A Review of Deep-Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography

Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. PET AC based on computed tomography (CT) frequently results in artifacts in attenuation-corrected PET images, and these artifacts mainly originate from...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on radiation and plasma medical sciences Vol. 5; no. 2; pp. 160 - 184
Main Author Lee, Jae Sung
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. PET AC based on computed tomography (CT) frequently results in artifacts in attenuation-corrected PET images, and these artifacts mainly originate from CT artifacts and PET-CT mismatches. The AC in PET combined with a magnetic resonance imaging (MRI) scanner (PET/MRI) is more complex than PET/CT, given that MR images do not provide direct information on high-energy photon attenuation. Deep-learning (DL)-based methods for the improvement of PET AC have received significant research attention as alternatives to conventional AC methods. Many DL studies were focused on the transformation of MR images into synthetic pseudo-CT or attenuation maps. Alternative approaches that are not dependent on the anatomical images (CT or MRI) can overcome the limitations related to current CT- and MRI-based ACs and allow for more accurate PET quantification in stand-alone PET scanners for the realization of low radiation doses. In this article, a review is presented on the limitations of the PET AC in current dual-modality PET/CT and PET/MRI scanners, in addition to the current status and progress of DL-based approaches, for the realization of improved performance of PET AC.
AbstractList Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. PET AC based on computed tomography (CT) frequently results in artifacts in attenuation-corrected PET images, and these artifacts mainly originate from CT artifacts and PET-CT mismatches. The AC in PET combined with a magnetic resonance imaging (MRI) scanner (PET/MRI) is more complex than PET/CT, given that MR images do not provide direct information on high-energy photon attenuation. Deep-learning (DL)-based methods for the improvement of PET AC have received significant research attention as alternatives to conventional AC methods. Many DL studies were focused on the transformation of MR images into synthetic pseudo-CT or attenuation maps. Alternative approaches that are not dependent on the anatomical images (CT or MRI) can overcome the limitations related to current CT- and MRI-based ACs and allow for more accurate PET quantification in stand-alone PET scanners for the realization of low radiation doses. In this article, a review is presented on the limitations of the PET AC in current dual-modality PET/CT and PET/MRI scanners, in addition to the current status and progress of DL-based approaches, for the realization of improved performance of PET AC.
Author Lee, Jae Sung
Author_xml – sequence: 1
  givenname: Jae Sung
  orcidid: 0000-0001-7623-053X
  surname: Lee
  fullname: Lee, Jae Sung
  email: jaes@snu.ac.kr
  organization: Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
BookMark eNp9kM1PAjEQxRuDiYj8A3rZxPPitN2vHlfEjwQjQTxvussUSqBd20XDf-8ChoMHT_Py8t7M5HdJOsYaJOSawoBSEHez6eT1fcCAwYADCJaIM9JlUSLClAPvnDSlF6Tv_QoAaJoxEcVdgnkwxS-N34FVwQNiHY5ROqPNIryXHudBXtfOymqJPlDWBXnToNnKRlsTDK1zWB2kNsHEet24Vo822vu9ObMbu3CyXu6uyLmSa4_939kjH4-j2fA5HL89vQzzcVhFEDehZAwyKJNKRqpUEVChSsEhrqhMU8VE0loJ42UaqwyyWHCJEuRcSQRFOc14j9we97Y_f27RN8XKbp1pTxYsElmSpoLTNsWOqcpZ7x2qonZ6I92uoFDsiRYHosWeaPFLtC1lf0qVbg4cGif1-v_qzbGqEfF0S9CI05TzHwA-hgc
CODEN ITRPFI
CitedBy_id crossref_primary_10_2967_jnumed_123_267360
crossref_primary_10_1016_j_cpet_2023_06_003
crossref_primary_10_1109_TRPMS_2024_3397318
crossref_primary_10_1007_s00259_021_05637_0
crossref_primary_10_1007_s13139_024_00861_6
crossref_primary_10_1088_1361_6560_ad7e79
crossref_primary_10_1186_s40658_022_00486_8
crossref_primary_10_3390_electronics10060698
crossref_primary_10_1002_mp_15586
crossref_primary_10_1088_1361_6560_ac9a97
crossref_primary_10_1007_s10278_021_00551_1
crossref_primary_10_1088_1361_6560_ac0e79
crossref_primary_10_3390_electronics10151836
crossref_primary_10_1016_j_clineuro_2024_108404
crossref_primary_10_1007_s12350_022_03007_3
crossref_primary_10_1016_j_cpet_2021_06_010
crossref_primary_10_1088_2057_1976_ad97c2
crossref_primary_10_1007_s00259_022_05891_w
crossref_primary_10_1053_j_semnuclmed_2021_06_015
crossref_primary_10_1088_1361_6560_ac215d
crossref_primary_10_1007_s13534_025_00464_w
crossref_primary_10_1007_s12149_024_01986_6
crossref_primary_10_1007_s00259_020_05061_w
crossref_primary_10_3390_ijms24010353
crossref_primary_10_1053_j_semnuclmed_2022_02_002
crossref_primary_10_1088_1361_6560_abfc8f
crossref_primary_10_1109_TRPMS_2021_3138372
crossref_primary_10_1109_TRPMS_2024_3453009
crossref_primary_10_1007_s00259_023_06418_7
crossref_primary_10_1016_j_phrs_2023_106984
crossref_primary_10_3390_app13063439
crossref_primary_10_1055_a_1718_4128
crossref_primary_10_1007_s13534_024_00418_8
crossref_primary_10_5114_pjr_196804
crossref_primary_10_1007_s10278_023_00902_0
crossref_primary_10_1088_2057_1976_ac21aa
crossref_primary_10_1016_j_compmedimag_2021_102010
crossref_primary_10_1088_1361_6560_ad69fb
crossref_primary_10_1007_s13139_024_00869_y
crossref_primary_10_3389_fonc_2023_1220009
crossref_primary_10_1088_1361_6560_ac08b2
crossref_primary_10_1186_s40658_024_00706_3
crossref_primary_10_1007_s00259_021_05341_z
crossref_primary_10_3390_jimaging9010002
crossref_primary_10_1109_TMI_2021_3062066
crossref_primary_10_1007_s12194_024_00780_3
crossref_primary_10_1007_s12149_021_01611_w
crossref_primary_10_1038_s41598_020_80930_w
crossref_primary_10_1109_TRPMS_2023_3260214
crossref_primary_10_1016_j_neurad_2023_01_157
crossref_primary_10_1007_s12194_023_00744_z
crossref_primary_10_1007_s13534_024_00427_7
crossref_primary_10_1109_TRPMS_2024_3374207
crossref_primary_10_1007_s13139_021_00721_7
crossref_primary_10_1088_2057_1976_ad4f73
crossref_primary_10_1007_s13139_020_00667_2
crossref_primary_10_1038_s41467_022_33562_9
crossref_primary_10_1007_s13139_022_00745_7
crossref_primary_10_1186_s40658_024_00666_8
crossref_primary_10_1007_s00259_022_05746_4
crossref_primary_10_1007_s00259_022_05748_2
crossref_primary_10_1109_TRPMS_2021_3118325
crossref_primary_10_3390_app11083508
crossref_primary_10_1109_TRPMS_2022_3205283
crossref_primary_10_3390_cancers16213702
crossref_primary_10_1007_s13534_021_00195_8
crossref_primary_10_1007_s00259_023_06343_9
crossref_primary_10_1016_j_patrec_2023_05_005
crossref_primary_10_1088_1361_6560_acaf49
crossref_primary_10_1055_a_2157_6670
Cites_doi 10.2967/jnumed.111.092726
10.1016/j.neuroimage.2014.06.077
10.1148/radiol.2017170906
10.1007/s00259-019-04373-w
10.1007/s00259-002-1024-x
10.2967/jnumed.114.146308
10.2967/jnumed.107.049353
10.1016/j.cpet.2015.10.004
10.1109/TMI.2014.2340135
10.1001/archneur.60.9.1223
10.1097/RLI.0b013e318283292f
10.3389/fnins.2018.01005
10.1142/9789814366243_0001
10.1088/0031-9155/60/22/R323
10.1109/TNS.2017.2713521
10.1109/TRPMS.2020.3006844
10.1053/snuc.2003.127307
10.1016/j.media.2012.02.005
10.1118/1.3377774
10.1002/9780470034590.emrstm1292
10.2967/jnumed.115.163550
10.2967/jnumed.119.226498
10.1007/s13534-019-00108-w
10.1007/s00259-002-0796-3
10.1007/s13534-019-00110-2
10.1007/s13534-020-00151-y
10.1088/0031-9155/57/4/885
10.1118/1.4941014
10.1007/s13139-019-00610-0
10.1016/j.nima.2013.09.034
10.1016/j.ejmp.2008.10.001
10.1007/s00259-012-2113-0
10.1088/0031-9155/41/10/024
10.1002/hbm.24210
10.1007/s13139-017-0504-7
10.2967/jnumed.118.209288
10.3389/fonc.2018.00215
10.3348/kjr.2015.16.1.32
10.1109/TNS.2011.2105502
10.1088/1361-6560/ab652c
10.1088/0031-9155/49/12/008
10.1007/s00259-013-2652-z
10.1007/s00259-010-1603-1
10.2967/jnumed.111.098350
10.2967/jnumed.113.125989
10.2967/jnumed.117.198051
10.1109/TMI.2010.2095464
10.1088/0031-9155/60/20/8047
10.2967/jnumed.109.069112
10.1016/S0001-2998(98)80031-7
10.1097/00004728-200311000-00001
10.1088/0031-9155/56/10/013
10.1109/TRPMS.2018.2846745
10.2967/jnumed.115.169045
10.2214/AJR.05.0255
10.1007/978-3-319-46976-8_18
10.2967/jnumed.113.136341
10.1109/ISBI.2016.7493217
10.1109/TRPMS.2018.2868946
10.1088/1361-6560/ab012c
10.1053/j.semnuclmed.2008.01.001
10.1109/TRPMS.2018.2886838
10.1118/1.4894818
10.1002/mrm.25335
10.1146/annurev-bioeng-071516-044442
10.2967/jnumed.109.065425
10.18383/j.tom.2018.00016
10.1186/s40658-016-0170-3
10.1007/s00330-002-1564-2
10.1038/nm1700
10.1109/TRPMS.2018.2821798
10.1016/j.bbr.2018.02.017
10.2967/jnumed.117.199414
10.1007/s00330-019-06229-1
10.1109/23.159770
10.2967/jnumed.107.044834
10.2967/jnumed.111.097501
10.2967/jnumed.112.104109
10.1002/mp.12344
10.1097/RLI.0b013e31828234d0
10.2967/jnumed.110.078949
10.1118/1.4938264
10.1002/jmri.21492
10.1186/s13014-017-0854-4
10.1088/0031-9155/59/18/5483
10.1038/s41598-019-40710-7
10.2967/jnumed.116.183343
10.1053/j.semnuclmed.2014.12.002
10.1109/TMI.2017.2715284
10.1007/s13534-020-00156-7
10.1088/0031-9155/41/1/012
10.1088/1361-6560/aaa8a6
10.1109/TMI.2012.2220376
10.1007/s00259-019-04380-x
10.1109/23.256705
10.2967/jnumed.116.188268
10.1002/mp.13716
10.1097/00006231-200411000-00005
10.2967/jnumed.117.202317
10.1109/TMI.2018.2832613
10.2967/jnumed.118.214320
10.1055/s-0034-1371014
10.1148/radiol.14140810
10.1007/s00259-010-1711-y
10.1109/ISBI.2019.8759529
10.1109/TRPMS.2020.2985403
10.2967/jnumed.111.092353
10.1016/j.neuroimage.2016.12.010
10.2967/jnumed.115.156000
10.2967/jnumed.109.061853
10.1007/s00330-019-06514-z
10.1148/rg.246045065
10.1016/j.ejrad.2017.04.004
10.1088/1361-6560/aa5f6c
10.1148/radiol.2018180940
10.2967/jnumed.118.219493
10.1007/s12350-018-1284-x
10.1118/1.598392
10.1088/1361-6560/aada6d
10.2967/jnumed.112.111476
10.1186/s40658-017-0177-4
10.1088/0031-9155/60/6/2231
10.1073/pnas.1220512110
10.2174/1876388X01002010192
10.1007/978-0-387-22529-6_1
10.2967/jnumed.112.105296
10.1007/s00259-011-1842-9
10.1016/j.cpet.2007.10.003
10.1007/s00259-013-2633-2
10.1088/0031-9155/59/4/1073
10.1097/01.mnm.0000184999.81203.5c
10.2967/jnumed.111.093583
10.1109/NSSMIC.2011.6152678
10.1007/s00259-014-2751-5
10.1088/1361-6560/aacdd4
10.1002/mp.12449
10.1002/mp.13617
10.1002/ana.20889
10.1007/s10334-012-0334-7
10.1186/s40658-018-0225-8
10.1038/nm.3290
10.1148/radiol.2017170700
10.1109/TNS.2002.1039554
10.1109/23.873020
10.2967/jnumed.111.092577
10.1109/TRPMS.2017.2772329
10.1109/TRPMS.2020.2989073
10.1038/nature14539
10.1109/TRPMS.2020.2978449
10.1109/TMI.2015.2409157
10.1016/j.ijrobp.2018.05.058
10.1109/TNS.2014.2372788
10.1109/TMI.2016.2537811
10.1007/s13534-018-0058-3
10.1007/s13139-019-00588-9
10.1007/s00259-019-04595-y
10.1371/journal.pone.0182888
10.1002/mrm.25545
10.1016/j.media.2016.10.004
10.1109/TBME.2004.840193
10.1148/radiol.2262012141
10.1016/j.cpet.2007.08.001
10.1016/j.neuroimage.2018.03.045
10.2967/jnumed.118.220871
10.2967/jnumed.108.054726
10.1097/00004728-198204000-00022
10.2967/jnumed.114.138636
10.1007/s00259-002-1097-6
10.1118/1.4729716
10.1007/s00259-015-3060-3
10.1118/1.597167
10.1088/1361-6560/ab4eb7
10.1002/brb3.530
10.1088/1361-6560/aa685c
10.1118/1.4943565
10.1088/0031-9155/58/5/1375
10.1109/TMI.2014.2318175
10.1088/1361-6560/ab8d75
10.1007/978-3-030-32251-9_79
10.1097/RLU.0b013e31825b23a6
10.2967/jnumed.118.220590
10.1007/s00259-008-1007-7
10.1016/j.neuroimage.2015.03.009
10.1073/pnas.0711622105
10.1002/mp.12155
10.1002/mp.13626
10.1109/TMI.2012.2212719
10.1002/mp.12964
10.1007/b136169
10.1016/j.ejrad.2011.12.043
10.1088/0031-9155/60/4/R115
10.1016/j.jmr.2010.09.013
10.2967/jnumed.106.035717
10.2967/jnumed.115.170019
10.1007/s002590050282
10.1118/1.4837315
10.1186/s40658-016-0138-3
10.1002/mp.12122
10.1016/j.mric.2016.12.001
10.1007/s13139-012-0182-4
10.1002/mp.12440
10.2967/jnumed.114.149997
10.1212/WNL.0000000000002892
10.2967/jnumed.108.051276
10.1007/s13534-018-0077-0
10.1007/978-3-319-53496-1_43
10.2967/jnumed.115.159228
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
DOI 10.1109/TRPMS.2020.3009269
DatabaseTitle CrossRef
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2469-7303
EndPage 184
ExternalDocumentID 10_1109_TRPMS_2020_3009269
9143173
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
– fundername: Korean Ministry of Science, ICT and Future Planning
  grantid: NRF-2016R1A2B3014645
  funderid: 10.13039/501100003725
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
ID FETCH-LOGICAL-c405t-a22080b6ca4fbf4019fb9305c1a77f296401623b75f808593aea0adfae0f13183
IEDL.DBID RIE
ISSN 2469-7311
IngestDate Mon Jun 30 17:53:05 EDT 2025
Tue Jul 01 03:04:15 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Wed Aug 27 02:39:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-a22080b6ca4fbf4019fb9305c1a77f296401623b75f808593aea0adfae0f13183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7623-053X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9143173
PQID 2498677931
PQPubID 4437208
PageCount 25
ParticipantIDs crossref_primary_10_1109_TRPMS_2020_3009269
proquest_journals_2498677931
crossref_citationtrail_10_1109_TRPMS_2020_3009269
ieee_primary_9143173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on radiation and plasma medical sciences
PublicationTitleAbbrev TRPMS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref56
ref208
ref206
ref53
ref203
ref52
ref204
ref201
kang (ref225) 2020
ref54
ref202
ref209
lecun (ref59) 2015; 521
ref210
ref211
ref50
goodfellow (ref58) 2016
ref46
ref218
ref45
ref48
ref47
ref217
ref42
ref214
ref41
ref215
ref44
ref212
ref43
ref213
ref49
ref8
ref7
ref9
ref4
ref6
ref100
ref101
ref222
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref38
gaeta (ref85) 2013; 57
xu (ref66) 1991; 32
ref24
ref23
ref26
ref25
ref20
ref22
ref21
heu (ref115) 2017; 4
ref28
ref29
nie (ref39) 2017
ref200
hwang (ref27) 2019; 60
ref128
ref129
pan (ref78) 2005; 46
ref97
ref126
ref96
ref127
ref99
ref124
ref98
ref125
lee (ref205) 2019; 9
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref138
ref88
ref135
ref87
ref136
bendriem (ref55) 2013
sureshbabu (ref71) 2005; 33
ref82
ref81
ref145
ref84
ref142
ref143
ref140
ref141
ref80
ref79
ref229
ref108
ref109
ref227
ref106
ref228
ref107
ref75
ref104
ref74
ref226
ref105
ref77
ref223
ref102
ref224
ref103
armanious (ref33) 2019; 22
hwang (ref221) 2019
beyer (ref72) 2006; 47
ref232
ref111
ref70
ref233
ref112
ref73
ref230
ref231
ref110
ref68
ref119
ref67
ref117
ref118
ref64
ref63
ref116
ref113
ref65
ref114
martinez-möller (ref76) 2007; 48
ref60
ref122
ref123
ref62
ref120
ref121
ref168
ref169
ref170
lee (ref190) 2001; 4
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref172
ref179
ref180
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref149
ref146
ref147
zaidi (ref3) 2003; 44
kops (ref144) 2007; 6
hooper (ref69) 1996; 37
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref159
ref157
ref158
ref166
ref167
ref164
ref165
ref162
ref163
ronneberger (ref216) 2015
ref160
ref161
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
lee (ref5) 2014; 18
bishop (ref61) 2006
maksud (ref51) 1998; 39
krähenbühl (ref219) 2011; 4
ref2
choi (ref220) 2019
ref1
ref192
ref199
lee (ref191) 2001; 42
ref197
ref198
ref195
ref196
ref193
ref194
balyasnikova (ref83) 2012; 2
References_xml – ident: ref80
  doi: 10.2967/jnumed.111.092726
– ident: ref206
  doi: 10.1016/j.neuroimage.2014.06.077
– start-page: 417
  year: 2017
  ident: ref39
  article-title: Medical image synthesis with context-aware generative adversarial networks
  publication-title: Proc Med Image Comput Comput Assist Intervention
– ident: ref137
  doi: 10.1148/radiol.2017170906
– ident: ref195
  doi: 10.1007/s00259-019-04373-w
– ident: ref15
  doi: 10.1007/s00259-002-1024-x
– ident: ref120
  doi: 10.2967/jnumed.114.146308
– ident: ref47
  doi: 10.2967/jnumed.107.049353
– ident: ref149
  doi: 10.1016/j.cpet.2015.10.004
– ident: ref141
  doi: 10.1109/TMI.2014.2340135
– ident: ref155
  doi: 10.1001/archneur.60.9.1223
– ident: ref125
  doi: 10.1097/RLI.0b013e318283292f
– ident: ref36
  doi: 10.3389/fnins.2018.01005
– ident: ref1
  doi: 10.1142/9789814366243_0001
– volume: 57
  start-page: 352
  year: 2013
  ident: ref85
  article-title: Recurrent and metastatic breast cancer PET, PET/CT, PET/MRI: FDG and new biomarkers
  publication-title: Quart J Nucl Med Mol Imag
– volume: 32
  start-page: 161
  year: 1991
  ident: ref66
  article-title: A segmented attenuation correction for PET
  publication-title: J Nucl Med
– volume: 39
  start-page: 735
  year: 1998
  ident: ref51
  article-title: Artificial neural network as a tool to compensate for scatter and attenuation in radionuclide imaging
  publication-title: J Nucl Med
– ident: ref214
  doi: 10.1088/0031-9155/60/22/R323
– ident: ref226
  doi: 10.1109/TNS.2017.2713521
– ident: ref224
  doi: 10.1109/TRPMS.2020.3006844
– ident: ref9
  doi: 10.1053/snuc.2003.127307
– ident: ref181
  doi: 10.1016/j.media.2012.02.005
– ident: ref146
  doi: 10.1118/1.3377774
– ident: ref138
  doi: 10.1002/9780470034590.emrstm1292
– ident: ref119
  doi: 10.2967/jnumed.115.163550
– ident: ref23
  doi: 10.2967/jnumed.119.226498
– ident: ref182
  doi: 10.1007/s13534-019-00108-w
– ident: ref8
  doi: 10.1007/s00259-002-0796-3
– ident: ref217
  doi: 10.1007/s13534-019-00110-2
– year: 2019
  ident: ref220
  article-title: Accurate transmission-less attenuation correction method for amyloid-? brain PET using deep neural network
  publication-title: Proc IEEE Nucl Sci Symp Med Imag Conf
– ident: ref186
  doi: 10.1007/s13534-020-00151-y
– ident: ref173
  doi: 10.1088/0031-9155/57/4/885
– ident: ref17
  doi: 10.1118/1.4941014
– year: 2016
  ident: ref58
  publication-title: Deep Learning
– ident: ref209
  doi: 10.1007/s13139-019-00610-0
– ident: ref45
  doi: 10.1016/j.nima.2013.09.034
– ident: ref167
  doi: 10.1016/j.ejmp.2008.10.001
– ident: ref109
  doi: 10.1007/s00259-012-2113-0
– ident: ref48
  doi: 10.1088/0031-9155/41/10/024
– ident: ref203
  doi: 10.1002/hbm.24210
– ident: ref196
  doi: 10.1007/s13139-017-0504-7
– volume: 44
  start-page: 291
  year: 2003
  ident: ref3
  article-title: Determination of the attenuation map in emission tomography
  publication-title: J Nucl Med
– ident: ref34
  doi: 10.2967/jnumed.118.209288
– ident: ref201
  doi: 10.3389/fonc.2018.00215
– ident: ref19
  doi: 10.3348/kjr.2015.16.1.32
– ident: ref159
  doi: 10.1109/TNS.2011.2105502
– ident: ref32
  doi: 10.1088/1361-6560/ab652c
– ident: ref62
  doi: 10.1088/0031-9155/49/12/008
– ident: ref136
  doi: 10.1007/s00259-013-2652-z
– ident: ref105
  doi: 10.1007/s00259-010-1603-1
– ident: ref104
  doi: 10.2967/jnumed.111.098350
– ident: ref170
  doi: 10.2967/jnumed.113.125989
– ident: ref35
  doi: 10.2967/jnumed.117.198051
– volume: 42
  start-page: 938
  year: 2001
  ident: ref191
  article-title: Blind separation of cardiac components and extraction of input function from H215O dynamic myocardial PET using independent component analysis
  publication-title: J Nucl Med
– volume: 47
  start-page: 91
  year: 2006
  ident: ref72
  article-title: Whole-body 18F-FDG PET/CT in the presence of truncation artifacts
  publication-title: J Nucl Med
– ident: ref175
  doi: 10.1109/TMI.2010.2095464
– volume: 46
  start-page: 1481
  year: 2005
  ident: ref78
  article-title: Attenuation correction of PET images with respiration-averaged CT images in PET/CT
  publication-title: J Nucl Med
– ident: ref124
  doi: 10.1088/0031-9155/60/20/8047
– ident: ref121
  doi: 10.2967/jnumed.109.069112
– ident: ref165
  doi: 10.1016/S0001-2998(98)80031-7
– ident: ref134
  doi: 10.1097/00004728-200311000-00001
– ident: ref82
  doi: 10.1088/0031-9155/56/10/013
– ident: ref21
  doi: 10.1109/TRPMS.2018.2846745
– ident: ref148
  doi: 10.2967/jnumed.115.169045
– ident: ref73
  doi: 10.2214/AJR.05.0255
– ident: ref40
  doi: 10.1007/978-3-319-46976-8_18
– ident: ref143
  doi: 10.2967/jnumed.113.136341
– ident: ref172
  doi: 10.1109/ISBI.2016.7493217
– ident: ref140
  doi: 10.1109/TRPMS.2018.2868946
– ident: ref156
  doi: 10.1088/1361-6560/ab012c
– ident: ref6
  doi: 10.1053/j.semnuclmed.2008.01.001
– ident: ref139
  doi: 10.1109/TRPMS.2018.2886838
– ident: ref227
  doi: 10.1118/1.4894818
– ident: ref151
  doi: 10.1002/mrm.25335
– ident: ref60
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: ref123
  doi: 10.2967/jnumed.109.065425
– ident: ref43
  doi: 10.18383/j.tom.2018.00016
– ident: ref232
  doi: 10.1186/s40658-016-0170-3
– ident: ref14
  doi: 10.1007/s00330-002-1564-2
– ident: ref90
  doi: 10.1038/nm1700
– ident: ref222
  doi: 10.1109/TRPMS.2018.2821798
– ident: ref207
  doi: 10.1016/j.bbr.2018.02.017
– ident: ref204
  doi: 10.2967/jnumed.117.199414
– ident: ref29
  doi: 10.1007/s00330-019-06229-1
– ident: ref68
  doi: 10.1109/23.159770
– ident: ref163
  doi: 10.2967/jnumed.107.044834
– ident: ref93
  doi: 10.2967/jnumed.111.097501
– ident: ref107
  doi: 10.2967/jnumed.112.104109
– ident: ref162
  doi: 10.1002/mp.12344
– ident: ref84
  doi: 10.1097/RLI.0b013e31828234d0
– ident: ref46
  doi: 10.2967/jnumed.110.078949
– ident: ref228
  doi: 10.1118/1.4938264
– ident: ref102
  doi: 10.1002/jmri.21492
– start-page: 234
  year: 2015
  ident: ref216
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Med Image Comput Comput Assist Intervent
– ident: ref215
  doi: 10.1186/s13014-017-0854-4
– ident: ref171
  doi: 10.1088/0031-9155/59/18/5483
– ident: ref202
  doi: 10.1038/s41598-019-40710-7
– ident: ref114
  doi: 10.2967/jnumed.116.183343
– ident: ref132
  doi: 10.1053/j.semnuclmed.2014.12.002
– ident: ref161
  doi: 10.1109/TMI.2017.2715284
– ident: ref187
  doi: 10.1007/s13534-020-00156-7
– volume: 4
  start-page: 2027
  year: 2001
  ident: ref190
  article-title: Non-negative matrix factorization of dynamic images in nuclear medicine
  publication-title: Proc IEEE Nucl Sci Symp Conf Rec
– ident: ref63
  doi: 10.1088/0031-9155/41/1/012
– ident: ref179
  doi: 10.1088/1361-6560/aaa8a6
– ident: ref113
  doi: 10.1109/TMI.2012.2220376
– ident: ref44
  doi: 10.1007/s00259-019-04380-x
– ident: ref49
  doi: 10.1109/23.256705
– ident: ref131
  doi: 10.2967/jnumed.116.188268
– ident: ref212
  doi: 10.1002/mp.13716
– ident: ref70
  doi: 10.1097/00006231-200411000-00005
– ident: ref26
  doi: 10.2967/jnumed.117.202317
– ident: ref199
  doi: 10.1109/TMI.2018.2832613
– volume: 9
  year: 2019
  ident: ref205
  article-title: Deep-dose: A voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry
  publication-title: Sci Rep
– ident: ref38
  doi: 10.2967/jnumed.118.214320
– volume: 18
  start-page: 103
  year: 2014
  ident: ref5
  article-title: Recent advances in hybrid molecular imaging systems
  publication-title: Seminars in Musculoskeletal Radiology
  doi: 10.1055/s-0034-1371014
– ident: ref142
  doi: 10.1148/radiol.14140810
– ident: ref169
  doi: 10.1007/s00259-010-1711-y
– ident: ref223
  doi: 10.1109/ISBI.2019.8759529
– ident: ref24
  doi: 10.1109/TRPMS.2020.2985403
– ident: ref94
  doi: 10.2967/jnumed.111.092353
– ident: ref20
  doi: 10.1016/j.neuroimage.2016.12.010
– ident: ref110
  doi: 10.2967/jnumed.115.156000
– ident: ref79
  doi: 10.2967/jnumed.109.061853
– ident: ref129
  doi: 10.1007/s00330-019-06514-z
– ident: ref11
  doi: 10.1148/rg.246045065
– ident: ref111
  doi: 10.1016/j.ejrad.2017.04.004
– ident: ref145
  doi: 10.1088/1361-6560/aa5f6c
– ident: ref197
  doi: 10.1148/radiol.2018180940
– ident: ref28
  doi: 10.2967/jnumed.118.219493
– ident: ref194
  doi: 10.1007/s12350-018-1284-x
– ident: ref10
  doi: 10.1118/1.598392
– ident: ref210
  doi: 10.1088/1361-6560/aada6d
– ident: ref230
  doi: 10.2967/jnumed.112.111476
– volume: 4
  start-page: 12
  year: 2017
  ident: ref115
  article-title: MLAA-based attenuation correction of flexible hardware components in hybrid PET/MR imaging
  publication-title: EJNMMI Phys
  doi: 10.1186/s40658-017-0177-4
– ident: ref92
  doi: 10.1088/0031-9155/60/6/2231
– ident: ref95
  doi: 10.1073/pnas.1220512110
– ident: ref22
  doi: 10.2174/1876388X01002010192
– ident: ref53
  doi: 10.1007/978-0-387-22529-6_1
– ident: ref97
  doi: 10.2967/jnumed.112.105296
– volume: 4
  start-page: 109
  year: 2011
  ident: ref219
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref100
  doi: 10.1007/s00259-011-1842-9
– ident: ref57
  doi: 10.1016/j.cpet.2007.10.003
– ident: ref87
  doi: 10.1007/s00259-013-2633-2
– ident: ref176
  doi: 10.1088/0031-9155/59/4/1073
– ident: ref193
  doi: 10.1097/01.mnm.0000184999.81203.5c
– ident: ref75
  doi: 10.2967/jnumed.111.093583
– ident: ref112
  doi: 10.1109/NSSMIC.2011.6152678
– ident: ref106
  doi: 10.1007/s00259-014-2751-5
– ident: ref160
  doi: 10.1088/1361-6560/aacdd4
– volume: 48
  start-page: 188
  year: 2007
  ident: ref76
  article-title: Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions
  publication-title: J Nucl Med
– ident: ref116
  doi: 10.1002/mp.12449
– ident: ref213
  doi: 10.1002/mp.13617
– ident: ref152
  doi: 10.1002/ana.20889
– ident: ref103
  doi: 10.1007/s10334-012-0334-7
– ident: ref30
  doi: 10.1186/s40658-018-0225-8
– volume: 60
  start-page: 568
  year: 2019
  ident: ref27
  article-title: Accurate attenuation correction for whole-body Ga-68-DOTATOC PET studies using deep learning
  publication-title: J Nucl Med
– ident: ref96
  doi: 10.1038/nm.3290
– ident: ref41
  doi: 10.1148/radiol.2017170700
– ident: ref65
  doi: 10.1109/TNS.2002.1039554
– ident: ref64
  doi: 10.1109/23.873020
– ident: ref99
  doi: 10.2967/jnumed.111.092577
– year: 2020
  ident: ref225
  article-title: CT image prediction from weakly paired MR image using CycleGAN for dose prediction in radiotherapy
  publication-title: Proc IEEE Nucl Sci Symp Med Imag Conf
– ident: ref126
  doi: 10.1109/TRPMS.2017.2772329
– ident: ref52
  doi: 10.1109/TRPMS.2020.2989073
– volume: 22
  start-page: 179
  year: 2019
  ident: ref33
  article-title: Independent brain ¹?F-FDG PET attenuation correction using a deep learning approach with generative adversarial networks
  publication-title: Hellenic Journal of Nuclear Medicine
– volume: 521
  start-page: 436
  year: 2015
  ident: ref59
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 37
  start-page: 128
  year: 1996
  ident: ref69
  article-title: Validation of postinjection transmission measurements for attenuation correction in neurological FDG-PET studies
  publication-title: J Nucl Med
– ident: ref229
  doi: 10.1109/TRPMS.2020.2978449
– ident: ref180
  doi: 10.1109/TMI.2015.2409157
– ident: ref211
  doi: 10.1016/j.ijrobp.2018.05.058
– ident: ref188
  doi: 10.1109/TNS.2014.2372788
– ident: ref81
  doi: 10.1109/TMI.2016.2537811
– ident: ref185
  doi: 10.1007/s13534-018-0058-3
– ident: ref233
  doi: 10.1007/s13139-019-00588-9
– ident: ref208
  doi: 10.1007/s00259-019-04595-y
– ident: ref231
  doi: 10.1371/journal.pone.0182888
– ident: ref130
  doi: 10.1002/mrm.25545
– volume: 33
  start-page: 156
  year: 2005
  ident: ref71
  article-title: PET/CT imaging artifacts
  publication-title: J Nucl Med Technol
– ident: ref218
  doi: 10.1016/j.media.2016.10.004
– ident: ref192
  doi: 10.1109/TBME.2004.840193
– ident: ref13
  doi: 10.1148/radiol.2262012141
– ident: ref56
  doi: 10.1016/j.cpet.2007.08.001
– year: 2013
  ident: ref55
  publication-title: The theory and practice of 3D PET
– ident: ref198
  doi: 10.1016/j.neuroimage.2018.03.045
– ident: ref178
  doi: 10.2967/jnumed.118.220871
– ident: ref101
  doi: 10.2967/jnumed.108.054726
– ident: ref67
  doi: 10.1097/00004728-198204000-00022
– ident: ref135
  doi: 10.2967/jnumed.114.138636
– ident: ref108
  doi: 10.2967/jnumed.110.078949
– volume: 2
  start-page: 458
  year: 2012
  ident: ref83
  article-title: PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging
  publication-title: Am J Nucl Med Mol Imaging
– ident: ref12
  doi: 10.1007/s00259-002-1097-6
– ident: ref150
  doi: 10.1118/1.4729716
– ident: ref117
  doi: 10.1007/s00259-015-3060-3
– ident: ref50
  doi: 10.1118/1.597167
– ident: ref31
  doi: 10.1088/1361-6560/ab4eb7
– ident: ref158
  doi: 10.1002/brb3.530
– ident: ref157
  doi: 10.1088/1361-6560/aa685c
– ident: ref74
  doi: 10.1118/1.4943565
– ident: ref189
  doi: 10.1088/0031-9155/58/5/1375
– ident: ref177
  doi: 10.1109/TMI.2014.2318175
– ident: ref166
  doi: 10.1088/1361-6560/ab8d75
– ident: ref25
  doi: 10.1007/978-3-030-32251-9_79
– ident: ref88
  doi: 10.1097/RLU.0b013e31825b23a6
– year: 2019
  ident: ref221
  article-title: Data-driven respiratory phase-matched attenuation correction without CT
  publication-title: Proc IEEE Nucl Sci Symp Med Imag Conf
– ident: ref184
  doi: 10.2967/jnumed.118.220590
– ident: ref98
  doi: 10.1007/s00259-008-1007-7
– ident: ref122
  doi: 10.1016/j.neuroimage.2015.03.009
– ident: ref89
  doi: 10.1073/pnas.0711622105
– ident: ref42
  doi: 10.1002/mp.12155
– ident: ref200
  doi: 10.1002/mp.13626
– ident: ref174
  doi: 10.1109/TMI.2012.2212719
– ident: ref37
  doi: 10.1002/mp.12964
– ident: ref54
  doi: 10.1007/b136169
– ident: ref86
  doi: 10.1016/j.ejrad.2011.12.043
– ident: ref18
  doi: 10.1088/0031-9155/60/4/R115
– ident: ref133
  doi: 10.1016/j.jmr.2010.09.013
– ident: ref77
  doi: 10.2967/jnumed.106.035717
– ident: ref91
  doi: 10.2967/jnumed.115.170019
– ident: ref2
  doi: 10.1007/s002590050282
– ident: ref118
  doi: 10.1118/1.4837315
– ident: ref164
  doi: 10.1186/s40658-016-0138-3
– ident: ref128
  doi: 10.1002/mp.12122
– volume: 6
  start-page: 4327
  year: 2007
  ident: ref144
  article-title: Alternative methods for attenuation correction for PET images in MR-PET scanners
  publication-title: Proc IEEE Nucl Sci Symp Conf Rec
– ident: ref16
  doi: 10.1016/j.mric.2016.12.001
– ident: ref154
  doi: 10.1007/s13139-012-0182-4
– ident: ref168
  doi: 10.1002/mp.12440
– ident: ref127
  doi: 10.2967/jnumed.114.149997
– year: 2006
  ident: ref61
  publication-title: Pattern Recognition and Machine Learning
– ident: ref153
  doi: 10.1212/WNL.0000000000002892
– ident: ref7
  doi: 10.2967/jnumed.108.051276
– ident: ref183
  doi: 10.1007/s13534-018-0077-0
– ident: ref4
  doi: 10.1007/978-3-319-53496-1_43
– ident: ref147
  doi: 10.2967/jnumed.115.159228
SSID ssj0001782945
Score 2.4484828
SecondaryResourceType review_article
Snippet Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. PET AC...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 160
SubjectTerms Alternating current
Attenuation
Attenuation correction (AC)
Biomedical imaging
Computed tomography
Deep learning
deep neural network
Magnetic resonance imaging
Medical imaging
PET/MRI
Photonics
Plasmas
Positron emission
Positron emission tomography
positron emission tomography (PET)
Radiation
Radiation dosage
Scanners
Tomography
Title A Review of Deep-Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography
URI https://ieeexplore.ieee.org/document/9143173
https://www.proquest.com/docview/2498677931
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1UELz4VcX6RQ7eNG03u91tjrW2FEERrOBtSbITEbUVu734651k0yoq4m0PCQReNvNeMvMG4ERjkZpUWk7BteBJLJB34lhzaVC3i1hk1jebuLpOh3fJ5X37fgnOFrUwiOiTz7DhPv1bfjExM3dV1pSRC3fxMiyTcKtqtT7vUyjUSd-TWJDi41kcRfMamZZsjkjE35IaFCRSnc2Qy2_-Eod8Y5Ufp7EPMYMNuJovrsoseWrMSt0w7998G_-7-k1YD1yTdavNsQVLON6GVZ_zaaY1wC6rXgbYxLILxFcezFYf-DnFtoJ1g984ThlRW9YtiV9XzuCs55p6-JII9jhmNy7z642--7Rr3PUbG01eghf2DtwN-qPekIeuC9wQeSu5EoJYpE6NSqy2JL-k1ZJOBROpLLPulZZYooh11rYd75amULVUYRW2bOROiF1YGU_GuAdMW0xc-YlVEhNSkp3IitRioYwuSKa16xDNMchNsCR3nTGecy9NWjL3uOUOtzzgVofTxZzXypDjz9E1B8RiZMCgDodzqPPwz05zEqLO3E_G0f7vsw5gTbiMFp-Bdggr5dsMj4iSlPrY78UPZPPczQ
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB3xoYpegEJRQyn4wI06xN6v-JhSUKAEITVI3Fa2d4yqQoLI5sKvZ-x1AqIV4rYHW7I0Xs979ps3APsGq9zmynFKrhVPE4m8mySGK4smqxJZuNBsYnCR96_Ss-vsegG-z2thEDGIz7DtP8NbfjW2U39VdqiET3fJIixT3s9EU631fKNCyU6FrsSSOB8vEiFmVTIddTgkGv-b-KAkmuqNhrzC-UUmCq1V_jmPQ5I5WYPBbHmNtuRve1qbtn185dz43vWvw2pEm6zXbI9PsICjDfgQVJ92sgnYY83bABs79hPxnke71Rv-g7JbxXrRcRwnjMAt69WEsBtvcHbk23qEogj2Z8Quvfbrgb6Pad_4Czg2HN9FN-zPcHVyPDzq89h3gVuCbzXXUhKONLnVqTOOCJhyRtG5YIUuCuffaQknysQUmesGvzSNuqMrp7HjhD8jtmBpNB7hF2DGYeoLUJxWmBKX7Aonc4eVtqYiopa1QMxiUNpoSu57Y9yWgZx0VBniVvq4lTFuLTiYz7lvLDneHL3pAzEfGWPQgp1ZqMv4105KoqLe3k8lYvv_s_ZgpT8cnJfnpxe_vsJH6fUtQY-2A0v1wxS_EUCpzW7Yl08TL-AW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Deep-Learning-Based+Approaches+for+Attenuation+Correction+in+Positron+Emission+Tomography&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Lee%2C+Jae+Sung&rft.date=2021-03-01&rft.pub=IEEE&rft.issn=2469-7311&rft.volume=5&rft.issue=2&rft.spage=160&rft.epage=184&rft_id=info:doi/10.1109%2FTRPMS.2020.3009269&rft.externalDocID=9143173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon