Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy

This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with non...

Full description

Saved in:
Bibliographic Details
Published inMRS bulletin Vol. 45; no. 9; pp. 713 - 726
Main Authors Chen, Qian, Yuk, Jong Min, Hauwiller, Matthew R., Park, Jungjae, Dae, Kyun Seong, Kim, Jae Sung, Alivisatos, A. Paul
Format Journal Article
LanguageEnglish
Published New York, USA Cambridge University Press 01.09.2020
Springer International Publishing
Springer Nature B.V
Materials Research Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication.
AbstractList This work reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication.
This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication.
Abstract This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication.
This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication.
This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication.
Author Kim, Jae Sung
Hauwiller, Matthew R.
Dae, Kyun Seong
Alivisatos, A. Paul
Park, Jungjae
Chen, Qian
Yuk, Jong Min
Author_xml – sequence: 1
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  email: qchen20@illinois.edu
  organization: Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA; qchen20@illinois.edu
– sequence: 2
  givenname: Jong Min
  surname: Yuk
  fullname: Yuk, Jong Min
  email: jongmin.yuk@kaist.ac.kr
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; jongmin.yuk@kaist.ac.kr
– sequence: 3
  givenname: Matthew R.
  surname: Hauwiller
  fullname: Hauwiller, Matthew R.
  email: mhauwill@mit.edu
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; mhauwill@mit.edu
– sequence: 4
  givenname: Jungjae
  surname: Park
  fullname: Park, Jungjae
  email: jungjae10@kaist.ac.kr
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; jungjae10@kaist.ac.kr
– sequence: 5
  givenname: Kyun Seong
  surname: Dae
  fullname: Dae, Kyun Seong
  email: ddalgi1051@kaist.ac.kr
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; ddalgi1051@kaist.ac.kr
– sequence: 6
  givenname: Jae Sung
  surname: Kim
  fullname: Kim, Jae Sung
  email: ijs7596@kaist.ac.kr
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; ijs7596@kaist.ac.kr
– sequence: 7
  givenname: A. Paul
  surname: Alivisatos
  fullname: Alivisatos, A. Paul
  email: paul.alivisatos@berkeley.edu
  organization: University of California, Berkeley; Kavli Energy Nanoscience Institute; Lawrence Berkeley National Laboratory, USA; paul.alivisatos@berkeley.edu
BackLink https://www.osti.gov/servlets/purl/1782185$$D View this record in Osti.gov
BookMark eNqFkE9vGyEUxFGVSnXc3voBUHP1uoDBwLGK8qdSlF7aM2LZh0O0Cw6wifzti-tIPUU5vXf4zWhmztFZTBEQ-krJmgohv0-5rBlhZM2Y_oAWVG9URzkTZ2hBlNp0cqv5J3ReyiMhVBApFujlfnYj2BpSXOFdTi_1YYVtHHCZ95BHW2twgH3K0z8GJ4-jjcnlQ6l2LDj1BfIzDDhEPIanOQzYwTjimm0sUyjlKIIRXM3tmYLLqbi0P3xGH33Tw5fXu0R_rq9-X952d79ufl7-uOscJ6J2WgKX2g5WDZII37Mtsb3mTBGntO45CNtaCsU9EG_tQLx3buuklr411sNmib6dfFOpwRQXKrgHl2JsiQyVilElGnRxgvY5Pc1QqnlMc44tl2GcU6qlULpRqxN17FAyeLPPYbL5YCgxx_1N298c9zdt_4Z3J7w0LO4g_zd9g1-_2tupz2HYwTuCv7RPm58
CitedBy_id crossref_primary_10_1021_acsnano_0c10229
crossref_primary_10_1557_mrs_2020_222
crossref_primary_10_3390_ma16052026
crossref_primary_10_1002_smll_202303380
crossref_primary_10_1021_acs_chemrev_2c00461
crossref_primary_10_1557_s43577_022_00287_5
crossref_primary_10_1021_acsmacrolett_0c00595
crossref_primary_10_1557_s43577_024_00702_z
crossref_primary_10_1016_j_jcrysgro_2022_126955
crossref_primary_10_1039_D4NR00202D
crossref_primary_10_1103_PhysRevE_107_064110
crossref_primary_10_1557_s43577_024_00700_1
crossref_primary_10_1002_adfm_202310838
crossref_primary_10_1016_j_trechm_2021_10_004
crossref_primary_10_1039_D2RA05222A
crossref_primary_10_1016_j_isci_2022_104699
crossref_primary_10_1073_pnas_2314320121
crossref_primary_10_1021_acsami_4c04651
crossref_primary_10_1146_annurev_chembioeng_092120_034534
crossref_primary_10_1021_acs_jpcc_2c04284
crossref_primary_10_1557_mrs_2020_252
crossref_primary_10_1557_s43577_024_00661_5
crossref_primary_10_1146_annurev_physchem_082720_100947
Cites_doi 10.1126/science.1210493
10.1073/pnas.1914813117
10.1021/ja0616534
10.1038/ncomms11213
10.1039/c0nr00628a
10.1002/adfm.201203424
10.1021/cg500829p
10.1039/C1CS15237H
10.1021/nl404169a
10.1002/anie.201604731
10.1021/nl302788g
10.1006/jcis.1996.0217
10.1126/sciadv.aax5095
10.1021/acsnano.5b04064
10.1038/nchem.2618
10.1016/j.pbiomolbio.2010.07.002
10.1002/smll.201901966
10.1126/science.1097830
10.1038/s42254-018-0018-y
10.1021/ja310612p
10.1038/nmat1505
10.1557/mrs.2020.227
10.1021/acs.nanolett.8b04962
10.1038/nmat4083
10.1126/science.aah4434
10.1021/ar9001069
10.1039/c1cp22679g
10.1021/nl052175i
10.1021/acsnano.6b08556
10.1002/pssa.201800949
10.1038/nmat944
10.1146/annurev.physchem.49.1.371
10.1063/5.0004724
10.1126/science.1254051
10.1021/ar100129p
10.1021/acsnano.8b07880
10.1021/acs.nanolett.8b02953
10.1039/C4CC03500C
10.1021/cr100313v
10.1021/nl9012369
10.1021/jp507400n
10.1021/ja026501x
10.1038/nnano.2011.161
10.1021/acs.nanolett.8b02337
10.1126/science.aaa9886
10.1126/science.aab1343
10.1021/jp0516846
10.1021/acs.nanolett.7b00196
10.1126/sciadv.aba1404
10.1039/c3cc47473a
10.1021/nl201795u
10.1021/jacs.0c04444
10.1021/jacs.9b05225
10.1038/s41578-018-0071-2
10.1021/nn303371y
10.1021/acs.jpclett.9b02388
10.1021/j100219a016
10.1038/nmat4759
10.1021/acs.cgd.5b01422
10.1021/nl4014277
10.1038/s41467-017-00857-1
10.1126/science.297.5586.1536
10.1126/science.1242477
10.1038/s41563-019-0511-4
10.1021/nl8034724
10.1063/1.1730447
10.1021/nl201166k
10.1021/acs.nanolett.6b02972
10.1021/nl500670q
10.1038/nnano.2010.78
10.1126/science.1220869
10.1038/s41467-018-03767-y
10.1016/S1369-7021(04)00080-X
10.1126/science.1219185
10.1002/anie.200802248
10.1021/ar9000026
10.1073/pnas.1822092116
10.1021/acsami.9b11934
10.1021/nn203837m
10.1021/acscentsci.5b00001
10.1021/acs.cgd.7b01216
10.1021/acsnano.6b05270
10.1038/nmat4600
10.1016/j.cossms.2018.12.002
10.1146/annurev-biophys-062215-011236
10.1039/C9NR03709H
10.1039/C2CS35318K
10.1038/nmat3604
10.1126/science.aaa6760
10.1021/jacs.9b00082
10.1021/acs.chemmater.5b00334
10.1038/nphoton.2007.223
10.1103/PhysRevLett.124.065502
10.1016/j.micron.2017.03.003
10.1038/nature12739
10.1038/nmat4746
10.1126/science.aal3919
10.1021/cr030698+
10.1073/pnas.1008958107
10.1002/ppsc.201700382
10.1126/science.1217654
10.1038/nmat4115
10.1039/C3TB21760D
10.1126/science.1219643
10.1002/anie.201003903
10.1021/nl2041854
10.1038/nature08439
10.1002/adma.201402710
10.1103/RevModPhys.82.1887
10.1038/ncomms5946
10.1021/acsnano.6b07541
10.1039/c0ce00419g
10.1021/nl201647p
10.1021/acs.chemrev.5b00193
10.1021/jacs.5b00839
10.1021/jacs.9b09508
10.1038/nature23308
10.1021/nl403149u
10.1016/j.jcrysgro.2005.11.011
10.1021/acsnano.7b07633
10.1002/smll.200900358
10.1126/science.1253149
10.1038/nmat4193
10.1126/science.1172104
10.1021/acs.chemrev.6b00196
10.1021/ja211459p
10.1016/j.ejps.2007.04.002
10.1038/s41467-020-16645-3
10.1038/s41563-019-0514-1
10.1021/nn300671g
ContentType Journal Article
Copyright Copyright © Materials Research Society 2020
The Materials Research Society 2020
Copyright_xml – notice: Copyright © Materials Research Society 2020
– notice: The Materials Research Society 2020
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
7SR
7TA
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PQEST
PQQKQ
PQUKI
PRINS
S0W
OIOZB
OTOTI
DOI 10.1557/mrs.2020.229
DatabaseName CrossRef
Engineered Materials Abstracts
Materials Business File
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Materials Business File
METADEX
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
DatabaseTitleList

CrossRef
ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1938-1425
EndPage 726
ExternalDocumentID 1782185
10_1557_mrs_2020_229
GroupedDBID -2P
-2V
-E.
.FH
0E1
0R~
123
2JN
4.4
406
5VS
74X
74Y
7~V
8FE
8FG
8UJ
AAAZR
AABES
AABWE
AACJH
AAEED
AAFGU
AAGFV
AAHNG
AAKTX
AARAB
AATID
AATNV
AAUKB
AAYFA
ABAKF
ABBXD
ABECU
ABEFU
ABGDZ
ABJCF
ABJNI
ABKAS
ABKKG
ABMQK
ABMWE
ABMYL
ABQTM
ABROB
ABTEG
ABTKH
ABTMW
ABZCX
ABZUI
ACAOD
ACBEA
ACBEK
ACBMC
ACCHT
ACETC
ACGFS
ACHSB
ACIGE
ACIMK
ACIWK
ACQFJ
ACQPF
ACREK
ACTTH
ACUIJ
ACUYZ
ACVWB
ACWGA
ACWMK
ACXSD
ACZBM
ACZOJ
ACZUX
ADCGK
ADFEC
ADGEJ
ADOCW
ADOVH
ADOVT
ADOXG
AEBAK
AEFTE
AEHGV
AEMSY
AEMTW
AENEX
AENGE
AESKC
AESTI
AEYYC
AFBBN
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFNRJ
AFQWF
AFUTZ
AGLWM
AGMZJ
AGOOT
AGQEE
AHQXX
AIGIU
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJDOV
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AMTXH
AMXSW
AMYLF
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BMAJL
BQFHP
C0O
CBIIA
CCPQU
CCUQV
CFAFE
CFBFF
CGQII
CZ9
D1I
DC4
DOHLZ
DPUIP
EBS
EJD
FIGPU
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IKXTQ
IOEEP
IOO
IS6
IWAJR
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JZLTJ
KAFGG
KB.
KC.
KCGVB
KFECR
L98
LHUNA
LLZTM
M-V
M7~
M8.
NIKVX
NPVJJ
NQJWS
O9-
PDBOC
PYCCK
RAMDC
RCA
RNS
RR0
RSV
S0W
S6-
S6U
SAAAG
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
T9M
TN5
UT1
WQ3
WXU
WXY
Z7R
Z7V
Z7X
Z7Y
Z81
Z83
Z88
ZDLDU
ZE2
ZJOSE
ZMEZD
ZMTXR
ZYDXJ
~V1
ABFBI
CHEAL
AACDK
AAEWM
AAJBT
AASML
AAYXX
ACDTI
AEFQL
AKYQF
CITATION
CTKSN
EBLON
ROL
SJYHP
7SR
7TA
8BQ
8FD
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
AIAFM
OIOZB
OTOTI
ID FETCH-LOGICAL-c405t-97e479ada8d705fb260ab94280c899b4e5a193584fe0faad0ffcc6c797f0889d3
IEDL.DBID 8FG
ISSN 0883-7694
IngestDate Fri May 19 00:37:11 EDT 2023
Thu Oct 10 19:36:51 EDT 2024
Thu Sep 26 16:45:30 EDT 2024
Tue Feb 27 01:24:05 EST 2024
Wed Mar 13 05:50:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-97e479ada8d705fb260ab94280c899b4e5a193584fe0faad0ffcc6c797f0889d3
Notes AC02-05CH11231; DMR-1752517; NRF-2018R1C1B6002624
National Research Foundation of Korea (NRF)
National Science Foundation (NSF)
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
OpenAccessLink https://www.osti.gov/servlets/purl/1782185
PQID 2441197589
PQPubID 626324
PageCount 14
ParticipantIDs osti_scitechconnect_1782185
proquest_journals_2441197589
crossref_primary_10_1557_mrs_2020_229
springer_journals_10_1557_mrs_2020_229
cambridge_journals_10_1557_mrs_2020_229
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Cham
– name: Warrendale
– name: United States
PublicationTitle MRS bulletin
PublicationTitleAbbrev MRS Bulletin
PublicationTitleAlternate MRS Bull
PublicationYear 2020
Publisher Cambridge University Press
Springer International Publishing
Springer Nature B.V
Materials Research Society
Publisher_xml – name: Cambridge University Press
– name: Springer International Publishing
– name: Springer Nature B.V
– name: Materials Research Society
References 2010; 107
2019; 11
2019; 10
2004; 7
2019; 15
2014; 26
2019; 19
2020; 11
2012; 12
2011; 111
2020; 19
2018; 9
1959; 31
2012; 134
2015; 137
2019; 23
2005; 109
2014; 14
2007; 1
2010; 2
2010; 5
2016; 45
2018; 35
2006; 289
2019; 4
2019; 5
2020; 142
2019; 1
2016; 10
2011; 6
2016; 16
2004; 304
2016; 15
2017; 548
2015; 350
2010; 43
2018; 18
2016; 7
2010; 49
2015; 115
2002; 124
2017; 56
2005; 4
2019; 216
2009; 461
2018; 12
2012; 41
1998; 49
2017; 8
2009; 42
2013; 23
2020; 127
2011; 11
2011; 13
2015; 349
2020; 124
2007; 31
2017; 355
2017; 9
2009; 48
2020; 6
2014; 5
2014; 2
2013; 13
2013; 12
2003; 2
2016; 354
2019; 116
2016; 116
2020; 45
2012; 336
2014; 50
1996; 179
2006; 128
2012; 337
2009; 324
2014; 118
2015; 1
2011; 334
2015; 15
2015; 14
2004; 104
2013; 49
2002; 297
2013; 42
2006; 6
2019; 141
2010; 82
2011; 105
2017; 97
2018; 2018
2015; 27
2014; 505
2017; 17
2017; 16
2020
2017; 11
1982; 86
2019
2011; 44
2009; 9
2020; 117
2013; 135
2009; 5
2012; 6
2014; 345
MacfarlaneRJLeeBJonesMRHarrisNSchatzGCMirkinCAScience2011334204
WuJGaoWYangHZuoJ-MACS Nano2017111696
TeifVBBohincKProg. Biophys. Mol. Biol2011105208
CaoYCJinRMirkinCAScience20022971536
YeXMillanJAEngelMChenJDirollBTGlotzerSCMurrayCBNano Lett2013134980
ZhengHSmithRKJunY-WKisielowskiCDahmenUAlivisatosAPScience20093241309
DamascenoPFEngelMGlotzerSCScience2012337453
KimJJonesMROuZChenQACS Nano2016109801
KrylovaGGiovanettiLJRequejoFGDimitrijevicNMPrakapenkaAShevchenkoEVJ. Am. Chem. Soc20121344384
CahnJWHilliardJEJ. Chem. Phys195931688
OuZWangZLuoBLuijtenEChenQNat. Mater202019450
BishopKJMWilmerCESohSGrzybowskiBASmall200951600
PowersASLiaoH-GRajaSNBronsteinNDAlivisatosAPZhengHNano Lett20171715
LeeJNakouziEXiaoDWuZSongMOphusCChunJLiDSmall2019151901966
SutterEJungjohannKBliznakovSCourtyAMaisonhauteETenneySSutterPNat. Commun201454946
CrockerJCGrierDGJ. Colloid Interface Sci1996179298
E.S. Harper, G. van Anders, S.C. Glotzer, Proc. Natl. Acad. Sci. U.S.A. 116, 16703 (2019).
LiuLZhangSBowdenMEChaudhuriJde YoreoJJCryst. Growth Des2018181367
Liz-MarzánLMMater. Today2004726
ZhuGJiangYLinFZhangHJinCYuanJYangDZhangZChem. Commun2014509447
LinHLeeSSunLSpellingsMEngelMGlotzerSCMirkinCAScience2017355931
WangCDaimonHSunSNano Lett200991493
GaoWHouYHoodZDWangXMoreKWuRXiaYPanXChiMNano Lett2018187004
LiaoH-GCuiLWhitelamSZhengHScience20123361011
LiDNielsenMHLeeJRIFrandsenCBanfieldJFde YoreoJJScience20123361014
HalpertJEPorterVJZimmerJPBawendiMGJ. Am. Chem. Soc200612812590
LiuCOuZGuoFLuoBChenWQiLChenQJ. Am. Chem. Soc202014211669
GuixMWeizSMSchmidtOGMedina-SánchezMPart. Part. Syst. Charact2018351700382
GroganJMSchneiderNMRossFMBauHHNano Lett201414359
ParkJZhengHLeeWCGeisslerPLRabaniEAlivisatosAPACS Nano201262078
LalSLinkSHalasNJNat. Photonics20071641
ChenQChoHManthiramKYoshidaMYeXAlivisatosAPACS Cent. Sci2015133
HauwillerMROndryJCChanCMKhandekarPYuJAlivisatosAPJ. Am. Chem. Soc20191414428
HufschmidRTeemanEMehdiBLKrishnanKMBrowningNDNanoscale20191113098
MazumderVChiMMoreKLSunSAngew. Chem. Int. Ed. Engl2010499368
RengarajanGTEnkeDSteinhartMBeinerMPhys. Chem. Chem. Phys20111321367
SungJChoiBKKimBKimBHKimJLeeDKimSKangKHyeonTParkJJ. Am. Chem. Soc201914118395
SongR-QCölfenHCrystEngComm2011131249
SutterESutterPTkachenkoAVKrahneRde GraafJArciniegasMMannaLNat. Commun2016711213
J.J. de Yoreo, P.U.P.A. Gilbert, N.A.J.M. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H. Zhang, J.D. Rimer, A. Navrotsky, J.F. Banfield, A.F. Wallace, F.M. Michel, F.C. Meldrum, H. Cölfen, P.M. Dove, Science349, aaa6760 (2015).
de JongeNRossFMNat. Nanotechnol20116695
JiangYZhuGLinFZhangHJinCYuanJYangDZhangZNano Lett2014143761
KadicMMiltonGWvan HeckeMWegenerMNat. Rev. Phys20191198
ZhengHMirsaidovUMWangL-WMatsudairaPNano Lett2012125644
WoehlTJMoserTEvansJERossFMMRS Bull2020459746
WangMDissanayakeTUParkCGaskellKWoehlTJJ. Am. Chem. Soc201914113516
ZhengHClaridgeSAMinorAMAlivisatosAPDahmenUNano Lett200992460
de JongeNHoubenLDunin-BorkowskiRERossFMNat. Rev. Mater2019461
XinHLZhengHNano Lett2012121470
YeXCollinsJEKangYChenJChenDTNYodhAGMurrayCBProc. Natl. Acad. Sci. U.S.A201010722430
KwonSGKrylovaGPhillipsPJKlieRFChattopadhyaySShibataTBunelEELiuYPrakapenkaVBLeeBShevchenkoEVNat. Mater201514215
BolesMAEngelMTalapinDVChem. Rev201611611220
BatsonPEReyes-CoronadoABarreraRGRivacobaAEcheniquePMAizpuruaJNano Lett2011113388
TanSFCheeSWBaraissovZJinHTanTLMirsaidovUJ. Phys. Chem. Lett2019106090
Sake GowdaDSRudmanRJ. Phys. Chem1982864356
YukJMKimKAlemánBReganWRyuJHParkJErciusPLeeHMAlivisatosAPCrommieMFLeeJYZettlANano Lett2011113290
de YoreoJNat. Mater201312284
CheeSWAnandUBishtGTanSFMirsaidovUNano Lett2019192871
WoehlTJEvansJEArslanIRistenpartWDBrowningNDACS Nano201268599
SchneiderNMNortonMMMendelBJGroganJMRossFMBauHHJ. Phys. Chem. C201411822373
YesibolatiMNLaganàSSunHBeleggiaMKathmannSMKasamaTMølhaveKPhys. Rev. Lett2020124065502
RossFMScience20153509886
HauwillerMROndryJCAlivisatosAPJ. Vis. Exp20182018e57665
LiaoH-GZhengHJ. Am. Chem. Soc20131355038
YangXYangMPangBVaraMXiaYChem. Rev201511510410
SunSZengHJ. Am. Chem. Soc20021248204
OuZKimAHuangWBraunPVLiXChenQCurr. Opin. Solid State Mater. Sci20192341
PengYWangFWangZAlsayedAMZhangZYodhAGHanYNat. Mater201514101
XiaYXiongYLimBSkrabalakSEAngew. Chem. Int. Ed. Engl20094860
KonstantatosGSargentEHNat. Nanotechnol20105391
BurleyJCDuerMJSteinRSVrceljRMEur. J. Pharm. Sci200731271
WuLWillisJJMcKayISDirollBTQinJCargnelloMTassoneCJNature2017548197
GruebeleMDaveKSukenikSAnnu. Rev. Biophys201645233
GaoJGuHXuBAcc. Chem. Res2009421097
YeSRathmellARChenZStewartIEWileyBJAdv. Mater2014266670
MorphewDShawJAvinsCChakrabartiDACS Nano2018122355
JungjohannKLBliznakovSSutterPWStachEASutterEANano Lett2013132964
LeeJNakouziESongMWangBChunJLiDACS Nano20181212778
SmithAMNieSAcc. Chem. Res201043190
LiaoH-GZherebetskyyDXinHCzarnikCErciusPElmlundHPanMWangL-WZhengHScience2014345916
WuLWangXWangGChenGNat. Commun201891335
VekilovPGNanoscale201022346
E. Cepeda-Perez, D. Doblas, T. Kraus, N. de Jonge, Sci. Adv. 6, eaba1404 (2020).
MirabelloGIaniroABomansPHHYodaTArakakiAFriedrichHde WithGSommerdijkNAJMNat. Mater202019391
KimJOuZJonesMRSongXChenQNat. Commun20178761
GeuchiesJJvan OverbeekCEversWHGorisBde BackerAGantaparaAPRabouwFTHilhorstJPetersJLKonovalovOPetukhovAVDijkstraMSiebbelesLDAvan AertSBalsSVanmaekelberghDNat. Mater2016151248
Z. Liu, Z. Zhang, Z. Wang, B. Jin, D. Li, J. Tao, R. Tang, J.J. de Yoreo, Proc. Natl. Acad. Sci. U.S.A. 117, 3397 (2020).
TrushinaDBBukreevaTVAntipinaMNCryst. Growth Des2016161311
YangT-HShiYJanssenAXiaYAngew. Chem. Int. Ed. Engl2019
MokariTSztrumCGSalantARabaniEBaninUNat. Mater20054855
XiaYGilroyKDPengH-CXiaXAngew. Chem. Int. Ed. Engl20175660
DanielM-CAstrucDChem. Rev2004104293
BolesMATalapinDVJ. Am. Chem. Soc20151374494
ParkJElmlundHErciusPYukJMLimmerDTChenQKimKHanSHWeitzDAZettlAAlivisatosAPScience2015349290
De YoreoJJChungSFriddleRWAdv. Funct. Mater2013232525
YeXChenJIrrgangMEEngelMDongAGlotzerSCMurrayCBNat. Mater201716214
YukJMZhouQChangJErciusPAlivisatosAPZettlAACS Nano20161088
TalapinDVShevchenkoEVBodnarchukMIYeXChenJMurrayCBNature2009461964
KimSYDaeKSKooKKimDParkJYukJMPhys. Status Solidi A20192161800949
BaraissovZPaccoAKonetiSBishtGPancieraFHolsteynsFMirsaidovUACS Appl. Mater. Interfaces20191136839
HauwillerMRFrechetteLBJonesMROndryJCRotskoffGMGeisslerPAlivisatosAPNano Lett2018185731
Y. Geng, G. van Anders, P.M. Dodd, J. Dshemuchadse, S.C. Glotzer, Sci. Adv. 5, eaaw0514 (2019).
ChenLLeonardiAChenJCaoMLiNSuDZhangQEngelMYeXNat. Commun2020113041
WangGPengQLiYAcc. Chem. Res201144322
DreadenECAlkilanyAMHuangXMurphyCJEl-SayedMAChem. Soc. Rev2012412740
JeongMYukJMLeeJYChem. Mater2015273200
HanYSHadikoGFujiMTakahashiMJ. Cryst. Growth2006289269
WilliamsonMJTrompRMVereeckenPMHullRRossFMNat. Mater20032532
WeidmanMCSmilgiesD-MTisdaleWANat. Mater201615775
NielsenMHAloniSde YoreoJJScience20143451158
LiZSunQZhuYTanBXuZPDouSXJ. Mater. Chem. B201422793
RuditskiyAXiaYACS Nano20171123
HuY-BWolthersMWolf-GladrowDANehrkeGCryst. Growth Des2015151596
ParentLRRobinsonDBWoehlTJRistenpartWDEvansJEBrowningNDArslanIACS Nano201263589
CollierCPVossmeyerTHeathJRAnnu. Rev. Phys. Chem199849371
YaoLOuZLuoBXuCChenQACS Cent. Sci2020doi:10.1021/acscentsci.0c00430
AuyeungELiTINGSenesiAJSchmuckerALPalsBCde La CruzMOMirkinCANature201450573
RadisicAVereeckenPMHannonJBSearsonPCRossFMNano Lett20066238
YeXJonesMRFrechetteLBChenQPowersASErciusPDunnGRotskoffGMNguyenSCAdigaVPZettlARabaniEGeisslerPLAlivisatosAPScience2016354874
MokariTRothenbergEPopovICostiRBaninUScience20043041787
LohNDSenSBosmanMTanSFZhongJNijhuisCAKrálPMatsudairaPMirsaidovUNat. Chem2017977
AabdinZXuXMSenSAnandUKrálPHolsteynsFMirsaidovUNano Lett2017172953
BatistaCASLarsonRGKotovNAScience20153501242477
YukJMParkJErciusPKimKHellebuschDJCrommieMFLeeJYZettlAAlivisatosAPScience201233661
JiaZLiuFJiangXWangLJ. Appl. Phys2020127150901
SmeetsPJMChoKRKempenRGESommerdijkNAJMde YoreoJJNat. Mater201514394
MayerKMHafnerJHChem. Rev20111113828
JiangYZhuGDongGLinFZhangHYuanJZhangZJinCMicron20179722
FrenchRHParsegianVAPodgornikRRajterRFJagotaALuoJAsthagiriDChaudhuryMKChiangY-MGranickSKalininSKardarMKjellanderRLangrethDCLewisJLustigSWesolowskiDWettlauferJSChingW-YFinnisMHoulihanFvon LilienfeldOAvan OssCJZembTRev. Mod. Phys2010821887
EvansJEJungjohannKLBrowningNDArslanINano Lett2011112809
J. Nai, S. Wang, X.W.D. Lou, Sci. Adv. 5, eaax5095 (2019).
MurphyCJSauTKGoleAMOrendorffCJGaoJGouLHunyadiSELiTJ. Phys. Chem. B200510913857
LiaoH-GNiuKZhengHChem. Commun20134911720
WangTLaMontagneDLynchJZhuangJCaoYCChem. Soc. Rev2013422804
S0883769420002298_ref129
S0883769420002298_ref66
S0883769420002298_ref128
S0883769420002298_ref65
S0883769420002298_ref127
S0883769420002298_ref68
S0883769420002298_ref126
S0883769420002298_ref67
S0883769420002298_ref125
S0883769420002298_ref124
S0883769420002298_ref69
S0883769420002298_ref123
S0883769420002298_ref122
S0883769420002298_ref121
S0883769420002298_ref120
S0883769420002298_ref71
S0883769420002298_ref73
S0883769420002298_ref72
S0883769420002298_ref75
S0883769420002298_ref74
S0883769420002298_ref77
S0883769420002298_ref76
S0883769420002298_ref79
S0883769420002298_ref78
S0883769420002298_ref134
S0883769420002298_ref133
S0883769420002298_ref132
S0883769420002298_ref80
S0883769420002298_ref131
S0883769420002298_ref130
S0883769420002298_ref82
S0883769420002298_ref81
S0883769420002298_ref84
S0883769420002298_ref86
S0883769420002298_ref85
S0883769420002298_ref88
S0883769420002298_ref87
S0883769420002298_ref89
S0883769420002298_ref91
S0883769420002298_ref90
S0883769420002298_ref93
S0883769420002298_ref92
S0883769420002298_ref94
S0883769420002298_ref97
S0883769420002298_ref96
Yang (S0883769420002298_ref24) 2019
S0883769420002298_ref18
S0883769420002298_ref99
S0883769420002298_ref11
S0883769420002298_ref10
S0883769420002298_ref98
S0883769420002298_ref13
S0883769420002298_ref12
S0883769420002298_ref15
S0883769420002298_ref14
S0883769420002298_ref17
S0883769420002298_ref16
S0883769420002298_ref20
S0883769420002298_ref29
S0883769420002298_ref22
Hauwiller (S0883769420002298_ref95) 2018; 2018
S0883769420002298_ref21
S0883769420002298_ref23
S0883769420002298_ref26
S0883769420002298_ref25
S0883769420002298_ref28
S0883769420002298_ref27
S0883769420002298_ref31
S0883769420002298_ref30
Geng (S0883769420002298_ref19) 2019; 5
S0883769420002298_ref33
S0883769420002298_ref32
S0883769420002298_ref35
S0883769420002298_ref34
S0883769420002298_ref37
S0883769420002298_ref36
S0883769420002298_ref39
S0883769420002298_ref38
Woehl (S0883769420002298_ref70) 2020; 45
S0883769420002298_ref40
S0883769420002298_ref42
S0883769420002298_ref41
S0883769420002298_ref9
S0883769420002298_ref109
S0883769420002298_ref108
S0883769420002298_ref44
S0883769420002298_ref107
S0883769420002298_ref2
S0883769420002298_ref1
S0883769420002298_ref106
S0883769420002298_ref43
S0883769420002298_ref46
S0883769420002298_ref105
S0883769420002298_ref4
S0883769420002298_ref3
S0883769420002298_ref45
S0883769420002298_ref104
S0883769420002298_ref103
S0883769420002298_ref48
S0883769420002298_ref6
S0883769420002298_ref102
S0883769420002298_ref47
S0883769420002298_ref5
S0883769420002298_ref8
S0883769420002298_ref101
S0883769420002298_ref49
S0883769420002298_ref7
S0883769420002298_ref100
S0883769420002298_ref51
S0883769420002298_ref50
S0883769420002298_ref53
S0883769420002298_ref52
Yao (S0883769420002298_ref119) 2020
Han (S0883769420002298_ref83) 2006; 289
S0883769420002298_ref118
S0883769420002298_ref55
S0883769420002298_ref54
S0883769420002298_ref117
S0883769420002298_ref57
S0883769420002298_ref116
S0883769420002298_ref115
S0883769420002298_ref56
S0883769420002298_ref114
S0883769420002298_ref59
S0883769420002298_ref113
S0883769420002298_ref58
S0883769420002298_ref112
S0883769420002298_ref111
S0883769420002298_ref110
S0883769420002298_ref60
S0883769420002298_ref62
S0883769420002298_ref61
S0883769420002298_ref64
S0883769420002298_ref63
References_xml – volume: 115
  start-page: 10410
  year: 2015
  publication-title: Chem. Rev
– volume: 336
  start-page: 61
  year: 2012
  publication-title: Science
– volume: 11
  start-page: 3041
  year: 2020
  publication-title: Nat. Commun
– volume: 14
  start-page: 101
  year: 2015
  publication-title: Nat. Mater
– volume: 13
  start-page: 2964
  year: 2013
  publication-title: Nano Lett
– volume: 97
  start-page: 22
  year: 2017
  publication-title: Micron
– volume: 9
  start-page: 2460
  year: 2009
  publication-title: Nano Lett
– volume: 5
  start-page: 1600
  year: 2009
  publication-title: Small
– volume: 49
  start-page: 11720
  year: 2013
  publication-title: Chem. Commun
– volume: 12
  start-page: 2355
  year: 2018
  publication-title: ACS Nano
– volume: 14
  start-page: 215
  year: 2015
  publication-title: Nat. Mater
– volume: 27
  start-page: 3200
  year: 2015
  publication-title: Chem. Mater
– volume: 354
  start-page: 874
  year: 2016
  publication-title: Science
– volume: 15
  start-page: 1248
  year: 2016
  publication-title: Nat. Mater
– volume: 104
  start-page: 293
  year: 2004
  publication-title: Chem. Rev
– volume: 137
  start-page: 4494
  year: 2015
  publication-title: J. Am. Chem. Soc
– volume: 1
  start-page: 198
  year: 2019
  publication-title: Nat. Rev. Phys
– volume: 9
  start-page: 1493
  year: 2009
  publication-title: Nano Lett
– volume: 337
  start-page: 453
  year: 2012
  publication-title: Science
– volume: 9
  start-page: 77
  year: 2017
  publication-title: Nat. Chem
– volume: 43
  start-page: 190
  year: 2010
  publication-title: Acc. Chem. Res
– volume: 141
  start-page: 4428
  year: 2019
  publication-title: J. Am. Chem. Soc
– volume: 10
  start-page: 88
  year: 2016
  publication-title: ACS Nano
– volume: 5
  start-page: 391
  year: 2010
  publication-title: Nat. Nanotechnol
– volume: 6
  start-page: 8599
  year: 2012
  publication-title: ACS Nano
– volume: 45
  start-page: 233
  year: 2016
  publication-title: Annu. Rev. Biophys
– volume: 355
  start-page: 931
  year: 2017
  publication-title: Science
– volume: 15
  start-page: 1596
  year: 2015
  publication-title: Cryst. Growth Des
– volume: 11
  start-page: 3290
  year: 2011
  publication-title: Nano Lett
– volume: 289
  start-page: 269
  year: 2006
  publication-title: J. Cryst. Growth
– volume: 324
  start-page: 1309
  year: 2009
  publication-title: Science
– volume: 13
  start-page: 21367
  year: 2011
  publication-title: Phys. Chem. Chem. Phys
– volume: 11
  start-page: 13098
  year: 2019
  publication-title: Nanoscale
– volume: 6
  start-page: 2078
  year: 2012
  publication-title: ACS Nano
– volume: 9
  start-page: 1335
  year: 2018
  publication-title: Nat. Commun
– volume: 548
  start-page: 197
  year: 2017
  publication-title: Nature
– volume: 17
  start-page: 2953
  year: 2017
  publication-title: Nano Lett
– volume: 1
  start-page: 33
  year: 2015
  publication-title: ACS Cent. Sci
– volume: 49
  start-page: 371
  year: 1998
  publication-title: Annu. Rev. Phys. Chem
– volume: 345
  start-page: 916
  year: 2014
  publication-title: Science
– volume: 127
  start-page: 150901
  year: 2020
  publication-title: J. Appl. Phys
– volume: 128
  start-page: 12590
  year: 2006
  publication-title: J. Am. Chem. Soc
– volume: 31
  start-page: 271
  year: 2007
  publication-title: Eur. J. Pharm. Sci
– volume: 134
  start-page: 4384
  year: 2012
  publication-title: J. Am. Chem. Soc
– volume: 2
  start-page: 532
  year: 2003
  publication-title: Nat. Mater
– volume: 11
  start-page: 36839
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 179
  start-page: 298
  year: 1996
  publication-title: J. Colloid Interface Sci
– volume: 107
  start-page: 22430
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– year: 2019
  publication-title: Angew. Chem. Int. Ed. Engl
– volume: 13
  start-page: 4980
  year: 2013
  publication-title: Nano Lett
– volume: 15
  start-page: 1901966
  year: 2019
  publication-title: Small
– volume: 297
  start-page: 1536
  year: 2002
  publication-title: Science
– volume: 6
  start-page: 238
  year: 2006
  publication-title: Nano Lett
– volume: 12
  start-page: 5644
  year: 2012
  publication-title: Nano Lett
– volume: 8
  start-page: 761
  year: 2017
  publication-title: Nat. Commun
– volume: 11
  start-page: 23
  year: 2017
  publication-title: ACS Nano
– volume: 2
  start-page: 2346
  year: 2010
  publication-title: Nanoscale
– volume: 14
  start-page: 3761
  year: 2014
  publication-title: Nano Lett
– volume: 141
  start-page: 13516
  year: 2019
  publication-title: J. Am. Chem. Soc
– volume: 44
  start-page: 322
  year: 2011
  publication-title: Acc. Chem. Res
– volume: 18
  start-page: 7004
  year: 2018
  publication-title: Nano Lett
– volume: 116
  start-page: 16703
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 11
  start-page: 3388
  year: 2011
  publication-title: Nano Lett
– volume: 12
  start-page: 1470
  year: 2012
  publication-title: Nano Lett
– volume: 4
  start-page: 61
  year: 2019
  publication-title: Nat. Rev. Mater
– volume: 461
  start-page: 964
  year: 2009
  publication-title: Nature
– volume: 50
  start-page: 9447
  year: 2014
  publication-title: Chem. Commun
– volume: 349
  start-page: 290
  year: 2015
  publication-title: Science
– volume: 12
  start-page: 12778
  year: 2018
  publication-title: ACS Nano
– volume: 141
  start-page: 18395
  year: 2019
  publication-title: J. Am. Chem. Soc
– volume: 16
  start-page: 1311
  year: 2016
  publication-title: Cryst. Growth Des
– volume: 124
  start-page: 065502
  year: 2020
  publication-title: Phys. Rev. Lett
– volume: 19
  start-page: 391
  year: 2020
  publication-title: Nat. Mater
– volume: 19
  start-page: 2871
  year: 2019
  publication-title: Nano Lett
– volume: 41
  start-page: 2740
  year: 2012
  publication-title: Chem. Soc. Rev
– volume: 5
  start-page: 4946
  year: 2014
  publication-title: Nat. Commun
– volume: 5
  year: 2019
  publication-title: Sci. Adv
– volume: 118
  start-page: 22373
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 304
  start-page: 1787
  year: 2004
  publication-title: Science
– volume: 48
  start-page: 60
  year: 2009
  publication-title: Angew. Chem. Int. Ed. Engl
– volume: 336
  start-page: 1014
  year: 2012
  publication-title: Science
– volume: 4
  start-page: 855
  year: 2005
  publication-title: Nat. Mater
– volume: 7
  start-page: 11213
  year: 2016
  publication-title: Nat. Commun
– volume: 334
  start-page: 204
  year: 2011
  publication-title: Science
– volume: 350
  year: 2015
  publication-title: Science
– volume: 109
  start-page: 13857
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 1
  start-page: 641
  year: 2007
  publication-title: Nat. Photonics
– volume: 124
  start-page: 8204
  year: 2002
  publication-title: J. Am. Chem. Soc
– volume: 42
  start-page: 1097
  year: 2009
  publication-title: Acc. Chem. Res
– volume: 14
  start-page: 359
  year: 2014
  publication-title: Nano Lett
– volume: 336
  start-page: 1011
  year: 2012
  publication-title: Science
– volume: 10
  start-page: 6090
  year: 2019
  publication-title: J. Phys. Chem. Lett
– volume: 117
  start-page: 3397
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 56
  start-page: 60
  year: 2017
  publication-title: Angew. Chem. Int. Ed. Engl
– volume: 12
  start-page: 284
  year: 2013
  publication-title: Nat. Mater
– volume: 82
  start-page: 1887
  year: 2010
  publication-title: Rev. Mod. Phys
– volume: 19
  start-page: 450
  year: 2020
  publication-title: Nat. Mater
– volume: 42
  start-page: 2804
  year: 2013
  publication-title: Chem. Soc. Rev
– volume: 345
  start-page: 1158
  year: 2014
  publication-title: Science
– volume: 11
  start-page: 2809
  year: 2011
  publication-title: Nano Lett
– volume: 26
  start-page: 6670
  year: 2014
  publication-title: Adv. Mater
– volume: 6
  start-page: 695
  year: 2011
  publication-title: Nat. Nanotechnol
– volume: 135
  start-page: 5038
  year: 2013
  publication-title: J. Am. Chem. Soc
– volume: 45
  start-page: 746
  issue: 9
  year: 2020
  publication-title: MRS Bull
– volume: 31
  start-page: 688
  year: 1959
  publication-title: J. Chem. Phys
– volume: 142
  start-page: 11669
  year: 2020
  publication-title: J. Am. Chem. Soc
– volume: 116
  start-page: 11220
  year: 2016
  publication-title: Chem. Rev
– volume: 216
  start-page: 1800949
  year: 2019
  publication-title: Phys. Status Solidi A
– year: 2020
  publication-title: ACS Cent. Sci
– volume: 15
  start-page: 775
  year: 2016
  publication-title: Nat. Mater
– volume: 18
  start-page: 1367
  year: 2018
  publication-title: Cryst. Growth Des
– volume: 14
  start-page: 394
  year: 2015
  publication-title: Nat. Mater
– volume: 86
  start-page: 4356
  year: 1982
  publication-title: J. Phys. Chem
– volume: 2018
  start-page: e57665
  year: 2018
  publication-title: J. Vis. Exp
– volume: 11
  start-page: 1696
  year: 2017
  publication-title: ACS Nano
– volume: 18
  start-page: 5731
  year: 2018
  publication-title: Nano Lett
– volume: 35
  start-page: 1700382
  year: 2018
  publication-title: Part. Part. Syst. Charact
– volume: 349
  year: 2015
  publication-title: Science
– volume: 350
  start-page: 1242477
  year: 2015
  publication-title: Science
– volume: 505
  start-page: 73
  year: 2014
  publication-title: Nature
– volume: 13
  start-page: 1249
  year: 2011
  publication-title: CrystEngComm
– volume: 2
  start-page: 2793
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 49
  start-page: 9368
  year: 2010
  publication-title: Angew. Chem. Int. Ed. Engl
– volume: 16
  start-page: 214
  year: 2017
  publication-title: Nat. Mater
– volume: 6
  year: 2020
  publication-title: Sci. Adv
– volume: 111
  start-page: 3828
  year: 2011
  publication-title: Chem. Rev
– volume: 23
  start-page: 41
  year: 2019
  publication-title: Curr. Opin. Solid State Mater. Sci
– volume: 105
  start-page: 208
  year: 2011
  publication-title: Prog. Biophys. Mol. Biol
– volume: 7
  start-page: 26
  year: 2004
  publication-title: Mater. Today
– volume: 23
  start-page: 2525
  year: 2013
  publication-title: Adv. Funct. Mater
– volume: 17
  start-page: 15
  year: 2017
  publication-title: Nano Lett
– volume: 6
  start-page: 3589
  year: 2012
  publication-title: ACS Nano
– volume: 10
  start-page: 9801
  year: 2016
  publication-title: ACS Nano
– ident: S0883769420002298_ref34
  doi: 10.1126/science.1210493
– ident: S0883769420002298_ref88
  doi: 10.1073/pnas.1914813117
– ident: S0883769420002298_ref26
  doi: 10.1021/ja0616534
– ident: S0883769420002298_ref117
  doi: 10.1038/ncomms11213
– ident: S0883769420002298_ref72
  doi: 10.1039/c0nr00628a
– ident: S0883769420002298_ref39
  doi: 10.1002/adfm.201203424
– ident: S0883769420002298_ref84
  doi: 10.1021/cg500829p
– ident: S0883769420002298_ref13
  doi: 10.1039/C1CS15237H
– ident: S0883769420002298_ref69
  doi: 10.1021/nl404169a
– ident: S0883769420002298_ref30
  doi: 10.1002/anie.201604731
– ident: S0883769420002298_ref122
  doi: 10.1021/nl302788g
– ident: S0883769420002298_ref127
  doi: 10.1006/jcis.1996.0217
– ident: S0883769420002298_ref22
  doi: 10.1126/sciadv.aax5095
– ident: S0883769420002298_ref60
  doi: 10.1021/acsnano.5b04064
– ident: S0883769420002298_ref62
  doi: 10.1038/nchem.2618
– ident: S0883769420002298_ref130
  doi: 10.1016/j.pbiomolbio.2010.07.002
– ident: S0883769420002298_ref109
  doi: 10.1002/smll.201901966
– ident: S0883769420002298_ref29
  doi: 10.1126/science.1097830
– ident: S0883769420002298_ref23
  doi: 10.1038/s42254-018-0018-y
– ident: S0883769420002298_ref55
  doi: 10.1021/ja310612p
– ident: S0883769420002298_ref27
  doi: 10.1038/nmat1505
– volume: 45
  start-page: 746
  year: 2020
  ident: S0883769420002298_ref70
  publication-title: MRS Bull
  doi: 10.1557/mrs.2020.227
  contributor:
    fullname: Woehl
– ident: S0883769420002298_ref132
  doi: 10.1021/acs.nanolett.8b04962
– ident: S0883769420002298_ref128
  doi: 10.1038/nmat4083
– ident: S0883769420002298_ref47
  doi: 10.1126/science.aah4434
– ident: S0883769420002298_ref7
  doi: 10.1021/ar9001069
– ident: S0883769420002298_ref65
  doi: 10.1039/c1cp22679g
– ident: S0883769420002298_ref50
  doi: 10.1021/nl052175i
– ident: S0883769420002298_ref90
  doi: 10.1021/acsnano.6b08556
– ident: S0883769420002298_ref61
  doi: 10.1002/pssa.201800949
– ident: S0883769420002298_ref49
  doi: 10.1038/nmat944
– ident: S0883769420002298_ref8
  doi: 10.1146/annurev.physchem.49.1.371
– ident: S0883769420002298_ref21
  doi: 10.1063/5.0004724
– ident: S0883769420002298_ref66
  doi: 10.1126/science.1254051
– ident: S0883769420002298_ref4
  doi: 10.1021/ar100129p
– ident: S0883769420002298_ref115
  doi: 10.1021/acsnano.8b07880
– ident: S0883769420002298_ref94
  doi: 10.1021/acs.nanolett.8b02953
– ident: S0883769420002298_ref77
  doi: 10.1039/C4CC03500C
– ident: S0883769420002298_ref15
  doi: 10.1021/cr100313v
– ident: S0883769420002298_ref120
  doi: 10.1021/nl9012369
– ident: S0883769420002298_ref68
  doi: 10.1021/jp507400n
– ident: S0883769420002298_ref6
  doi: 10.1021/ja026501x
– ident: S0883769420002298_ref51
  doi: 10.1038/nnano.2011.161
– ident: S0883769420002298_ref96
  doi: 10.1021/acs.nanolett.8b02337
– ident: S0883769420002298_ref45
  doi: 10.1126/science.aaa9886
– ident: S0883769420002298_ref46
  doi: 10.1126/science.aab1343
– ident: S0883769420002298_ref3
  doi: 10.1021/jp0516846
– ident: S0883769420002298_ref101
  doi: 10.1021/acs.nanolett.7b00196
– ident: S0883769420002298_ref131
  doi: 10.1126/sciadv.aba1404
– ident: S0883769420002298_ref56
  doi: 10.1039/c3cc47473a
– ident: S0883769420002298_ref121
  doi: 10.1021/nl201795u
– ident: S0883769420002298_ref126
  doi: 10.1021/jacs.0c04444
– ident: S0883769420002298_ref125
  doi: 10.1021/jacs.9b05225
– ident: S0883769420002298_ref133
  doi: 10.1038/s41578-018-0071-2
– ident: S0883769420002298_ref52
  doi: 10.1021/nn303371y
– ident: S0883769420002298_ref99
  doi: 10.1021/acs.jpclett.9b02388
– ident: S0883769420002298_ref64
  doi: 10.1021/j100219a016
– ident: S0883769420002298_ref105
  doi: 10.1038/nmat4759
– year: 2020
  ident: S0883769420002298_ref119
  publication-title: ACS Cent. Sci
  contributor:
    fullname: Yao
– ident: S0883769420002298_ref85
  doi: 10.1021/acs.cgd.5b01422
– ident: S0883769420002298_ref80
  doi: 10.1021/nl4014277
– ident: S0883769420002298_ref118
  doi: 10.1038/s41467-017-00857-1
– year: 2019
  ident: S0883769420002298_ref24
  publication-title: Angew. Chem. Int. Ed. Engl
  contributor:
    fullname: Yang
– ident: S0883769420002298_ref14
  doi: 10.1126/science.297.5586.1536
– ident: S0883769420002298_ref110
  doi: 10.1126/science.1242477
– ident: S0883769420002298_ref40
  doi: 10.1038/s41563-019-0511-4
– ident: S0883769420002298_ref31
  doi: 10.1021/nl8034724
– ident: S0883769420002298_ref74
  doi: 10.1063/1.1730447
– ident: S0883769420002298_ref67
  doi: 10.1021/nl201166k
– ident: S0883769420002298_ref116
  doi: 10.1021/acs.nanolett.6b02972
– ident: S0883769420002298_ref91
  doi: 10.1021/nl500670q
– ident: S0883769420002298_ref16
  doi: 10.1038/nnano.2010.78
– ident: S0883769420002298_ref41
  doi: 10.1126/science.1220869
– ident: S0883769420002298_ref38
  doi: 10.1038/s41467-018-03767-y
– ident: S0883769420002298_ref2
  doi: 10.1016/S1369-7021(04)00080-X
– ident: S0883769420002298_ref54
  doi: 10.1126/science.1219185
– ident: S0883769420002298_ref1
  doi: 10.1002/anie.200802248
– ident: S0883769420002298_ref5
  doi: 10.1021/ar9000026
– ident: S0883769420002298_ref113
  doi: 10.1073/pnas.1822092116
– volume: 2018
  start-page: e57665
  year: 2018
  ident: S0883769420002298_ref95
  publication-title: J. Vis. Exp
  contributor:
    fullname: Hauwiller
– ident: S0883769420002298_ref102
  doi: 10.1021/acsami.9b11934
– ident: S0883769420002298_ref114
  doi: 10.1021/nn203837m
– ident: S0883769420002298_ref48
  doi: 10.1021/acscentsci.5b00001
– ident: S0883769420002298_ref86
  doi: 10.1021/acs.cgd.7b01216
– ident: S0883769420002298_ref123
  doi: 10.1021/acsnano.6b05270
– ident: S0883769420002298_ref36
  doi: 10.1038/nmat4600
– ident: S0883769420002298_ref112
  doi: 10.1016/j.cossms.2018.12.002
– ident: S0883769420002298_ref129
  doi: 10.1146/annurev-biophys-062215-011236
– ident: S0883769420002298_ref103
  doi: 10.1039/C9NR03709H
– ident: S0883769420002298_ref10
  doi: 10.1039/C2CS35318K
– ident: S0883769420002298_ref73
  doi: 10.1038/nmat3604
– ident: S0883769420002298_ref71
  doi: 10.1126/science.aaa6760
– ident: S0883769420002298_ref97
  doi: 10.1021/jacs.9b00082
– ident: S0883769420002298_ref59
  doi: 10.1021/acs.chemmater.5b00334
– ident: S0883769420002298_ref18
  doi: 10.1038/nphoton.2007.223
– ident: S0883769420002298_ref134
  doi: 10.1103/PhysRevLett.124.065502
– ident: S0883769420002298_ref92
  doi: 10.1016/j.micron.2017.03.003
– ident: S0883769420002298_ref44
  doi: 10.1038/nature12739
– ident: S0883769420002298_ref37
  doi: 10.1038/nmat4746
– ident: S0883769420002298_ref104
  doi: 10.1126/science.aal3919
– ident: S0883769420002298_ref76
  doi: 10.1021/cr030698+
– ident: S0883769420002298_ref42
  doi: 10.1073/pnas.1008958107
– ident: S0883769420002298_ref32
  doi: 10.1002/ppsc.201700382
– ident: S0883769420002298_ref58
  doi: 10.1126/science.1217654
– ident: S0883769420002298_ref33
  doi: 10.1038/nmat4115
– ident: S0883769420002298_ref12
  doi: 10.1039/C3TB21760D
– ident: S0883769420002298_ref87
  doi: 10.1126/science.1219643
– ident: S0883769420002298_ref28
  doi: 10.1002/anie.201003903
– ident: S0883769420002298_ref78
  doi: 10.1021/nl2041854
– ident: S0883769420002298_ref43
  doi: 10.1038/nature08439
– ident: S0883769420002298_ref17
  doi: 10.1002/adma.201402710
– ident: S0883769420002298_ref111
  doi: 10.1103/RevModPhys.82.1887
– ident: S0883769420002298_ref81
  doi: 10.1038/ncomms5946
– ident: S0883769420002298_ref93
  doi: 10.1021/acsnano.6b07541
– ident: S0883769420002298_ref82
  doi: 10.1039/c0ce00419g
– ident: S0883769420002298_ref75
  doi: 10.1021/nl201647p
– volume: 5
  year: 2019
  ident: S0883769420002298_ref19
  publication-title: Sci. Adv
  contributor:
    fullname: Geng
– ident: S0883769420002298_ref11
  doi: 10.1021/acs.chemrev.5b00193
– ident: S0883769420002298_ref106
  doi: 10.1021/jacs.5b00839
– ident: S0883769420002298_ref100
  doi: 10.1021/jacs.9b09508
– ident: S0883769420002298_ref35
  doi: 10.1038/nature23308
– ident: S0883769420002298_ref107
  doi: 10.1021/nl403149u
– volume: 289
  start-page: 269
  year: 2006
  ident: S0883769420002298_ref83
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.11.011
  contributor:
    fullname: Han
– ident: S0883769420002298_ref20
  doi: 10.1021/acsnano.7b07633
– ident: S0883769420002298_ref108
  doi: 10.1002/smll.200900358
– ident: S0883769420002298_ref57
  doi: 10.1126/science.1253149
– ident: S0883769420002298_ref89
  doi: 10.1038/nmat4193
– ident: S0883769420002298_ref53
  doi: 10.1126/science.1172104
– ident: S0883769420002298_ref9
  doi: 10.1021/acs.chemrev.6b00196
– ident: S0883769420002298_ref25
  doi: 10.1021/ja211459p
– ident: S0883769420002298_ref63
  doi: 10.1016/j.ejps.2007.04.002
– ident: S0883769420002298_ref98
  doi: 10.1038/s41467-020-16645-3
– ident: S0883769420002298_ref124
  doi: 10.1038/s41563-019-0514-1
– ident: S0883769420002298_ref79
  doi: 10.1021/nn300671g
SSID ssj0015075
Score 2.4794602
Snippet This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the...
Abstract This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in...
This work reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the...
SourceID osti
proquest
crossref
springer
cambridge
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 713
SubjectTerms Applied and Technical Physics
Assembly
Characterization and Evaluation of Materials
Chemical bonds
Condensed matter physics
Crystallites
Crystallization
Electrochemistry
Energy Materials
Etching
Imaging
Kinetics
Liquid Phase Electron Microscopy
Mapping
Materials Engineering
MATERIALS SCIENCE
Mineralization
Morphology
Nanocrystals
Nanomaterials
Nanotechnology
Nucleation
Photonics
Post-processing
Superlattices
Transmission electron microscopy
Title Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy
URI https://www.cambridge.org/core/product/identifier/S0883769420002298/type/journal_article
https://link.springer.com/article/10.1557/mrs.2020.229
https://www.proquest.com/docview/2441197589
https://www.osti.gov/servlets/purl/1782185
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB7qFUEfxFbFsz_YB60vjSab3WzyJFV6LYJHEQt9C_tTD2pyveSQ_vfO5JI7K7TvIQn7ze5838zsDMDb2BgXx76IeBpEJBTqlNzpLOI2DcpxmbpuFsG3aXZ-Kb5eyas-4Nb0ZZXDmdgd1K62FCP_iG6IMl4yLz7NbyKaGkXZ1X6ExiPYTrhSJL7yydk6iyBXjXZxI6WRygrRF75LiXJ_Qb26efyBE7nctFW4455GNW6zO9Tzv2xp54Qmz-FZzx7ZyQruHdjy1S48_aen4C487mo6bfMC_kypV3G38sfsJ8rt9tcx05VjzXJOUbyW6t7Y-vYiqwOrdFXbxS0yxuuG1YYitt6xWcWuZzfLmWMU5mctuTc0D4qzsWGMDvtNlX10x-X2JVxOTn98OY_6OQuRRbrWRoXyQhXa6dypWAaDEkebAnVJbFGNGeGlTihdKoKPg9YuDsHazKpCBSqScukrGFV15V8D0zk1CMt8YtD3C6VRraCpplwaz4XmyRjer5e67HdLU5IQQVBKBKUkUEoEZQzvBiDK-arxxj3P7RFKJRIG6nprqTzItmWCzAepyBj2B_A2n9uY0hiOBkAf_ps3D79nD57Qk6vas30YtYulP0Cy0prDziIPYfvz6fTi-1_d8esI
link.rule.ids 230,315,783,787,888,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB7RoKrtAbVQ1BRa9tDHBYNj73rjE6qqhrSFnEDittonjUTtEDuq-PedceykIJW7X_I3u_PNY78B-BAb4-LY51GSBh5xiXHK0OksSmwapEtE6ppZBOeTbHzJf1yJqzbhVrVtld2e2GzUrrSUIz9GN0QVLzHMT2a3EU2NoupqO0LjCWzyFH01nRQfna6qCGIptIsLKY1klvO28V0IDPfnpNWdxEcJkcu1rMI999QrcZndo54PqqWNExq9hK2WPbIvS7hfwYYvtuHFP5qC2_C06em01Q78mZBWcfPnD9k1htv1r0OmC8eqxYyyeDX1vbHV6UVWBlboorTzO2SMNxUrDWVsvWPTgt1MbxdTxyjNz2pyb2gelGdj3Rgd9ps6--iMy91ruBx9u_g6jto5C5FFulZHufRc5trpoZOxCAZDHG1yjEtii9GY4V7oAZVLefBx0NrFIVibWZnLQE1SLt2FXlEW_g0wPSSBsMwPDPp-LjVGK2iqaSKMT7hOBn34vPrVql0tlaJABEFRCIoiUBSC0oePHRBqthTe-M91e4SSQsJAqreW2oNsrQbIfJCK9GG_A2_9urUp9eFTB-jjX_P28eccwLPxxfmZOvs--bkHz-muZR_aPvTq-cK_Q-JSm_eNdf4Fi3rsUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB2VVKByQKWAGlrKHgpcaurYu177hBBtKAUiDlTqbbWfEKnYaewI9d8z49gJRaJ3f8lvdufNzNsZgMPYGBfHvoiSNPCIS4xTcqezKLFpkC4RqWtnEXydZGcX_PxSXHb6p7qTVfZ7YrtRu8pSjvwY3RBVvEReHIdOFvHtZPxudh3RBCmqtHbjNO7BJnrFjGw-H39cVRTEsukuLqo0klnBOxG8EBj6z6lvdxK_TYhorlss3HJVgwqX3C0a-k_ltHVI42141DFJ9n4J_WPY8OUOPPyrv-AO3G_1nbZ-Ar8n1Le4ReGI_cDQu_l5xHTpWL2YUUavIQ0cW51kZFVgpS4rO79B9nhVs8pQ9tY7Ni3Z1fR6MXWMUv6sIVeHpkI5N9aP1GG_SOVH511unsLF-PT7h7Oom7kQWaRuTVRIz2Whnc6djEUwGO5oU2CMEluMzAz3Qo-odMqDj4PWLg7B2szKQgYSTLn0GQzKqvS7wHROzcIyPzLIA7jUGLmg2aaJMD7hOhkN4c3qV6tu5dSKghIERSEoikBRCMoQXvVAqNmyCcd_rtsjlBSSB-qAa0kqZBs1QhaEtGQI-z1469etzWoIr3tA7_6a53c_5yU8QMNUXz5NPu_BFt20lKTtw6CZL_wL5DCNOWiN8w-OIfCI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleation%2C+growth%2C+and+superlattice+formation+of+nanocrystals+observed+in+liquid+cell+transmission+electron+microscopy&rft.jtitle=MRS+bulletin&rft.au=Chen%2C+Qian&rft.au=Yuk%2C+Jong+Min&rft.au=Hauwiller%2C+Matthew+R.&rft.au=Park%2C+Jungjae&rft.date=2020-09-01&rft.issn=0883-7694&rft.eissn=1938-1425&rft.volume=45&rft.issue=9&rft.spage=713&rft.epage=726&rft_id=info:doi/10.1557%2Fmrs.2020.229&rft.externalDBID=n%2Fa&rft.externalDocID=10_1557_mrs_2020_229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-7694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-7694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-7694&client=summon