Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy
This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with non...
Saved in:
Published in | MRS bulletin Vol. 45; no. 9; pp. 713 - 726 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
01.09.2020
Springer International Publishing Springer Nature B.V Materials Research Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication. |
---|---|
AbstractList | This work reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication. This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication. Abstract This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication. This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication. This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication. |
Author | Kim, Jae Sung Hauwiller, Matthew R. Dae, Kyun Seong Alivisatos, A. Paul Park, Jungjae Chen, Qian Yuk, Jong Min |
Author_xml | – sequence: 1 givenname: Qian surname: Chen fullname: Chen, Qian email: qchen20@illinois.edu organization: Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA; qchen20@illinois.edu – sequence: 2 givenname: Jong Min surname: Yuk fullname: Yuk, Jong Min email: jongmin.yuk@kaist.ac.kr organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; jongmin.yuk@kaist.ac.kr – sequence: 3 givenname: Matthew R. surname: Hauwiller fullname: Hauwiller, Matthew R. email: mhauwill@mit.edu organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; mhauwill@mit.edu – sequence: 4 givenname: Jungjae surname: Park fullname: Park, Jungjae email: jungjae10@kaist.ac.kr organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; jungjae10@kaist.ac.kr – sequence: 5 givenname: Kyun Seong surname: Dae fullname: Dae, Kyun Seong email: ddalgi1051@kaist.ac.kr organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; ddalgi1051@kaist.ac.kr – sequence: 6 givenname: Jae Sung surname: Kim fullname: Kim, Jae Sung email: ijs7596@kaist.ac.kr organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; ijs7596@kaist.ac.kr – sequence: 7 givenname: A. Paul surname: Alivisatos fullname: Alivisatos, A. Paul email: paul.alivisatos@berkeley.edu organization: University of California, Berkeley; Kavli Energy Nanoscience Institute; Lawrence Berkeley National Laboratory, USA; paul.alivisatos@berkeley.edu |
BackLink | https://www.osti.gov/servlets/purl/1782185$$D View this record in Osti.gov |
BookMark | eNqFkE9vGyEUxFGVSnXc3voBUHP1uoDBwLGK8qdSlF7aM2LZh0O0Cw6wifzti-tIPUU5vXf4zWhmztFZTBEQ-krJmgohv0-5rBlhZM2Y_oAWVG9URzkTZ2hBlNp0cqv5J3ReyiMhVBApFujlfnYj2BpSXOFdTi_1YYVtHHCZ95BHW2twgH3K0z8GJ4-jjcnlQ6l2LDj1BfIzDDhEPIanOQzYwTjimm0sUyjlKIIRXM3tmYLLqbi0P3xGH33Tw5fXu0R_rq9-X952d79ufl7-uOscJ6J2WgKX2g5WDZII37Mtsb3mTBGntO45CNtaCsU9EG_tQLx3buuklr411sNmib6dfFOpwRQXKrgHl2JsiQyVilElGnRxgvY5Pc1QqnlMc44tl2GcU6qlULpRqxN17FAyeLPPYbL5YCgxx_1N298c9zdt_4Z3J7w0LO4g_zd9g1-_2tupz2HYwTuCv7RPm58 |
CitedBy_id | crossref_primary_10_1021_acsnano_0c10229 crossref_primary_10_1557_mrs_2020_222 crossref_primary_10_3390_ma16052026 crossref_primary_10_1002_smll_202303380 crossref_primary_10_1021_acs_chemrev_2c00461 crossref_primary_10_1557_s43577_022_00287_5 crossref_primary_10_1021_acsmacrolett_0c00595 crossref_primary_10_1557_s43577_024_00702_z crossref_primary_10_1016_j_jcrysgro_2022_126955 crossref_primary_10_1039_D4NR00202D crossref_primary_10_1103_PhysRevE_107_064110 crossref_primary_10_1557_s43577_024_00700_1 crossref_primary_10_1002_adfm_202310838 crossref_primary_10_1016_j_trechm_2021_10_004 crossref_primary_10_1039_D2RA05222A crossref_primary_10_1016_j_isci_2022_104699 crossref_primary_10_1073_pnas_2314320121 crossref_primary_10_1021_acsami_4c04651 crossref_primary_10_1146_annurev_chembioeng_092120_034534 crossref_primary_10_1021_acs_jpcc_2c04284 crossref_primary_10_1557_mrs_2020_252 crossref_primary_10_1557_s43577_024_00661_5 crossref_primary_10_1146_annurev_physchem_082720_100947 |
Cites_doi | 10.1126/science.1210493 10.1073/pnas.1914813117 10.1021/ja0616534 10.1038/ncomms11213 10.1039/c0nr00628a 10.1002/adfm.201203424 10.1021/cg500829p 10.1039/C1CS15237H 10.1021/nl404169a 10.1002/anie.201604731 10.1021/nl302788g 10.1006/jcis.1996.0217 10.1126/sciadv.aax5095 10.1021/acsnano.5b04064 10.1038/nchem.2618 10.1016/j.pbiomolbio.2010.07.002 10.1002/smll.201901966 10.1126/science.1097830 10.1038/s42254-018-0018-y 10.1021/ja310612p 10.1038/nmat1505 10.1557/mrs.2020.227 10.1021/acs.nanolett.8b04962 10.1038/nmat4083 10.1126/science.aah4434 10.1021/ar9001069 10.1039/c1cp22679g 10.1021/nl052175i 10.1021/acsnano.6b08556 10.1002/pssa.201800949 10.1038/nmat944 10.1146/annurev.physchem.49.1.371 10.1063/5.0004724 10.1126/science.1254051 10.1021/ar100129p 10.1021/acsnano.8b07880 10.1021/acs.nanolett.8b02953 10.1039/C4CC03500C 10.1021/cr100313v 10.1021/nl9012369 10.1021/jp507400n 10.1021/ja026501x 10.1038/nnano.2011.161 10.1021/acs.nanolett.8b02337 10.1126/science.aaa9886 10.1126/science.aab1343 10.1021/jp0516846 10.1021/acs.nanolett.7b00196 10.1126/sciadv.aba1404 10.1039/c3cc47473a 10.1021/nl201795u 10.1021/jacs.0c04444 10.1021/jacs.9b05225 10.1038/s41578-018-0071-2 10.1021/nn303371y 10.1021/acs.jpclett.9b02388 10.1021/j100219a016 10.1038/nmat4759 10.1021/acs.cgd.5b01422 10.1021/nl4014277 10.1038/s41467-017-00857-1 10.1126/science.297.5586.1536 10.1126/science.1242477 10.1038/s41563-019-0511-4 10.1021/nl8034724 10.1063/1.1730447 10.1021/nl201166k 10.1021/acs.nanolett.6b02972 10.1021/nl500670q 10.1038/nnano.2010.78 10.1126/science.1220869 10.1038/s41467-018-03767-y 10.1016/S1369-7021(04)00080-X 10.1126/science.1219185 10.1002/anie.200802248 10.1021/ar9000026 10.1073/pnas.1822092116 10.1021/acsami.9b11934 10.1021/nn203837m 10.1021/acscentsci.5b00001 10.1021/acs.cgd.7b01216 10.1021/acsnano.6b05270 10.1038/nmat4600 10.1016/j.cossms.2018.12.002 10.1146/annurev-biophys-062215-011236 10.1039/C9NR03709H 10.1039/C2CS35318K 10.1038/nmat3604 10.1126/science.aaa6760 10.1021/jacs.9b00082 10.1021/acs.chemmater.5b00334 10.1038/nphoton.2007.223 10.1103/PhysRevLett.124.065502 10.1016/j.micron.2017.03.003 10.1038/nature12739 10.1038/nmat4746 10.1126/science.aal3919 10.1021/cr030698+ 10.1073/pnas.1008958107 10.1002/ppsc.201700382 10.1126/science.1217654 10.1038/nmat4115 10.1039/C3TB21760D 10.1126/science.1219643 10.1002/anie.201003903 10.1021/nl2041854 10.1038/nature08439 10.1002/adma.201402710 10.1103/RevModPhys.82.1887 10.1038/ncomms5946 10.1021/acsnano.6b07541 10.1039/c0ce00419g 10.1021/nl201647p 10.1021/acs.chemrev.5b00193 10.1021/jacs.5b00839 10.1021/jacs.9b09508 10.1038/nature23308 10.1021/nl403149u 10.1016/j.jcrysgro.2005.11.011 10.1021/acsnano.7b07633 10.1002/smll.200900358 10.1126/science.1253149 10.1038/nmat4193 10.1126/science.1172104 10.1021/acs.chemrev.6b00196 10.1021/ja211459p 10.1016/j.ejps.2007.04.002 10.1038/s41467-020-16645-3 10.1038/s41563-019-0514-1 10.1021/nn300671g |
ContentType | Journal Article |
Copyright | Copyright © Materials Research Society 2020 The Materials Research Society 2020 |
Copyright_xml | – notice: Copyright © Materials Research Society 2020 – notice: The Materials Research Society 2020 |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION 7SR 7TA 8BQ 8FD 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PQEST PQQKQ PQUKI PRINS S0W OIOZB OTOTI |
DOI | 10.1557/mrs.2020.229 |
DatabaseName | CrossRef Engineered Materials Abstracts Materials Business File METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database Materials Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China Materials Business File METADEX ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Materials Science Database ProQuest One Academic |
DatabaseTitleList | CrossRef ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1938-1425 |
EndPage | 726 |
ExternalDocumentID | 1782185 10_1557_mrs_2020_229 |
GroupedDBID | -2P -2V -E. .FH 0E1 0R~ 123 2JN 4.4 406 5VS 74X 74Y 7~V 8FE 8FG 8UJ AAAZR AABES AABWE AACJH AAEED AAFGU AAGFV AAHNG AAKTX AARAB AATID AATNV AAUKB AAYFA ABAKF ABBXD ABECU ABEFU ABGDZ ABJCF ABJNI ABKAS ABKKG ABMQK ABMWE ABMYL ABQTM ABROB ABTEG ABTKH ABTMW ABZCX ABZUI ACAOD ACBEA ACBEK ACBMC ACCHT ACETC ACGFS ACHSB ACIGE ACIMK ACIWK ACQFJ ACQPF ACREK ACTTH ACUIJ ACUYZ ACVWB ACWGA ACWMK ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC ADGEJ ADOCW ADOVH ADOVT ADOXG AEBAK AEFTE AEHGV AEMSY AEMTW AENEX AENGE AESKC AESTI AEYYC AFBBN AFFUJ AFKQG AFKRA AFLOS AFLVW AFNRJ AFQWF AFUTZ AGLWM AGMZJ AGOOT AGQEE AHQXX AIGIU AIGNW AIHIV AIOIP AISIE AJCYY AJDOV AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMTXH AMXSW AMYLF ARABE ARZZG ATUCA AUXHV AYIQA BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BMAJL BQFHP C0O CBIIA CCPQU CCUQV CFAFE CFBFF CGQII CZ9 D1I DC4 DOHLZ DPUIP EBS EJD FIGPU HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IKXTQ IOEEP IOO IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JQKCU JZLTJ KAFGG KB. KC. KCGVB KFECR L98 LHUNA LLZTM M-V M7~ M8. NIKVX NPVJJ NQJWS O9- PDBOC PYCCK RAMDC RCA RNS RR0 RSV S0W S6- S6U SAAAG SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TN5 UT1 WQ3 WXU WXY Z7R Z7V Z7X Z7Y Z81 Z83 Z88 ZDLDU ZE2 ZJOSE ZMEZD ZMTXR ZYDXJ ~V1 ABFBI CHEAL AACDK AAEWM AAJBT AASML AAYXX ACDTI AEFQL AKYQF CITATION CTKSN EBLON ROL SJYHP 7SR 7TA 8BQ 8FD DWQXO JG9 PQEST PQQKQ PQUKI PRINS AIAFM OIOZB OTOTI |
ID | FETCH-LOGICAL-c405t-97e479ada8d705fb260ab94280c899b4e5a193584fe0faad0ffcc6c797f0889d3 |
IEDL.DBID | 8FG |
ISSN | 0883-7694 |
IngestDate | Fri May 19 00:37:11 EDT 2023 Thu Oct 10 19:36:51 EDT 2024 Thu Sep 26 16:45:30 EDT 2024 Tue Feb 27 01:24:05 EST 2024 Wed Mar 13 05:50:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-97e479ada8d705fb260ab94280c899b4e5a193584fe0faad0ffcc6c797f0889d3 |
Notes | AC02-05CH11231; DMR-1752517; NRF-2018R1C1B6002624 National Research Foundation of Korea (NRF) National Science Foundation (NSF) USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division |
OpenAccessLink | https://www.osti.gov/servlets/purl/1782185 |
PQID | 2441197589 |
PQPubID | 626324 |
PageCount | 14 |
ParticipantIDs | osti_scitechconnect_1782185 proquest_journals_2441197589 crossref_primary_10_1557_mrs_2020_229 springer_journals_10_1557_mrs_2020_229 cambridge_journals_10_1557_mrs_2020_229 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York, USA |
PublicationPlace_xml | – name: New York, USA – name: Cham – name: Warrendale – name: United States |
PublicationTitle | MRS bulletin |
PublicationTitleAbbrev | MRS Bulletin |
PublicationTitleAlternate | MRS Bull |
PublicationYear | 2020 |
Publisher | Cambridge University Press Springer International Publishing Springer Nature B.V Materials Research Society |
Publisher_xml | – name: Cambridge University Press – name: Springer International Publishing – name: Springer Nature B.V – name: Materials Research Society |
References | 2010; 107 2019; 11 2019; 10 2004; 7 2019; 15 2014; 26 2019; 19 2020; 11 2012; 12 2011; 111 2020; 19 2018; 9 1959; 31 2012; 134 2015; 137 2019; 23 2005; 109 2014; 14 2007; 1 2010; 2 2010; 5 2016; 45 2018; 35 2006; 289 2019; 4 2019; 5 2020; 142 2019; 1 2016; 10 2011; 6 2016; 16 2004; 304 2016; 15 2017; 548 2015; 350 2010; 43 2018; 18 2016; 7 2010; 49 2015; 115 2002; 124 2017; 56 2005; 4 2019; 216 2009; 461 2018; 12 2012; 41 1998; 49 2017; 8 2009; 42 2013; 23 2020; 127 2011; 11 2011; 13 2015; 349 2020; 124 2007; 31 2017; 355 2017; 9 2009; 48 2020; 6 2014; 5 2014; 2 2013; 13 2013; 12 2003; 2 2016; 354 2019; 116 2016; 116 2020; 45 2012; 336 2014; 50 1996; 179 2006; 128 2012; 337 2009; 324 2014; 118 2015; 1 2011; 334 2015; 15 2015; 14 2004; 104 2013; 49 2002; 297 2013; 42 2006; 6 2019; 141 2010; 82 2011; 105 2017; 97 2018; 2018 2015; 27 2014; 505 2017; 17 2017; 16 2020 2017; 11 1982; 86 2019 2011; 44 2009; 9 2020; 117 2013; 135 2009; 5 2012; 6 2014; 345 MacfarlaneRJLeeBJonesMRHarrisNSchatzGCMirkinCAScience2011334204 WuJGaoWYangHZuoJ-MACS Nano2017111696 TeifVBBohincKProg. Biophys. Mol. Biol2011105208 CaoYCJinRMirkinCAScience20022971536 YeXMillanJAEngelMChenJDirollBTGlotzerSCMurrayCBNano Lett2013134980 ZhengHSmithRKJunY-WKisielowskiCDahmenUAlivisatosAPScience20093241309 DamascenoPFEngelMGlotzerSCScience2012337453 KimJJonesMROuZChenQACS Nano2016109801 KrylovaGGiovanettiLJRequejoFGDimitrijevicNMPrakapenkaAShevchenkoEVJ. Am. Chem. Soc20121344384 CahnJWHilliardJEJ. Chem. Phys195931688 OuZWangZLuoBLuijtenEChenQNat. Mater202019450 BishopKJMWilmerCESohSGrzybowskiBASmall200951600 PowersASLiaoH-GRajaSNBronsteinNDAlivisatosAPZhengHNano Lett20171715 LeeJNakouziEXiaoDWuZSongMOphusCChunJLiDSmall2019151901966 SutterEJungjohannKBliznakovSCourtyAMaisonhauteETenneySSutterPNat. Commun201454946 CrockerJCGrierDGJ. Colloid Interface Sci1996179298 E.S. Harper, G. van Anders, S.C. Glotzer, Proc. Natl. Acad. Sci. U.S.A. 116, 16703 (2019). LiuLZhangSBowdenMEChaudhuriJde YoreoJJCryst. Growth Des2018181367 Liz-MarzánLMMater. Today2004726 ZhuGJiangYLinFZhangHJinCYuanJYangDZhangZChem. Commun2014509447 LinHLeeSSunLSpellingsMEngelMGlotzerSCMirkinCAScience2017355931 WangCDaimonHSunSNano Lett200991493 GaoWHouYHoodZDWangXMoreKWuRXiaYPanXChiMNano Lett2018187004 LiaoH-GCuiLWhitelamSZhengHScience20123361011 LiDNielsenMHLeeJRIFrandsenCBanfieldJFde YoreoJJScience20123361014 HalpertJEPorterVJZimmerJPBawendiMGJ. Am. Chem. Soc200612812590 LiuCOuZGuoFLuoBChenWQiLChenQJ. Am. Chem. Soc202014211669 GuixMWeizSMSchmidtOGMedina-SánchezMPart. Part. Syst. Charact2018351700382 GroganJMSchneiderNMRossFMBauHHNano Lett201414359 ParkJZhengHLeeWCGeisslerPLRabaniEAlivisatosAPACS Nano201262078 LalSLinkSHalasNJNat. Photonics20071641 ChenQChoHManthiramKYoshidaMYeXAlivisatosAPACS Cent. Sci2015133 HauwillerMROndryJCChanCMKhandekarPYuJAlivisatosAPJ. Am. Chem. Soc20191414428 HufschmidRTeemanEMehdiBLKrishnanKMBrowningNDNanoscale20191113098 MazumderVChiMMoreKLSunSAngew. Chem. Int. Ed. Engl2010499368 RengarajanGTEnkeDSteinhartMBeinerMPhys. Chem. Chem. Phys20111321367 SungJChoiBKKimBKimBHKimJLeeDKimSKangKHyeonTParkJJ. Am. Chem. Soc201914118395 SongR-QCölfenHCrystEngComm2011131249 SutterESutterPTkachenkoAVKrahneRde GraafJArciniegasMMannaLNat. Commun2016711213 J.J. de Yoreo, P.U.P.A. Gilbert, N.A.J.M. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H. Zhang, J.D. Rimer, A. Navrotsky, J.F. Banfield, A.F. Wallace, F.M. Michel, F.C. Meldrum, H. Cölfen, P.M. Dove, Science349, aaa6760 (2015). de JongeNRossFMNat. Nanotechnol20116695 JiangYZhuGLinFZhangHJinCYuanJYangDZhangZNano Lett2014143761 KadicMMiltonGWvan HeckeMWegenerMNat. Rev. Phys20191198 ZhengHMirsaidovUMWangL-WMatsudairaPNano Lett2012125644 WoehlTJMoserTEvansJERossFMMRS Bull2020459746 WangMDissanayakeTUParkCGaskellKWoehlTJJ. Am. Chem. Soc201914113516 ZhengHClaridgeSAMinorAMAlivisatosAPDahmenUNano Lett200992460 de JongeNHoubenLDunin-BorkowskiRERossFMNat. Rev. Mater2019461 XinHLZhengHNano Lett2012121470 YeXCollinsJEKangYChenJChenDTNYodhAGMurrayCBProc. Natl. Acad. Sci. U.S.A201010722430 KwonSGKrylovaGPhillipsPJKlieRFChattopadhyaySShibataTBunelEELiuYPrakapenkaVBLeeBShevchenkoEVNat. Mater201514215 BolesMAEngelMTalapinDVChem. Rev201611611220 BatsonPEReyes-CoronadoABarreraRGRivacobaAEcheniquePMAizpuruaJNano Lett2011113388 TanSFCheeSWBaraissovZJinHTanTLMirsaidovUJ. Phys. Chem. Lett2019106090 Sake GowdaDSRudmanRJ. Phys. Chem1982864356 YukJMKimKAlemánBReganWRyuJHParkJErciusPLeeHMAlivisatosAPCrommieMFLeeJYZettlANano Lett2011113290 de YoreoJNat. Mater201312284 CheeSWAnandUBishtGTanSFMirsaidovUNano Lett2019192871 WoehlTJEvansJEArslanIRistenpartWDBrowningNDACS Nano201268599 SchneiderNMNortonMMMendelBJGroganJMRossFMBauHHJ. Phys. Chem. C201411822373 YesibolatiMNLaganàSSunHBeleggiaMKathmannSMKasamaTMølhaveKPhys. Rev. Lett2020124065502 RossFMScience20153509886 HauwillerMROndryJCAlivisatosAPJ. Vis. Exp20182018e57665 LiaoH-GZhengHJ. Am. Chem. Soc20131355038 YangXYangMPangBVaraMXiaYChem. Rev201511510410 SunSZengHJ. Am. Chem. Soc20021248204 OuZKimAHuangWBraunPVLiXChenQCurr. Opin. Solid State Mater. Sci20192341 PengYWangFWangZAlsayedAMZhangZYodhAGHanYNat. Mater201514101 XiaYXiongYLimBSkrabalakSEAngew. Chem. Int. Ed. Engl20094860 KonstantatosGSargentEHNat. Nanotechnol20105391 BurleyJCDuerMJSteinRSVrceljRMEur. J. Pharm. Sci200731271 WuLWillisJJMcKayISDirollBTQinJCargnelloMTassoneCJNature2017548197 GruebeleMDaveKSukenikSAnnu. Rev. Biophys201645233 GaoJGuHXuBAcc. Chem. Res2009421097 YeSRathmellARChenZStewartIEWileyBJAdv. Mater2014266670 MorphewDShawJAvinsCChakrabartiDACS Nano2018122355 JungjohannKLBliznakovSSutterPWStachEASutterEANano Lett2013132964 LeeJNakouziESongMWangBChunJLiDACS Nano20181212778 SmithAMNieSAcc. Chem. Res201043190 LiaoH-GZherebetskyyDXinHCzarnikCErciusPElmlundHPanMWangL-WZhengHScience2014345916 WuLWangXWangGChenGNat. Commun201891335 VekilovPGNanoscale201022346 E. Cepeda-Perez, D. Doblas, T. Kraus, N. de Jonge, Sci. Adv. 6, eaba1404 (2020). MirabelloGIaniroABomansPHHYodaTArakakiAFriedrichHde WithGSommerdijkNAJMNat. Mater202019391 KimJOuZJonesMRSongXChenQNat. Commun20178761 GeuchiesJJvan OverbeekCEversWHGorisBde BackerAGantaparaAPRabouwFTHilhorstJPetersJLKonovalovOPetukhovAVDijkstraMSiebbelesLDAvan AertSBalsSVanmaekelberghDNat. Mater2016151248 Z. Liu, Z. Zhang, Z. Wang, B. Jin, D. Li, J. Tao, R. Tang, J.J. de Yoreo, Proc. Natl. Acad. Sci. U.S.A. 117, 3397 (2020). TrushinaDBBukreevaTVAntipinaMNCryst. Growth Des2016161311 YangT-HShiYJanssenAXiaYAngew. Chem. Int. Ed. Engl2019 MokariTSztrumCGSalantARabaniEBaninUNat. Mater20054855 XiaYGilroyKDPengH-CXiaXAngew. Chem. Int. Ed. Engl20175660 DanielM-CAstrucDChem. Rev2004104293 BolesMATalapinDVJ. Am. Chem. Soc20151374494 ParkJElmlundHErciusPYukJMLimmerDTChenQKimKHanSHWeitzDAZettlAAlivisatosAPScience2015349290 De YoreoJJChungSFriddleRWAdv. Funct. Mater2013232525 YeXChenJIrrgangMEEngelMDongAGlotzerSCMurrayCBNat. Mater201716214 YukJMZhouQChangJErciusPAlivisatosAPZettlAACS Nano20161088 TalapinDVShevchenkoEVBodnarchukMIYeXChenJMurrayCBNature2009461964 KimSYDaeKSKooKKimDParkJYukJMPhys. Status Solidi A20192161800949 BaraissovZPaccoAKonetiSBishtGPancieraFHolsteynsFMirsaidovUACS Appl. Mater. Interfaces20191136839 HauwillerMRFrechetteLBJonesMROndryJCRotskoffGMGeisslerPAlivisatosAPNano Lett2018185731 Y. Geng, G. van Anders, P.M. Dodd, J. Dshemuchadse, S.C. Glotzer, Sci. Adv. 5, eaaw0514 (2019). ChenLLeonardiAChenJCaoMLiNSuDZhangQEngelMYeXNat. Commun2020113041 WangGPengQLiYAcc. Chem. Res201144322 DreadenECAlkilanyAMHuangXMurphyCJEl-SayedMAChem. Soc. Rev2012412740 JeongMYukJMLeeJYChem. Mater2015273200 HanYSHadikoGFujiMTakahashiMJ. Cryst. Growth2006289269 WilliamsonMJTrompRMVereeckenPMHullRRossFMNat. Mater20032532 WeidmanMCSmilgiesD-MTisdaleWANat. Mater201615775 NielsenMHAloniSde YoreoJJScience20143451158 LiZSunQZhuYTanBXuZPDouSXJ. Mater. Chem. B201422793 RuditskiyAXiaYACS Nano20171123 HuY-BWolthersMWolf-GladrowDANehrkeGCryst. Growth Des2015151596 ParentLRRobinsonDBWoehlTJRistenpartWDEvansJEBrowningNDArslanIACS Nano201263589 CollierCPVossmeyerTHeathJRAnnu. Rev. Phys. Chem199849371 YaoLOuZLuoBXuCChenQACS Cent. Sci2020doi:10.1021/acscentsci.0c00430 AuyeungELiTINGSenesiAJSchmuckerALPalsBCde La CruzMOMirkinCANature201450573 RadisicAVereeckenPMHannonJBSearsonPCRossFMNano Lett20066238 YeXJonesMRFrechetteLBChenQPowersASErciusPDunnGRotskoffGMNguyenSCAdigaVPZettlARabaniEGeisslerPLAlivisatosAPScience2016354874 MokariTRothenbergEPopovICostiRBaninUScience20043041787 LohNDSenSBosmanMTanSFZhongJNijhuisCAKrálPMatsudairaPMirsaidovUNat. Chem2017977 AabdinZXuXMSenSAnandUKrálPHolsteynsFMirsaidovUNano Lett2017172953 BatistaCASLarsonRGKotovNAScience20153501242477 YukJMParkJErciusPKimKHellebuschDJCrommieMFLeeJYZettlAAlivisatosAPScience201233661 JiaZLiuFJiangXWangLJ. Appl. Phys2020127150901 SmeetsPJMChoKRKempenRGESommerdijkNAJMde YoreoJJNat. Mater201514394 MayerKMHafnerJHChem. Rev20111113828 JiangYZhuGDongGLinFZhangHYuanJZhangZJinCMicron20179722 FrenchRHParsegianVAPodgornikRRajterRFJagotaALuoJAsthagiriDChaudhuryMKChiangY-MGranickSKalininSKardarMKjellanderRLangrethDCLewisJLustigSWesolowskiDWettlauferJSChingW-YFinnisMHoulihanFvon LilienfeldOAvan OssCJZembTRev. Mod. Phys2010821887 EvansJEJungjohannKLBrowningNDArslanINano Lett2011112809 J. Nai, S. Wang, X.W.D. Lou, Sci. Adv. 5, eaax5095 (2019). MurphyCJSauTKGoleAMOrendorffCJGaoJGouLHunyadiSELiTJ. Phys. Chem. B200510913857 LiaoH-GNiuKZhengHChem. Commun20134911720 WangTLaMontagneDLynchJZhuangJCaoYCChem. Soc. Rev2013422804 S0883769420002298_ref129 S0883769420002298_ref66 S0883769420002298_ref128 S0883769420002298_ref65 S0883769420002298_ref127 S0883769420002298_ref68 S0883769420002298_ref126 S0883769420002298_ref67 S0883769420002298_ref125 S0883769420002298_ref124 S0883769420002298_ref69 S0883769420002298_ref123 S0883769420002298_ref122 S0883769420002298_ref121 S0883769420002298_ref120 S0883769420002298_ref71 S0883769420002298_ref73 S0883769420002298_ref72 S0883769420002298_ref75 S0883769420002298_ref74 S0883769420002298_ref77 S0883769420002298_ref76 S0883769420002298_ref79 S0883769420002298_ref78 S0883769420002298_ref134 S0883769420002298_ref133 S0883769420002298_ref132 S0883769420002298_ref80 S0883769420002298_ref131 S0883769420002298_ref130 S0883769420002298_ref82 S0883769420002298_ref81 S0883769420002298_ref84 S0883769420002298_ref86 S0883769420002298_ref85 S0883769420002298_ref88 S0883769420002298_ref87 S0883769420002298_ref89 S0883769420002298_ref91 S0883769420002298_ref90 S0883769420002298_ref93 S0883769420002298_ref92 S0883769420002298_ref94 S0883769420002298_ref97 S0883769420002298_ref96 Yang (S0883769420002298_ref24) 2019 S0883769420002298_ref18 S0883769420002298_ref99 S0883769420002298_ref11 S0883769420002298_ref10 S0883769420002298_ref98 S0883769420002298_ref13 S0883769420002298_ref12 S0883769420002298_ref15 S0883769420002298_ref14 S0883769420002298_ref17 S0883769420002298_ref16 S0883769420002298_ref20 S0883769420002298_ref29 S0883769420002298_ref22 Hauwiller (S0883769420002298_ref95) 2018; 2018 S0883769420002298_ref21 S0883769420002298_ref23 S0883769420002298_ref26 S0883769420002298_ref25 S0883769420002298_ref28 S0883769420002298_ref27 S0883769420002298_ref31 S0883769420002298_ref30 Geng (S0883769420002298_ref19) 2019; 5 S0883769420002298_ref33 S0883769420002298_ref32 S0883769420002298_ref35 S0883769420002298_ref34 S0883769420002298_ref37 S0883769420002298_ref36 S0883769420002298_ref39 S0883769420002298_ref38 Woehl (S0883769420002298_ref70) 2020; 45 S0883769420002298_ref40 S0883769420002298_ref42 S0883769420002298_ref41 S0883769420002298_ref9 S0883769420002298_ref109 S0883769420002298_ref108 S0883769420002298_ref44 S0883769420002298_ref107 S0883769420002298_ref2 S0883769420002298_ref1 S0883769420002298_ref106 S0883769420002298_ref43 S0883769420002298_ref46 S0883769420002298_ref105 S0883769420002298_ref4 S0883769420002298_ref3 S0883769420002298_ref45 S0883769420002298_ref104 S0883769420002298_ref103 S0883769420002298_ref48 S0883769420002298_ref6 S0883769420002298_ref102 S0883769420002298_ref47 S0883769420002298_ref5 S0883769420002298_ref8 S0883769420002298_ref101 S0883769420002298_ref49 S0883769420002298_ref7 S0883769420002298_ref100 S0883769420002298_ref51 S0883769420002298_ref50 S0883769420002298_ref53 S0883769420002298_ref52 Yao (S0883769420002298_ref119) 2020 Han (S0883769420002298_ref83) 2006; 289 S0883769420002298_ref118 S0883769420002298_ref55 S0883769420002298_ref54 S0883769420002298_ref117 S0883769420002298_ref57 S0883769420002298_ref116 S0883769420002298_ref115 S0883769420002298_ref56 S0883769420002298_ref114 S0883769420002298_ref59 S0883769420002298_ref113 S0883769420002298_ref58 S0883769420002298_ref112 S0883769420002298_ref111 S0883769420002298_ref110 S0883769420002298_ref60 S0883769420002298_ref62 S0883769420002298_ref61 S0883769420002298_ref64 S0883769420002298_ref63 |
References_xml | – volume: 115 start-page: 10410 year: 2015 publication-title: Chem. Rev – volume: 336 start-page: 61 year: 2012 publication-title: Science – volume: 11 start-page: 3041 year: 2020 publication-title: Nat. Commun – volume: 14 start-page: 101 year: 2015 publication-title: Nat. Mater – volume: 13 start-page: 2964 year: 2013 publication-title: Nano Lett – volume: 97 start-page: 22 year: 2017 publication-title: Micron – volume: 9 start-page: 2460 year: 2009 publication-title: Nano Lett – volume: 5 start-page: 1600 year: 2009 publication-title: Small – volume: 49 start-page: 11720 year: 2013 publication-title: Chem. Commun – volume: 12 start-page: 2355 year: 2018 publication-title: ACS Nano – volume: 14 start-page: 215 year: 2015 publication-title: Nat. Mater – volume: 27 start-page: 3200 year: 2015 publication-title: Chem. Mater – volume: 354 start-page: 874 year: 2016 publication-title: Science – volume: 15 start-page: 1248 year: 2016 publication-title: Nat. Mater – volume: 104 start-page: 293 year: 2004 publication-title: Chem. Rev – volume: 137 start-page: 4494 year: 2015 publication-title: J. Am. Chem. Soc – volume: 1 start-page: 198 year: 2019 publication-title: Nat. Rev. Phys – volume: 9 start-page: 1493 year: 2009 publication-title: Nano Lett – volume: 337 start-page: 453 year: 2012 publication-title: Science – volume: 9 start-page: 77 year: 2017 publication-title: Nat. Chem – volume: 43 start-page: 190 year: 2010 publication-title: Acc. Chem. Res – volume: 141 start-page: 4428 year: 2019 publication-title: J. Am. Chem. Soc – volume: 10 start-page: 88 year: 2016 publication-title: ACS Nano – volume: 5 start-page: 391 year: 2010 publication-title: Nat. Nanotechnol – volume: 6 start-page: 8599 year: 2012 publication-title: ACS Nano – volume: 45 start-page: 233 year: 2016 publication-title: Annu. Rev. Biophys – volume: 355 start-page: 931 year: 2017 publication-title: Science – volume: 15 start-page: 1596 year: 2015 publication-title: Cryst. Growth Des – volume: 11 start-page: 3290 year: 2011 publication-title: Nano Lett – volume: 289 start-page: 269 year: 2006 publication-title: J. Cryst. Growth – volume: 324 start-page: 1309 year: 2009 publication-title: Science – volume: 13 start-page: 21367 year: 2011 publication-title: Phys. Chem. Chem. Phys – volume: 11 start-page: 13098 year: 2019 publication-title: Nanoscale – volume: 6 start-page: 2078 year: 2012 publication-title: ACS Nano – volume: 9 start-page: 1335 year: 2018 publication-title: Nat. Commun – volume: 548 start-page: 197 year: 2017 publication-title: Nature – volume: 17 start-page: 2953 year: 2017 publication-title: Nano Lett – volume: 1 start-page: 33 year: 2015 publication-title: ACS Cent. Sci – volume: 49 start-page: 371 year: 1998 publication-title: Annu. Rev. Phys. Chem – volume: 345 start-page: 916 year: 2014 publication-title: Science – volume: 127 start-page: 150901 year: 2020 publication-title: J. Appl. Phys – volume: 128 start-page: 12590 year: 2006 publication-title: J. Am. Chem. Soc – volume: 31 start-page: 271 year: 2007 publication-title: Eur. J. Pharm. Sci – volume: 134 start-page: 4384 year: 2012 publication-title: J. Am. Chem. Soc – volume: 2 start-page: 532 year: 2003 publication-title: Nat. Mater – volume: 11 start-page: 36839 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 179 start-page: 298 year: 1996 publication-title: J. Colloid Interface Sci – volume: 107 start-page: 22430 year: 2010 publication-title: Proc. Natl. Acad. Sci. U.S.A – year: 2019 publication-title: Angew. Chem. Int. Ed. Engl – volume: 13 start-page: 4980 year: 2013 publication-title: Nano Lett – volume: 15 start-page: 1901966 year: 2019 publication-title: Small – volume: 297 start-page: 1536 year: 2002 publication-title: Science – volume: 6 start-page: 238 year: 2006 publication-title: Nano Lett – volume: 12 start-page: 5644 year: 2012 publication-title: Nano Lett – volume: 8 start-page: 761 year: 2017 publication-title: Nat. Commun – volume: 11 start-page: 23 year: 2017 publication-title: ACS Nano – volume: 2 start-page: 2346 year: 2010 publication-title: Nanoscale – volume: 14 start-page: 3761 year: 2014 publication-title: Nano Lett – volume: 141 start-page: 13516 year: 2019 publication-title: J. Am. Chem. Soc – volume: 44 start-page: 322 year: 2011 publication-title: Acc. Chem. Res – volume: 18 start-page: 7004 year: 2018 publication-title: Nano Lett – volume: 116 start-page: 16703 year: 2019 publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 11 start-page: 3388 year: 2011 publication-title: Nano Lett – volume: 12 start-page: 1470 year: 2012 publication-title: Nano Lett – volume: 4 start-page: 61 year: 2019 publication-title: Nat. Rev. Mater – volume: 461 start-page: 964 year: 2009 publication-title: Nature – volume: 50 start-page: 9447 year: 2014 publication-title: Chem. Commun – volume: 349 start-page: 290 year: 2015 publication-title: Science – volume: 12 start-page: 12778 year: 2018 publication-title: ACS Nano – volume: 141 start-page: 18395 year: 2019 publication-title: J. Am. Chem. Soc – volume: 16 start-page: 1311 year: 2016 publication-title: Cryst. Growth Des – volume: 124 start-page: 065502 year: 2020 publication-title: Phys. Rev. Lett – volume: 19 start-page: 391 year: 2020 publication-title: Nat. Mater – volume: 19 start-page: 2871 year: 2019 publication-title: Nano Lett – volume: 41 start-page: 2740 year: 2012 publication-title: Chem. Soc. Rev – volume: 5 start-page: 4946 year: 2014 publication-title: Nat. Commun – volume: 5 year: 2019 publication-title: Sci. Adv – volume: 118 start-page: 22373 year: 2014 publication-title: J. Phys. Chem. C – volume: 304 start-page: 1787 year: 2004 publication-title: Science – volume: 48 start-page: 60 year: 2009 publication-title: Angew. Chem. Int. Ed. Engl – volume: 336 start-page: 1014 year: 2012 publication-title: Science – volume: 4 start-page: 855 year: 2005 publication-title: Nat. Mater – volume: 7 start-page: 11213 year: 2016 publication-title: Nat. Commun – volume: 334 start-page: 204 year: 2011 publication-title: Science – volume: 350 year: 2015 publication-title: Science – volume: 109 start-page: 13857 year: 2005 publication-title: J. Phys. Chem. B – volume: 1 start-page: 641 year: 2007 publication-title: Nat. Photonics – volume: 124 start-page: 8204 year: 2002 publication-title: J. Am. Chem. Soc – volume: 42 start-page: 1097 year: 2009 publication-title: Acc. Chem. Res – volume: 14 start-page: 359 year: 2014 publication-title: Nano Lett – volume: 336 start-page: 1011 year: 2012 publication-title: Science – volume: 10 start-page: 6090 year: 2019 publication-title: J. Phys. Chem. Lett – volume: 117 start-page: 3397 year: 2020 publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 56 start-page: 60 year: 2017 publication-title: Angew. Chem. Int. Ed. Engl – volume: 12 start-page: 284 year: 2013 publication-title: Nat. Mater – volume: 82 start-page: 1887 year: 2010 publication-title: Rev. Mod. Phys – volume: 19 start-page: 450 year: 2020 publication-title: Nat. Mater – volume: 42 start-page: 2804 year: 2013 publication-title: Chem. Soc. Rev – volume: 345 start-page: 1158 year: 2014 publication-title: Science – volume: 11 start-page: 2809 year: 2011 publication-title: Nano Lett – volume: 26 start-page: 6670 year: 2014 publication-title: Adv. Mater – volume: 6 start-page: 695 year: 2011 publication-title: Nat. Nanotechnol – volume: 135 start-page: 5038 year: 2013 publication-title: J. Am. Chem. Soc – volume: 45 start-page: 746 issue: 9 year: 2020 publication-title: MRS Bull – volume: 31 start-page: 688 year: 1959 publication-title: J. Chem. Phys – volume: 142 start-page: 11669 year: 2020 publication-title: J. Am. Chem. Soc – volume: 116 start-page: 11220 year: 2016 publication-title: Chem. Rev – volume: 216 start-page: 1800949 year: 2019 publication-title: Phys. Status Solidi A – year: 2020 publication-title: ACS Cent. Sci – volume: 15 start-page: 775 year: 2016 publication-title: Nat. Mater – volume: 18 start-page: 1367 year: 2018 publication-title: Cryst. Growth Des – volume: 14 start-page: 394 year: 2015 publication-title: Nat. Mater – volume: 86 start-page: 4356 year: 1982 publication-title: J. Phys. Chem – volume: 2018 start-page: e57665 year: 2018 publication-title: J. Vis. Exp – volume: 11 start-page: 1696 year: 2017 publication-title: ACS Nano – volume: 18 start-page: 5731 year: 2018 publication-title: Nano Lett – volume: 35 start-page: 1700382 year: 2018 publication-title: Part. Part. Syst. Charact – volume: 349 year: 2015 publication-title: Science – volume: 350 start-page: 1242477 year: 2015 publication-title: Science – volume: 505 start-page: 73 year: 2014 publication-title: Nature – volume: 13 start-page: 1249 year: 2011 publication-title: CrystEngComm – volume: 2 start-page: 2793 year: 2014 publication-title: J. Mater. Chem. B – volume: 49 start-page: 9368 year: 2010 publication-title: Angew. Chem. Int. Ed. Engl – volume: 16 start-page: 214 year: 2017 publication-title: Nat. Mater – volume: 6 year: 2020 publication-title: Sci. Adv – volume: 111 start-page: 3828 year: 2011 publication-title: Chem. Rev – volume: 23 start-page: 41 year: 2019 publication-title: Curr. Opin. Solid State Mater. Sci – volume: 105 start-page: 208 year: 2011 publication-title: Prog. Biophys. Mol. Biol – volume: 7 start-page: 26 year: 2004 publication-title: Mater. Today – volume: 23 start-page: 2525 year: 2013 publication-title: Adv. Funct. Mater – volume: 17 start-page: 15 year: 2017 publication-title: Nano Lett – volume: 6 start-page: 3589 year: 2012 publication-title: ACS Nano – volume: 10 start-page: 9801 year: 2016 publication-title: ACS Nano – ident: S0883769420002298_ref34 doi: 10.1126/science.1210493 – ident: S0883769420002298_ref88 doi: 10.1073/pnas.1914813117 – ident: S0883769420002298_ref26 doi: 10.1021/ja0616534 – ident: S0883769420002298_ref117 doi: 10.1038/ncomms11213 – ident: S0883769420002298_ref72 doi: 10.1039/c0nr00628a – ident: S0883769420002298_ref39 doi: 10.1002/adfm.201203424 – ident: S0883769420002298_ref84 doi: 10.1021/cg500829p – ident: S0883769420002298_ref13 doi: 10.1039/C1CS15237H – ident: S0883769420002298_ref69 doi: 10.1021/nl404169a – ident: S0883769420002298_ref30 doi: 10.1002/anie.201604731 – ident: S0883769420002298_ref122 doi: 10.1021/nl302788g – ident: S0883769420002298_ref127 doi: 10.1006/jcis.1996.0217 – ident: S0883769420002298_ref22 doi: 10.1126/sciadv.aax5095 – ident: S0883769420002298_ref60 doi: 10.1021/acsnano.5b04064 – ident: S0883769420002298_ref62 doi: 10.1038/nchem.2618 – ident: S0883769420002298_ref130 doi: 10.1016/j.pbiomolbio.2010.07.002 – ident: S0883769420002298_ref109 doi: 10.1002/smll.201901966 – ident: S0883769420002298_ref29 doi: 10.1126/science.1097830 – ident: S0883769420002298_ref23 doi: 10.1038/s42254-018-0018-y – ident: S0883769420002298_ref55 doi: 10.1021/ja310612p – ident: S0883769420002298_ref27 doi: 10.1038/nmat1505 – volume: 45 start-page: 746 year: 2020 ident: S0883769420002298_ref70 publication-title: MRS Bull doi: 10.1557/mrs.2020.227 contributor: fullname: Woehl – ident: S0883769420002298_ref132 doi: 10.1021/acs.nanolett.8b04962 – ident: S0883769420002298_ref128 doi: 10.1038/nmat4083 – ident: S0883769420002298_ref47 doi: 10.1126/science.aah4434 – ident: S0883769420002298_ref7 doi: 10.1021/ar9001069 – ident: S0883769420002298_ref65 doi: 10.1039/c1cp22679g – ident: S0883769420002298_ref50 doi: 10.1021/nl052175i – ident: S0883769420002298_ref90 doi: 10.1021/acsnano.6b08556 – ident: S0883769420002298_ref61 doi: 10.1002/pssa.201800949 – ident: S0883769420002298_ref49 doi: 10.1038/nmat944 – ident: S0883769420002298_ref8 doi: 10.1146/annurev.physchem.49.1.371 – ident: S0883769420002298_ref21 doi: 10.1063/5.0004724 – ident: S0883769420002298_ref66 doi: 10.1126/science.1254051 – ident: S0883769420002298_ref4 doi: 10.1021/ar100129p – ident: S0883769420002298_ref115 doi: 10.1021/acsnano.8b07880 – ident: S0883769420002298_ref94 doi: 10.1021/acs.nanolett.8b02953 – ident: S0883769420002298_ref77 doi: 10.1039/C4CC03500C – ident: S0883769420002298_ref15 doi: 10.1021/cr100313v – ident: S0883769420002298_ref120 doi: 10.1021/nl9012369 – ident: S0883769420002298_ref68 doi: 10.1021/jp507400n – ident: S0883769420002298_ref6 doi: 10.1021/ja026501x – ident: S0883769420002298_ref51 doi: 10.1038/nnano.2011.161 – ident: S0883769420002298_ref96 doi: 10.1021/acs.nanolett.8b02337 – ident: S0883769420002298_ref45 doi: 10.1126/science.aaa9886 – ident: S0883769420002298_ref46 doi: 10.1126/science.aab1343 – ident: S0883769420002298_ref3 doi: 10.1021/jp0516846 – ident: S0883769420002298_ref101 doi: 10.1021/acs.nanolett.7b00196 – ident: S0883769420002298_ref131 doi: 10.1126/sciadv.aba1404 – ident: S0883769420002298_ref56 doi: 10.1039/c3cc47473a – ident: S0883769420002298_ref121 doi: 10.1021/nl201795u – ident: S0883769420002298_ref126 doi: 10.1021/jacs.0c04444 – ident: S0883769420002298_ref125 doi: 10.1021/jacs.9b05225 – ident: S0883769420002298_ref133 doi: 10.1038/s41578-018-0071-2 – ident: S0883769420002298_ref52 doi: 10.1021/nn303371y – ident: S0883769420002298_ref99 doi: 10.1021/acs.jpclett.9b02388 – ident: S0883769420002298_ref64 doi: 10.1021/j100219a016 – ident: S0883769420002298_ref105 doi: 10.1038/nmat4759 – year: 2020 ident: S0883769420002298_ref119 publication-title: ACS Cent. Sci contributor: fullname: Yao – ident: S0883769420002298_ref85 doi: 10.1021/acs.cgd.5b01422 – ident: S0883769420002298_ref80 doi: 10.1021/nl4014277 – ident: S0883769420002298_ref118 doi: 10.1038/s41467-017-00857-1 – year: 2019 ident: S0883769420002298_ref24 publication-title: Angew. Chem. Int. Ed. Engl contributor: fullname: Yang – ident: S0883769420002298_ref14 doi: 10.1126/science.297.5586.1536 – ident: S0883769420002298_ref110 doi: 10.1126/science.1242477 – ident: S0883769420002298_ref40 doi: 10.1038/s41563-019-0511-4 – ident: S0883769420002298_ref31 doi: 10.1021/nl8034724 – ident: S0883769420002298_ref74 doi: 10.1063/1.1730447 – ident: S0883769420002298_ref67 doi: 10.1021/nl201166k – ident: S0883769420002298_ref116 doi: 10.1021/acs.nanolett.6b02972 – ident: S0883769420002298_ref91 doi: 10.1021/nl500670q – ident: S0883769420002298_ref16 doi: 10.1038/nnano.2010.78 – ident: S0883769420002298_ref41 doi: 10.1126/science.1220869 – ident: S0883769420002298_ref38 doi: 10.1038/s41467-018-03767-y – ident: S0883769420002298_ref2 doi: 10.1016/S1369-7021(04)00080-X – ident: S0883769420002298_ref54 doi: 10.1126/science.1219185 – ident: S0883769420002298_ref1 doi: 10.1002/anie.200802248 – ident: S0883769420002298_ref5 doi: 10.1021/ar9000026 – ident: S0883769420002298_ref113 doi: 10.1073/pnas.1822092116 – volume: 2018 start-page: e57665 year: 2018 ident: S0883769420002298_ref95 publication-title: J. Vis. Exp contributor: fullname: Hauwiller – ident: S0883769420002298_ref102 doi: 10.1021/acsami.9b11934 – ident: S0883769420002298_ref114 doi: 10.1021/nn203837m – ident: S0883769420002298_ref48 doi: 10.1021/acscentsci.5b00001 – ident: S0883769420002298_ref86 doi: 10.1021/acs.cgd.7b01216 – ident: S0883769420002298_ref123 doi: 10.1021/acsnano.6b05270 – ident: S0883769420002298_ref36 doi: 10.1038/nmat4600 – ident: S0883769420002298_ref112 doi: 10.1016/j.cossms.2018.12.002 – ident: S0883769420002298_ref129 doi: 10.1146/annurev-biophys-062215-011236 – ident: S0883769420002298_ref103 doi: 10.1039/C9NR03709H – ident: S0883769420002298_ref10 doi: 10.1039/C2CS35318K – ident: S0883769420002298_ref73 doi: 10.1038/nmat3604 – ident: S0883769420002298_ref71 doi: 10.1126/science.aaa6760 – ident: S0883769420002298_ref97 doi: 10.1021/jacs.9b00082 – ident: S0883769420002298_ref59 doi: 10.1021/acs.chemmater.5b00334 – ident: S0883769420002298_ref18 doi: 10.1038/nphoton.2007.223 – ident: S0883769420002298_ref134 doi: 10.1103/PhysRevLett.124.065502 – ident: S0883769420002298_ref92 doi: 10.1016/j.micron.2017.03.003 – ident: S0883769420002298_ref44 doi: 10.1038/nature12739 – ident: S0883769420002298_ref37 doi: 10.1038/nmat4746 – ident: S0883769420002298_ref104 doi: 10.1126/science.aal3919 – ident: S0883769420002298_ref76 doi: 10.1021/cr030698+ – ident: S0883769420002298_ref42 doi: 10.1073/pnas.1008958107 – ident: S0883769420002298_ref32 doi: 10.1002/ppsc.201700382 – ident: S0883769420002298_ref58 doi: 10.1126/science.1217654 – ident: S0883769420002298_ref33 doi: 10.1038/nmat4115 – ident: S0883769420002298_ref12 doi: 10.1039/C3TB21760D – ident: S0883769420002298_ref87 doi: 10.1126/science.1219643 – ident: S0883769420002298_ref28 doi: 10.1002/anie.201003903 – ident: S0883769420002298_ref78 doi: 10.1021/nl2041854 – ident: S0883769420002298_ref43 doi: 10.1038/nature08439 – ident: S0883769420002298_ref17 doi: 10.1002/adma.201402710 – ident: S0883769420002298_ref111 doi: 10.1103/RevModPhys.82.1887 – ident: S0883769420002298_ref81 doi: 10.1038/ncomms5946 – ident: S0883769420002298_ref93 doi: 10.1021/acsnano.6b07541 – ident: S0883769420002298_ref82 doi: 10.1039/c0ce00419g – ident: S0883769420002298_ref75 doi: 10.1021/nl201647p – volume: 5 year: 2019 ident: S0883769420002298_ref19 publication-title: Sci. Adv contributor: fullname: Geng – ident: S0883769420002298_ref11 doi: 10.1021/acs.chemrev.5b00193 – ident: S0883769420002298_ref106 doi: 10.1021/jacs.5b00839 – ident: S0883769420002298_ref100 doi: 10.1021/jacs.9b09508 – ident: S0883769420002298_ref35 doi: 10.1038/nature23308 – ident: S0883769420002298_ref107 doi: 10.1021/nl403149u – volume: 289 start-page: 269 year: 2006 ident: S0883769420002298_ref83 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.11.011 contributor: fullname: Han – ident: S0883769420002298_ref20 doi: 10.1021/acsnano.7b07633 – ident: S0883769420002298_ref108 doi: 10.1002/smll.200900358 – ident: S0883769420002298_ref57 doi: 10.1126/science.1253149 – ident: S0883769420002298_ref89 doi: 10.1038/nmat4193 – ident: S0883769420002298_ref53 doi: 10.1126/science.1172104 – ident: S0883769420002298_ref9 doi: 10.1021/acs.chemrev.6b00196 – ident: S0883769420002298_ref25 doi: 10.1021/ja211459p – ident: S0883769420002298_ref63 doi: 10.1016/j.ejps.2007.04.002 – ident: S0883769420002298_ref98 doi: 10.1038/s41467-020-16645-3 – ident: S0883769420002298_ref124 doi: 10.1038/s41563-019-0514-1 – ident: S0883769420002298_ref79 doi: 10.1021/nn300671g |
SSID | ssj0015075 |
Score | 2.4794602 |
Snippet | This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the... Abstract This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in... This work reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the... |
SourceID | osti proquest crossref springer cambridge |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 713 |
SubjectTerms | Applied and Technical Physics Assembly Characterization and Evaluation of Materials Chemical bonds Condensed matter physics Crystallites Crystallization Electrochemistry Energy Materials Etching Imaging Kinetics Liquid Phase Electron Microscopy Mapping Materials Engineering MATERIALS SCIENCE Mineralization Morphology Nanocrystals Nanomaterials Nanotechnology Nucleation Photonics Post-processing Superlattices Transmission electron microscopy |
Title | Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy |
URI | https://www.cambridge.org/core/product/identifier/S0883769420002298/type/journal_article https://link.springer.com/article/10.1557/mrs.2020.229 https://www.proquest.com/docview/2441197589 https://www.osti.gov/servlets/purl/1782185 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB7qFUEfxFbFsz_YB60vjSab3WzyJFV6LYJHEQt9C_tTD2pyveSQ_vfO5JI7K7TvIQn7ze5838zsDMDb2BgXx76IeBpEJBTqlNzpLOI2DcpxmbpuFsG3aXZ-Kb5eyas-4Nb0ZZXDmdgd1K62FCP_iG6IMl4yLz7NbyKaGkXZ1X6ExiPYTrhSJL7yydk6iyBXjXZxI6WRygrRF75LiXJ_Qb26efyBE7nctFW4455GNW6zO9Tzv2xp54Qmz-FZzx7ZyQruHdjy1S48_aen4C487mo6bfMC_kypV3G38sfsJ8rt9tcx05VjzXJOUbyW6t7Y-vYiqwOrdFXbxS0yxuuG1YYitt6xWcWuZzfLmWMU5mctuTc0D4qzsWGMDvtNlX10x-X2JVxOTn98OY_6OQuRRbrWRoXyQhXa6dypWAaDEkebAnVJbFGNGeGlTihdKoKPg9YuDsHazKpCBSqScukrGFV15V8D0zk1CMt8YtD3C6VRraCpplwaz4XmyRjer5e67HdLU5IQQVBKBKUkUEoEZQzvBiDK-arxxj3P7RFKJRIG6nprqTzItmWCzAepyBj2B_A2n9uY0hiOBkAf_ps3D79nD57Qk6vas30YtYulP0Cy0prDziIPYfvz6fTi-1_d8esI |
link.rule.ids | 230,315,783,787,888,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB7RoKrtAbVQ1BRa9tDHBYNj73rjE6qqhrSFnEDittonjUTtEDuq-PedceykIJW7X_I3u_PNY78B-BAb4-LY51GSBh5xiXHK0OksSmwapEtE6ppZBOeTbHzJf1yJqzbhVrVtld2e2GzUrrSUIz9GN0QVLzHMT2a3EU2NoupqO0LjCWzyFH01nRQfna6qCGIptIsLKY1klvO28V0IDPfnpNWdxEcJkcu1rMI999QrcZndo54PqqWNExq9hK2WPbIvS7hfwYYvtuHFP5qC2_C06em01Q78mZBWcfPnD9k1htv1r0OmC8eqxYyyeDX1vbHV6UVWBlboorTzO2SMNxUrDWVsvWPTgt1MbxdTxyjNz2pyb2gelGdj3Rgd9ps6--iMy91ruBx9u_g6jto5C5FFulZHufRc5trpoZOxCAZDHG1yjEtii9GY4V7oAZVLefBx0NrFIVibWZnLQE1SLt2FXlEW_g0wPSSBsMwPDPp-LjVGK2iqaSKMT7hOBn34vPrVql0tlaJABEFRCIoiUBSC0oePHRBqthTe-M91e4SSQsJAqreW2oNsrQbIfJCK9GG_A2_9urUp9eFTB-jjX_P28eccwLPxxfmZOvs--bkHz-muZR_aPvTq-cK_Q-JSm_eNdf4Fi3rsUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB2VVKByQKWAGlrKHgpcaurYu177hBBtKAUiDlTqbbWfEKnYaewI9d8z49gJRaJ3f8lvdufNzNsZgMPYGBfHvoiSNPCIS4xTcqezKLFpkC4RqWtnEXydZGcX_PxSXHb6p7qTVfZ7YrtRu8pSjvwY3RBVvEReHIdOFvHtZPxudh3RBCmqtHbjNO7BJnrFjGw-H39cVRTEsukuLqo0klnBOxG8EBj6z6lvdxK_TYhorlss3HJVgwqX3C0a-k_ltHVI42141DFJ9n4J_WPY8OUOPPyrv-AO3G_1nbZ-Ar8n1Le4ReGI_cDQu_l5xHTpWL2YUUavIQ0cW51kZFVgpS4rO79B9nhVs8pQ9tY7Ni3Z1fR6MXWMUv6sIVeHpkI5N9aP1GG_SOVH511unsLF-PT7h7Oom7kQWaRuTVRIz2Whnc6djEUwGO5oU2CMEluMzAz3Qo-odMqDj4PWLg7B2szKQgYSTLn0GQzKqvS7wHROzcIyPzLIA7jUGLmg2aaJMD7hOhkN4c3qV6tu5dSKghIERSEoikBRCMoQXvVAqNmyCcd_rtsjlBSSB-qAa0kqZBs1QhaEtGQI-z1469etzWoIr3tA7_6a53c_5yU8QMNUXz5NPu_BFt20lKTtw6CZL_wL5DCNOWiN8w-OIfCI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleation%2C+growth%2C+and+superlattice+formation+of+nanocrystals+observed+in+liquid+cell+transmission+electron+microscopy&rft.jtitle=MRS+bulletin&rft.au=Chen%2C+Qian&rft.au=Yuk%2C+Jong+Min&rft.au=Hauwiller%2C+Matthew+R.&rft.au=Park%2C+Jungjae&rft.date=2020-09-01&rft.issn=0883-7694&rft.eissn=1938-1425&rft.volume=45&rft.issue=9&rft.spage=713&rft.epage=726&rft_id=info:doi/10.1557%2Fmrs.2020.229&rft.externalDBID=n%2Fa&rft.externalDocID=10_1557_mrs_2020_229 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-7694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-7694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-7694&client=summon |