The energy landscape of a protein switch

Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He et al. , Structure , 2012, 20 , 283 and is investigated computationally in the p...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 16; no. 14; pp. 647 - 6421
Main Authors Chen, Szu-Hua, Elber, Ron
Format Journal Article
LanguageEnglish
Published England 14.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He et al. , Structure , 2012, 20 , 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient ∼−0.7). The correlation reduces dramatically (∼0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments. Protein switches are made of highly similar sequences that fold to dramatically different structures.
AbstractList Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He et al. , Structure , 2012, 20 , 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient ∼−0.7). The correlation reduces dramatically (∼0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments. Protein switches are made of highly similar sequences that fold to dramatically different structures.
Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for alpha and alpha + beta folds has been illustrated experimentally by He et al., Structure, 2012, 20, 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient similar to -0.7). The correlation reduces dramatically ( similar to 0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments.
Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He et al., Structure, 2012, 20, 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient ∼-0.7). The correlation reduces dramatically (∼0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments.
Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He et al., Structure, 2012, 20, 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient ∼-0.7). The correlation reduces dramatically (∼0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments.Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants for α and α+β folds has been illustrated experimentally by He et al., Structure, 2012, 20, 283 and is investigated computationally in the present study. Methods to assign a sequence to one of the two folds are reported and analyzed. A fast and accurate protocol to identify the correct fold of the 31 sequences is based on enriching modeled structures using short molecular dynamics (MD) trajectories and scoring these structures with coarse-grained energy functions. We examine five coarse-grained energy functions and illustrate that the Hinds-Levitt potential works the best for this task. We show that enrichment by MD significantly enhances prediction accuracy. Finally, we find that melting temperature correlates well with the energy difference between the two folds (correlation coefficient ∼-0.7). The correlation reduces dramatically (∼0.4) if the absolute energy of the correct fold is considered. Moreover, prediction of melting temperature is sensitive to the structural templates. We emphasize in our analyses the use of native structures as templates since these folds are more readily available from structural biology experiments.
Author Chen, Szu-Hua
Elber, Ron
AuthorAffiliation Department of Chemistry
Institute for Computational Engineering and Sciences
Department of Molecular Biosciences
University of Texas at Austin
AuthorAffiliation_xml – name: Institute for Computational Engineering and Sciences
– name: Department of Chemistry
– name: Department of Molecular Biosciences
– name: University of Texas at Austin
Author_xml – sequence: 1
  givenname: Szu-Hua
  surname: Chen
  fullname: Chen, Szu-Hua
– sequence: 2
  givenname: Ron
  surname: Elber
  fullname: Elber, Ron
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24473276$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtLw0AQxhep2IdevCvxVoTobPaR7FGKLyh4qedls7uxkTSJuyml_71b-hBFxNMMzG--me8bol7d1Bahcww3GIi41US3jCUg5kdogCknsYCM9g59yvto6P07AGCGyQnqJ5SmJEn5AI1ncxvZ2rq3dVSp2nitWhs1RaSi1jWdLevIr8pOz0_RcaEqb892dYReH-5nk6d4-vL4PLmbxpoC62LBCyNUpnUign6OcVFwanCiFeEUgOY8U4lhJs-4MpZxmuQ6eGCaA7UcUzJC461uOP-xtL6Ti9JrW4XnbLP0Em-MkgyA_AOFNBUsEyKglzt0mS-ska0rF8qt5T6IAMAW0K7x3tlC6rJTXdnUnVNlJTHITdbyK-uwcv1jZa_6K3yxhZ3XB-7b_OqvuWxNQT4Brw-Rwg
CitedBy_id crossref_primary_10_1021_acs_jctc_1c00870
crossref_primary_10_1021_acs_jctc_3c00679
crossref_primary_10_1042_BCJ20200477
crossref_primary_10_1089_cmb_2019_0338
crossref_primary_10_3389_fchem_2020_00299
crossref_primary_10_1002_pro_2723
crossref_primary_10_1016_j_bpj_2019_04_013
crossref_primary_10_1073_pnas_2214430120
crossref_primary_10_1039_D3CB00114H
crossref_primary_10_1073_pnas_1913242117
crossref_primary_10_1016_j_addr_2022_114336
crossref_primary_10_1371_journal_pcbi_1004960
crossref_primary_10_1016_j_bpj_2017_02_029
crossref_primary_10_1371_journal_pcbi_1008285
crossref_primary_10_1021_acs_jcim_1c00458
crossref_primary_10_1039_C9NR10469K
Cites_doi 10.1016/S1359-0278(98)00021-2
10.1073/pnas.0711589105
10.1002/prot.21976
10.1038/srep00351
10.1063/1.470117
10.1126/science.3798113
10.1073/pnas.89.7.2536
10.1016/S0076-6879(03)74020-8
10.1002/prot.22401
10.1002/prot.340210302
10.1038/nprot.2006.204
10.1002/(SICI)1097-0134(20000701)40:1<71::AID-PROT90>3.0.CO;2-3
10.1002/prot.22481
10.1016/j.str.2011.11.018
10.1093/nar/gki524
10.1073/pnas.0700922104
10.1073/pnas.0701393104
10.1110/ps.8.2.361
10.1073/pnas.84.21.7524
10.1110/ps.9.9.1651
10.1126/science.1853201
10.1021/jp971707j
10.1016/0010-4655(95)00047-J
10.1016/j.str.2007.09.024
10.1021/ma60054a013
10.1038/nprot.2008.184
10.2174/0929867054546564
10.1073/pnas.1117368109
10.1002/prot.1145
10.1002/prot.20810
10.1021/bi060409m
10.1073/pnas.89.18.8721
10.1007/128_2011_165
10.1073/pnas.0805857105
10.1006/jmbi.1996.0114
10.1063/1.445869
10.1016/S0076-6879(05)94006-8
10.1016/S0022-2836(02)01425-0
10.1021/bi2015663
10.1209/epl/i1996-00162-1
10.1126/science.278.5335.82
10.1002/(SICI)1097-0282(19971005)42:4<427::AID-BIP6>3.0.CO;2-S
10.1103/PhysRevLett.72.3907
10.1021/bi00181a032
10.1002/prot.22622
10.1073/pnas.0906408106
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QF
7U5
8FD
JG9
L7M
DOI 10.1039/c3cp55209h
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Aluminium Industry Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Aluminium Industry Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 6421
ExternalDocumentID 24473276
10_1039_c3cp55209h
c3cp55209h
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM059796
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QF
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c405t-96fd9a8cc29276b11ff64d12ca364004b68a2d5db86ade5642bc0395c604e6143
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 05:25:11 EDT 2025
Thu Jul 10 23:06:43 EDT 2025
Thu Apr 03 07:04:44 EDT 2025
Tue Jul 01 02:45:35 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Thu May 30 17:42:58 EDT 2019
Thu May 19 04:19:37 EDT 2016
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-96fd9a8cc29276b11ff64d12ca364004b68a2d5db86ade5642bc0395c604e6143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24473276
PQID 1507795899
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_1520938003
crossref_primary_10_1039_c3cp55209h
rsc_primary_c3cp55209h
pubmed_primary_24473276
crossref_citationtrail_10_1039_c3cp55209h
proquest_miscellaneous_1507795899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-14
PublicationDateYYYYMMDD 2014-04-14
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2014
References Bruylants (c3cp55209h-(cit47)/*[position()=1]) 2005; 12
Elber (c3cp55209h-(cit49)/*[position()=1]) 1987; 235
Alexander (c3cp55209h-(cit17)/*[position()=1]) 2009; 106
Meyerguz (c3cp55209h-(cit19)/*[position()=1]) 2007; 104
Hoffmann (c3cp55209h-(cit48)/*[position()=1]) 2005; 394
Soranno (c3cp55209h-(cit50)/*[position()=1]) 2012; 109
Saven (c3cp55209h-(cit6)/*[position()=1]) 1997; 101
Greenfield (c3cp55209h-(cit46)/*[position()=1]) 2006; 1
Shakhnovich (c3cp55209h-(cit7)/*[position()=1]) 1998; 3
Cossio (c3cp55209h-(cit28)/*[position()=1]) 2012; 2
Meller (c3cp55209h-(cit36)/*[position()=1]) 2001; 45
Zhang (c3cp55209h-(cit31)/*[position()=1]) 2005; 33
Bryngelson (c3cp55209h-(cit1)/*[position()=1]) 1995; 21
Cheng (c3cp55209h-(cit30)/*[position()=1]) 2006; 62
Camacho (c3cp55209h-(cit5)/*[position()=1]) 1996; 35
Elber (c3cp55209h-(cit43)/*[position()=1]) 1995; 91
Cao (c3cp55209h-(cit13)/*[position()=1]) 2010; 78
Fiser (c3cp55209h-(cit41)/*[position()=1]) 2003; 374
Wang (c3cp55209h-(cit42)/*[position()=1]) 2008; 3
Vallat (c3cp55209h-(cit26)/*[position()=1]) 2008; 72
Betancourt (c3cp55209h-(cit34)/*[position()=1]) 1999; 8
Bowie (c3cp55209h-(cit40)/*[position()=1]) 1991; 253
Shakhnovich (c3cp55209h-(cit3)/*[position()=1]) 1994; 72
Roessler (c3cp55209h-(cit16)/*[position()=1]) 2008; 105
Yin (c3cp55209h-(cit29)/*[position()=1]) 2007; 15
He (c3cp55209h-(cit18)/*[position()=1]) 2012; 20
Gallagher (c3cp55209h-(cit23)/*[position()=1]) 1994; 33
He (c3cp55209h-(cit21)/*[position()=1]) 2008; 105
Govindarajan (c3cp55209h-(cit2)/*[position()=1]) 1997; 42
Allison (c3cp55209h-(cit24)/*[position()=1]) 2011; 50
Tobi (c3cp55209h-(cit35)/*[position()=1]) 2000; 40
Vicatos (c3cp55209h-(cit27)/*[position()=1]) 2009; 77
Hinds (c3cp55209h-(cit32)/*[position()=1]) 1992; 89
Shakhnovich (c3cp55209h-(cit9)/*[position()=1]) 1998; 3
Dahiyat (c3cp55209h-(cit10)/*[position()=1]) 1997; 278
Dalal (c3cp55209h-(cit14)/*[position()=1]) 2000; 9
He (c3cp55209h-(cit22)/*[position()=1]) 2006; 45
Meyerguz (c3cp55209h-(cit8)/*[position()=1]) 2007; 104
Tanaka (c3cp55209h-(cit37)/*[position()=1]) 1976; 9
Essmann (c3cp55209h-(cit45)/*[position()=1]) 1995; 103
Cordes (c3cp55209h-(cit15)/*[position()=1]) 2003; 326
Leopold (c3cp55209h-(cit11)/*[position()=1]) 1992; 89
Surewicz (c3cp55209h-(cit12)/*[position()=1]) 2011; 305
Vallat (c3cp55209h-(cit25)/*[position()=1]) 2009; 76
Jorgensen (c3cp55209h-(cit44)/*[position()=1]) 1983; 79
Alexander (c3cp55209h-(cit20)/*[position()=1]) 2007; 104
Bryngelson (c3cp55209h-(cit4)/*[position()=1]) 1987; 84
Miyazawa (c3cp55209h-(cit33)/*[position()=1]) 1996; 256
References_xml – issn: 1998
  publication-title: Biological sequence analysis: Probabilistic models of proteins and nucleic acids
  doi: Durbin Eddy Krogh Mitchison
– doi: Meyerguz Kempe Kleinberg Elber
– volume: 3
  start-page: R45
  year: 1998
  ident: c3cp55209h-(cit7)/*[position()=1]
  publication-title: Folding Des.
  doi: 10.1016/S1359-0278(98)00021-2
– volume: 105
  start-page: 2343
  year: 2008
  ident: c3cp55209h-(cit16)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0711589105
– volume: 72
  start-page: 910
  year: 2008
  ident: c3cp55209h-(cit26)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.21976
– volume: 2
  start-page: 351
  year: 2012
  ident: c3cp55209h-(cit28)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00351
– volume: 103
  start-page: 8577
  year: 1995
  ident: c3cp55209h-(cit45)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– volume: 235
  start-page: 318
  year: 1987
  ident: c3cp55209h-(cit49)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.3798113
– volume: 89
  start-page: 2536
  year: 1992
  ident: c3cp55209h-(cit32)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.7.2536
– volume: 374
  start-page: 461
  year: 2003
  ident: c3cp55209h-(cit41)/*[position()=1]
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(03)74020-8
– volume: 76
  start-page: 930
  year: 2009
  ident: c3cp55209h-(cit25)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.22401
– volume: 21
  start-page: 167
  year: 1995
  ident: c3cp55209h-(cit1)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Genet.
  doi: 10.1002/prot.340210302
– volume: 1
  start-page: 2527
  year: 2006
  ident: c3cp55209h-(cit46)/*[position()=1]
  publication-title: Nat. Protocols
  doi: 10.1038/nprot.2006.204
– volume: 40
  start-page: 71
  year: 2000
  ident: c3cp55209h-(cit35)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Genet.
  doi: 10.1002/(SICI)1097-0134(20000701)40:1<71::AID-PROT90>3.0.CO;2-3
– volume: 77
  start-page: 670
  year: 2009
  ident: c3cp55209h-(cit27)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.22481
– volume: 3
  start-page: R45
  year: 1998
  ident: c3cp55209h-(cit9)/*[position()=1]
  publication-title: Folding Des.
  doi: 10.1016/S1359-0278(98)00021-2
– volume: 20
  start-page: 283
  year: 2012
  ident: c3cp55209h-(cit18)/*[position()=1]
  publication-title: Structure
  doi: 10.1016/j.str.2011.11.018
– volume: 33
  start-page: 2302
  year: 2005
  ident: c3cp55209h-(cit31)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki524
– volume: 104
  start-page: 11963
  year: 2007
  ident: c3cp55209h-(cit20)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0700922104
– volume: 104
  start-page: 11627
  year: 2007
  ident: c3cp55209h-(cit8)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0701393104
– volume: 8
  start-page: 361
  year: 1999
  ident: c3cp55209h-(cit34)/*[position()=1]
  publication-title: Protein Sci.
  doi: 10.1110/ps.8.2.361
– volume: 84
  start-page: 7524
  year: 1987
  ident: c3cp55209h-(cit4)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.84.21.7524
– volume: 9
  start-page: 1651
  year: 2000
  ident: c3cp55209h-(cit14)/*[position()=1]
  publication-title: Protein Sci.
  doi: 10.1110/ps.9.9.1651
– volume: 253
  start-page: 164
  year: 1991
  ident: c3cp55209h-(cit40)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1853201
– volume: 101
  start-page: 8375
  year: 1997
  ident: c3cp55209h-(cit6)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp971707j
– volume: 91
  start-page: 159
  year: 1995
  ident: c3cp55209h-(cit43)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00047-J
– volume: 15
  start-page: 1567
  year: 2007
  ident: c3cp55209h-(cit29)/*[position()=1]
  publication-title: Structure
  doi: 10.1016/j.str.2007.09.024
– volume: 9
  start-page: 945
  year: 1976
  ident: c3cp55209h-(cit37)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma60054a013
– volume: 3
  start-page: 1832
  year: 2008
  ident: c3cp55209h-(cit42)/*[position()=1]
  publication-title: Nat. Protocols
  doi: 10.1038/nprot.2008.184
– volume: 12
  start-page: 2011
  year: 2005
  ident: c3cp55209h-(cit47)/*[position()=1]
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867054546564
– volume: 109
  start-page: 17800
  year: 2012
  ident: c3cp55209h-(cit50)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1117368109
– volume: 45
  start-page: 241
  year: 2001
  ident: c3cp55209h-(cit36)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Genet.
  doi: 10.1002/prot.1145
– volume: 62
  start-page: 1125
  year: 2006
  ident: c3cp55209h-(cit30)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.20810
– volume: 45
  start-page: 10102
  year: 2006
  ident: c3cp55209h-(cit22)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi060409m
– volume: 89
  start-page: 8721
  year: 1992
  ident: c3cp55209h-(cit11)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.18.8721
– volume: 305
  start-page: 135
  year: 2011
  ident: c3cp55209h-(cit12)/*[position()=1]
  publication-title: Top. Curr. Chem.
  doi: 10.1007/128_2011_165
– volume: 105
  start-page: 14412
  year: 2008
  ident: c3cp55209h-(cit21)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0805857105
– volume: 256
  start-page: 623
  year: 1996
  ident: c3cp55209h-(cit33)/*[position()=1]
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0114
– volume: 79
  start-page: 926
  year: 1983
  ident: c3cp55209h-(cit44)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 394
  start-page: 142
  year: 2005
  ident: c3cp55209h-(cit48)/*[position()=1]
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(05)94006-8
– volume: 326
  start-page: 899
  year: 2003
  ident: c3cp55209h-(cit15)/*[position()=1]
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)01425-0
– volume: 104
  start-page: 11627
  year: 2007
  ident: c3cp55209h-(cit19)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0701393104
– volume: 50
  start-page: 10965
  year: 2011
  ident: c3cp55209h-(cit24)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi2015663
– volume: 35
  start-page: 627
  year: 1996
  ident: c3cp55209h-(cit5)/*[position()=1]
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1996-00162-1
– volume: 278
  start-page: 82
  year: 1997
  ident: c3cp55209h-(cit10)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.278.5335.82
– volume: 42
  start-page: 427
  year: 1997
  ident: c3cp55209h-(cit2)/*[position()=1]
  publication-title: Biopolymers
  doi: 10.1002/(SICI)1097-0282(19971005)42:4<427::AID-BIP6>3.0.CO;2-S
– volume: 72
  start-page: 3907
  year: 1994
  ident: c3cp55209h-(cit3)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3907
– volume: 33
  start-page: 4721
  year: 1994
  ident: c3cp55209h-(cit23)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi00181a032
– volume: 78
  start-page: 985
  year: 2010
  ident: c3cp55209h-(cit13)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.22622
– volume: 106
  start-page: 21149
  year: 2009
  ident: c3cp55209h-(cit17)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0906408106
SSID ssj0001513
Score 2.2166214
Snippet Protein switches are made of highly similar sequences that fold to dramatically different structures. A structural switching system with 31 sequence variants...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 647
SubjectTerms Amino Acid Sequence
Correlation
Enrichment
Mathematical analysis
Mathematical models
Melting
Molecular Dynamics Simulation
Molecular structure
Protein Structure, Tertiary
Proteins
Proteins - chemistry
Proteins - metabolism
Switches
Thermodynamics
Transition Temperature
Title The energy landscape of a protein switch
URI https://www.ncbi.nlm.nih.gov/pubmed/24473276
https://www.proquest.com/docview/1507795899
https://www.proquest.com/docview/1520938003
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZb-rC9jG5ttnRd8egeVopb27IV67GElLRso7AU8masGy10TmgcBvn1O7rZXpuObS9GyLJk6xPH35HOBaFPOY_oUKUqVDLOQUHJ05BSoW3cWWwOuhTTvsNfv5HJdXo5y2ZtKkjjXVKzE77e6FfyP6hCHeCqvWT_AdmmU6iAMuALV0AYrn-NsbTOe8ZlVxszWYdHE37htjpe_ryt3V6VY6BXHhjuU73Zkq6y2xxLs01wNRq1yYidC8f39SqcrBpBPtbxsax5dtXdPYiN0Yn12jyRVuKlBIc0snnaGpFIutCnHQGnz_02St4I68ClHPNFpi1rbrqN4K0XPwwGQCaGOBk-CH5tfqf-1nO0lQDlB5m1dTaeXnxp_qvATbAPMIvpaTuUDujsHv6dXTxSGYBA3PvELoZATLfRK8f8gzML42v0TFZv0IuRR2EHfQY4Awtn0MAZzFVQBg7OwMK5i67Px9PRJHSJLEIOfLgOKVGCljnnCYV3ZHGsFElFnPASEy1DGcnLRGSC5aQUMgOVkHH4xIyTKJXAn3Af9ap5Jd-hIJZEUUZVJMoyZZGgIAkUo5LimDPO2AAd-QkouIvyrpON3BXG2gDTop23ATps2i5sbJONrT76eSxgQvR5UlnJ-WpZaF1iSDPQ2P_UBvrAoJXgAXprQWjG8qANUB9Qaaq7Q-9tvlEshNp7sr_36GW71PdRr75fyQ9AHWt24NbUL1PpbBw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+energy+landscape+of+a+protein+switch&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Chen%2C+Szu-Hua&rft.au=Elber%2C+Ron&rft.date=2014-04-14&rft.eissn=1463-9084&rft.volume=16&rft.issue=14&rft.spage=6407&rft_id=info:doi/10.1039%2Fc3cp55209h&rft_id=info%3Apmid%2F24473276&rft.externalDocID=24473276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon