUD ADTZH AEBSH AECPX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BKOJK BLXMC EFJIC EO8 EO9 EP2 EP3 FDB FGOYB FIRID FYGXN G-2 IHE J1W M24 M41 OAUVE Q38 R2- ROL SDF SMS SPC SSM SST SSZ T5K AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH 7SR 8BQ 8FD AFXIZ JG9 |
ID | FETCH-LOGICAL-c405t-afd9cf945793b9f4198fbf6c2f838e367353e0482867130565d0b5797449039b3 |
IEDL.DBID | AIKHN |
ISSN | 0261-3069 |
IngestDate | Fri Jul 11 07:34:05 EDT 2025 Tue Jul 01 04:23:05 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Fri Feb 23 02:21:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Laser cladding High-entropy alloy coating Wear behavior |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-afd9cf945793b9f4198fbf6c2f838e367353e0482867130565d0b5797449039b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1038301205 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1038301205 crossref_citationtrail_10_1016_j_matdes_2012_04_049 crossref_primary_10_1016_j_matdes_2012_04_049 elsevier_sciencedirect_doi_10_1016_j_matdes_2012_04_049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2012 2012-10-00 20121001 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: October 2012 |
PublicationDecade | 2010 |
PublicationTitle | Materials in engineering |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Pan, He (b0080) 2011; 32 Huang, Zhang, Vilar (b0005) 2010; 205 Huang, Zhang, Shen, Vilar (b0085) 2011; 206 Wang, Li, Fu (b0105) 2009; 11 Sun, Mao, Yang (b0035) 2002; 155 Sanders, Miodownik (b0125) 1998 Hu, Zhan, Zhang, She, Li (b0060) 2010; 31 ASTM G133–05. Standard test method for linearly reciprocating ball-on-flat sliding wear designation. ASTM International; 2010. Molian, Hualun (b0025) 1989; 130 Lai, Cheng, Lin, Yeh (b0075) 2008; 202 Ludema (b0135) 1996 Jenabali Jahromi, Khajeh, Mahmoudi (b0010) 2012; 34 Enomoto (b0120) 1992; 13 Lin, Cho (b0110) 2009; 203 Sexton, Byrne, Watkins (b0095) 2001; 13 Zhou, Wang, Liu, Meng, Dai (b0130) 2009; 267 Sun, Yang, Guo, Dong (b0045) 2001; 135 Sun, Lei, Niu (b0030) 2009; 203 Jendrzejewski, Navas, Conde, De Damborenea, śliwiński (b0015) 2008; 29 Tsao, Chen, Chu (b0140) 2012; 36 Vilar (b0100) 1999; 11 Sun, Mao, Yang (b0040) 2002; 150 Tian, Chen, Li, Huo (b0020) 2005; 242 Enomoto (b0115) 1992; 13 Sun, Yang, Guo, Dong (b0050) 2000; 132 Liu, Zhang, Xuan, Wang, Tu (b0055) 2012; 37 Yeh, Chen, Lin, Gan, Chin, Shun (b0070) 2004; 6 Wang (10.1016/j.matdes.2012.04.049_b0105) 2009; 11 Huang (10.1016/j.matdes.2012.04.049_b0005) 2010; 205 Liu (10.1016/j.matdes.2012.04.049_b0055) 2012; 37 Sun (10.1016/j.matdes.2012.04.049_b0030) 2009; 203 Sun (10.1016/j.matdes.2012.04.049_b0035) 2002; 155 Ludema (10.1016/j.matdes.2012.04.049_b0135) 1996 Enomoto (10.1016/j.matdes.2012.04.049_b0120) 1992; 13 Tian (10.1016/j.matdes.2012.04.049_b0020) 2005; 242 Zhou (10.1016/j.matdes.2012.04.049_b0130) 2009; 267 Jenabali Jahromi (10.1016/j.matdes.2012.04.049_b0010) 2012; 34 Zhang (10.1016/j.matdes.2012.04.049_b0080) 2011; 32 Molian (10.1016/j.matdes.2012.04.049_b0025) 1989; 130 Sun (10.1016/j.matdes.2012.04.049_b0040) 2002; 150 Vilar (10.1016/j.matdes.2012.04.049_b0100) 1999; 11 Sun (10.1016/j.matdes.2012.04.049_b0045) 2001; 135 10.1016/j.matdes.2012.04.049_b0090 Yeh (10.1016/j.matdes.2012.04.049_b0070) 2004; 6 Huang (10.1016/j.matdes.2012.04.049_b0085) 2011; 206 Enomoto (10.1016/j.matdes.2012.04.049_b0115) 1992; 13 Jendrzejewski (10.1016/j.matdes.2012.04.049_b0015) 2008; 29 Hu (10.1016/j.matdes.2012.04.049_b0060) 2010; 31 Sun (10.1016/j.matdes.2012.04.049_b0050) 2000; 132 Lai (10.1016/j.matdes.2012.04.049_b0075) 2008; 202 Lin (10.1016/j.matdes.2012.04.049_b0110) 2009; 203 Tsao (10.1016/j.matdes.2012.04.049_b0140) 2012; 36 Sexton (10.1016/j.matdes.2012.04.049_b0095) 2001; 13 Sanders (10.1016/j.matdes.2012.04.049_b0125) 1998 |
References_xml | – volume: 206 start-page: 1389 year: 2011 end-page: 1395 ident: b0085 article-title: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy publication-title: Surf Coat Technol – reference: ASTM G133–05. Standard test method for linearly reciprocating ball-on-flat sliding wear designation. ASTM International; 2010. – volume: 29 start-page: 187 year: 2008 end-page: 192 ident: b0015 article-title: Properties of laser-cladded stellite coatings prepared on preheated chromium steel publication-title: Mater Des – volume: 36 start-page: 854 year: 2012 end-page: 858 ident: b0140 article-title: Age hardening reaction of the Al publication-title: Mater Des – year: 1996 ident: b0135 article-title: Friction, wear, lubrication: a textbook in tribology – volume: 130 start-page: 337 year: 1989 end-page: 352 ident: b0025 article-title: Laser cladding of Ti–6Al–4V with BN for improved wear performance publication-title: Wear – volume: 135 start-page: 307 year: 2001 end-page: 312 ident: b0045 article-title: Laser cladding of Ti–6Al–4V alloy with TiC and TiC+NiCrBSi powders publication-title: Surf Coat Technol – volume: 203 start-page: 1694 year: 2009 end-page: 1701 ident: b0110 article-title: Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ publication-title: Surf Coat Technol – volume: 242 start-page: 177 year: 2005 end-page: 184 ident: b0020 article-title: Research progress on laser surface modification of titanium alloys publication-title: Appl Surf Sci – volume: 150 start-page: 199 year: 2002 end-page: 204 ident: b0040 article-title: Microstructural characterization of NiCrBSiC laser clad layer on titanium alloy substrate publication-title: Surf Coat Technol – volume: 11 start-page: 64 year: 1999 ident: b0100 article-title: Laser cladding publication-title: J Laser Appl – volume: 205 start-page: 835 year: 2010 end-page: 840 ident: b0005 article-title: Microstructure and anti-oxidation behavior of laser clad Ni–20Cr coating on molybdenum surface publication-title: Surf Coat Technol – volume: 13 start-page: 201 year: 1992 end-page: 205 ident: b0115 article-title: The Si–Ti–V system (silicon–titanium–vanadium) publication-title: J Phase Equilib – volume: 267 start-page: 1581 year: 2009 end-page: 1588 ident: b0130 article-title: Friction and wear properties of duplex MAO/CrN coatings sliding against Si publication-title: Wear – volume: 203 start-page: 1395 year: 2009 end-page: 1399 ident: b0030 article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO publication-title: Surf Coat Technol – volume: 32 start-page: 1910 year: 2011 end-page: 1915 ident: b0080 article-title: Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding publication-title: Mater Des – year: 1998 ident: b0125 article-title: CALPHAD, Calculation of phase diagram: a comprehensive guide – volume: 13 start-page: 2 year: 2001 ident: b0095 article-title: Alloy development by laser cladding: an overview publication-title: J Laser Appl – volume: 13 start-page: 195 year: 1992 end-page: 200 ident: b0120 article-title: The Cr–Ti–V system (chromium–titanium–vanadium) publication-title: J Phase Equilib – volume: 132 start-page: 251 year: 2000 end-page: 255 ident: b0050 article-title: Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate publication-title: Surf Coat Technol – volume: 155 start-page: 203 year: 2002 end-page: 207 ident: b0035 article-title: Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC–TiC layer on titanium alloy substrate publication-title: Surf Coat Technol – volume: 202 start-page: 3732 year: 2008 end-page: 3738 ident: b0075 article-title: Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings publication-title: Surf Coat Technol – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: b0070 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv Eng Mater – volume: 11 start-page: 641 year: 2009 end-page: 644 ident: b0105 article-title: Solid solution or intermetallics in a high-entropy alloy publication-title: Adv Eng Mater – volume: 31 start-page: 1599 year: 2010 end-page: 1602 ident: b0060 article-title: Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys publication-title: Mater Des – volume: 37 start-page: 268 year: 2012 end-page: 273 ident: b0055 article-title: In situ synthesis of TiN/Ti publication-title: Mater Des – volume: 34 start-page: 857 year: 2012 end-page: 862 ident: b0010 article-title: Effect of different pre-heat treatment processes on the hardness of AISI 410 martensitic stainless steels surface-treated using pulsed neodymium-doped yttrium aluminum garnet laser publication-title: Mater Des – volume: 242 start-page: 177 year: 2005 ident: 10.1016/j.matdes.2012.04.049_b0020 article-title: Research progress on laser surface modification of titanium alloys publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2004.08.011 – volume: 13 start-page: 201 year: 1992 ident: 10.1016/j.matdes.2012.04.049_b0115 article-title: The Si–Ti–V system (silicon–titanium–vanadium) publication-title: J Phase Equilib doi: 10.1007/BF02667489 – volume: 36 start-page: 854 year: 2012 ident: 10.1016/j.matdes.2012.04.049_b0140 article-title: Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy publication-title: Mater Des doi: 10.1016/j.matdes.2011.04.067 – volume: 202 start-page: 3732 year: 2008 ident: 10.1016/j.matdes.2012.04.049_b0075 article-title: Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2008.01.014 – volume: 34 start-page: 857 year: 2012 ident: 10.1016/j.matdes.2012.04.049_b0010 article-title: Effect of different pre-heat treatment processes on the hardness of AISI 410 martensitic stainless steels surface-treated using pulsed neodymium-doped yttrium aluminum garnet laser publication-title: Mater Des doi: 10.1016/j.matdes.2011.08.020 – volume: 205 start-page: 835 year: 2010 ident: 10.1016/j.matdes.2012.04.049_b0005 article-title: Microstructure and anti-oxidation behavior of laser clad Ni–20Cr coating on molybdenum surface publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2010.08.021 – volume: 29 start-page: 187 year: 2008 ident: 10.1016/j.matdes.2012.04.049_b0015 article-title: Properties of laser-cladded stellite coatings prepared on preheated chromium steel publication-title: Mater Des doi: 10.1016/j.matdes.2006.10.020 – volume: 206 start-page: 1389 year: 2011 ident: 10.1016/j.matdes.2012.04.049_b0085 article-title: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2011.08.063 – year: 1998 ident: 10.1016/j.matdes.2012.04.049_b0125 – ident: 10.1016/j.matdes.2012.04.049_b0090 – volume: 150 start-page: 199 year: 2002 ident: 10.1016/j.matdes.2012.04.049_b0040 article-title: Microstructural characterization of NiCrBSiC laser clad layer on titanium alloy substrate publication-title: Surf Coat Technol doi: 10.1016/S0257-8972(01)01512-2 – volume: 37 start-page: 268 year: 2012 ident: 10.1016/j.matdes.2012.04.049_b0055 article-title: In situ synthesis of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy publication-title: Mater Des doi: 10.1016/j.matdes.2011.12.008 – volume: 132 start-page: 251 year: 2000 ident: 10.1016/j.matdes.2012.04.049_b0050 article-title: Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate publication-title: Surf Coat Technol doi: 10.1016/S0257-8972(00)00904-X – year: 1996 ident: 10.1016/j.matdes.2012.04.049_b0135 – volume: 13 start-page: 2 year: 2001 ident: 10.1016/j.matdes.2012.04.049_b0095 article-title: Alloy development by laser cladding: an overview publication-title: J Laser Appl doi: 10.2351/1.1340337 – volume: 11 start-page: 64 year: 1999 ident: 10.1016/j.matdes.2012.04.049_b0100 article-title: Laser cladding publication-title: J Laser Appl doi: 10.2351/1.521888 – volume: 135 start-page: 307 year: 2001 ident: 10.1016/j.matdes.2012.04.049_b0045 article-title: Laser cladding of Ti–6Al–4V alloy with TiC and TiC+NiCrBSi powders publication-title: Surf Coat Technol doi: 10.1016/S0257-8972(00)01082-3 – volume: 203 start-page: 1395 year: 2009 ident: 10.1016/j.matdes.2012.04.049_b0030 article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2008.11.012 – volume: 203 start-page: 1694 year: 2009 ident: 10.1016/j.matdes.2012.04.049_b0110 article-title: Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2009.01.004 – volume: 11 start-page: 641 year: 2009 ident: 10.1016/j.matdes.2012.04.049_b0105 article-title: Solid solution or intermetallics in a high-entropy alloy publication-title: Adv Eng Mater doi: 10.1002/adem.200900057 – volume: 13 start-page: 195 year: 1992 ident: 10.1016/j.matdes.2012.04.049_b0120 article-title: The Cr–Ti–V system (chromium–titanium–vanadium) publication-title: J Phase Equilib doi: 10.1007/BF02667488 – volume: 155 start-page: 203 year: 2002 ident: 10.1016/j.matdes.2012.04.049_b0035 article-title: Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC–TiC layer on titanium alloy substrate publication-title: Surf Coat Technol doi: 10.1016/S0257-8972(02)00006-3 – volume: 267 start-page: 1581 year: 2009 ident: 10.1016/j.matdes.2012.04.049_b0130 article-title: Friction and wear properties of duplex MAO/CrN coatings sliding against Si3N4 ceramic balls in air, water and oil publication-title: Wear doi: 10.1016/j.wear.2009.06.009 – volume: 130 start-page: 337 year: 1989 ident: 10.1016/j.matdes.2012.04.049_b0025 article-title: Laser cladding of Ti–6Al–4V with BN for improved wear performance publication-title: Wear doi: 10.1016/0043-1648(89)90187-7 – volume: 31 start-page: 1599 year: 2010 ident: 10.1016/j.matdes.2012.04.049_b0060 article-title: Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys publication-title: Mater Des doi: 10.1016/j.matdes.2009.09.016 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.matdes.2012.04.049_b0070 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv Eng Mater doi: 10.1002/adem.200300567 – volume: 32 start-page: 1910 year: 2011 ident: 10.1016/j.matdes.2012.04.049_b0080 article-title: Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding publication-title: Mater Des doi: 10.1016/j.matdes.2010.12.001 |
SSID | ssj0017112 |
Score | 2.5097015 |
Snippet | ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V)5Si3 forms because the formation is accompanied of large... Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti-6Al-4V alloy. The analysis of the microstructure... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 338 |
SubjectTerms | Coatings Dispersion Entropy Frictional wear High-entropy alloy coating Laser beam cladding Laser cladding Sliding friction Titanium base alloys Wear behavior Wear resistance |
Title | Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate |
URI | https://dx.doi.org/10.1016/j.matdes.2012.04.049 https://www.proquest.com/docview/1038301205 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA6lfdEH8cR6EcHXpdtN9sjjUi1VsS896FvI7iZYKbulB9I3_4P_0F_izB5FBRGEsLBLsoTJZI7MzBdCbmzVdhOVOBYzSllcaNsSys5dFdBeCIvLscD5qe_1Rvxh4k5qpFPVwmBaZSn7C5meS-vyS6ukZms-nbYG6D2AwSvamGcgHPDbGw4THrB2I7x_7PW3wQS_nQc9y6MWT1QVdHmaF9iFiUbcbjwU5NDEbxrqh6zOFVB3n-yVliMNi8kdkJpOD8nuFzzBI_J8u9hQMBxRH9FX4GFaVeHTzFCwk_WCxjOV0OF03FmEs8GUIlwxxRPebL6hGITf0DhTmAu9pFkKHT_e3r1wBk8-pkuQMjma7TEZde-GnZ5VXqVgxWCRrSxlEhEbwV3YjpEwvC0CExkvdkzAAs08n7lMw2Z2EO4OvQo3sSPo7HMubCYidkLqaZbqU0L9KNCKJ442iNbmgHsYMVvEcRAY43ATNQmryCfjEmccr7uYySqh7EUWRJdIdGlzaKJJrO2oeYGz8Ud_v1oZ-Y1fJKiCP0ZeVwspYSthfESlOlsvJWLFMywmds_-_fdzsoNvRbrfBamvFmt9CWbLKroq2fITaYzr2Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH8Yn1uYLX0DS7eeyxVEu1tRereFs2yS5WQlLaivTmf_Af-kucyaOoIAUh5JDshjC7O_PNzsy3hFzaquXGKnYsZpSyuNC2JZSduypgvZAWl2OB893Q6z3w2yf3qUY6VS0MplWWur_Q6bm2Lp80S2k2J-Nx8x69BwC8ooV5BsIBv30N2ancOllr3_R7w2UwwW_lQc9yq8UTVQVdnuYFuDDWyNuNm4IcLvGXhfqlq3MD1N0mWyVypO3i53ZITae7ZPMbn-Aeeb6aLigAR7RH9A3mMK2q8GlmKOBkPaVRomI6Gj92pu3kfkyRrpjiDm82WVAMwi9olCnMhZ7RLIWGn-8fXjuBO3-kM9AyOZvtPnnoXo86Pas8SsGKAJHNLWViERnBXViOoTC8JQITGi9yTMACzTyfuUzDYnaQ7g69Cje2Q2jscy5sJkJ2QOpplupDQv0w0IrHjjbI1uaAexgyW0RREBjjcBM2CKvEJ6OSZxyPu0hklVD2IguhSxS6tDlcokGsZa9JwbOxor1fjYz8MV8kmIIVPS-qgZSwlDA-olKdvc4kcsUzLCZ2j_799XOy3hvdDeTgZtg_Jhv4pkj9OyH1-fRVnwKEmYdn5RT9Ao347r8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dry+sliding+wear+behavior+of+laser+clad+TiVCrAlSi+high+entropy+alloy+coatings+on+Ti%E2%80%936Al%E2%80%934V+substrate&rft.jtitle=Materials+in+engineering&rft.au=Huang%2C+Can&rft.au=Zhang%2C+Yongzhong&rft.au=Vilar%2C+Rui&rft.au=Shen%2C+Jianyun&rft.date=2012-10-01&rft.pub=Elsevier+Ltd&rft.issn=0261-3069&rft.volume=41&rft.spage=338&rft.epage=343&rft_id=info:doi/10.1016%2Fj.matdes.2012.04.049&rft.externalDocID=S0261306912002920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon |