Evaluating spatiotemporal interest point features for depth-based action recognition

Human action recognition has lots of real-world applications, such as natural user interface, virtual reality, intelligent surveillance, and gaming. However, it is still a very challenging problem. In action recognition using the visible light videos, the spatiotemporal interest point (STIP) based f...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 32; no. 8; pp. 453 - 464
Main Authors Zhu, Yu, Chen, Wenbin, Guo, Guodong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human action recognition has lots of real-world applications, such as natural user interface, virtual reality, intelligent surveillance, and gaming. However, it is still a very challenging problem. In action recognition using the visible light videos, the spatiotemporal interest point (STIP) based features are widely used with good performance. Recently, with the advance of depth imaging technology, a new modality has appeared for human action recognition. It is important to assess the performance and usefulness of the STIP features for action analysis on the new modality of 3D depth map. In this paper, we evaluate the spatiotemporal interest point (STIP) based features for depth-based action recognition. Different interest point detectors and descriptors are combined to form various STIP features. The bag-of-words representation and the SVM classifiers are used for action learning. Our comprehensive evaluation is conducted on four challenging 3D depth databases. Further, we use two schemes to refine the STIP features, one is to detect the interest points in RGB videos and apply to the aligned depth sequences, and the other is to use the human skeleton to remove irrelevant interest points. These refinements can help us have a deeper understanding of the STIP features on 3D depth data. Finally, we investigate a fusion of the best STIP features with the prevalent skeleton features, to present a complementary use of the STIP features for action recognition on 3D data. The fusion approach gives significantly higher accuracies than many state-of-the-art results. •A comprehensive evaluation of STIP based features on depth-based action recognition•Two schemes to refine STIP features for a deeper understanding of their behaviors•A fusion approach is developed which outperforms many state-of-the-art methods.
AbstractList Human action recognition has lots of real-world applications, such as natural user interface, virtual reality, intelligent surveillance, and gaming. However, it is still a very challenging problem. In action recognition using the visible light videos, the spatiotemporal interest point (STIP) based features are widely used with good performance. Recently, with the advance of depth imaging technology, a new modality has appeared for human action recognition. It is important to assess the performance and usefulness of the STIP features for action analysis on the new modality of 3D depth map. In this paper, we evaluate the spatiotemporal interest point (STIP) based features for depth-based action recognition. Different interest point detectors and descriptors are combined to form various STIP features. The bag-of-words representation and the SVM classifiers are used for action learning. Our comprehensive evaluation is conducted on four challenging 3D depth databases. Further, we use two schemes to refine the STIP features, one is to detect the interest points in RGB videos and apply to the aligned depth sequences, and the other is to use the human skeleton to remove irrelevant interest points. These refinements can help us have a deeper understanding of the STIP features on 3D depth data. Finally, we investigate a fusion of the best STIP features with the prevalent skeleton features, to present a complementary use of the STIP features for action recognition on 3D data. The fusion approach gives significantly higher accuracies than many state-of-the-art results. •A comprehensive evaluation of STIP based features on depth-based action recognition•Two schemes to refine STIP features for a deeper understanding of their behaviors•A fusion approach is developed which outperforms many state-of-the-art methods.
Human action recognition has lots of real-world applications, such as natural user interface, virtual reality, intelligent surveillance, and gaming. However, it is still a very challenging problem. In action recognition using the visible light videos, the spatiotemporal interest point (STIP) based features are widely used with good performance. Recently, with the advance of depth imaging technology, a new modality has appeared for human action recognition. It is important to assess the performance and usefulness of the STIP features for action analysis on the new modality of 3D depth map. In this paper, we evaluate the spatiotemporal interest point (STIP) based features for depth-based action recognition. Different interest point detectors and descriptors are combined to form various STIP features. The bag-of-words representation and the SVM classifiers are used for action learning. Our comprehensive evaluation is conducted on four challenging 3D depth databases. Further, we use two schemes to refine the STIP features, one is to detect the interest points in RGB videos and apply to the aligned depth sequences, and the other is to use the human skeleton to remove irrelevant interest points. These refinements can help us have a deeper understanding of the STIP features on 3D depth data. Finally, we investigate a fusion of the best STIP features with the prevalent skeleton features, to present a complementary use of the STIP features for action recognition on 3D data. The fusion approach gives significantly higher accuracies than many state-of-the-art results.
Author Guo, Guodong
Zhu, Yu
Chen, Wenbin
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhu
  fullname: Zhu, Yu
– sequence: 2
  givenname: Wenbin
  surname: Chen
  fullname: Chen, Wenbin
– sequence: 3
  givenname: Guodong
  surname: Guo
  fullname: Guo, Guodong
  email: guodong.guo@mail.wvu.edu
BookMark eNqFkE1LxDAQhoMouH78Aw89euk6aZo09SCI-AWCFz2HmE40SzepSXbBf2_KevKgMDBvhvcdMs8R2ffBIyFnFJYUqLhYLd1ab11aNkDbJZQCvkcWVHZNLSmT-2QBjShacnFIjlJaAUAHXb8gL7dbPW50dv69SlPpIeN6ClGPlfMZI6ZcTaHIyqLOm_KubIjVgFP-qN90wqHSpqR8FdGEd-9mfUIOrB4Tnv70Y_J6d_ty81A_Pd8_3lw_1aYFnms9WOiF1NJoyVF0bcutQKp76HumZcsZG_o3aLlhnbVGCtN0lIkytpL1rGXH5Hy3d4rhc1O-qtYuGRxH7TFskqKc94JT0czWy53VxJBSRKuMy_O5PkftRkVBzSjVSu1QqhmlglLAS7j9FZ5iscWv_2JXuxgWBluHUSXj0BscXIGV1RDc3wu-Adnpky4
CitedBy_id crossref_primary_10_1016_j_patcog_2016_05_019
crossref_primary_10_1109_THMS_2018_2850301
crossref_primary_10_3390_electronics10192412
crossref_primary_10_3390_app14146335
crossref_primary_10_3390_s23042182
crossref_primary_10_1007_s11042_018_6875_7
crossref_primary_10_1109_TPAMI_2015_2513479
crossref_primary_10_3390_s16122171
crossref_primary_10_1016_j_imavis_2024_104985
crossref_primary_10_1109_ACCESS_2021_3071581
crossref_primary_10_3390_informatics8010002
crossref_primary_10_1016_j_image_2016_01_003
crossref_primary_10_3390_s17051100
crossref_primary_10_1109_TITS_2014_2337331
crossref_primary_10_1007_s10851_017_0766_9
crossref_primary_10_3390_jimaging11030091
crossref_primary_10_1016_j_imavis_2016_04_004
crossref_primary_10_1016_j_neucom_2020_02_057
crossref_primary_10_1109_JSEN_2018_2884443
crossref_primary_10_1007_s00530_020_00677_2
crossref_primary_10_3390_jimaging5100082
crossref_primary_10_1007_s00371_021_02064_y
crossref_primary_10_3233_ICA_190599
crossref_primary_10_3390_electronics9111888
crossref_primary_10_1016_j_patrec_2018_04_035
crossref_primary_10_1016_j_jvcir_2014_11_008
crossref_primary_10_1155_2016_4351435
crossref_primary_10_3389_fnbot_2015_00003
crossref_primary_10_1007_s11370_021_00358_7
crossref_primary_10_1016_j_patrec_2018_05_004
crossref_primary_10_1016_j_patrec_2017_05_004
crossref_primary_10_1109_TCYB_2019_2960481
crossref_primary_10_1007_s11042_018_7032_z
crossref_primary_10_1109_ACCESS_2019_2954744
crossref_primary_10_1109_TMM_2017_2786868
crossref_primary_10_1109_TMM_2018_2808769
crossref_primary_10_1007_s11042_020_08875_w
crossref_primary_10_1007_s11063_019_10091_z
crossref_primary_10_1109_TPAMI_2020_2974454
crossref_primary_10_1007_s00500_018_3364_x
crossref_primary_10_1016_j_neucom_2016_03_024
crossref_primary_10_1016_j_patrec_2021_02_013
crossref_primary_10_1016_j_cviu_2016_04_005
crossref_primary_10_1016_j_imavis_2016_05_007
crossref_primary_10_1007_s10462_020_09904_8
crossref_primary_10_1016_j_image_2018_06_013
crossref_primary_10_1109_TPAMI_2016_2640292
crossref_primary_10_3390_app9040716
crossref_primary_10_1007_s12369_019_00513_2
crossref_primary_10_1007_s00138_016_0818_y
crossref_primary_10_1109_JSEN_2023_3314728
crossref_primary_10_1016_j_jvcir_2018_08_001
crossref_primary_10_1016_j_patrec_2020_01_010
crossref_primary_10_1145_3291124
crossref_primary_10_1007_s12369_018_0498_z
crossref_primary_10_1049_iet_cvi_2016_0326
crossref_primary_10_1109_TCE_2019_2908986
crossref_primary_10_1155_2019_7060491
Cites_doi 10.1006/cviu.1998.0716
10.1016/j.imavis.2009.11.014
10.1016/j.jvcir.2013.03.001
10.1177/0278364913478446
10.1109/TSMCB.2005.861864
10.1007/s11263-005-1838-7
10.1023/A:1010933404324
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.imavis.2014.04.005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
EndPage 464
ExternalDocumentID 10_1016_j_imavis_2014_04_005
S0262885614000651
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c405t-adf0968a8ca85e67445f6e1a90993a84533d9b045c37ffc86c27136533f839343
IEDL.DBID .~1
ISSN 0262-8856
IngestDate Tue Aug 05 11:25:31 EDT 2025
Tue Jul 01 00:48:15 EDT 2025
Thu Apr 24 22:55:59 EDT 2025
Fri Feb 23 02:23:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Action recognition
STIP feature refinement
Evaluation
RGB-D sensor
Detectors
Feature fusion
Descriptors
Spatiotemporal interest point (STIP)
STIP features
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-adf0968a8ca85e67445f6e1a90993a84533d9b045c37ffc86c27136533f839343
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1559651624
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1559651624
crossref_citationtrail_10_1016_j_imavis_2014_04_005
crossref_primary_10_1016_j_imavis_2014_04_005
elsevier_sciencedirect_doi_10_1016_j_imavis_2014_04_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Image and vision computing
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vieira, Nascimento, Oliveira, Liu, Campos (bb0075) 2012
Laptev, Lindeberg (bb0140) 2004; volume 1
Seidenari, Varano, Berretti, Pala, Del Bimbo (bb0185) 2013
L. M., T. V., D. M., T. L., A. W. V., M. F. M. C. (bb0085) 2012; 0
Yang, Tian (bb0080) 2014; 25
Ni, Wang, Moulin (bb0120) 2011
Oreifej, Liu, Redmond (bb0110) 2013
Laptev, Lindeberg (bb0055) 2006
Li, Zhang, Liu (bb0065) 2010
Wong, Cipolla (bb0050) 2007
Jhuang, Serre, Wolf, Poggio (bb0035) 2007
Devanne, Wannous, Berretti, Pala, Daoudi, D. B. A. (bb0170) 2013
Yang, Zhang, Tian (bb0090) 2012
Laptev (bb0025) 2005; 64
Willems, Tuytelaars, Van Gool (bb0045) 2008
Zhao, Liu, Yang, Cheng (bb0125) 2012
Wang, Ullah, Klaser, Laptev, Schmid (bb0015) 2009
Wang, Liu, Wu, Yuan (bb0095) 2012
Gavrila (bb0005) 1999; 73
Sung, Ponce, Selman, Saxena (bb0100) 2012
Laptev, Marszalek, Schmid, Rozenfeld (bb0150) 2008
Ohn-Bar, Trivedi (bb0180) 2013
Liu, Shao (bb0190) 2013
Poppe (bb0010) 2010; 28
Scovanner, Ali, Shah (bb0060) 2007
Zhang, Parker (bb0130) 2011
Klaser, Marszałek, Schmid (bb0145) 2008
Wang, Liu, Chorowski, Chen, Wu (bb0105) 2012
Shotton, Fitzgibbon, Cook, Sharp, Finocchio, Moore, Kipman, Blake (bb0020) 2011
Shabani, Clausi, Zelek (bb0155) 2012
Zhu, Chen, Guo (bb0165) 2013
Dollár, Rabaud, Cottrell, Belongie (bb0030) 2005
Koppula, Gupta, Saxena (bb0115) 2013; 32
Bay, Tuytelaars, Van Gool (bb0160) 2006
Oikonomopoulos, Patras, Pantic (bb0040) 2005; 36
Breiman (bb0175) 2001; 45
Xia, Chen, Aggarwal (bb0070) 2012
Xia, Aggarwal (bb0135) 2013
Bay (10.1016/j.imavis.2014.04.005_bb0160) 2006
Wang (10.1016/j.imavis.2014.04.005_bb0015) 2009
Xia (10.1016/j.imavis.2014.04.005_bb0070) 2012
Shabani (10.1016/j.imavis.2014.04.005_bb0155) 2012
Laptev (10.1016/j.imavis.2014.04.005_bb0055) 2006
Xia (10.1016/j.imavis.2014.04.005_bb0135) 2013
Shotton (10.1016/j.imavis.2014.04.005_bb0020) 2011
Yang (10.1016/j.imavis.2014.04.005_bb0090) 2012
Wang (10.1016/j.imavis.2014.04.005_bb0095) 2012
Laptev (10.1016/j.imavis.2014.04.005_bb0150) 2008
Ni (10.1016/j.imavis.2014.04.005_bb0120) 2011
Li (10.1016/j.imavis.2014.04.005_bb0065) 2010
Koppula (10.1016/j.imavis.2014.04.005_bb0115) 2013; 32
Laptev (10.1016/j.imavis.2014.04.005_bb0140) 2004; volume 1
Dollár (10.1016/j.imavis.2014.04.005_bb0030) 2005
Zhao (10.1016/j.imavis.2014.04.005_bb0125) 2012
Ohn-Bar (10.1016/j.imavis.2014.04.005_bb0180) 2013
Laptev (10.1016/j.imavis.2014.04.005_bb0025) 2005; 64
Wong (10.1016/j.imavis.2014.04.005_bb0050) 2007
Wang (10.1016/j.imavis.2014.04.005_bb0105) 2012
Gavrila (10.1016/j.imavis.2014.04.005_bb0005) 1999; 73
Jhuang (10.1016/j.imavis.2014.04.005_bb0035) 2007
Liu (10.1016/j.imavis.2014.04.005_bb0190) 2013
Scovanner (10.1016/j.imavis.2014.04.005_bb0060) 2007
Klaser (10.1016/j.imavis.2014.04.005_bb0145) 2008
Sung (10.1016/j.imavis.2014.04.005_bb0100) 2012
Devanne (10.1016/j.imavis.2014.04.005_bb0170) 2013
Zhang (10.1016/j.imavis.2014.04.005_bb0130) 2011
Zhu (10.1016/j.imavis.2014.04.005_bb0165) 2013
L. M. (10.1016/j.imavis.2014.04.005_bb0085) 2012; 0
Breiman (10.1016/j.imavis.2014.04.005_bb0175) 2001; 45
Seidenari (10.1016/j.imavis.2014.04.005_bb0185) 2013
Oikonomopoulos (10.1016/j.imavis.2014.04.005_bb0040) 2005; 36
Oreifej (10.1016/j.imavis.2014.04.005_bb0110) 2013
Willems (10.1016/j.imavis.2014.04.005_bb0045) 2008
Vieira (10.1016/j.imavis.2014.04.005_bb0075) 2012
Yang (10.1016/j.imavis.2014.04.005_bb0080) 2014; 25
Poppe (10.1016/j.imavis.2014.04.005_bb0010) 2010; 28
References_xml – start-page: 468
  year: 2012
  end-page: 475
  ident: bb0155
  article-title: Evaluation of local spatio-temporal salient feature detectors for human action recognition
  publication-title: IEEE Ninth Conf. on Computer and Robot Vision
– start-page: 465
  year: 2013
  end-page: 470
  ident: bb0180
  article-title: Joint angles similarities and hog2 for action recognition
  publication-title: IEEE Conf. on Computer Vision and Pattern Recognition Workshops
– start-page: 1297
  year: 2011
  end-page: 1304
  ident: bb0020
  article-title: Real-time human pose recognition in parts from single depth images
  publication-title: IEEE Conf. on Computer Vision and, Pattern Recognition
– start-page: 1493
  year: 2013
  end-page: 1500
  ident: bb0190
  article-title: Learning discriminative representations from rgb-d video data
  publication-title: Proc. Int. Joint Conf. on Artificial Intelligence
– volume: 25
  start-page: 2
  year: 2014
  end-page: 11
  ident: bb0080
  article-title: Effective 3d action recognition using eigenjoints
  publication-title: J. Vis. Commun. Image Represent.
– volume: 32
  start-page: 951
  year: 2013
  end-page: 970
  ident: bb0115
  article-title: Learning human activities and object affordances from rgb-d videos
  publication-title: Int. J. Robot. Res.
– volume: 36
  start-page: 710
  year: 2005
  end-page: 719
  ident: bb0040
  article-title: Spatiotemporal salient points for visual recognition of human actions
  publication-title: IEEE Trans. Syst. Man Cybern. B
– start-page: 357
  year: 2007
  end-page: 360
  ident: bb0060
  article-title: A 3-dimensional sift descriptor and its application to action recognition
  publication-title: Proc. of the 15th Int'l Conf. on Multimedia
– year: 2013
  ident: bb0110
  article-title: Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences
  publication-title: IEEE Conf. on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2007
  end-page: 8
  ident: bb0035
  article-title: A biologically inspired system for action recognition
  publication-title: IEEE 11th Int'l Conf. on Computer Vision
– start-page: 1290
  year: 2012
  end-page: 1297
  ident: bb0095
  article-title: Mining actionlet ensemble for action recognition with depth cameras
  publication-title: IEEE Conf. on Computer Vision and, Pattern Recognition
– volume: 73
  start-page: 82
  year: 1999
  end-page: 98
  ident: bb0005
  article-title: The visual analysis of human movement: a survey
  publication-title: Comput. Vis. Image Underst.
– year: 2009
  ident: bb0015
  article-title: Evaluation of local spatio-temporal features for action recognition
  publication-title: BMVC British Machine Vision Conf
– start-page: 1147
  year: 2011
  end-page: 1153
  ident: bb0120
  article-title: Rgbd-hudaact: a color-depth video database for human daily activity recognition
  publication-title: IEEE Int'l Conf. on Computer Vision Workshops
– volume: 64
  start-page: 107
  year: 2005
  end-page: 123
  ident: bb0025
  article-title: On space–time interest points
  publication-title: Int. J. Comput. Vis.
– start-page: 1
  year: 2012
  end-page: 4
  ident: bb0125
  article-title: Combing rgb and depth map features for human activity recognition
  publication-title: Asia-Pacific Signal Information Processing Association Annual Summit and Conf.
– start-page: 2044
  year: 2011
  end-page: 2049
  ident: bb0130
  article-title: 4-dimensional local spatio-temporal features for human activity recognition
  publication-title: IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems
– start-page: 2834
  year: 2013
  end-page: 2841
  ident: bb0135
  article-title: Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera
  publication-title: IEEE Conf. on Computer Vision and, Pattern Recognition
– volume: 28
  start-page: 976
  year: 2010
  end-page: 990
  ident: bb0010
  article-title: A survey on vision-based human action recognition
  publication-title: Image Vis. Comput.
– start-page: 479
  year: 2013
  end-page: 485
  ident: bb0185
  article-title: Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses
  publication-title: Proc. of CVPR Int. Workshop on Human Activity Understanding from 3D Data
– start-page: 404
  year: 2006
  end-page: 417
  ident: bb0160
  article-title: Surf: Speeded Up Robust Features
– year: 2008
  ident: bb0145
  article-title: A spatio-temporal descriptor based on 3d-gradients
  publication-title: British Machine Vision Conf
– volume: volume 1
  start-page: 52
  year: 2004
  end-page: 56
  ident: bb0140
  article-title: Velocity adaptation of space-time interest points
  publication-title: Proc. of the IEEE Int'l Conf. on Pattern Recognition
– start-page: 1057
  year: 2012
  end-page: 1060
  ident: bb0090
  article-title: Recognizing actions using depth motion maps-based histograms of oriented gradients
  publication-title: Proc. of the 20th ACM Int'l Conf. on Multimedia
– start-page: 9
  year: 2010
  end-page: 14
  ident: bb0065
  article-title: Action recognition based on a bag of 3d points
  publication-title: IEEE Conf. on Computer Vision and Pattern Recognition Workshops
– start-page: 252
  year: 2012
  end-page: 259
  ident: bb0075
  article-title: Stop: space-time occupancy patterns for 3d action recognition from depth map sequences
  publication-title: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
– volume: 0
  start-page: 268
  year: 2012
  end-page: 275
  ident: bb0085
  article-title: Real-time gesture recognition from depth data through key poses learning and decision forests
  publication-title: 25th SIBGRAPI Conf. on Graphics, Patterns and Images
– start-page: 65
  year: 2005
  end-page: 72
  ident: bb0030
  article-title: Behavior recognition via sparse spatio-temporal features
  publication-title: 2nd Joint IEEE Int'l Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance
– start-page: 20
  year: 2012
  end-page: 27
  ident: bb0070
  article-title: View invariant human action recognition using histograms of 3d joints
  publication-title: IEEE Conf. on Computer Vision and Pattern Recognition Workshops
– start-page: 872
  year: 2012
  end-page: 885
  ident: bb0105
  article-title: Robust 3d action recognition with random occupancy patterns
  publication-title: Computer Vision—ECCV
– start-page: 91
  year: 2006
  end-page: 103
  ident: bb0055
  article-title: Local descriptors for spatio-temporal recognition
  publication-title: Spatial Coherence for Visual Motion Analysis
– start-page: 1
  year: 2008
  end-page: 8
  ident: bb0150
  article-title: Learning realistic human actions from movies
  publication-title: IEEE Conf. on Computer Vision and, Pattern Recognition
– start-page: 650
  year: 2008
  end-page: 663
  ident: bb0045
  article-title: An Efficient Dense and Scale-Invariant Spatio-Temporal Interest Point Detector
– start-page: 842
  year: 2012
  end-page: 849
  ident: bb0100
  article-title: Unstructured human activity detection from rgbd images
  publication-title: IEEE Int'l Conf. on Robotics and Automation
– start-page: 456
  year: 2013
  end-page: 464
  ident: bb0170
  article-title: Space-time pose representation for 3d human action recognition
  publication-title: ICIAP Workshop on Social Behaviour, Analysis
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0175
  article-title: Random forests
  publication-title: Mach. Learn.
– start-page: 1
  year: 2007
  end-page: 8
  ident: bb0050
  article-title: Extracting spatiotemporal interest points using global information
  publication-title: IEEE 11th Int'l Conf. on Computer Vision
– start-page: 486
  year: 2013
  end-page: 491
  ident: bb0165
  article-title: Fusing spatiotemporal features and joints for 3d action recognition
  publication-title: IEEE Conf. on Computer Vision and Pattern Recognition Workshops
– start-page: 357
  year: 2007
  ident: 10.1016/j.imavis.2014.04.005_bb0060
  article-title: A 3-dimensional sift descriptor and its application to action recognition
– start-page: 404
  year: 2006
  ident: 10.1016/j.imavis.2014.04.005_bb0160
– start-page: 479
  year: 2013
  ident: 10.1016/j.imavis.2014.04.005_bb0185
  article-title: Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses
– start-page: 456
  year: 2013
  ident: 10.1016/j.imavis.2014.04.005_bb0170
  article-title: Space-time pose representation for 3d human action recognition
– start-page: 1057
  year: 2012
  ident: 10.1016/j.imavis.2014.04.005_bb0090
  article-title: Recognizing actions using depth motion maps-based histograms of oriented gradients
– volume: 73
  start-page: 82
  year: 1999
  ident: 10.1016/j.imavis.2014.04.005_bb0005
  article-title: The visual analysis of human movement: a survey
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1998.0716
– volume: 28
  start-page: 976
  year: 2010
  ident: 10.1016/j.imavis.2014.04.005_bb0010
  article-title: A survey on vision-based human action recognition
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.11.014
– start-page: 1
  year: 2007
  ident: 10.1016/j.imavis.2014.04.005_bb0035
  article-title: A biologically inspired system for action recognition
– start-page: 65
  year: 2005
  ident: 10.1016/j.imavis.2014.04.005_bb0030
  article-title: Behavior recognition via sparse spatio-temporal features
– start-page: 468
  year: 2012
  ident: 10.1016/j.imavis.2014.04.005_bb0155
  article-title: Evaluation of local spatio-temporal salient feature detectors for human action recognition
– start-page: 465
  year: 2013
  ident: 10.1016/j.imavis.2014.04.005_bb0180
  article-title: Joint angles similarities and hog2 for action recognition
– year: 2009
  ident: 10.1016/j.imavis.2014.04.005_bb0015
  article-title: Evaluation of local spatio-temporal features for action recognition
– start-page: 650
  year: 2008
  ident: 10.1016/j.imavis.2014.04.005_bb0045
– start-page: 9
  year: 2010
  ident: 10.1016/j.imavis.2014.04.005_bb0065
  article-title: Action recognition based on a bag of 3d points
– start-page: 1
  year: 2008
  ident: 10.1016/j.imavis.2014.04.005_bb0150
  article-title: Learning realistic human actions from movies
– start-page: 1
  year: 2007
  ident: 10.1016/j.imavis.2014.04.005_bb0050
  article-title: Extracting spatiotemporal interest points using global information
– start-page: 1493
  year: 2013
  ident: 10.1016/j.imavis.2014.04.005_bb0190
  article-title: Learning discriminative representations from rgb-d video data
– start-page: 2834
  year: 2013
  ident: 10.1016/j.imavis.2014.04.005_bb0135
  article-title: Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera
– volume: 25
  start-page: 2
  year: 2014
  ident: 10.1016/j.imavis.2014.04.005_bb0080
  article-title: Effective 3d action recognition using eigenjoints
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2013.03.001
– start-page: 486
  year: 2013
  ident: 10.1016/j.imavis.2014.04.005_bb0165
  article-title: Fusing spatiotemporal features and joints for 3d action recognition
– volume: 0
  start-page: 268
  year: 2012
  ident: 10.1016/j.imavis.2014.04.005_bb0085
  article-title: Real-time gesture recognition from depth data through key poses learning and decision forests
– start-page: 842
  year: 2012
  ident: 10.1016/j.imavis.2014.04.005_bb0100
  article-title: Unstructured human activity detection from rgbd images
– start-page: 1
  year: 2012
  ident: 10.1016/j.imavis.2014.04.005_bb0125
  article-title: Combing rgb and depth map features for human activity recognition
– start-page: 252
  year: 2012
  ident: 10.1016/j.imavis.2014.04.005_bb0075
  article-title: Stop: space-time occupancy patterns for 3d action recognition from depth map sequences
– volume: volume 1
  start-page: 52
  year: 2004
  ident: 10.1016/j.imavis.2014.04.005_bb0140
  article-title: Velocity adaptation of space-time interest points
– volume: 32
  start-page: 951
  year: 2013
  ident: 10.1016/j.imavis.2014.04.005_bb0115
  article-title: Learning human activities and object affordances from rgb-d videos
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913478446
– start-page: 1297
  year: 2011
  ident: 10.1016/j.imavis.2014.04.005_bb0020
  article-title: Real-time human pose recognition in parts from single depth images
– start-page: 1147
  year: 2011
  ident: 10.1016/j.imavis.2014.04.005_bb0120
  article-title: Rgbd-hudaact: a color-depth video database for human daily activity recognition
– volume: 36
  start-page: 710
  year: 2005
  ident: 10.1016/j.imavis.2014.04.005_bb0040
  article-title: Spatiotemporal salient points for visual recognition of human actions
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2005.861864
– start-page: 872
  year: 2012
  ident: 10.1016/j.imavis.2014.04.005_bb0105
  article-title: Robust 3d action recognition with random occupancy patterns
– start-page: 91
  year: 2006
  ident: 10.1016/j.imavis.2014.04.005_bb0055
  article-title: Local descriptors for spatio-temporal recognition
– start-page: 20
  year: 2012
  ident: 10.1016/j.imavis.2014.04.005_bb0070
  article-title: View invariant human action recognition using histograms of 3d joints
– start-page: 2044
  year: 2011
  ident: 10.1016/j.imavis.2014.04.005_bb0130
  article-title: 4-dimensional local spatio-temporal features for human activity recognition
– start-page: 1290
  year: 2012
  ident: 10.1016/j.imavis.2014.04.005_bb0095
  article-title: Mining actionlet ensemble for action recognition with depth cameras
– volume: 64
  start-page: 107
  year: 2005
  ident: 10.1016/j.imavis.2014.04.005_bb0025
  article-title: On space–time interest points
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-005-1838-7
– year: 2008
  ident: 10.1016/j.imavis.2014.04.005_bb0145
  article-title: A spatio-temporal descriptor based on 3d-gradients
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.imavis.2014.04.005_bb0175
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2013
  ident: 10.1016/j.imavis.2014.04.005_bb0110
  article-title: Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences
SSID ssj0007079
Score 2.4392798
Snippet Human action recognition has lots of real-world applications, such as natural user interface, virtual reality, intelligent surveillance, and gaming. However,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 453
SubjectTerms Action recognition
Descriptors
Detectors
Evaluation
Feature fusion
Feature recognition
Human
Imaging
Recognition
RGB-D sensor
Spatiotemporal interest point (STIP)
State of the art
STIP feature refinement
STIP features
Support vector machines
Three dimensional
Title Evaluating spatiotemporal interest point features for depth-based action recognition
URI https://dx.doi.org/10.1016/j.imavis.2014.04.005
https://www.proquest.com/docview/1559651624
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4IvuiDF9SIF1ITXyeMdt32SAgENfIiJLw1W9cqBgcRePW3e07X4SUmJCZ7WJd2WXo55-v6ne8QciN4mKU8NTACPPO4n8UeFJkngiQSXAQmsGr7j0MxGPP7STCpkG4ZC4O0Smf7C5turbV70nS92VxMp80n2D20owiVLK0jtRHsPMRZfvvxRfNABbjiPwusfKhdhs9Zjtf0DUP5keDFreApJrH72z39MtTW-_QPyb6DjbRTfNkRqei8Rg4chKRugS5rZO-bvuAxGfWclnf-TJeWOu2UqGYUZSIwLQddzOGWGm0FPpcUMCzN9GL14qF_y2gR90A3PKN5fkLG_d6oO_BcGgVPARpbeUlmYJ8SJZFKokCLkPPACO0nMYBDlkQcAF8WpwDtFAuNUZFQ7RDJb4wZQE-Ms1NSzee5PiM0VrFBeR8ftyFxmCVMiVQxX7di48cmrBNW9p5UTmMcU13MZEkme5VFn0vsc9mCqxXUibdptSg0NrbUD8uBkT_migQ3sKXldTmOEpYRno0kuZ6vlxJPZ2EOiTY___fbL8gulgp64CWprt7X-gogyypt2DnZIDudu4fB8BNjbeuZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kPagHH1Xx7QpeQ5vuZpMcS6m0PnqxBW9LstnVSk2Lrf_fmWRTVISCkENeG8Ls7sw3yTffAtxIEWapSC32gMg84Wexh4fck0ESSSEDGxRq-49D2R-Lu-fgeQO6VS0M0Sqd7y99euGt3Zmms2ZzPpk0nzB7aEcRKVkWgRRToDqpUwU1qHcG9_3hyiGTCFz5qQUnPzaoKugKmtfknar5ieMlCs1TWsfu7wj1y1cXAeh2D3YccmSd8uX2YcPkDdh1KJK5ObpowPY3icEDGPWcnHf-whYFe9qJUU0ZKUXQyhxsPsNdZk2h8blgCGNZZubLV49CXMbK0ge2ohrN8kMY3_ZG3b7nVlLwNAKypZdkFlOVKIl0EgVGhkIEVho_iREf8iQSiPmyOEV0p3lorY6kbofEf-PcIoDigh9BLZ_l5hhYrGNLCj8-ZSJxmCVcy1Rz37Ri68c2PAFeWU9pJzNOq11MVcUne1OlzRXZXLVwawUn4K1azUuZjTX3h1XHqB_DRWEkWNPyuupHhTOJfo8kuZl9LhT9oMVhJNvi9N9Pv4LN_ujxQT0MhvdnsEVXSrbgOdSWH5_mAhHMMr10I_QLeEDuSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+spatiotemporal+interest+point+features+for+depth-based+action+recognition&rft.jtitle=Image+and+vision+computing&rft.au=Zhu%2C+Yu&rft.au=Chen%2C+Wenbin&rft.au=Guo%2C+Guodong&rft.date=2014-08-01&rft.issn=0262-8856&rft.volume=32&rft.issue=8&rft.spage=453&rft.epage=464&rft_id=info:doi/10.1016%2Fj.imavis.2014.04.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2014_04_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon