The energy landscape of a protein switch
Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He et al. , Structure , 2012, 20 , 283 and is investigated computationally in the p...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 16; no. 14; pp. 647 - 6421 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
14.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He
et al.
,
Structure
, 2012,
20
, 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient ∼−0.7). The correlation reduces dramatically (∼0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments.
Protein switches are made of highly similar sequences that fold to dramatically different structures. |
---|---|
AbstractList | Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He
et al.
,
Structure
, 2012,
20
, 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient ∼−0.7). The correlation reduces dramatically (∼0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments.
Protein switches are made of highly similar sequences that fold to dramatically different structures. Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for alpha and alpha + beta folds has been illustrated experimentally by He et al., Structure, 2012, 20, 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient similar to -0.7). The correlation reduces dramatically ( similar to 0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments. Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He et al., Structure, 2012, 20, 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient ∼-0.7). The correlation reduces dramatically (∼0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments. Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He et al., Structure, 2012, 20, 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient ∼-0.7). The correlation reduces dramatically (∼0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments.Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He et al., Structure, 2012, 20, 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient ∼-0.7). The correlation reduces dramatically (∼0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments. |
Author | Chen, Szu-Hua Elber, Ron |
AuthorAffiliation | Department of Chemistry Institute for Computational Engineering and Sciences Department of Molecular Biosciences University of Texas at Austin |
AuthorAffiliation_xml | – name: Institute for Computational Engineering and Sciences – name: Department of Chemistry – name: Department of Molecular Biosciences – name: University of Texas at Austin |
Author_xml | – sequence: 1 givenname: Szu-Hua surname: Chen fullname: Chen, Szu-Hua – sequence: 2 givenname: Ron surname: Elber fullname: Elber, Ron |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24473276$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkMtLw0AQxhep2IdevCvxVoTobPaR7FGKLyh4qedls7uxkTSJuyml_71b-hBFxNMMzG--me8bol7d1Bahcww3GIi41US3jCUg5kdogCknsYCM9g59yvto6P07AGCGyQnqJ5SmJEn5AI1ncxvZ2rq3dVSp2nitWhs1RaSi1jWdLevIr8pOz0_RcaEqb892dYReH-5nk6d4-vL4PLmbxpoC62LBCyNUpnUign6OcVFwanCiFeEUgOY8U4lhJs-4MpZxmuQ6eGCaA7UcUzJC461uOP-xtL6Ti9JrW4XnbLP0Em-MkgyA_AOFNBUsEyKglzt0mS-ska0rF8qt5T6IAMAW0K7x3tlC6rJTXdnUnVNlJTHITdbyK-uwcv1jZa_6K3yxhZ3XB-7b_OqvuWxNQT4Brw-Rwg |
CitedBy_id | crossref_primary_10_1021_acs_jctc_1c00870 crossref_primary_10_1021_acs_jctc_3c00679 crossref_primary_10_1042_BCJ20200477 crossref_primary_10_1089_cmb_2019_0338 crossref_primary_10_3389_fchem_2020_00299 crossref_primary_10_1002_pro_2723 crossref_primary_10_1016_j_bpj_2019_04_013 crossref_primary_10_1073_pnas_2214430120 crossref_primary_10_1039_D3CB00114H crossref_primary_10_1073_pnas_1913242117 crossref_primary_10_1016_j_addr_2022_114336 crossref_primary_10_1371_journal_pcbi_1004960 crossref_primary_10_1016_j_bpj_2017_02_029 crossref_primary_10_1371_journal_pcbi_1008285 crossref_primary_10_1021_acs_jcim_1c00458 crossref_primary_10_1039_C9NR10469K |
Cites_doi | 10.1016/S1359-0278(98)00021-2 10.1073/pnas.0711589105 10.1002/prot.21976 10.1038/srep00351 10.1063/1.470117 10.1126/science.3798113 10.1073/pnas.89.7.2536 10.1016/S0076-6879(03)74020-8 10.1002/prot.22401 10.1002/prot.340210302 10.1038/nprot.2006.204 10.1002/(SICI)1097-0134(20000701)40:1<71::AID-PROT90>3.0.CO;2-3 10.1002/prot.22481 10.1016/j.str.2011.11.018 10.1093/nar/gki524 10.1073/pnas.0700922104 10.1073/pnas.0701393104 10.1110/ps.8.2.361 10.1073/pnas.84.21.7524 10.1110/ps.9.9.1651 10.1126/science.1853201 10.1021/jp971707j 10.1016/0010-4655(95)00047-J 10.1016/j.str.2007.09.024 10.1021/ma60054a013 10.1038/nprot.2008.184 10.2174/0929867054546564 10.1073/pnas.1117368109 10.1002/prot.1145 10.1002/prot.20810 10.1021/bi060409m 10.1073/pnas.89.18.8721 10.1007/128_2011_165 10.1073/pnas.0805857105 10.1006/jmbi.1996.0114 10.1063/1.445869 10.1016/S0076-6879(05)94006-8 10.1016/S0022-2836(02)01425-0 10.1021/bi2015663 10.1209/epl/i1996-00162-1 10.1126/science.278.5335.82 10.1002/(SICI)1097-0282(19971005)42:4<427::AID-BIP6>3.0.CO;2-S 10.1103/PhysRevLett.72.3907 10.1021/bi00181a032 10.1002/prot.22622 10.1073/pnas.0906408106 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QF 7U5 8FD JG9 L7M |
DOI | 10.1039/c3cp55209h |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Aluminium Industry Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Aluminium Industry Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 6421 |
ExternalDocumentID | 24473276 10_1039_c3cp55209h c3cp55209h |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM059796 |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG CGR CUY CVF ECM EIF NPM 7X8 7QF 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c405t-96fd9a8cc29276b11ff64d12ca364004b68a2d5db86ade5642bc0395c604e6143 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 05:25:11 EDT 2025 Thu Jul 10 23:06:43 EDT 2025 Thu Apr 03 07:04:44 EDT 2025 Tue Jul 01 02:45:35 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Thu May 30 17:42:58 EDT 2019 Thu May 19 04:19:37 EDT 2016 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-96fd9a8cc29276b11ff64d12ca364004b68a2d5db86ade5642bc0395c604e6143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 24473276 |
PQID | 1507795899 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1520938003 crossref_primary_10_1039_c3cp55209h rsc_primary_c3cp55209h pubmed_primary_24473276 crossref_citationtrail_10_1039_c3cp55209h proquest_miscellaneous_1507795899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-14 |
PublicationDateYYYYMMDD | 2014-04-14 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2014 |
References | Bruylants (c3cp55209h-(cit47)/*[position()=1]) 2005; 12 Elber (c3cp55209h-(cit49)/*[position()=1]) 1987; 235 Alexander (c3cp55209h-(cit17)/*[position()=1]) 2009; 106 Meyerguz (c3cp55209h-(cit19)/*[position()=1]) 2007; 104 Hoffmann (c3cp55209h-(cit48)/*[position()=1]) 2005; 394 Soranno (c3cp55209h-(cit50)/*[position()=1]) 2012; 109 Saven (c3cp55209h-(cit6)/*[position()=1]) 1997; 101 Greenfield (c3cp55209h-(cit46)/*[position()=1]) 2006; 1 Shakhnovich (c3cp55209h-(cit7)/*[position()=1]) 1998; 3 Cossio (c3cp55209h-(cit28)/*[position()=1]) 2012; 2 Meller (c3cp55209h-(cit36)/*[position()=1]) 2001; 45 Zhang (c3cp55209h-(cit31)/*[position()=1]) 2005; 33 Bryngelson (c3cp55209h-(cit1)/*[position()=1]) 1995; 21 Cheng (c3cp55209h-(cit30)/*[position()=1]) 2006; 62 Camacho (c3cp55209h-(cit5)/*[position()=1]) 1996; 35 Elber (c3cp55209h-(cit43)/*[position()=1]) 1995; 91 Cao (c3cp55209h-(cit13)/*[position()=1]) 2010; 78 Fiser (c3cp55209h-(cit41)/*[position()=1]) 2003; 374 Wang (c3cp55209h-(cit42)/*[position()=1]) 2008; 3 Vallat (c3cp55209h-(cit26)/*[position()=1]) 2008; 72 Betancourt (c3cp55209h-(cit34)/*[position()=1]) 1999; 8 Bowie (c3cp55209h-(cit40)/*[position()=1]) 1991; 253 Shakhnovich (c3cp55209h-(cit3)/*[position()=1]) 1994; 72 Roessler (c3cp55209h-(cit16)/*[position()=1]) 2008; 105 Yin (c3cp55209h-(cit29)/*[position()=1]) 2007; 15 He (c3cp55209h-(cit18)/*[position()=1]) 2012; 20 Gallagher (c3cp55209h-(cit23)/*[position()=1]) 1994; 33 He (c3cp55209h-(cit21)/*[position()=1]) 2008; 105 Govindarajan (c3cp55209h-(cit2)/*[position()=1]) 1997; 42 Allison (c3cp55209h-(cit24)/*[position()=1]) 2011; 50 Tobi (c3cp55209h-(cit35)/*[position()=1]) 2000; 40 Vicatos (c3cp55209h-(cit27)/*[position()=1]) 2009; 77 Hinds (c3cp55209h-(cit32)/*[position()=1]) 1992; 89 Shakhnovich (c3cp55209h-(cit9)/*[position()=1]) 1998; 3 Dahiyat (c3cp55209h-(cit10)/*[position()=1]) 1997; 278 Dalal (c3cp55209h-(cit14)/*[position()=1]) 2000; 9 He (c3cp55209h-(cit22)/*[position()=1]) 2006; 45 Meyerguz (c3cp55209h-(cit8)/*[position()=1]) 2007; 104 Tanaka (c3cp55209h-(cit37)/*[position()=1]) 1976; 9 Essmann (c3cp55209h-(cit45)/*[position()=1]) 1995; 103 Cordes (c3cp55209h-(cit15)/*[position()=1]) 2003; 326 Leopold (c3cp55209h-(cit11)/*[position()=1]) 1992; 89 Surewicz (c3cp55209h-(cit12)/*[position()=1]) 2011; 305 Vallat (c3cp55209h-(cit25)/*[position()=1]) 2009; 76 Jorgensen (c3cp55209h-(cit44)/*[position()=1]) 1983; 79 Alexander (c3cp55209h-(cit20)/*[position()=1]) 2007; 104 Bryngelson (c3cp55209h-(cit4)/*[position()=1]) 1987; 84 Miyazawa (c3cp55209h-(cit33)/*[position()=1]) 1996; 256 |
References_xml | – issn: 1998 publication-title: Biological sequence analysis: Probabilistic models of proteins and nucleic acids doi: Durbin Eddy Krogh Mitchison – doi: Meyerguz Kempe Kleinberg Elber – volume: 3 start-page: R45 year: 1998 ident: c3cp55209h-(cit7)/*[position()=1] publication-title: Folding Des. doi: 10.1016/S1359-0278(98)00021-2 – volume: 105 start-page: 2343 year: 2008 ident: c3cp55209h-(cit16)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0711589105 – volume: 72 start-page: 910 year: 2008 ident: c3cp55209h-(cit26)/*[position()=1] publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.21976 – volume: 2 start-page: 351 year: 2012 ident: c3cp55209h-(cit28)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00351 – volume: 103 start-page: 8577 year: 1995 ident: c3cp55209h-(cit45)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume: 235 start-page: 318 year: 1987 ident: c3cp55209h-(cit49)/*[position()=1] publication-title: Science doi: 10.1126/science.3798113 – volume: 89 start-page: 2536 year: 1992 ident: c3cp55209h-(cit32)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.89.7.2536 – volume: 374 start-page: 461 year: 2003 ident: c3cp55209h-(cit41)/*[position()=1] publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(03)74020-8 – volume: 76 start-page: 930 year: 2009 ident: c3cp55209h-(cit25)/*[position()=1] publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.22401 – volume: 21 start-page: 167 year: 1995 ident: c3cp55209h-(cit1)/*[position()=1] publication-title: Proteins: Struct., Funct., Genet. doi: 10.1002/prot.340210302 – volume: 1 start-page: 2527 year: 2006 ident: c3cp55209h-(cit46)/*[position()=1] publication-title: Nat. Protocols doi: 10.1038/nprot.2006.204 – volume: 40 start-page: 71 year: 2000 ident: c3cp55209h-(cit35)/*[position()=1] publication-title: Proteins: Struct., Funct., Genet. doi: 10.1002/(SICI)1097-0134(20000701)40:1<71::AID-PROT90>3.0.CO;2-3 – volume: 77 start-page: 670 year: 2009 ident: c3cp55209h-(cit27)/*[position()=1] publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.22481 – volume: 3 start-page: R45 year: 1998 ident: c3cp55209h-(cit9)/*[position()=1] publication-title: Folding Des. doi: 10.1016/S1359-0278(98)00021-2 – volume: 20 start-page: 283 year: 2012 ident: c3cp55209h-(cit18)/*[position()=1] publication-title: Structure doi: 10.1016/j.str.2011.11.018 – volume: 33 start-page: 2302 year: 2005 ident: c3cp55209h-(cit31)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki524 – volume: 104 start-page: 11963 year: 2007 ident: c3cp55209h-(cit20)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0700922104 – volume: 104 start-page: 11627 year: 2007 ident: c3cp55209h-(cit8)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0701393104 – volume: 8 start-page: 361 year: 1999 ident: c3cp55209h-(cit34)/*[position()=1] publication-title: Protein Sci. doi: 10.1110/ps.8.2.361 – volume: 84 start-page: 7524 year: 1987 ident: c3cp55209h-(cit4)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.84.21.7524 – volume: 9 start-page: 1651 year: 2000 ident: c3cp55209h-(cit14)/*[position()=1] publication-title: Protein Sci. doi: 10.1110/ps.9.9.1651 – volume: 253 start-page: 164 year: 1991 ident: c3cp55209h-(cit40)/*[position()=1] publication-title: Science doi: 10.1126/science.1853201 – volume: 101 start-page: 8375 year: 1997 ident: c3cp55209h-(cit6)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp971707j – volume: 91 start-page: 159 year: 1995 ident: c3cp55209h-(cit43)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(95)00047-J – volume: 15 start-page: 1567 year: 2007 ident: c3cp55209h-(cit29)/*[position()=1] publication-title: Structure doi: 10.1016/j.str.2007.09.024 – volume: 9 start-page: 945 year: 1976 ident: c3cp55209h-(cit37)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma60054a013 – volume: 3 start-page: 1832 year: 2008 ident: c3cp55209h-(cit42)/*[position()=1] publication-title: Nat. Protocols doi: 10.1038/nprot.2008.184 – volume: 12 start-page: 2011 year: 2005 ident: c3cp55209h-(cit47)/*[position()=1] publication-title: Curr. Med. Chem. doi: 10.2174/0929867054546564 – volume: 109 start-page: 17800 year: 2012 ident: c3cp55209h-(cit50)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1117368109 – volume: 45 start-page: 241 year: 2001 ident: c3cp55209h-(cit36)/*[position()=1] publication-title: Proteins: Struct., Funct., Genet. doi: 10.1002/prot.1145 – volume: 62 start-page: 1125 year: 2006 ident: c3cp55209h-(cit30)/*[position()=1] publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.20810 – volume: 45 start-page: 10102 year: 2006 ident: c3cp55209h-(cit22)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi060409m – volume: 89 start-page: 8721 year: 1992 ident: c3cp55209h-(cit11)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.89.18.8721 – volume: 305 start-page: 135 year: 2011 ident: c3cp55209h-(cit12)/*[position()=1] publication-title: Top. Curr. Chem. doi: 10.1007/128_2011_165 – volume: 105 start-page: 14412 year: 2008 ident: c3cp55209h-(cit21)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0805857105 – volume: 256 start-page: 623 year: 1996 ident: c3cp55209h-(cit33)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0114 – volume: 79 start-page: 926 year: 1983 ident: c3cp55209h-(cit44)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 394 start-page: 142 year: 2005 ident: c3cp55209h-(cit48)/*[position()=1] publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(05)94006-8 – volume: 326 start-page: 899 year: 2003 ident: c3cp55209h-(cit15)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)01425-0 – volume: 104 start-page: 11627 year: 2007 ident: c3cp55209h-(cit19)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0701393104 – volume: 50 start-page: 10965 year: 2011 ident: c3cp55209h-(cit24)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi2015663 – volume: 35 start-page: 627 year: 1996 ident: c3cp55209h-(cit5)/*[position()=1] publication-title: Europhys. Lett. doi: 10.1209/epl/i1996-00162-1 – volume: 278 start-page: 82 year: 1997 ident: c3cp55209h-(cit10)/*[position()=1] publication-title: Science doi: 10.1126/science.278.5335.82 – volume: 42 start-page: 427 year: 1997 ident: c3cp55209h-(cit2)/*[position()=1] publication-title: Biopolymers doi: 10.1002/(SICI)1097-0282(19971005)42:4<427::AID-BIP6>3.0.CO;2-S – volume: 72 start-page: 3907 year: 1994 ident: c3cp55209h-(cit3)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.3907 – volume: 33 start-page: 4721 year: 1994 ident: c3cp55209h-(cit23)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi00181a032 – volume: 78 start-page: 985 year: 2010 ident: c3cp55209h-(cit13)/*[position()=1] publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.22622 – volume: 106 start-page: 21149 year: 2009 ident: c3cp55209h-(cit17)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0906408106 |
SSID | ssj0001513 |
Score | 2.2166214 |
Snippet | Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 647 |
SubjectTerms | Amino Acid Sequence Correlation Enrichment Mathematical analysis Mathematical models Melting Molecular Dynamics Simulation Molecular structure Protein Structure, Tertiary Proteins Proteins - chemistry Proteins - metabolism Switches Thermodynamics Transition Temperature |
Title | The energy landscape of a protein switch |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24473276 https://www.proquest.com/docview/1507795899 https://www.proquest.com/docview/1520938003 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZb-rC9jG5ttnRd8egeVopb27IV67GElLRso7AU8masGy10TmgcBvn1O7rZXpuObS9GyLJk6xPH35HOBaFPOY_oUKUqVDLOQUHJ05BSoW3cWWwOuhTTvsNfv5HJdXo5y2ZtKkjjXVKzE77e6FfyP6hCHeCqvWT_AdmmU6iAMuALV0AYrn-NsbTOe8ZlVxszWYdHE37htjpe_ryt3V6VY6BXHhjuU73Zkq6y2xxLs01wNRq1yYidC8f39SqcrBpBPtbxsax5dtXdPYiN0Yn12jyRVuKlBIc0snnaGpFIutCnHQGnz_02St4I68ClHPNFpi1rbrqN4K0XPwwGQCaGOBk-CH5tfqf-1nO0lQDlB5m1dTaeXnxp_qvATbAPMIvpaTuUDujsHv6dXTxSGYBA3PvELoZATLfRK8f8gzML42v0TFZv0IuRR2EHfQY4Awtn0MAZzFVQBg7OwMK5i67Px9PRJHSJLEIOfLgOKVGCljnnCYV3ZHGsFElFnPASEy1DGcnLRGSC5aQUMgOVkHH4xIyTKJXAn3Af9ap5Jd-hIJZEUUZVJMoyZZGgIAkUo5LimDPO2AAd-QkouIvyrpON3BXG2gDTop23ATps2i5sbJONrT76eSxgQvR5UlnJ-WpZaF1iSDPQ2P_UBvrAoJXgAXprQWjG8qANUB9Qaaq7Q-9tvlEshNp7sr_36GW71PdRr75fyQ9AHWt24NbUL1PpbBw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+energy+landscape+of+a+protein+switch&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Chen%2C+Szu-Hua&rft.au=Elber%2C+Ron&rft.date=2014-04-14&rft.eissn=1463-9084&rft.volume=16&rft.issue=14&rft.spage=6407&rft_id=info:doi/10.1039%2Fc3cp55209h&rft_id=info%3Apmid%2F24473276&rft.externalDocID=24473276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |