A Review of Deep-Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography
Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. PET AC based on computed tomography (CT) frequently results in artifacts in attenuation-corrected PET images, and these artifacts mainly originate from...
Saved in:
Published in | IEEE transactions on radiation and plasma medical sciences Vol. 5; no. 2; pp. 160 - 184 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. PET AC based on computed tomography (CT) frequently results in artifacts in attenuation-corrected PET images, and these artifacts mainly originate from CT artifacts and PET-CT mismatches. The AC in PET combined with a magnetic resonance imaging (MRI) scanner (PET/MRI) is more complex than PET/CT, given that MR images do not provide direct information on high-energy photon attenuation. Deep-learning (DL)-based methods for the improvement of PET AC have received significant research attention as alternatives to conventional AC methods. Many DL studies were focused on the transformation of MR images into synthetic pseudo-CT or attenuation maps. Alternative approaches that are not dependent on the anatomical images (CT or MRI) can overcome the limitations related to current CT- and MRI-based ACs and allow for more accurate PET quantification in stand-alone PET scanners for the realization of low radiation doses. In this article, a review is presented on the limitations of the PET AC in current dual-modality PET/CT and PET/MRI scanners, in addition to the current status and progress of DL-based approaches, for the realization of improved performance of PET AC. |
---|---|
AbstractList | Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. PET AC based on computed tomography (CT) frequently results in artifacts in attenuation-corrected PET images, and these artifacts mainly originate from CT artifacts and PET-CT mismatches. The AC in PET combined with a magnetic resonance imaging (MRI) scanner (PET/MRI) is more complex than PET/CT, given that MR images do not provide direct information on high-energy photon attenuation. Deep-learning (DL)-based methods for the improvement of PET AC have received significant research attention as alternatives to conventional AC methods. Many DL studies were focused on the transformation of MR images into synthetic pseudo-CT or attenuation maps. Alternative approaches that are not dependent on the anatomical images (CT or MRI) can overcome the limitations related to current CT- and MRI-based ACs and allow for more accurate PET quantification in stand-alone PET scanners for the realization of low radiation doses. In this article, a review is presented on the limitations of the PET AC in current dual-modality PET/CT and PET/MRI scanners, in addition to the current status and progress of DL-based approaches, for the realization of improved performance of PET AC. |
Author | Lee, Jae Sung |
Author_xml | – sequence: 1 givenname: Jae Sung orcidid: 0000-0001-7623-053X surname: Lee fullname: Lee, Jae Sung email: jaes@snu.ac.kr organization: Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea |
BookMark | eNp9kM1PAjEQxRuDiYj8A3rZxPPitN2vHlfEjwQjQTxvussUSqBd20XDf-8ChoMHT_Py8t7M5HdJOsYaJOSawoBSEHez6eT1fcCAwYADCJaIM9JlUSLClAPvnDSlF6Tv_QoAaJoxEcVdgnkwxS-N34FVwQNiHY5ROqPNIryXHudBXtfOymqJPlDWBXnToNnKRlsTDK1zWB2kNsHEet24Vo822vu9ObMbu3CyXu6uyLmSa4_939kjH4-j2fA5HL89vQzzcVhFEDehZAwyKJNKRqpUEVChSsEhrqhMU8VE0loJ42UaqwyyWHCJEuRcSQRFOc14j9we97Y_f27RN8XKbp1pTxYsElmSpoLTNsWOqcpZ7x2qonZ6I92uoFDsiRYHosWeaPFLtC1lf0qVbg4cGif1-v_qzbGqEfF0S9CI05TzHwA-hgc |
CODEN | ITRPFI |
CitedBy_id | crossref_primary_10_2967_jnumed_123_267360 crossref_primary_10_1016_j_cpet_2023_06_003 crossref_primary_10_1109_TRPMS_2024_3397318 crossref_primary_10_1007_s00259_021_05637_0 crossref_primary_10_1007_s13139_024_00861_6 crossref_primary_10_1088_1361_6560_ad7e79 crossref_primary_10_1186_s40658_022_00486_8 crossref_primary_10_3390_electronics10060698 crossref_primary_10_1002_mp_15586 crossref_primary_10_1088_1361_6560_ac9a97 crossref_primary_10_1007_s10278_021_00551_1 crossref_primary_10_1088_1361_6560_ac0e79 crossref_primary_10_3390_electronics10151836 crossref_primary_10_1016_j_clineuro_2024_108404 crossref_primary_10_1007_s12350_022_03007_3 crossref_primary_10_1016_j_cpet_2021_06_010 crossref_primary_10_1088_2057_1976_ad97c2 crossref_primary_10_1007_s00259_022_05891_w crossref_primary_10_1053_j_semnuclmed_2021_06_015 crossref_primary_10_1088_1361_6560_ac215d crossref_primary_10_1007_s13534_025_00464_w crossref_primary_10_1007_s12149_024_01986_6 crossref_primary_10_1007_s00259_020_05061_w crossref_primary_10_3390_ijms24010353 crossref_primary_10_1053_j_semnuclmed_2022_02_002 crossref_primary_10_1088_1361_6560_abfc8f crossref_primary_10_1109_TRPMS_2021_3138372 crossref_primary_10_1109_TRPMS_2024_3453009 crossref_primary_10_1007_s00259_023_06418_7 crossref_primary_10_1016_j_phrs_2023_106984 crossref_primary_10_3390_app13063439 crossref_primary_10_1055_a_1718_4128 crossref_primary_10_1007_s13534_024_00418_8 crossref_primary_10_5114_pjr_196804 crossref_primary_10_1007_s10278_023_00902_0 crossref_primary_10_1088_2057_1976_ac21aa crossref_primary_10_1016_j_compmedimag_2021_102010 crossref_primary_10_1088_1361_6560_ad69fb crossref_primary_10_1007_s13139_024_00869_y crossref_primary_10_3389_fonc_2023_1220009 crossref_primary_10_1088_1361_6560_ac08b2 crossref_primary_10_1186_s40658_024_00706_3 crossref_primary_10_1007_s00259_021_05341_z crossref_primary_10_3390_jimaging9010002 crossref_primary_10_1109_TMI_2021_3062066 crossref_primary_10_1007_s12194_024_00780_3 crossref_primary_10_1007_s12149_021_01611_w crossref_primary_10_1038_s41598_020_80930_w crossref_primary_10_1109_TRPMS_2023_3260214 crossref_primary_10_1016_j_neurad_2023_01_157 crossref_primary_10_1007_s12194_023_00744_z crossref_primary_10_1007_s13534_024_00427_7 crossref_primary_10_1109_TRPMS_2024_3374207 crossref_primary_10_1007_s13139_021_00721_7 crossref_primary_10_1088_2057_1976_ad4f73 crossref_primary_10_1007_s13139_020_00667_2 crossref_primary_10_1038_s41467_022_33562_9 crossref_primary_10_1007_s13139_022_00745_7 crossref_primary_10_1186_s40658_024_00666_8 crossref_primary_10_1007_s00259_022_05746_4 crossref_primary_10_1007_s00259_022_05748_2 crossref_primary_10_1109_TRPMS_2021_3118325 crossref_primary_10_3390_app11083508 crossref_primary_10_1109_TRPMS_2022_3205283 crossref_primary_10_3390_cancers16213702 crossref_primary_10_1007_s13534_021_00195_8 crossref_primary_10_1007_s00259_023_06343_9 crossref_primary_10_1016_j_patrec_2023_05_005 crossref_primary_10_1088_1361_6560_acaf49 crossref_primary_10_1055_a_2157_6670 |
Cites_doi | 10.2967/jnumed.111.092726 10.1016/j.neuroimage.2014.06.077 10.1148/radiol.2017170906 10.1007/s00259-019-04373-w 10.1007/s00259-002-1024-x 10.2967/jnumed.114.146308 10.2967/jnumed.107.049353 10.1016/j.cpet.2015.10.004 10.1109/TMI.2014.2340135 10.1001/archneur.60.9.1223 10.1097/RLI.0b013e318283292f 10.3389/fnins.2018.01005 10.1142/9789814366243_0001 10.1088/0031-9155/60/22/R323 10.1109/TNS.2017.2713521 10.1109/TRPMS.2020.3006844 10.1053/snuc.2003.127307 10.1016/j.media.2012.02.005 10.1118/1.3377774 10.1002/9780470034590.emrstm1292 10.2967/jnumed.115.163550 10.2967/jnumed.119.226498 10.1007/s13534-019-00108-w 10.1007/s00259-002-0796-3 10.1007/s13534-019-00110-2 10.1007/s13534-020-00151-y 10.1088/0031-9155/57/4/885 10.1118/1.4941014 10.1007/s13139-019-00610-0 10.1016/j.nima.2013.09.034 10.1016/j.ejmp.2008.10.001 10.1007/s00259-012-2113-0 10.1088/0031-9155/41/10/024 10.1002/hbm.24210 10.1007/s13139-017-0504-7 10.2967/jnumed.118.209288 10.3389/fonc.2018.00215 10.3348/kjr.2015.16.1.32 10.1109/TNS.2011.2105502 10.1088/1361-6560/ab652c 10.1088/0031-9155/49/12/008 10.1007/s00259-013-2652-z 10.1007/s00259-010-1603-1 10.2967/jnumed.111.098350 10.2967/jnumed.113.125989 10.2967/jnumed.117.198051 10.1109/TMI.2010.2095464 10.1088/0031-9155/60/20/8047 10.2967/jnumed.109.069112 10.1016/S0001-2998(98)80031-7 10.1097/00004728-200311000-00001 10.1088/0031-9155/56/10/013 10.1109/TRPMS.2018.2846745 10.2967/jnumed.115.169045 10.2214/AJR.05.0255 10.1007/978-3-319-46976-8_18 10.2967/jnumed.113.136341 10.1109/ISBI.2016.7493217 10.1109/TRPMS.2018.2868946 10.1088/1361-6560/ab012c 10.1053/j.semnuclmed.2008.01.001 10.1109/TRPMS.2018.2886838 10.1118/1.4894818 10.1002/mrm.25335 10.1146/annurev-bioeng-071516-044442 10.2967/jnumed.109.065425 10.18383/j.tom.2018.00016 10.1186/s40658-016-0170-3 10.1007/s00330-002-1564-2 10.1038/nm1700 10.1109/TRPMS.2018.2821798 10.1016/j.bbr.2018.02.017 10.2967/jnumed.117.199414 10.1007/s00330-019-06229-1 10.1109/23.159770 10.2967/jnumed.107.044834 10.2967/jnumed.111.097501 10.2967/jnumed.112.104109 10.1002/mp.12344 10.1097/RLI.0b013e31828234d0 10.2967/jnumed.110.078949 10.1118/1.4938264 10.1002/jmri.21492 10.1186/s13014-017-0854-4 10.1088/0031-9155/59/18/5483 10.1038/s41598-019-40710-7 10.2967/jnumed.116.183343 10.1053/j.semnuclmed.2014.12.002 10.1109/TMI.2017.2715284 10.1007/s13534-020-00156-7 10.1088/0031-9155/41/1/012 10.1088/1361-6560/aaa8a6 10.1109/TMI.2012.2220376 10.1007/s00259-019-04380-x 10.1109/23.256705 10.2967/jnumed.116.188268 10.1002/mp.13716 10.1097/00006231-200411000-00005 10.2967/jnumed.117.202317 10.1109/TMI.2018.2832613 10.2967/jnumed.118.214320 10.1055/s-0034-1371014 10.1148/radiol.14140810 10.1007/s00259-010-1711-y 10.1109/ISBI.2019.8759529 10.1109/TRPMS.2020.2985403 10.2967/jnumed.111.092353 10.1016/j.neuroimage.2016.12.010 10.2967/jnumed.115.156000 10.2967/jnumed.109.061853 10.1007/s00330-019-06514-z 10.1148/rg.246045065 10.1016/j.ejrad.2017.04.004 10.1088/1361-6560/aa5f6c 10.1148/radiol.2018180940 10.2967/jnumed.118.219493 10.1007/s12350-018-1284-x 10.1118/1.598392 10.1088/1361-6560/aada6d 10.2967/jnumed.112.111476 10.1186/s40658-017-0177-4 10.1088/0031-9155/60/6/2231 10.1073/pnas.1220512110 10.2174/1876388X01002010192 10.1007/978-0-387-22529-6_1 10.2967/jnumed.112.105296 10.1007/s00259-011-1842-9 10.1016/j.cpet.2007.10.003 10.1007/s00259-013-2633-2 10.1088/0031-9155/59/4/1073 10.1097/01.mnm.0000184999.81203.5c 10.2967/jnumed.111.093583 10.1109/NSSMIC.2011.6152678 10.1007/s00259-014-2751-5 10.1088/1361-6560/aacdd4 10.1002/mp.12449 10.1002/mp.13617 10.1002/ana.20889 10.1007/s10334-012-0334-7 10.1186/s40658-018-0225-8 10.1038/nm.3290 10.1148/radiol.2017170700 10.1109/TNS.2002.1039554 10.1109/23.873020 10.2967/jnumed.111.092577 10.1109/TRPMS.2017.2772329 10.1109/TRPMS.2020.2989073 10.1038/nature14539 10.1109/TRPMS.2020.2978449 10.1109/TMI.2015.2409157 10.1016/j.ijrobp.2018.05.058 10.1109/TNS.2014.2372788 10.1109/TMI.2016.2537811 10.1007/s13534-018-0058-3 10.1007/s13139-019-00588-9 10.1007/s00259-019-04595-y 10.1371/journal.pone.0182888 10.1002/mrm.25545 10.1016/j.media.2016.10.004 10.1109/TBME.2004.840193 10.1148/radiol.2262012141 10.1016/j.cpet.2007.08.001 10.1016/j.neuroimage.2018.03.045 10.2967/jnumed.118.220871 10.2967/jnumed.108.054726 10.1097/00004728-198204000-00022 10.2967/jnumed.114.138636 10.1007/s00259-002-1097-6 10.1118/1.4729716 10.1007/s00259-015-3060-3 10.1118/1.597167 10.1088/1361-6560/ab4eb7 10.1002/brb3.530 10.1088/1361-6560/aa685c 10.1118/1.4943565 10.1088/0031-9155/58/5/1375 10.1109/TMI.2014.2318175 10.1088/1361-6560/ab8d75 10.1007/978-3-030-32251-9_79 10.1097/RLU.0b013e31825b23a6 10.2967/jnumed.118.220590 10.1007/s00259-008-1007-7 10.1016/j.neuroimage.2015.03.009 10.1073/pnas.0711622105 10.1002/mp.12155 10.1002/mp.13626 10.1109/TMI.2012.2212719 10.1002/mp.12964 10.1007/b136169 10.1016/j.ejrad.2011.12.043 10.1088/0031-9155/60/4/R115 10.1016/j.jmr.2010.09.013 10.2967/jnumed.106.035717 10.2967/jnumed.115.170019 10.1007/s002590050282 10.1118/1.4837315 10.1186/s40658-016-0138-3 10.1002/mp.12122 10.1016/j.mric.2016.12.001 10.1007/s13139-012-0182-4 10.1002/mp.12440 10.2967/jnumed.114.149997 10.1212/WNL.0000000000002892 10.2967/jnumed.108.051276 10.1007/s13534-018-0077-0 10.1007/978-3-319-53496-1_43 10.2967/jnumed.115.159228 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QO 8FD F28 FR3 K9. NAPCQ P64 |
DOI | 10.1109/TRPMS.2020.3009269 |
DatabaseTitle | CrossRef Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2469-7303 |
EndPage | 184 |
ExternalDocumentID | 10_1109_TRPMS_2020_3009269 9143173 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) funderid: 10.13039/501100003725 – fundername: Korean Ministry of Science, ICT and Future Planning grantid: NRF-2016R1A2B3014645 funderid: 10.13039/501100003725 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG 7QO 8FD F28 FR3 K9. NAPCQ P64 |
ID | FETCH-LOGICAL-c405t-a22080b6ca4fbf4019fb9305c1a77f296401623b75f808593aea0adfae0f13183 |
IEDL.DBID | RIE |
ISSN | 2469-7311 |
IngestDate | Mon Jun 30 17:53:05 EDT 2025 Tue Jul 01 03:04:15 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Wed Aug 27 02:39:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-a22080b6ca4fbf4019fb9305c1a77f296401623b75f808593aea0adfae0f13183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7623-053X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9143173 |
PQID | 2498677931 |
PQPubID | 4437208 |
PageCount | 25 |
ParticipantIDs | crossref_primary_10_1109_TRPMS_2020_3009269 proquest_journals_2498677931 crossref_citationtrail_10_1109_TRPMS_2020_3009269 ieee_primary_9143173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on radiation and plasma medical sciences |
PublicationTitleAbbrev | TRPMS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref207 ref56 ref208 ref206 ref53 ref203 ref52 ref204 ref201 kang (ref225) 2020 ref54 ref202 ref209 lecun (ref59) 2015; 521 ref210 ref211 ref50 goodfellow (ref58) 2016 ref46 ref218 ref45 ref48 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref43 ref213 ref49 ref8 ref7 ref9 ref4 ref6 ref100 ref101 ref222 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref38 gaeta (ref85) 2013; 57 xu (ref66) 1991; 32 ref24 ref23 ref26 ref25 ref20 ref22 ref21 heu (ref115) 2017; 4 ref28 ref29 nie (ref39) 2017 ref200 hwang (ref27) 2019; 60 ref128 ref129 pan (ref78) 2005; 46 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 lee (ref205) 2019; 9 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref138 ref88 ref135 ref87 ref136 bendriem (ref55) 2013 sureshbabu (ref71) 2005; 33 ref82 ref81 ref145 ref84 ref142 ref143 ref140 ref141 ref80 ref79 ref229 ref108 ref109 ref227 ref106 ref228 ref107 ref75 ref104 ref74 ref226 ref105 ref77 ref223 ref102 ref224 ref103 armanious (ref33) 2019; 22 hwang (ref221) 2019 beyer (ref72) 2006; 47 ref232 ref111 ref70 ref233 ref112 ref73 ref230 ref231 ref110 ref68 ref119 ref67 ref117 ref118 ref64 ref63 ref116 ref113 ref65 ref114 martinez-möller (ref76) 2007; 48 ref60 ref122 ref123 ref62 ref120 ref121 ref168 ref169 ref170 lee (ref190) 2001; 4 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 ref179 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 zaidi (ref3) 2003; 44 kops (ref144) 2007; 6 hooper (ref69) 1996; 37 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 ref157 ref158 ref166 ref167 ref164 ref165 ref162 ref163 ronneberger (ref216) 2015 ref160 ref161 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 lee (ref5) 2014; 18 bishop (ref61) 2006 maksud (ref51) 1998; 39 krähenbühl (ref219) 2011; 4 ref2 choi (ref220) 2019 ref1 ref192 ref199 lee (ref191) 2001; 42 ref197 ref198 ref195 ref196 ref193 ref194 balyasnikova (ref83) 2012; 2 |
References_xml | – ident: ref80 doi: 10.2967/jnumed.111.092726 – ident: ref206 doi: 10.1016/j.neuroimage.2014.06.077 – start-page: 417 year: 2017 ident: ref39 article-title: Medical image synthesis with context-aware generative adversarial networks publication-title: Proc Med Image Comput Comput Assist Intervention – ident: ref137 doi: 10.1148/radiol.2017170906 – ident: ref195 doi: 10.1007/s00259-019-04373-w – ident: ref15 doi: 10.1007/s00259-002-1024-x – ident: ref120 doi: 10.2967/jnumed.114.146308 – ident: ref47 doi: 10.2967/jnumed.107.049353 – ident: ref149 doi: 10.1016/j.cpet.2015.10.004 – ident: ref141 doi: 10.1109/TMI.2014.2340135 – ident: ref155 doi: 10.1001/archneur.60.9.1223 – ident: ref125 doi: 10.1097/RLI.0b013e318283292f – ident: ref36 doi: 10.3389/fnins.2018.01005 – ident: ref1 doi: 10.1142/9789814366243_0001 – volume: 57 start-page: 352 year: 2013 ident: ref85 article-title: Recurrent and metastatic breast cancer PET, PET/CT, PET/MRI: FDG and new biomarkers publication-title: Quart J Nucl Med Mol Imag – volume: 32 start-page: 161 year: 1991 ident: ref66 article-title: A segmented attenuation correction for PET publication-title: J Nucl Med – volume: 39 start-page: 735 year: 1998 ident: ref51 article-title: Artificial neural network as a tool to compensate for scatter and attenuation in radionuclide imaging publication-title: J Nucl Med – ident: ref214 doi: 10.1088/0031-9155/60/22/R323 – ident: ref226 doi: 10.1109/TNS.2017.2713521 – ident: ref224 doi: 10.1109/TRPMS.2020.3006844 – ident: ref9 doi: 10.1053/snuc.2003.127307 – ident: ref181 doi: 10.1016/j.media.2012.02.005 – ident: ref146 doi: 10.1118/1.3377774 – ident: ref138 doi: 10.1002/9780470034590.emrstm1292 – ident: ref119 doi: 10.2967/jnumed.115.163550 – ident: ref23 doi: 10.2967/jnumed.119.226498 – ident: ref182 doi: 10.1007/s13534-019-00108-w – ident: ref8 doi: 10.1007/s00259-002-0796-3 – ident: ref217 doi: 10.1007/s13534-019-00110-2 – year: 2019 ident: ref220 article-title: Accurate transmission-less attenuation correction method for amyloid-? brain PET using deep neural network publication-title: Proc IEEE Nucl Sci Symp Med Imag Conf – ident: ref186 doi: 10.1007/s13534-020-00151-y – ident: ref173 doi: 10.1088/0031-9155/57/4/885 – ident: ref17 doi: 10.1118/1.4941014 – year: 2016 ident: ref58 publication-title: Deep Learning – ident: ref209 doi: 10.1007/s13139-019-00610-0 – ident: ref45 doi: 10.1016/j.nima.2013.09.034 – ident: ref167 doi: 10.1016/j.ejmp.2008.10.001 – ident: ref109 doi: 10.1007/s00259-012-2113-0 – ident: ref48 doi: 10.1088/0031-9155/41/10/024 – ident: ref203 doi: 10.1002/hbm.24210 – ident: ref196 doi: 10.1007/s13139-017-0504-7 – volume: 44 start-page: 291 year: 2003 ident: ref3 article-title: Determination of the attenuation map in emission tomography publication-title: J Nucl Med – ident: ref34 doi: 10.2967/jnumed.118.209288 – ident: ref201 doi: 10.3389/fonc.2018.00215 – ident: ref19 doi: 10.3348/kjr.2015.16.1.32 – ident: ref159 doi: 10.1109/TNS.2011.2105502 – ident: ref32 doi: 10.1088/1361-6560/ab652c – ident: ref62 doi: 10.1088/0031-9155/49/12/008 – ident: ref136 doi: 10.1007/s00259-013-2652-z – ident: ref105 doi: 10.1007/s00259-010-1603-1 – ident: ref104 doi: 10.2967/jnumed.111.098350 – ident: ref170 doi: 10.2967/jnumed.113.125989 – ident: ref35 doi: 10.2967/jnumed.117.198051 – volume: 42 start-page: 938 year: 2001 ident: ref191 article-title: Blind separation of cardiac components and extraction of input function from H215O dynamic myocardial PET using independent component analysis publication-title: J Nucl Med – volume: 47 start-page: 91 year: 2006 ident: ref72 article-title: Whole-body 18F-FDG PET/CT in the presence of truncation artifacts publication-title: J Nucl Med – ident: ref175 doi: 10.1109/TMI.2010.2095464 – volume: 46 start-page: 1481 year: 2005 ident: ref78 article-title: Attenuation correction of PET images with respiration-averaged CT images in PET/CT publication-title: J Nucl Med – ident: ref124 doi: 10.1088/0031-9155/60/20/8047 – ident: ref121 doi: 10.2967/jnumed.109.069112 – ident: ref165 doi: 10.1016/S0001-2998(98)80031-7 – ident: ref134 doi: 10.1097/00004728-200311000-00001 – ident: ref82 doi: 10.1088/0031-9155/56/10/013 – ident: ref21 doi: 10.1109/TRPMS.2018.2846745 – ident: ref148 doi: 10.2967/jnumed.115.169045 – ident: ref73 doi: 10.2214/AJR.05.0255 – ident: ref40 doi: 10.1007/978-3-319-46976-8_18 – ident: ref143 doi: 10.2967/jnumed.113.136341 – ident: ref172 doi: 10.1109/ISBI.2016.7493217 – ident: ref140 doi: 10.1109/TRPMS.2018.2868946 – ident: ref156 doi: 10.1088/1361-6560/ab012c – ident: ref6 doi: 10.1053/j.semnuclmed.2008.01.001 – ident: ref139 doi: 10.1109/TRPMS.2018.2886838 – ident: ref227 doi: 10.1118/1.4894818 – ident: ref151 doi: 10.1002/mrm.25335 – ident: ref60 doi: 10.1146/annurev-bioeng-071516-044442 – ident: ref123 doi: 10.2967/jnumed.109.065425 – ident: ref43 doi: 10.18383/j.tom.2018.00016 – ident: ref232 doi: 10.1186/s40658-016-0170-3 – ident: ref14 doi: 10.1007/s00330-002-1564-2 – ident: ref90 doi: 10.1038/nm1700 – ident: ref222 doi: 10.1109/TRPMS.2018.2821798 – ident: ref207 doi: 10.1016/j.bbr.2018.02.017 – ident: ref204 doi: 10.2967/jnumed.117.199414 – ident: ref29 doi: 10.1007/s00330-019-06229-1 – ident: ref68 doi: 10.1109/23.159770 – ident: ref163 doi: 10.2967/jnumed.107.044834 – ident: ref93 doi: 10.2967/jnumed.111.097501 – ident: ref107 doi: 10.2967/jnumed.112.104109 – ident: ref162 doi: 10.1002/mp.12344 – ident: ref84 doi: 10.1097/RLI.0b013e31828234d0 – ident: ref46 doi: 10.2967/jnumed.110.078949 – ident: ref228 doi: 10.1118/1.4938264 – ident: ref102 doi: 10.1002/jmri.21492 – start-page: 234 year: 2015 ident: ref216 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Med Image Comput Comput Assist Intervent – ident: ref215 doi: 10.1186/s13014-017-0854-4 – ident: ref171 doi: 10.1088/0031-9155/59/18/5483 – ident: ref202 doi: 10.1038/s41598-019-40710-7 – ident: ref114 doi: 10.2967/jnumed.116.183343 – ident: ref132 doi: 10.1053/j.semnuclmed.2014.12.002 – ident: ref161 doi: 10.1109/TMI.2017.2715284 – ident: ref187 doi: 10.1007/s13534-020-00156-7 – volume: 4 start-page: 2027 year: 2001 ident: ref190 article-title: Non-negative matrix factorization of dynamic images in nuclear medicine publication-title: Proc IEEE Nucl Sci Symp Conf Rec – ident: ref63 doi: 10.1088/0031-9155/41/1/012 – ident: ref179 doi: 10.1088/1361-6560/aaa8a6 – ident: ref113 doi: 10.1109/TMI.2012.2220376 – ident: ref44 doi: 10.1007/s00259-019-04380-x – ident: ref49 doi: 10.1109/23.256705 – ident: ref131 doi: 10.2967/jnumed.116.188268 – ident: ref212 doi: 10.1002/mp.13716 – ident: ref70 doi: 10.1097/00006231-200411000-00005 – ident: ref26 doi: 10.2967/jnumed.117.202317 – ident: ref199 doi: 10.1109/TMI.2018.2832613 – volume: 9 year: 2019 ident: ref205 article-title: Deep-dose: A voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry publication-title: Sci Rep – ident: ref38 doi: 10.2967/jnumed.118.214320 – volume: 18 start-page: 103 year: 2014 ident: ref5 article-title: Recent advances in hybrid molecular imaging systems publication-title: Seminars in Musculoskeletal Radiology doi: 10.1055/s-0034-1371014 – ident: ref142 doi: 10.1148/radiol.14140810 – ident: ref169 doi: 10.1007/s00259-010-1711-y – ident: ref223 doi: 10.1109/ISBI.2019.8759529 – ident: ref24 doi: 10.1109/TRPMS.2020.2985403 – ident: ref94 doi: 10.2967/jnumed.111.092353 – ident: ref20 doi: 10.1016/j.neuroimage.2016.12.010 – ident: ref110 doi: 10.2967/jnumed.115.156000 – ident: ref79 doi: 10.2967/jnumed.109.061853 – ident: ref129 doi: 10.1007/s00330-019-06514-z – ident: ref11 doi: 10.1148/rg.246045065 – ident: ref111 doi: 10.1016/j.ejrad.2017.04.004 – ident: ref145 doi: 10.1088/1361-6560/aa5f6c – ident: ref197 doi: 10.1148/radiol.2018180940 – ident: ref28 doi: 10.2967/jnumed.118.219493 – ident: ref194 doi: 10.1007/s12350-018-1284-x – ident: ref10 doi: 10.1118/1.598392 – ident: ref210 doi: 10.1088/1361-6560/aada6d – ident: ref230 doi: 10.2967/jnumed.112.111476 – volume: 4 start-page: 12 year: 2017 ident: ref115 article-title: MLAA-based attenuation correction of flexible hardware components in hybrid PET/MR imaging publication-title: EJNMMI Phys doi: 10.1186/s40658-017-0177-4 – ident: ref92 doi: 10.1088/0031-9155/60/6/2231 – ident: ref95 doi: 10.1073/pnas.1220512110 – ident: ref22 doi: 10.2174/1876388X01002010192 – ident: ref53 doi: 10.1007/978-0-387-22529-6_1 – ident: ref97 doi: 10.2967/jnumed.112.105296 – volume: 4 start-page: 109 year: 2011 ident: ref219 article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials publication-title: Proc Adv Neural Inf Process Syst – ident: ref100 doi: 10.1007/s00259-011-1842-9 – ident: ref57 doi: 10.1016/j.cpet.2007.10.003 – ident: ref87 doi: 10.1007/s00259-013-2633-2 – ident: ref176 doi: 10.1088/0031-9155/59/4/1073 – ident: ref193 doi: 10.1097/01.mnm.0000184999.81203.5c – ident: ref75 doi: 10.2967/jnumed.111.093583 – ident: ref112 doi: 10.1109/NSSMIC.2011.6152678 – ident: ref106 doi: 10.1007/s00259-014-2751-5 – ident: ref160 doi: 10.1088/1361-6560/aacdd4 – volume: 48 start-page: 188 year: 2007 ident: ref76 article-title: Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions publication-title: J Nucl Med – ident: ref116 doi: 10.1002/mp.12449 – ident: ref213 doi: 10.1002/mp.13617 – ident: ref152 doi: 10.1002/ana.20889 – ident: ref103 doi: 10.1007/s10334-012-0334-7 – ident: ref30 doi: 10.1186/s40658-018-0225-8 – volume: 60 start-page: 568 year: 2019 ident: ref27 article-title: Accurate attenuation correction for whole-body Ga-68-DOTATOC PET studies using deep learning publication-title: J Nucl Med – ident: ref96 doi: 10.1038/nm.3290 – ident: ref41 doi: 10.1148/radiol.2017170700 – ident: ref65 doi: 10.1109/TNS.2002.1039554 – ident: ref64 doi: 10.1109/23.873020 – ident: ref99 doi: 10.2967/jnumed.111.092577 – year: 2020 ident: ref225 article-title: CT image prediction from weakly paired MR image using CycleGAN for dose prediction in radiotherapy publication-title: Proc IEEE Nucl Sci Symp Med Imag Conf – ident: ref126 doi: 10.1109/TRPMS.2017.2772329 – ident: ref52 doi: 10.1109/TRPMS.2020.2989073 – volume: 22 start-page: 179 year: 2019 ident: ref33 article-title: Independent brain ¹?F-FDG PET attenuation correction using a deep learning approach with generative adversarial networks publication-title: Hellenic Journal of Nuclear Medicine – volume: 521 start-page: 436 year: 2015 ident: ref59 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 37 start-page: 128 year: 1996 ident: ref69 article-title: Validation of postinjection transmission measurements for attenuation correction in neurological FDG-PET studies publication-title: J Nucl Med – ident: ref229 doi: 10.1109/TRPMS.2020.2978449 – ident: ref180 doi: 10.1109/TMI.2015.2409157 – ident: ref211 doi: 10.1016/j.ijrobp.2018.05.058 – ident: ref188 doi: 10.1109/TNS.2014.2372788 – ident: ref81 doi: 10.1109/TMI.2016.2537811 – ident: ref185 doi: 10.1007/s13534-018-0058-3 – ident: ref233 doi: 10.1007/s13139-019-00588-9 – ident: ref208 doi: 10.1007/s00259-019-04595-y – ident: ref231 doi: 10.1371/journal.pone.0182888 – ident: ref130 doi: 10.1002/mrm.25545 – volume: 33 start-page: 156 year: 2005 ident: ref71 article-title: PET/CT imaging artifacts publication-title: J Nucl Med Technol – ident: ref218 doi: 10.1016/j.media.2016.10.004 – ident: ref192 doi: 10.1109/TBME.2004.840193 – ident: ref13 doi: 10.1148/radiol.2262012141 – ident: ref56 doi: 10.1016/j.cpet.2007.08.001 – year: 2013 ident: ref55 publication-title: The theory and practice of 3D PET – ident: ref198 doi: 10.1016/j.neuroimage.2018.03.045 – ident: ref178 doi: 10.2967/jnumed.118.220871 – ident: ref101 doi: 10.2967/jnumed.108.054726 – ident: ref67 doi: 10.1097/00004728-198204000-00022 – ident: ref135 doi: 10.2967/jnumed.114.138636 – ident: ref108 doi: 10.2967/jnumed.110.078949 – volume: 2 start-page: 458 year: 2012 ident: ref83 article-title: PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging publication-title: Am J Nucl Med Mol Imaging – ident: ref12 doi: 10.1007/s00259-002-1097-6 – ident: ref150 doi: 10.1118/1.4729716 – ident: ref117 doi: 10.1007/s00259-015-3060-3 – ident: ref50 doi: 10.1118/1.597167 – ident: ref31 doi: 10.1088/1361-6560/ab4eb7 – ident: ref158 doi: 10.1002/brb3.530 – ident: ref157 doi: 10.1088/1361-6560/aa685c – ident: ref74 doi: 10.1118/1.4943565 – ident: ref189 doi: 10.1088/0031-9155/58/5/1375 – ident: ref177 doi: 10.1109/TMI.2014.2318175 – ident: ref166 doi: 10.1088/1361-6560/ab8d75 – ident: ref25 doi: 10.1007/978-3-030-32251-9_79 – ident: ref88 doi: 10.1097/RLU.0b013e31825b23a6 – year: 2019 ident: ref221 article-title: Data-driven respiratory phase-matched attenuation correction without CT publication-title: Proc IEEE Nucl Sci Symp Med Imag Conf – ident: ref184 doi: 10.2967/jnumed.118.220590 – ident: ref98 doi: 10.1007/s00259-008-1007-7 – ident: ref122 doi: 10.1016/j.neuroimage.2015.03.009 – ident: ref89 doi: 10.1073/pnas.0711622105 – ident: ref42 doi: 10.1002/mp.12155 – ident: ref200 doi: 10.1002/mp.13626 – ident: ref174 doi: 10.1109/TMI.2012.2212719 – ident: ref37 doi: 10.1002/mp.12964 – ident: ref54 doi: 10.1007/b136169 – ident: ref86 doi: 10.1016/j.ejrad.2011.12.043 – ident: ref18 doi: 10.1088/0031-9155/60/4/R115 – ident: ref133 doi: 10.1016/j.jmr.2010.09.013 – ident: ref77 doi: 10.2967/jnumed.106.035717 – ident: ref91 doi: 10.2967/jnumed.115.170019 – ident: ref2 doi: 10.1007/s002590050282 – ident: ref118 doi: 10.1118/1.4837315 – ident: ref164 doi: 10.1186/s40658-016-0138-3 – ident: ref128 doi: 10.1002/mp.12122 – volume: 6 start-page: 4327 year: 2007 ident: ref144 article-title: Alternative methods for attenuation correction for PET images in MR-PET scanners publication-title: Proc IEEE Nucl Sci Symp Conf Rec – ident: ref16 doi: 10.1016/j.mric.2016.12.001 – ident: ref154 doi: 10.1007/s13139-012-0182-4 – ident: ref168 doi: 10.1002/mp.12440 – ident: ref127 doi: 10.2967/jnumed.114.149997 – year: 2006 ident: ref61 publication-title: Pattern Recognition and Machine Learning – ident: ref153 doi: 10.1212/WNL.0000000000002892 – ident: ref7 doi: 10.2967/jnumed.108.051276 – ident: ref183 doi: 10.1007/s13534-018-0077-0 – ident: ref4 doi: 10.1007/978-3-319-53496-1_43 – ident: ref147 doi: 10.2967/jnumed.115.159228 |
SSID | ssj0001782945 |
Score | 2.4484828 |
SecondaryResourceType | review_article |
Snippet | Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. PET AC... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 160 |
SubjectTerms | Alternating current Attenuation Attenuation correction (AC) Biomedical imaging Computed tomography Deep learning deep neural network Magnetic resonance imaging Medical imaging PET/MRI Photonics Plasmas Positron emission Positron emission tomography positron emission tomography (PET) Radiation Radiation dosage Scanners Tomography |
Title | A Review of Deep-Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography |
URI | https://ieeexplore.ieee.org/document/9143173 https://www.proquest.com/docview/2498677931 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1UELz4VcX6RQ7eNG03u91tjrW2FEERrOBtSbITEbUVu734651k0yoq4m0PCQReNvNeMvMG4ERjkZpUWk7BteBJLJB34lhzaVC3i1hk1jebuLpOh3fJ5X37fgnOFrUwiOiTz7DhPv1bfjExM3dV1pSRC3fxMiyTcKtqtT7vUyjUSd-TWJDi41kcRfMamZZsjkjE35IaFCRSnc2Qy2_-Eod8Y5Ufp7EPMYMNuJovrsoseWrMSt0w7998G_-7-k1YD1yTdavNsQVLON6GVZ_zaaY1wC6rXgbYxLILxFcezFYf-DnFtoJ1g984ThlRW9YtiV9XzuCs55p6-JII9jhmNy7z642--7Rr3PUbG01eghf2DtwN-qPekIeuC9wQeSu5EoJYpE6NSqy2JL-k1ZJOBROpLLPulZZYooh11rYd75amULVUYRW2bOROiF1YGU_GuAdMW0xc-YlVEhNSkp3IitRioYwuSKa16xDNMchNsCR3nTGecy9NWjL3uOUOtzzgVofTxZzXypDjz9E1B8RiZMCgDodzqPPwz05zEqLO3E_G0f7vsw5gTbiMFp-Bdggr5dsMj4iSlPrY78UPZPPczQ |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB3xoYpegEJRQyn4wI06xN6v-JhSUKAEITVI3Fa2d4yqQoLI5sKvZ-x1AqIV4rYHW7I0Xs979ps3APsGq9zmynFKrhVPE4m8mySGK4smqxJZuNBsYnCR96_Ss-vsegG-z2thEDGIz7DtP8NbfjW2U39VdqiET3fJIixT3s9EU631fKNCyU6FrsSSOB8vEiFmVTIddTgkGv-b-KAkmuqNhrzC-UUmCq1V_jmPQ5I5WYPBbHmNtuRve1qbtn185dz43vWvw2pEm6zXbI9PsICjDfgQVJ92sgnYY83bABs79hPxnke71Rv-g7JbxXrRcRwnjMAt69WEsBtvcHbk23qEogj2Z8Quvfbrgb6Pad_4Czg2HN9FN-zPcHVyPDzq89h3gVuCbzXXUhKONLnVqTOOCJhyRtG5YIUuCuffaQknysQUmesGvzSNuqMrp7HjhD8jtmBpNB7hF2DGYeoLUJxWmBKX7Aonc4eVtqYiopa1QMxiUNpoSu57Y9yWgZx0VBniVvq4lTFuLTiYz7lvLDneHL3pAzEfGWPQgp1ZqMv4105KoqLe3k8lYvv_s_ZgpT8cnJfnpxe_vsJH6fUtQY-2A0v1wxS_EUCpzW7Yl08TL-AW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Deep-Learning-Based+Approaches+for+Attenuation+Correction+in+Positron+Emission+Tomography&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Lee%2C+Jae+Sung&rft.date=2021-03-01&rft.pub=IEEE&rft.issn=2469-7311&rft.volume=5&rft.issue=2&rft.spage=160&rft.epage=184&rft_id=info:doi/10.1109%2FTRPMS.2020.3009269&rft.externalDocID=9143173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon |