Clinical Development of Immunostimulatory Monoclonal Antibodies and Opportunities for Combination
Immune system responses are under the control of extracellular biomolecules, which express functions in receptors present on the surface of cells of the immune system, and thus are amenable to be functionally modulated by monoclonal antibodies. Some of these mechanisms are activating and dictate whe...
Saved in:
Published in | Clinical cancer research Vol. 19; no. 5; pp. 997 - 1008 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immune system responses are under the control of extracellular biomolecules, which express functions in receptors present on the surface of cells of the immune system, and thus are amenable to be functionally modulated by monoclonal antibodies. Some of these mechanisms are activating and dictate whether the response ensues, while others play the role of powerful repressors. Antagonist antibodies acting on such repressors result in enhanced immune responses, a goal that is also achieved with agonist antibodies acting on the activating receptors. With these simple logics, a series of therapeutic agents are under clinical development and one of them directed at the CTL-associated antigen 4 (CTLA-4) inhibitory receptor (ipilimumab) has been approved for the treatment of metastatic melanoma. The list of antagonist agents acting on repressors under development includes anti–CTLA-4, anti–PD-1, anti–PD-L1 (B7-H1), anti-KIR, and anti–TGF-β. Agonist antibodies currently being investigated in clinical trials target CD40, CD137 (4-1BB), CD134 (OX40), and glucocorticoid-induced TNF receptor (GITR). A blossoming preclinical pipeline suggests that other active targets will also be tested in patients in the near future. All of these antibodies are being developed as conventional monoclonal immunoglobulins, but other engineered antibody formats or RNA aptamers are under preclinical scrutiny. The “dark side” of these immune interventions is that they elicit autoimmune/inflammatory reactions that can be severe in some patients. A critical and, largely, pending subject is to identify reliable predictive biomarkers both for efficacy and immune toxicity. Preclinical and early clinical studies indicate a tremendous potential to further improve efficacy, using combinations from among these new agents that frequently act in a synergistic fashion. Combinations with other more conventional means of treatment such as radiotherapy, chemotherapy, or cancer vaccines also hold much promise. Clin Cancer Res; 19(5); 997–1008. ©2013 AACR. |
---|---|
AbstractList | Immune system responses are under the control of extracellular biomolecules, which express functions in receptors present on the surface of cells of the immune system, and thus are amenable to be functionally modulated by monoclonal antibodies. Some of these mechanisms are activating and dictate whether the response ensues, while others play the role of powerful repressors. Antagonist antibodies acting on such repressors result in enhanced immune responses, a goal that is also achieved with agonist antibodies acting on the activating receptors. With these simple logics, a series of therapeutic agents are under clinical development and one of them directed at the CTL-associated antigen 4 (CTLA-4) inhibitory receptor (ipilimumab) has been approved for the treatment of metastatic melanoma. The list of antagonist agents acting on repressors under development includes anti-CTLA-4, anti-PD-1, anti-PD-L1 (B7-H1), anti-KIR, and anti-TGF-β. Agonist antibodies currently being investigated in clinical trials target CD40, CD137 (4-1BB), CD134 (OX40), and glucocorticoid-induced TNF receptor (GITR). A blossoming preclinical pipeline suggests that other active targets will also be tested in patients in the near future. All of these antibodies are being developed as conventional monoclonal immunoglobulins, but other engineered antibody formats or RNA aptamers are under preclinical scrutiny. The "dark side" of these immune interventions is that they elicit autoimmune/inflammatory reactions that can be severe in some patients. A critical and, largely, pending subject is to identify reliable predictive biomarkers both for efficacy and immune toxicity. Preclinical and early clinical studies indicate a tremendous potential to further improve efficacy, using combinations from among these new agents that frequently act in a synergistic fashion. Combinations with other more conventional means of treatment such as radiotherapy, chemotherapy, or cancer vaccines also hold much promise.Immune system responses are under the control of extracellular biomolecules, which express functions in receptors present on the surface of cells of the immune system, and thus are amenable to be functionally modulated by monoclonal antibodies. Some of these mechanisms are activating and dictate whether the response ensues, while others play the role of powerful repressors. Antagonist antibodies acting on such repressors result in enhanced immune responses, a goal that is also achieved with agonist antibodies acting on the activating receptors. With these simple logics, a series of therapeutic agents are under clinical development and one of them directed at the CTL-associated antigen 4 (CTLA-4) inhibitory receptor (ipilimumab) has been approved for the treatment of metastatic melanoma. The list of antagonist agents acting on repressors under development includes anti-CTLA-4, anti-PD-1, anti-PD-L1 (B7-H1), anti-KIR, and anti-TGF-β. Agonist antibodies currently being investigated in clinical trials target CD40, CD137 (4-1BB), CD134 (OX40), and glucocorticoid-induced TNF receptor (GITR). A blossoming preclinical pipeline suggests that other active targets will also be tested in patients in the near future. All of these antibodies are being developed as conventional monoclonal immunoglobulins, but other engineered antibody formats or RNA aptamers are under preclinical scrutiny. The "dark side" of these immune interventions is that they elicit autoimmune/inflammatory reactions that can be severe in some patients. A critical and, largely, pending subject is to identify reliable predictive biomarkers both for efficacy and immune toxicity. Preclinical and early clinical studies indicate a tremendous potential to further improve efficacy, using combinations from among these new agents that frequently act in a synergistic fashion. Combinations with other more conventional means of treatment such as radiotherapy, chemotherapy, or cancer vaccines also hold much promise. Immune system responses are under the control of extracellular biomolecules, which express functions in receptors present on the surface of cells of the immune system, and thus are amenable to be functionally modulated by monoclonal antibodies. Some of these mechanisms are activating and dictate whether the response ensues, while others play the role of powerful repressors. Antagonist antibodies acting on such repressors result in enhanced immune responses, a goal that is also achieved with agonist antibodies acting on the activating receptors. With these simple logics, a series of therapeutic agents are under clinical development and one of them directed at the CTL-associated antigen 4 (CTLA-4) inhibitory receptor (ipilimumab) has been approved for the treatment of metastatic melanoma. The list of antagonist agents acting on repressors under development includes anti–CTLA-4, anti–PD-1, anti–PD-L1 (B7-H1), anti-KIR, and anti–TGF-β. Agonist antibodies currently being investigated in clinical trials target CD40, CD137 (4-1BB), CD134 (OX40), and glucocorticoid-induced TNF receptor (GITR). A blossoming preclinical pipeline suggests that other active targets will also be tested in patients in the near future. All of these antibodies are being developed as conventional monoclonal immunoglobulins, but other engineered antibody formats or RNA aptamers are under preclinical scrutiny. The “dark side” of these immune interventions is that they elicit autoimmune/inflammatory reactions that can be severe in some patients. A critical and, largely, pending subject is to identify reliable predictive biomarkers both for efficacy and immune toxicity. Preclinical and early clinical studies indicate a tremendous potential to further improve efficacy, using combinations from among these new agents that frequently act in a synergistic fashion. Combinations with other more conventional means of treatment such as radiotherapy, chemotherapy, or cancer vaccines also hold much promise. Clin Cancer Res; 19(5); 997–1008. ©2013 AACR. Immune system responses are under the control of extracellular biomolecules, which express functions in receptors present on the surface of cells of the immune system, and thus are amenable to be functionally modulated by monoclonal antibodies. Some of these mechanisms are activating and dictate whether the response ensues, while others play the role of powerful repressors. Antagonist antibodies acting on such repressors result in enhanced immune responses, a goal that is also achieved with agonist antibodies acting on the activating receptors. With these simple logics, a series of therapeutic agents are under clinical development and one of them directed at the CTL-associated antigen 4 (CTLA-4) inhibitory receptor (ipilimumab) has been approved for the treatment of metastatic melanoma. The list of antagonist agents acting on repressors under development includes anti-CTLA-4, anti-PD-1, anti-PD-L1 (B7-H1), anti-KIR, and anti-TGF-β. Agonist antibodies currently being investigated in clinical trials target CD40, CD137 (4-1BB), CD134 (OX40), and glucocorticoid-induced TNF receptor (GITR). A blossoming preclinical pipeline suggests that other active targets will also be tested in patients in the near future. All of these antibodies are being developed as conventional monoclonal immunoglobulins, but other engineered antibody formats or RNA aptamers are under preclinical scrutiny. The "dark side" of these immune interventions is that they elicit autoimmune/inflammatory reactions that can be severe in some patients. A critical and, largely, pending subject is to identify reliable predictive biomarkers both for efficacy and immune toxicity. Preclinical and early clinical studies indicate a tremendous potential to further improve efficacy, using combinations from among these new agents that frequently act in a synergistic fashion. Combinations with other more conventional means of treatment such as radiotherapy, chemotherapy, or cancer vaccines also hold much promise. |
Author | Ascierto, Paolo A. Grimaldi, Antonio M. Perez-Gracia, Jose L. Melero, Ignacio |
Author_xml | – sequence: 1 givenname: Ignacio surname: Melero fullname: Melero, Ignacio – sequence: 2 givenname: Antonio M. surname: Grimaldi fullname: Grimaldi, Antonio M. – sequence: 3 givenname: Jose L. surname: Perez-Gracia fullname: Perez-Gracia, Jose L. – sequence: 4 givenname: Paolo A. surname: Ascierto fullname: Ascierto, Paolo A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27179763$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23460531$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1r3yAcBnAZLevL9ids5DLYJa1fX6Jhp5K9FVoKZTuLMQoOo5maQv_7JeuvG-yykyKfx8PznKGjmKJF6A3gCwAuLwEL2WJGycUw3LdAWkKAvUCnwLloKen40XZ_NiforJQfGAMDzF6iE0JZhzmFU6SH4KM3OjQf7YMNaZltrE1yzfU8rzGV6uc16JryY3ObYjIhxc1exerHNHlbGh2n5m5ZUq5r9HV_cSk3Q5pHH3X1Kb5Cx06HYl8fznP0_fOnb8PX9ubuy_VwddMahnlte9FrcJxOvR5113fMjCOnVhCnHeEYUzxJMUopR2qdkFZALzQYJg0lWnJOz9H7p3-XnH6utlQ1-2JsCDratBYFFJjsKeN4o28PdB1nO6kl-1nnR_VcywbeHYAuWzcu62h8-esEiF50dHP8yZmcSsnW_SGA1T6T2idQ-wRqm0kBUftMW-7DPznj6--2atY-_Cf9Cww-mFc |
CODEN | CCREF4 |
CitedBy_id | crossref_primary_10_1158_1078_0432_CCR_13_2462 crossref_primary_10_1016_j_ijrobp_2016_10_043 crossref_primary_10_1038_leu_2015_79 crossref_primary_10_2217_fon_13_197 crossref_primary_10_3390_pharma2030023 crossref_primary_10_1158_1078_0432_CCR_16_1432 crossref_primary_10_1002_ijc_29583 crossref_primary_10_1146_annurev_med_092012_112807 crossref_primary_10_4161_onci_27297 crossref_primary_10_1158_2159_8290_CD_15_0510 crossref_primary_10_1007_s11912_013_0337_1 crossref_primary_10_3389_fimmu_2019_00999 crossref_primary_10_1158_1535_7163_MCT_18_1204 crossref_primary_10_2217_mmt_13_1 crossref_primary_10_3389_fimmu_2018_00014 crossref_primary_10_1371_journal_ppat_1005398 crossref_primary_10_1080_21645515_2016_1190889 crossref_primary_10_1158_2159_8290_CD_13_0985 crossref_primary_10_1158_1078_0432_CCR_13_2573 crossref_primary_10_3389_fonc_2015_00034 crossref_primary_10_4049_jimmunol_1301723 crossref_primary_10_2217_hep_14_16 crossref_primary_10_1016_j_jtho_2016_01_013 crossref_primary_10_3892_ol_2018_9849 crossref_primary_10_1158_1078_0432_CCR_14_1650 crossref_primary_10_1016_j_trsl_2019_04_007 crossref_primary_10_1097_CCO_0000000000000221 crossref_primary_10_1038_s41467_021_25282_3 crossref_primary_10_1016_j_immuni_2013_07_008 crossref_primary_10_1016_j_intimp_2022_108813 crossref_primary_10_1007_s00262_017_2059_y crossref_primary_10_1016_j_canlet_2018_01_050 crossref_primary_10_1038_mt_2014_188 crossref_primary_10_1016_j_ymthe_2019_09_016 crossref_primary_10_1016_j_ctrv_2017_12_008 crossref_primary_10_1016_j_molonc_2014_07_027 crossref_primary_10_1016_j_pharmthera_2015_07_001 crossref_primary_10_1080_2162402X_2015_1008814 crossref_primary_10_1159_000445335 crossref_primary_10_1158_1078_0432_CCR_17_3123 crossref_primary_10_1007_s15004_015_0778_9 crossref_primary_10_1080_2162402X_2015_1052212 crossref_primary_10_1039_D0CC01080D crossref_primary_10_1016_j_trsl_2014_08_005 crossref_primary_10_1158_0008_5472_CAN_14_3510 crossref_primary_10_3390_cells10051006 crossref_primary_10_1016_j_hoc_2014_02_002 crossref_primary_10_3389_fonc_2019_00937 crossref_primary_10_3390_ijms22189714 crossref_primary_10_1586_14737140_2015_1074862 crossref_primary_10_18632_oncotarget_19468 crossref_primary_10_1111_1346_8138_13257 crossref_primary_10_4049_jimmunol_1601512 crossref_primary_10_1016_j_coi_2014_01_002 crossref_primary_10_1016_j_jbiotec_2023_10_003 crossref_primary_10_1016_j_semcancer_2015_03_004 crossref_primary_10_1517_14712598_2014_890586 crossref_primary_10_1158_0008_5472_CAN_15_1707 crossref_primary_10_7555_JBR_36_20210163 crossref_primary_10_1111_cas_12502 crossref_primary_10_1136_jitc_2020_000966 crossref_primary_10_1016_j_bbrc_2013_09_031 crossref_primary_10_1093_neuonc_nov138 crossref_primary_10_18632_oncotarget_2998 crossref_primary_10_1007_s00262_014_1650_8 crossref_primary_10_4161_mabs_27333 crossref_primary_10_4161_onci_27812 crossref_primary_10_1586_14760584_2014_852961 crossref_primary_10_1155_2014_789069 crossref_primary_10_1016_j_mayocp_2014_02_002 crossref_primary_10_1186_s12943_024_01973_5 crossref_primary_10_2174_1871520620666200422073622 crossref_primary_10_1007_s10555_015_9553_5 crossref_primary_10_1007_s10555_015_9577_x crossref_primary_10_1093_annonc_mdv209 crossref_primary_10_3390_ijms20081822 crossref_primary_10_1002_jcp_29905 crossref_primary_10_1016_j_molimm_2015_04_002 crossref_primary_10_3892_ijo_2014_2481 crossref_primary_10_1186_1479_5876_11_147 crossref_primary_10_1053_j_seminoncol_2015_05_014 crossref_primary_10_2176_nmc_nmc_ra_2016_0334 crossref_primary_10_1051_medsci_20143005021 crossref_primary_10_1158_0008_5472_CAN_18_0933 crossref_primary_10_1002_ijc_29713 crossref_primary_10_1016_j_clinthera_2016_03_026 crossref_primary_10_1073_pnas_1607836113 crossref_primary_10_1007_s40495_016_0072_z crossref_primary_10_1517_14712598_2016_1152256 crossref_primary_10_1016_j_canlet_2018_07_024 crossref_primary_10_1016_j_nano_2020_102333 crossref_primary_10_1080_2162402X_2015_1042198 crossref_primary_10_1016_j_canlet_2015_05_012 crossref_primary_10_1038_s41467_021_24767_5 crossref_primary_10_1038_s41418_022_01012_0 crossref_primary_10_3892_ijo_2016_3586 crossref_primary_10_1016_j_bbamcr_2016_01_025 crossref_primary_10_1371_journal_pntd_0004415 crossref_primary_10_1053_j_seminoncol_2015_05_008 crossref_primary_10_1016_j_phrs_2017_07_006 crossref_primary_10_1158_1078_0432_CCR_13_0143 crossref_primary_10_1016_j_canlet_2013_09_016 crossref_primary_10_3390_vaccines3030597 crossref_primary_10_1038_clpt_2014_143 crossref_primary_10_4161_onci_28248 crossref_primary_10_1080_13543784_2019_1555236 crossref_primary_10_1177_0883073815604221 crossref_primary_10_1038_nrclinonc_2015_53 crossref_primary_10_3390_cancers13030456 crossref_primary_10_1517_14740338_2015_1021774 crossref_primary_10_4161_onci_27680 crossref_primary_10_1159_000479981 crossref_primary_10_1007_s00262_017_2069_9 crossref_primary_10_1007_s10555_013_9476_y crossref_primary_10_1186_s11658_023_00461_w crossref_primary_10_1016_j_semradonc_2016_05_002 crossref_primary_10_1016_j_intimp_2022_109332 crossref_primary_10_1053_j_seminoncol_2015_02_007 crossref_primary_10_1016_j_pharmthera_2014_11_017 crossref_primary_10_1158_1078_0432_CCR_13_1189 crossref_primary_10_1016_j_celrep_2016_05_058 crossref_primary_10_1158_1078_0432_CCR_13_2151 crossref_primary_10_1007_s00262_015_1704_6 crossref_primary_10_4049_jimmunol_1600619 crossref_primary_10_1158_1078_0432_CCR_12_2982 crossref_primary_10_1007_s11523_016_0471_4 crossref_primary_10_1016_j_oraloncology_2016_09_002 crossref_primary_10_1080_14712598_2024_2426636 crossref_primary_10_4137_CMO_S9565 crossref_primary_10_1038_leu_2013_310 crossref_primary_10_1158_1078_0432_CCR_12_2064 crossref_primary_10_1158_1078_0432_CCR_12_2065 crossref_primary_10_3892_ol_2016_5242 |
Cites_doi | 10.4049/jimmunol.176.11.6434 10.1200/JCO.2001.19.13.3280 10.1007/s00262-011-1014-6 10.1158/1078-0432.CCR-06-1893 10.1111/j.1365-2141.2012.09251.x 10.1172/JCI33365 10.1038/nrc3239 10.1038/nrd1381 10.1186/1479-5876-9-115 10.1056/NEJMoa1200690 10.1126/science.1198443 10.2217/imt.09.51 10.1084/jem.20071341 10.3324/haematol.2009.008003 10.1093/annonc/mdq013 10.1200/JCO.2009.26.7609 10.1200/JCO.2008.16.1927 10.1186/1479-5876-9-196 10.1038/nri1349 10.1046/j.1523-5394.1998.006003195.x 10.1038/8426 10.3109/10428190903440946 10.1158/0008-5472.CAN-08-1365 10.1182/blood-2007-11-122465 10.1038/nrd3141 10.1189/jlb.0405191 10.1038/nm1554 10.1126/science.2200121 10.1200/JCO.2012.44.6112 10.1161/CIRCULATIONAHA.107.709360 10.1038/70932 10.1093/annonc/mds404 10.1016/j.coi.2011.12.009 10.1158/1078-0432.CCR-12-2065 10.1146/annurev.immunol.16.1.111 10.1158/1078-0432.CCR-12-2982 10.1053/j.seminoncol.2010.09.015 10.1038/nri3108 10.1016/S1470-2045(09)70334-1 10.4161/onci.20459 10.1038/nm730 10.1073/pnas.191371898 10.1200/jco.2008.26.15_suppl.3007 10.1053/j.seminoncol.2010.09.008 10.1016/0161-5890(87)90122-2 10.1158/1078-0432.CCR-09-1652 10.1016/S0923-7534(20)33682-6 10.1200/jco.2012.30.15_suppl.2510 10.1056/NEJMoa1104621 10.3109/10428194.2012.710328 10.1200/jco.2010.28.15_suppl.2507 10.1016/j.coph.2004.02.008 10.4049/jimmunol.168.6.2720 10.1038/sj.cgt.7700527 10.1186/1479-5876-8-38 10.1002/ijc.23457 10.1158/1078-0432.CCR-11-1823 10.1182/blood-2008-12-195792 10.1016/S0022-1759(00)00349-5 10.1200/jco.2012.30.15_suppl.2512 10.1158/1078-0432.CCR-12-2067 10.1186/1756-8722-1-20 10.4049/jimmunol.150.3.771 10.1038/nrc2051 10.1200/jco.2010.28.15_suppl.e15074 10.1158/1078-0432.CCR-12-2064 10.1038/85330 10.1200/jco.2008.26.15_suppl.9028 10.1371/journal.pone.0034467 10.1056/NEJMoa1003466 10.1056/NEJM200103153441110 10.1158/2159-8290.CD-11-0314 10.1158/1078-0432.CCR-12-2063 10.1073/pnas.0915174107 10.1371/journal.pone.0010436 10.1097/01.cji.0000211319.00031.fc 10.4049/jimmunol.164.4.2160 10.4049/jimmunol.173.2.945 10.1084/jem.20082205 10.1084/jem.20060844 10.1038/346818a0 10.1016/j.immuni.2011.04.008 10.1158/0008-5472.CAN-12-0210 10.4049/jimmunol.180.12.8093 10.1084/jem.193.7.839 10.1200/JCO.2006.08.3311 10.1097/CJI.0b013e3181ee7095 10.4049/jimmunol.167.5.2991 10.1126/scitranslmed.3003689 10.1158/1078-0432.CCR-04-0428 10.1158/1078-0432.CCR-09-1024 10.1002/j.1460-2075.1992.tb05481.x 10.1073/pnas.082107699 10.1074/jbc.274.10.6056 10.1038/nri2526 10.1016/S0960-9822(99)80093-1 10.1002/jlb.67.1.2 10.1038/nature04444 10.1084/jem.192.7.1027 10.1146/annurev.immunol.19.1.565 10.1158/1078-0432.CCR-09-2033 10.1084/jem.20112741 10.1097/CJI.0b013e31802eecc6 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS 2013 AACR. |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: 2013 AACR. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/1078-0432.CCR-12-2214 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 1008 |
ExternalDocumentID | 23460531 27179763 10_1158_1078_0432_CCR_12_2214 |
Genre | Journal Article |
GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 UDS W2D W8F WOQ YKV .55 .GJ 1CY 3O- 4H- AETEA AFFNX AI. C1A H~9 IQODW J5H MVM OHT VH1 WHG X7M XJT ZCG ZGI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c405t-979a1f53d9aba6964cbb53e72faf250030d87b888b3ef78e7197a1c48c32a8553 |
ISSN | 1078-0432 1557-3265 |
IngestDate | Fri Jul 11 02:24:07 EDT 2025 Thu Apr 03 06:55:05 EDT 2025 Mon Jul 21 09:15:29 EDT 2025 Tue Jul 01 03:06:43 EDT 2025 Thu Apr 24 22:53:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Development Immunostimulant agent Immunostimulation Monoclonal antibody |
Language | English |
License | CC BY 4.0 2013 AACR. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-979a1f53d9aba6964cbb53e72faf250030d87b888b3ef78e7197a1c48c32a8553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23460531 |
PQID | 1314893450 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1314893450 pubmed_primary_23460531 pascalfrancis_primary_27179763 crossref_primary_10_1158_1078_0432_CCR_12_2214 crossref_citationtrail_10_1158_1078_0432_CCR_12_2214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-01 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2013 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | Dong (2022061100045502500_bib40) 2002; 8 Yokosuka (2022061100045502500_bib34) 2012; 209 Brahmer (2022061100045502500_bib42) 2010; 28 Kwon (2022061100045502500_bib94) 1999; 274 Ascierto (2022061100045502500_bib16) 2012; 23 Tirapu (2022061100045502500_bib104) 2002; 50 Chen (2022061100045502500_bib25) 2004; 4 Ahmadzadeh (2022061100045502500_bib35) 2009; 114 Ramirez-Montagut (2022061100045502500_bib95) 2006; 176 Piconese (2022061100045502500_bib88) 2008; 205 Eliopoulos (2022061100045502500_bib51) 2004; 4 Weber (2022061100045502500_bib9) 2008; 26 Sznol (2022061100045502500_bib41) 2013; 19 Forero-Torres (2022061100045502500_bib69) 2013; 54 Vacchelli (2022061100045502500_bib6) 2012; 1 Patnaik (2022061100045502500_bib46) 2012; 30 Lum (2022061100045502500_bib63) 2006; 79 Gurney (2022061100045502500_bib93) 1999; 9 Hoos (2022061100045502500_bib15) 2010; 37 Vonderheide (2022061100045502500_bib58) 2007; 25 Berner (2022061100045502500_bib72) 2007; 13 Ascierto (2022061100045502500_bib19) 2011; 9 Pollok (2022061100045502500_bib76) 1993; 150 Karim (2022061100045502500_bib36) 2009; 15 Beatty (2022061100045502500_bib64) 2011; 331 O'Day (2022061100045502500_bib21) 2010; 21 Sznol (2022061100045502500_bib83) 2008; 26 Ascierto (2022061100045502500_bib105) 2010; 8 Ellington (2022061100045502500_bib98) 1990; 346 Kedl (2022061100045502500_bib71) 2001; 98 Tykodi (2022061100045502500_bib108) 2012; 30 Tong (2022061100045502500_bib70) 2003; 10 Hirschhorn-Cymerman (2022061100045502500_bib90) 2009; 206 Kim (2022061100045502500_bib81) 2008; 68 Kroon (2022061100045502500_bib78) 2007; 30 Ascierto (2022061100045502500_bib106) 2011; 9 Chiodoni (2022061100045502500_bib73) 2006; 203 van Kooten (2022061100045502500_bib53) 2000; 67 Sabbagh (2022061100045502500_bib79) 2008; 180 Walker (2022061100045502500_bib7) 2011; 11 Eisenhauer (2022061100045502500_bib2) 2001; 344 Weber (2022061100045502500_bib10) 2009; 15 Croft (2022061100045502500_bib74) 2009; 9 Ascierto (2022061100045502500_bib17) 2013; 19 Barber (2022061100045502500_bib32) 2006; 439 Sharma (2022061100045502500_bib110) 2012 Vonderheide (2022061100045502500_bib49) 2013; 19 Robert (2022061100045502500_bib13) 2011; 364 Ndhlovu (2022061100045502500_bib87) 2001; 167 Grewal (2022061100045502500_bib52) 1998; 16 Ribas (2022061100045502500_bib18) 2013 Wolchok (2022061100045502500_bib11) 2010; 11 Pardoll (2022061100045502500_bib23) 2012; 12 Tuerk (2022061100045502500_bib99) 1990; 249 Kirkwood (2022061100045502500_bib20) 2010; 16 Hersh (2022061100045502500_bib22) 2012; 25 Latchman (2022061100045502500_bib29) 2001; 2 Vonderheide (2022061100045502500_bib65) 2001; 19 Ferrara (2022061100045502500_bib3) 2004; 3 Gilboa (2022061100045502500_bib101) 2013; 19 Prieto (2022061100045502500_bib14) 2012; 18 Vonderheide (2022061100045502500_bib62) 2007; 13 Chemnitz (2022061100045502500_bib33) 2004; 173 Topalian (2022061100045502500_bib45) 2012; 24 Perez-Gracia (2022061100045502500_bib107) 2009; 1 Palazón (2022061100045502500_bib48) 2012; 2 Melero (2022061100045502500_bib50) 2007; 7 Mischinger (2022061100045502500_bib38) 2010; 28 Bensinger (2022061100045502500_bib61) 2012; 159 Paterson (2022061100045502500_bib84) 1987; 24 Chambers (2022061100045502500_bib8) 2001; 19 Grabie (2022061100045502500_bib26) 2007; 116 Gladue (2022061100045502500_bib66) 2011; 60 van Mierlo (2022061100045502500_bib57) 2002; 99 Weinberg (2022061100045502500_bib92) 2006; 29 Hodi (2022061100045502500_bib12) 2010; 363 Hussein (2022061100045502500_bib67) 2010; 95 French (2022061100045502500_bib55) 1999; 5 Khubchandani (2022061100045502500_bib59) 2009; 10 Melero (2022061100045502500_bib75) 2013; 19 Ishida (2022061100045502500_bib24) 1992; 11 Weinberg (2022061100045502500_bib85) 2000; 164 Sosman (2022061100045502500_bib44) 2012; 23 Zhu (2022061100045502500_bib5) 2011; 34 Ascierto (2022061100045502500_bib31) 2010; 37 Redmond (2022061100045502500_bib89) 2012; 7 Tseng (2022061100045502500_bib30) 2001; 193 Scott (2022061100045502500_bib1) 1998; 6 Verbrugge (2022061100045502500_bib82) 2012; 72 Molckovsky (2022061100045502500_bib102) 2008; 1 Konishi (2022061100045502500_bib37) 2004; 10 Todryk (2022061100045502500_bib56) 2001; 248 Johnson (2022061100045502500_bib60) 2010; 28 Freeman (2022061100045502500_bib28) 2000; 192 Dong (2022061100045502500_bib27) 1999; 5 Topalian (2022061100045502500_bib43) 2012; 366 Curran (2022061100045502500_bib47) 2010; 107 Keefe (2022061100045502500_bib100) 2010; 9 Morris (2022061100045502500_bib109) 2008; 26 Lin (2022061100045502500_bib77) 2008; 112 Ju (2022061100045502500_bib80) 2008; 122 Kjaergaard (2022061100045502500_bib86) 2000; 60 Gough (2022061100045502500_bib91) 2010; 33 Murillo (2022061100045502500_bib4) 2003; 9 Taube (2022061100045502500_bib39) 2012; 4 McNamara (2022061100045502500_bib103) 2008; 118 Furman (2022061100045502500_bib68) 2010; 51 Tutt (2022061100045502500_bib54) 2002; 168 Cohen (2022061100045502500_bib96) 2010; 5 (2022061100045502500_bib97) 2012 |
References_xml | – volume: 176 start-page: 6434 year: 2006 ident: 2022061100045502500_bib95 article-title: Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity publication-title: J Immunol doi: 10.4049/jimmunol.176.11.6434 – volume: 19 start-page: 3280 year: 2001 ident: 2022061100045502500_bib65 article-title: Phase I study of recombinant human CD40 ligand in cancer patients publication-title: J Clin Oncol doi: 10.1200/JCO.2001.19.13.3280 – volume: 60 start-page: 1009 year: 2011 ident: 2022061100045502500_bib66 article-title: The CD40 agonist antibody CP-870,893 enhances dendritic cell and B-cell activity and promotes anti-tumor efficacy in SCID-hu mice publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-011-1014-6 – volume: 13 start-page: 1083 year: 2007 ident: 2022061100045502500_bib62 article-title: Prospect of targeting the CD40 pathway for cancer therapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-1893 – volume: 159 start-page: 58 year: 2012 ident: 2022061100045502500_bib61 article-title: A phase 1 study of lucatumumab, a fully human anti-CD40 antagonist monoclonal antibody administered intravenously to patients with relapsed or refractory multiple myeloma publication-title: Br J Haematol doi: 10.1111/j.1365-2141.2012.09251.x – volume: 118 start-page: 376 year: 2008 ident: 2022061100045502500_bib103 article-title: Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice publication-title: J Clin Invest doi: 10.1172/JCI33365 – volume: 12 start-page: 252 year: 2012 ident: 2022061100045502500_bib23 article-title: The blockade of immune checkpoints in cancer immunotherapy publication-title: Nat Rev Cancer doi: 10.1038/nrc3239 – volume: 3 start-page: 391 year: 2004 ident: 2022061100045502500_bib3 article-title: Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1381 – volume: 9 start-page: 115 year: 2011 ident: 2022061100045502500_bib106 article-title: Combination therapy: the next opportunity and challenge of medicine publication-title: J Transl Med doi: 10.1186/1479-5876-9-115 – volume: 366 start-page: 2443 year: 2012 ident: 2022061100045502500_bib43 article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1200690 – volume: 331 start-page: 1612 year: 2011 ident: 2022061100045502500_bib64 article-title: CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans publication-title: Science doi: 10.1126/science.1198443 – volume: 1 start-page: 845 year: 2009 ident: 2022061100045502500_bib107 article-title: Clinical development of combination strategies in immunotherapy: are we ready for more than one investigational product in an early clinical trial? publication-title: Immunotherapy doi: 10.2217/imt.09.51 – volume: 205 start-page: 825 year: 2008 ident: 2022061100045502500_bib88 article-title: OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection publication-title: J Exp Med doi: 10.1084/jem.20071341 – volume: 95 start-page: 845 year: 2010 ident: 2022061100045502500_bib67 article-title: A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma publication-title: Haematologica doi: 10.3324/haematol.2009.008003 – volume: 21 start-page: 1712 year: 2010 ident: 2022061100045502500_bib21 article-title: Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study publication-title: Ann Oncol doi: 10.1093/annonc/mdq013 – volume: 28 start-page: 3167 year: 2010 ident: 2022061100045502500_bib42 article-title: Phase I study of single agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates publication-title: J Clin Oncol doi: 10.1200/JCO.2009.26.7609 – volume: 26 start-page: 5950 year: 2008 ident: 2022061100045502500_bib9 article-title: Phase I/II study of ipilimumab for patients with metastatic melanoma publication-title: J Clin Oncol doi: 10.1200/JCO.2008.16.1927 – volume: 9 start-page: 196 year: 2011 ident: 2022061100045502500_bib19 article-title: Anti-CTLA4 monoclonal antibodies: the past and the future in clinical application publication-title: J Transl Med doi: 10.1186/1479-5876-9-196 – volume: 4 start-page: 336 year: 2004 ident: 2022061100045502500_bib25 article-title: Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity publication-title: Nat Rev Immunol doi: 10.1038/nri1349 – volume: 6 start-page: 195 year: 1998 ident: 2022061100045502500_bib1 article-title: Rituximab: a new therapeutic monoclonal antibody for non-Hodgkin's lymphoma publication-title: Cancer Pract doi: 10.1046/j.1523-5394.1998.006003195.x – volume: 5 start-page: 548 year: 1999 ident: 2022061100045502500_bib55 article-title: CD40 antibody evokes a cytotoxic T cell response that eradicates lymphoma and bypasses T-cell help publication-title: Nat Med doi: 10.1038/8426 – volume: 51 start-page: 228 year: 2010 ident: 2022061100045502500_bib68 article-title: A phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia publication-title: Leuk Lymphoma doi: 10.3109/10428190903440946 – volume: 68 start-page: 7264 year: 2008 ident: 2022061100045502500_bib81 article-title: Combination therapy with cisplatin and anti-4-1BB: synergistic anticancer effects and amelioration of cisplatin-induced nephrotoxicity publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-1365 – volume: 112 start-page: 699 year: 2008 ident: 2022061100045502500_bib77 article-title: Fc dependent expression of CD137 on human NK cells: insights into “agonistic” effects of anti-CD137 monoclonal antibodies publication-title: Blood doi: 10.1182/blood-2007-11-122465 – volume: 9 start-page: 537 year: 2010 ident: 2022061100045502500_bib100 article-title: Aptamers as therapeutics publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3141 – volume: 79 start-page: 1181 year: 2006 ident: 2022061100045502500_bib63 article-title: In vivo CD40 ligation can induce T cell-independent antitumor effects that involve macrophages publication-title: J Leukoc Biol doi: 10.1189/jlb.0405191 – volume: 13 start-page: 354 year: 2007 ident: 2022061100045502500_bib72 article-title: IFN-gamma mediates CD4+ T-cell loss and impairs secondary antitumor responses after successful initial immunotherapy publication-title: Nat Med doi: 10.1038/nm1554 – volume: 249 start-page: 505 year: 1990 ident: 2022061100045502500_bib99 article-title: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase publication-title: Science doi: 10.1126/science.2200121 – year: 2013 ident: 2022061100045502500_bib18 article-title: Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma publication-title: J Clin Oncol doi: 10.1200/JCO.2012.44.6112 – volume: 116 start-page: 2062 year: 2007 ident: 2022061100045502500_bib26 article-title: Endothelial programmed death-1 ligand 1 (B7-H1) regulates CD8+ T-cell mediated injury in the heart publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.709360 – volume: 5 start-page: 1365 year: 1999 ident: 2022061100045502500_bib27 article-title: B7-H1, a third member of the B7 family, costimulates T-cell proliferation and interleukin-10 secretion publication-title: Nat Med doi: 10.1038/70932 – volume: 23 start-page: ix367 year: 2012 ident: 2022061100045502500_bib44 article-title: Clinical activity and safety of anti-programmed death-1 (PD-1) (BMS-936558/MDX-1106/ONO-4538) in patients (pts) with advanced melanoma (mel) [abstract] publication-title: Ann Oncol doi: 10.1093/annonc/mds404 – volume: 24 start-page: 207 year: 2012 ident: 2022061100045502500_bib45 article-title: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2011.12.009 – volume: 19 start-page: 1044 year: 2013 ident: 2022061100045502500_bib75 article-title: Agonist antibodies to TNFR molecules that costimulate T and NK cells publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-2065 – volume: 16 start-page: 111 year: 1998 ident: 2022061100045502500_bib52 article-title: CD40 and CD154 in cell-mediated immunity publication-title: Ann Rev Immunol doi: 10.1146/annurev.immunol.16.1.111 – volume: 19 start-page: 1009 year: 2013 ident: 2022061100045502500_bib17 article-title: Biomarkers for immunostimulatory monoclonal antibodies in combination strategies for melanoma and other tumor types publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-2982 – volume: 37 start-page: 533 year: 2010 ident: 2022061100045502500_bib15 article-title: Development of ipilimumab: contribution to a new paradigm for cancer immunotherapy publication-title: Semin Oncol doi: 10.1053/j.seminoncol.2010.09.015 – volume: 60 start-page: 5514 year: 2000 ident: 2022061100045502500_bib86 article-title: Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth publication-title: Cancer Res – volume: 11 start-page: 852 year: 2011 ident: 2022061100045502500_bib7 article-title: The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses publication-title: Nat Rev Immunol doi: 10.1038/nri3108 – volume: 11 start-page: 155 year: 2010 ident: 2022061100045502500_bib11 article-title: Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(09)70334-1 – volume: 1 start-page: 493 year: 2012 ident: 2022061100045502500_bib6 publication-title: Oncoimmunology doi: 10.4161/onci.20459 – volume: 8 start-page: 793 year: 2002 ident: 2022061100045502500_bib40 article-title: Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion publication-title: Nat Med doi: 10.1038/nm730 – volume: 98 start-page: 10811 year: 2001 ident: 2022061100045502500_bib71 article-title: CD40 stimulation accelerates deletion of tumor-specific CD8(+) T cells in the absence of tumor-antigen vaccination publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.191371898 – year: 2012 ident: 2022061100045502500_bib97 article-title: Trial of TRX518 (anti-GITR mAb) in stage III or IV malignant melanoma or other solid tumors (TRX518-001) – volume: 26 year: 2008 ident: 2022061100045502500_bib83 article-title: Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA) [abstract] publication-title: J Clin Oncol doi: 10.1200/jco.2008.26.15_suppl.3007 – volume: 37 start-page: 508 year: 2010 ident: 2022061100045502500_bib31 article-title: Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies publication-title: Semin Oncol doi: 10.1053/j.seminoncol.2010.09.008 – volume: 24 start-page: 1281 year: 1987 ident: 2022061100045502500_bib84 article-title: Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts publication-title: Mol Immuno doi: 10.1016/0161-5890(87)90122-2 – volume: 15 start-page: 6341 year: 2009 ident: 2022061100045502500_bib36 article-title: Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-1652 – volume: 23 start-page: ix367 year: 2012 ident: 2022061100045502500_bib16 article-title: The European ipilimumab expanded access programme (EAP): efficacy and safety data from the Italian cohort of patients with pretreated, advanced melanoma [abstract] publication-title: Ann Oncol doi: 10.1016/S0923-7534(20)33682-6 – volume: 30 year: 2012 ident: 2022061100045502500_bib108 article-title: PD-1/PD-L1 pathway as a target for cancer immunotherapy: safety and clinical activity of BMS-936559, an anti-PD-L1 antibody, in patients with solid tumors [abstract] publication-title: J Clin Oncol doi: 10.1200/jco.2012.30.15_suppl.2510 – volume: 364 start-page: 2517 year: 2011 ident: 2022061100045502500_bib13 article-title: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1104621 – volume: 54 start-page: 277 year: 2013 ident: 2022061100045502500_bib69 article-title: Pilot study of dacetuzumab in combination with rituximab and gemcitabine for relapsed or refractory diffuse large B-cell lymphoma publication-title: Leuk Lymphoma doi: 10.3109/10428194.2012.710328 – volume: 28 start-page: 15s year: 2010 ident: 2022061100045502500_bib60 article-title: A Cancer Research UK phase I study evaluating safety, tolerability, and biological effects of chimeric anti-CD40 monoclonal antibody (MAb), Chi Lob 7/4 [abstract] publication-title: J Clin Oncol doi: 10.1200/jco.2010.28.15_suppl.2507 – volume: 4 start-page: 360 year: 2004 ident: 2022061100045502500_bib51 article-title: The role of the CD40 pathway in the pathogenesis and treatment of cancer publication-title: Curr Opin Pharm doi: 10.1016/j.coph.2004.02.008 – volume: 168 start-page: 2720 year: 2002 ident: 2022061100045502500_bib54 article-title: T cell immunity to lymphoma following treatment with anti-CD40 monoclonal antibody publication-title: J Immunol doi: 10.4049/jimmunol.168.6.2720 – volume: 10 start-page: 1 year: 2003 ident: 2022061100045502500_bib70 article-title: Prospects for CD40-directed experimental therapy of human cancer publication-title: Cancer Gene Ther doi: 10.1038/sj.cgt.7700527 – volume: 8 start-page: 38 year: 2010 ident: 2022061100045502500_bib105 article-title: Melanoma: a model for testing new agents in combination therapies publication-title: J Transl Med doi: 10.1186/1479-5876-8-38 – volume: 122 start-page: 2784 year: 2008 ident: 2022061100045502500_bib80 article-title: Eradication of established renal cell carcinoma by a combination of 5-fluorouracil and anti-4-1BB monoclonal antibody in mice publication-title: Int J Cancer doi: 10.1002/ijc.23457 – volume: 18 start-page: 2039 year: 2012 ident: 2022061100045502500_bib14 article-title: CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-1823 – volume: 114 start-page: 1537 year: 2009 ident: 2022061100045502500_bib35 article-title: Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired publication-title: Blood doi: 10.1182/blood-2008-12-195792 – volume: 248 start-page: 139 year: 2001 ident: 2022061100045502500_bib56 article-title: CD40 ligation for immunotherapy of solid tumours publication-title: J Immunol Methods doi: 10.1016/S0022-1759(00)00349-5 – volume: 30 year: 2012 ident: 2022061100045502500_bib46 article-title: Phase I study of MK-3475 (anti-PD-1 monoclonal antibody) in patients with advanced solid tumors [abstract] publication-title: J Clin Oncol doi: 10.1200/jco.2012.30.15_suppl.2512 – volume: 19 start-page: 1054 year: 2013 ident: 2022061100045502500_bib101 article-title: Use of oligonucleotide aptamer ligands to modulate the function of immune receptors publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-2067 – volume: 1 start-page: 20 year: 2008 ident: 2022061100045502500_bib102 article-title: First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American society of clinical oncology meeting publication-title: J Hematol Oncol doi: 10.1186/1756-8722-1-20 – volume: 150 start-page: 771 year: 1993 ident: 2022061100045502500_bib76 article-title: Inducible T cell antigen 4-1BB. Analysis of expression and function publication-title: J Immunol doi: 10.4049/jimmunol.150.3.771 – volume: 7 start-page: 95 year: 2007 ident: 2022061100045502500_bib50 article-title: Immunostimulatory monoclonal antibodies for cancer therapy publication-title: Nat Rev Cancer doi: 10.1038/nrc2051 – volume: 28 year: 2010 ident: 2022061100045502500_bib38 article-title: Prognostic relevance of B7H1 and B7H3 protein expressions in metastatic clear cell renal cell carcinoma [abstract] publication-title: J Clin Oncol doi: 10.1200/jco.2010.28.15_suppl.e15074 – volume: 19 start-page: 1035 year: 2013 ident: 2022061100045502500_bib49 article-title: Agonistic CD40 antibodies and cancer therapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-2064 – volume-title: Proceedings of the 2012 ASCO Annual Meeting, Clinical Science Symposium year: 2012 ident: 2022061100045502500_bib110 article-title: Immune checkpoint strategies introduction – volume: 50 start-page: 13 year: 2002 ident: 2022061100045502500_bib104 article-title: Effective tumor immunotherapy: start the engine, release the brakes, step on the gas pedal,…and get ready to face autoimmunity publication-title: Arch Immunol Ther Exp (Warsz) – volume: 2 start-page: 261 year: 2001 ident: 2022061100045502500_bib29 article-title: PD-L2 is a second ligand for PD-1 and inhibits T cell activation publication-title: Nat Immunol doi: 10.1038/85330 – volume: 26 year: 2008 ident: 2022061100045502500_bib109 article-title: Phase I/II study of GC1008: a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody (MAb) in patients with advanced ma lignant melanoma (MM) or renal cell carcinoma (RCC) [abstract] publication-title: J Clin Oncol doi: 10.1200/jco.2008.26.15_suppl.9028 – volume: 7 start-page: e34467 year: 2012 ident: 2022061100045502500_bib89 article-title: Dual anti-OX40/IL-2 therapy augments tumor immunotherapy via IL-2R-mediated regulation of OX40 expression publication-title: PLoS ONE doi: 10.1371/journal.pone.0034467 – volume: 363 start-page: 711 year: 2010 ident: 2022061100045502500_bib12 article-title: Improved survival with ipilimumab in patients with metastatic melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1003466 – volume: 344 start-page: 841 year: 2001 ident: 2022061100045502500_bib2 article-title: From the molecule to the clinic—inhibiting HER2 to treat breast cancer publication-title: N Engl J Med doi: 10.1056/NEJM200103153441110 – volume: 2 start-page: 608 year: 2012 ident: 2022061100045502500_bib48 article-title: The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-11-0314 – volume: 19 start-page: 1021 year: 2013 ident: 2022061100045502500_bib41 article-title: Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-2063 – volume: 107 start-page: 4275 year: 2010 ident: 2022061100045502500_bib47 article-title: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0915174107 – volume: 5 start-page: e10436 year: 2010 ident: 2022061100045502500_bib96 article-title: Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation publication-title: PLoS ONE doi: 10.1371/journal.pone.0010436 – volume: 10 start-page: 579 year: 2009 ident: 2022061100045502500_bib59 article-title: Dacetuzumab, a humanized mAb against CD40 for the treatment of hematological malignancies publication-title: Curr Opin Investig Drugs – volume: 29 start-page: 575 year: 2006 ident: 2022061100045502500_bib92 article-title: Anti-OX40 (CD134) administration to nonhuman primates: immunostimulatory effectsand toxicokinetic study publication-title: J Immunother doi: 10.1097/01.cji.0000211319.00031.fc – volume: 9 start-page: 5454 year: 2003 ident: 2022061100045502500_bib4 article-title: Potentiation of therapeutic immune responses against malignancies with monoclonal antibodies publication-title: Clin Cancer Res – volume: 164 start-page: 2160 year: 2000 ident: 2022061100045502500_bib85 article-title: Engagement of the OX-40 receptor in vivo enhances antitumor immunity publication-title: J Immunol doi: 10.4049/jimmunol.164.4.2160 – volume: 173 start-page: 945 year: 2004 ident: 2022061100045502500_bib33 article-title: SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation publication-title: J Immunol doi: 10.4049/jimmunol.173.2.945 – volume: 206 start-page: 1103 year: 2009 ident: 2022061100045502500_bib90 article-title: OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis publication-title: J Exp Med doi: 10.1084/jem.20082205 – volume: 203 start-page: 2441 year: 2006 ident: 2022061100045502500_bib73 article-title: Triggering CD40 on endothelial cells contributes to tumor growth publication-title: J Exp Med doi: 10.1084/jem.20060844 – volume: 346 start-page: 818 year: 1990 ident: 2022061100045502500_bib98 article-title: In vitro selection of RNA molecules that bind specific ligands publication-title: Nature doi: 10.1038/346818a0 – volume: 25 start-page: 863 year: 2012 ident: 2022061100045502500_bib22 article-title: Phase 3, randomized, open-label, multicenter trial of nab-paclitaxel (nab-P) vs. dacarbazine (DTIC) in previously untreated patients with metastatic malignant melanoma (MMM) [abstract] publication-title: Pigment Cell Melanoma Res – volume: 34 start-page: 466 year: 2011 ident: 2022061100045502500_bib5 article-title: Cell surface signaling molecules in the control of immune responses: a tide model publication-title: Immunity doi: 10.1016/j.immuni.2011.04.008 – volume: 72 start-page: 3163 year: 2012 ident: 2022061100045502500_bib82 article-title: Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-0210 – volume: 180 start-page: 8093 year: 2008 ident: 2022061100045502500_bib79 article-title: ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo publication-title: J Immunol doi: 10.4049/jimmunol.180.12.8093 – volume: 193 start-page: 839 year: 2001 ident: 2022061100045502500_bib30 article-title: B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells publication-title: J Exp Med doi: 10.1084/jem.193.7.839 – volume: 25 start-page: 876 year: 2007 ident: 2022061100045502500_bib58 article-title: Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist onoclonal antibody publication-title: J Clin Oncol doi: 10.1200/JCO.2006.08.3311 – volume: 33 start-page: 798 year: 2010 ident: 2022061100045502500_bib91 article-title: Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice publication-title: J Immunother doi: 10.1097/CJI.0b013e3181ee7095 – volume: 167 start-page: 2991 year: 2001 ident: 2022061100045502500_bib87 article-title: Critical involvement of OX40 ligand signals in the T cell priming events during experimental autoimmune encephalomyelitis publication-title: J Immunol doi: 10.4049/jimmunol.167.5.2991 – volume: 4 start-page: 127ra37 year: 2012 ident: 2022061100045502500_bib39 article-title: Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3003689 – volume: 10 start-page: 5094 year: 2004 ident: 2022061100045502500_bib37 article-title: B7-H1 expression on non small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-0428 – volume: 15 start-page: 5591 year: 2009 ident: 2022061100045502500_bib10 article-title: A randomized, double-blind, placebo-controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-1024 – volume: 11 start-page: 3887 year: 1992 ident: 2022061100045502500_bib24 article-title: Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death publication-title: EMBO J doi: 10.1002/j.1460-2075.1992.tb05481.x – volume: 99 start-page: 5561 year: 2002 ident: 2022061100045502500_bib57 article-title: CD40 stimulation leads to effective therapy of CD40(−) tumors through induction of strong systemic cytotoxic T lymphocyte immunity publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.082107699 – volume: 274 start-page: 6056 year: 1999 ident: 2022061100045502500_bib94 article-title: Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand publication-title: J Biol Chem doi: 10.1074/jbc.274.10.6056 – volume: 9 start-page: 271 year: 2009 ident: 2022061100045502500_bib74 article-title: The role of TNF superfamily members in T-cell function and diseases publication-title: Nat Rev Immunol doi: 10.1038/nri2526 – volume: 9 start-page: 215 year: 1999 ident: 2022061100045502500_bib93 article-title: Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR publication-title: Curr Biol doi: 10.1016/S0960-9822(99)80093-1 – volume: 67 start-page: 2 year: 2000 ident: 2022061100045502500_bib53 article-title: CD40-CD40 ligand publication-title: J Leukoc Biol doi: 10.1002/jlb.67.1.2 – volume: 439 start-page: 682 year: 2006 ident: 2022061100045502500_bib32 article-title: Restoring function in exhausted CD8 T cells during chronic viral infection publication-title: Nature doi: 10.1038/nature04444 – volume: 192 start-page: 1027 year: 2000 ident: 2022061100045502500_bib28 article-title: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation publication-title: J Exp Med doi: 10.1084/jem.192.7.1027 – volume: 19 start-page: 565 year: 2001 ident: 2022061100045502500_bib8 article-title: CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.19.1.565 – volume: 16 start-page: 1042 year: 2010 ident: 2022061100045502500_bib20 article-title: Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-2033 – volume: 209 start-page: 1201 year: 2012 ident: 2022061100045502500_bib34 article-title: Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2 publication-title: J Exp Med doi: 10.1084/jem.20112741 – volume: 30 start-page: 406 year: 2007 ident: 2022061100045502500_bib78 article-title: 4-1BB costimulation of effector T cells for adoptive immunotherapy of cancer: involvement of Bcl gene family members publication-title: J Immunother doi: 10.1097/CJI.0b013e31802eecc6 |
SSID | ssj0014104 |
Score | 2.4760978 |
Snippet | Immune system responses are under the control of extracellular biomolecules, which express functions in receptors present on the surface of cells of the immune... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 997 |
SubjectTerms | Animals Antibodies, Monoclonal - therapeutic use Antineoplastic agents Biological and medical sciences Cancer Vaccines - therapeutic use Drug Design Humans Immunization Medical sciences Neoplasms - immunology Neoplasms - therapy Pharmacology. Drug treatments T-Lymphocytes, Cytotoxic - immunology |
Title | Clinical Development of Immunostimulatory Monoclonal Antibodies and Opportunities for Combination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23460531 https://www.proquest.com/docview/1314893450 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1ra9swUGwdjMEYey97FA_2rTiL9bCljyVr125NN0YC-SYkWS4ZqR3S5Et__U6SH8masW5fjDGcJe5Op3sfQh-Ii2XZnMdUDFRMU0NjJYoszoqMi9ymg9x32x-dpycT-mXKpp1P11eXrHTfXO-sK_kfqsI3oKurkv0HyrY_hQ_wDvSFJ1AYnrei8bApa8y71B_fA8IVfVRweC_dcC4XRYctVWbuvX6AypmuXPKgDxxUC6eBr0vfWdUnHcJOwVzuKPbzt8WMY5TlQd0mqHUnj-ACC0UzpxelMiG_K6T2zC7VPJ_VvQpAiFSdD_a7Xdrr-PMSAFQTkThoHdKH7oJe-klPoOuCnK5dr7Wbwo2MaPK0GsnKQJrhMBiib3d8a8Sx2GA7tiFbRUjkvSnzGffuB9cqmBLcHw5_uHwTjEN16naP7fNv8nhydibHR9PxXXQPg3Hh5l58Ov3axp5o4odOtpur675gmY87F9nSaB4u1BWQoghTUf5stnj1ZfwYPartjugwMNETdMeWT9H9UZ1Z8QyphrzRBi9FVRHd4KWo46Wo4yV4zaMtXoqAl6INXnqOJsdH4-FJXI_fiA1o8atYZEIlBSO5UFqlIqVGa0ZshgtVgOIMt0POM80518TCybZZIjKVGMoNwYozRl6gvbIq7SsUgdAXmeUU4wLMfSu0YGBHg103INroVPcQbVAoTd2b3o1ImUtvozIuHealw7wEzMsES4f5Huq3YIvQnOVvAPtb9GmhcAYXE1y1PfS-IZgEOeuCZ6q01fpKJiRxfZooG_TQy0DJDpq47AKSvL4F9Bv0oDseb9Hearm270CvXel9z4a_ADTQovw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+development+of+immunostimulatory+monoclonal+antibodies+and+opportunities+for+combination&rft.jtitle=Clinical+cancer+research&rft.au=Melero%2C+Ignacio&rft.au=Grimaldi%2C+Antonio+M&rft.au=Perez-Gracia%2C+Jose+L&rft.au=Ascierto%2C+Paolo+A&rft.date=2013-03-01&rft.issn=1557-3265&rft.eissn=1557-3265&rft.volume=19&rft.issue=5&rft.spage=997&rft_id=info:doi/10.1158%2F1078-0432.CCR-12-2214&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |