AMF enhance secondary metabolite production in ashwagandha, licorice, and marigold in a fungi-host specific manner

Strategies to enhance the production of secondary metabolites, derived from medicinal and agriculturally important plants have been the subject of exploration to enable effective utilization of these biorepositories. Through symbiosis, arbuscular mycorrhizal fungi (AMF), modify plant primary and sec...

Full description

Saved in:
Bibliographic Details
Published inRhizosphere Vol. 17; p. 100314
Main Authors Johny, Leena, Cahill, David M., Adholeya, Alok
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Strategies to enhance the production of secondary metabolites, derived from medicinal and agriculturally important plants have been the subject of exploration to enable effective utilization of these biorepositories. Through symbiosis, arbuscular mycorrhizal fungi (AMF), modify plant primary and secondary metabolite biosynthesis. The relationship thus offers the opportunity to exploit combinations of host and fungus that maximize secondary metabolite production. We investigated different AMF host combinations for the enhancement of root-derived secondary metabolites from three plant species - ashwagandha (Withania somnifera (L.) Dunal), licorice (Glycyrrhiza glabra L.), and marigold (Tagetes erecta L.). Each host species was inoculated singly with each of five species of AMF, Glomus hoi, Claroideoglomus etunicatum, Claroideoglomus claroideum, Rhizophagus irregularis, and Acaulospora delicata and secondary metabolite production was assessed. Increased concentrations of the following secondary metabolites were found in roots after AMF establishment: for withaferin-A in ashwagandha (concentrations ranged from 11.5 to 43.5% above than in control non-mycorrhized roots depending on the host and AMF combination); in licorice, glycyrrhizic acid (1.51–3.92% above control) and glabridin (2.85–6.41% above control) and in marigold, alpha-terthienyl (1.51–7.18% above control). Specifically, among the AMF inoculations, the highest levels of secondary metabolite were found in ashwagandha and marigold inoculated with R. irregularis and for licorice following inoculation with C. etunicatum revealing the impact of different AMF species on different plant species. This underpinning knowledge of AMF symbioses with the plant host will augment the development of methods that will provide enhanced concentrations of secondary metabolites of commercial value. •Inoculation of AMF improved secondary metabolite production in the host plants.•Ashwagandha and marigold showed maximum secondary metabolites production with Rhizophagus irregularis inoculation.•Licorice showed maximum secondary metabolites production with Claroideoglomus etunicatum inoculation.
AbstractList Strategies to enhance the production of secondary metabolites, derived from medicinal and agriculturally important plants have been the subject of exploration to enable effective utilization of these biorepositories. Through symbiosis, arbuscular mycorrhizal fungi (AMF), modify plant primary and secondary metabolite biosynthesis. The relationship thus offers the opportunity to exploit combinations of host and fungus that maximize secondary metabolite production. We investigated different AMF host combinations for the enhancement of root-derived secondary metabolites from three plant species - ashwagandha (Withania somnifera (L.) Dunal), licorice (Glycyrrhiza glabra L.), and marigold (Tagetes erecta L.). Each host species was inoculated singly with each of five species of AMF, Glomus hoi, Claroideoglomus etunicatum, Claroideoglomus claroideum, Rhizophagus irregularis, and Acaulospora delicata and secondary metabolite production was assessed. Increased concentrations of the following secondary metabolites were found in roots after AMF establishment: for withaferin-A in ashwagandha (concentrations ranged from 11.5 to 43.5% above than in control non-mycorrhized roots depending on the host and AMF combination); in licorice, glycyrrhizic acid (1.51–3.92% above control) and glabridin (2.85–6.41% above control) and in marigold, alpha-terthienyl (1.51–7.18% above control). Specifically, among the AMF inoculations, the highest levels of secondary metabolite were found in ashwagandha and marigold inoculated with R. irregularis and for licorice following inoculation with C. etunicatum revealing the impact of different AMF species on different plant species. This underpinning knowledge of AMF symbioses with the plant host will augment the development of methods that will provide enhanced concentrations of secondary metabolites of commercial value. •Inoculation of AMF improved secondary metabolite production in the host plants.•Ashwagandha and marigold showed maximum secondary metabolites production with Rhizophagus irregularis inoculation.•Licorice showed maximum secondary metabolites production with Claroideoglomus etunicatum inoculation.
Strategies to enhance the production of secondary metabolites, derived from medicinal and agriculturally important plants have been the subject of exploration to enable effective utilization of these biorepositories. Through symbiosis, arbuscular mycorrhizal fungi (AMF), modify plant primary and secondary metabolite biosynthesis. The relationship thus offers the opportunity to exploit combinations of host and fungus that maximize secondary metabolite production. We investigated different AMF host combinations for the enhancement of root-derived secondary metabolites from three plant species - ashwagandha (Withania somnifera (L.) Dunal), licorice (Glycyrrhiza glabra L.), and marigold (Tagetes erecta L.). Each host species was inoculated singly with each of five species of AMF, Glomus hoi, Claroideoglomus etunicatum, Claroideoglomus claroideum, Rhizophagus irregularis, and Acaulospora delicata and secondary metabolite production was assessed. Increased concentrations of the following secondary metabolites were found in roots after AMF establishment: for withaferin-A in ashwagandha (concentrations ranged from 11.5 to 43.5% above than in control non-mycorrhized roots depending on the host and AMF combination); in licorice, glycyrrhizic acid (1.51–3.92% above control) and glabridin (2.85–6.41% above control) and in marigold, alpha-terthienyl (1.51–7.18% above control). Specifically, among the AMF inoculations, the highest levels of secondary metabolite were found in ashwagandha and marigold inoculated with R. irregularis and for licorice following inoculation with C. etunicatum revealing the impact of different AMF species on different plant species. This underpinning knowledge of AMF symbioses with the plant host will augment the development of methods that will provide enhanced concentrations of secondary metabolites of commercial value.
ArticleNumber 100314
Author Cahill, David M.
Adholeya, Alok
Johny, Leena
Author_xml – sequence: 1
  givenname: Leena
  surname: Johny
  fullname: Johny, Leena
  organization: Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahadi, Gurugram, Haryana, 122001, India
– sequence: 2
  givenname: David M.
  surname: Cahill
  fullname: Cahill, David M.
  organization: Deakin University, Geelong, School of Life and Environmental Sciences, Geelong Campus, Waurn Ponds, Victoria, Australia
– sequence: 3
  givenname: Alok
  surname: Adholeya
  fullname: Adholeya, Alok
  email: aloka@teri.res.in
  organization: Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahadi, Gurugram, Haryana, 122001, India
BookMark eNqFkU9v1DAQxS1UJErpN-DgI4dmsZ0_TjggVRUFpFa9lLM1sSebWWXtxfaC-u3xNhwQBzjNaPTek95vXrMzHzwy9laKjRSye7_bxJnSYd4ooWQ5iVo2L9i5alpVKTn0Z3_sr9hlSjshhNRd3Xb1OYvX97cc_QzeIk9og3cQn_geM4xhoYz8EIM72kzBc_Ic0vwTtuDdDFd8IRsiWbzi5cD3EGkbFvcs49PRb6maQ8o8HdDSRLYovMf4hr2cYEl4-XtesG-3nx5vvlR3D5-_3lzfVbYRba6GDmrnRis01DAOve4soHYateyFdK4dp2kEUINoQdZ90wjRWyd0bzWiKhgu2Ls1tzT4fsSUzZ6SxWUBj-GYjGqllFo1cijSD6vUxpBSxMlYynDqnCPQYqQwJ9ZmZ1bW5sTarKyLufnLfIhUYDz9z_ZxtWFh8IMwmmQJyxscRbTZuED_DvgFTo2eDw
CitedBy_id crossref_primary_10_3389_fmicb_2024_1360988
crossref_primary_10_1016_j_scienta_2023_112646
crossref_primary_10_1016_j_bse_2023_104759
crossref_primary_10_3390_horticulturae8121106
crossref_primary_10_1016_j_jbiosc_2022_07_016
crossref_primary_10_1016_j_micres_2021_126940
crossref_primary_10_1007_s42729_021_00721_8
crossref_primary_10_1016_j_indcrop_2021_114327
crossref_primary_10_1016_j_plaphy_2023_107662
crossref_primary_10_1007_s00572_022_01079_0
crossref_primary_10_1016_j_apsoil_2024_105278
crossref_primary_10_18393_ejss_1390588
crossref_primary_10_1186_s12870_023_04053_w
crossref_primary_10_3390_f13091491
crossref_primary_10_3390_genes16030285
crossref_primary_10_1111_jac_12672
crossref_primary_10_3390_plants11212941
crossref_primary_10_1007_s10123_024_00548_0
crossref_primary_10_1007_s13199_023_00905_z
crossref_primary_10_1016_j_rhisph_2023_100685
crossref_primary_10_3390_plants12203580
crossref_primary_10_1038_s41598_024_73479_5
crossref_primary_10_1016_j_jarmap_2024_100574
crossref_primary_10_3390_plants11182338
crossref_primary_10_1007_s11104_023_06303_0
Cites_doi 10.1016/j.funbio.2018.05.009
10.13187/ejbr.2014.2.93
10.1080/01448765.2012.727541
10.1128/AEM.01287-12
10.1111/pce.12508
10.1007/s00572-013-0484-0
10.1016/j.phytochem.2007.06.032
10.1016/j.funeco.2009.07.003
10.3389/fmicb.2018.02920
10.1016/j.sjbs.2010.06.007
10.1007/s00425-007-0649-1
10.1016/j.plaphy.2015.02.010
10.3389/fpls.2018.01329
10.1016/j.saa.2016.06.008
10.1007/s11240-017-1344-y
10.1002/jsfa.3950
10.3852/11-229
10.2174/1389557519666190119111125
10.1007/s40003-012-0047-1
10.1007/s00572-015-0631-x
10.1007/s13213-015-1097-y
10.1104/pp.109.136390
10.1007/s40333-013-0208-5
10.1007/s11104-018-3861-9
10.1111/j.1399-3054.1962.tb08052.x
10.1128/AEM.64.12.5004-5007.1998
10.1007/s00709-016-0959-x
10.1016/j.apsoil.2010.09.005
10.3389/fmicb.2015.00598
10.1073/pnas.2000926117
10.1016/j.biortech.2011.03.058
10.1007/978-3-319-74240-3_5
10.1016/j.rhisph.2020.100191
10.1007/s00572-007-0135-4
10.1073/pnas.0608136104
10.1007/s11104-013-1681-5
10.1007/s00572-006-0104-3
10.1016/j.nbt.2011.05.009
10.1016/j.ijpharm.2019.01.047
10.3390/ijms20215310
10.1007/s00572-009-0254-1
10.1093/mp/ssq035
10.4161/psb.22015
10.1134/S1021443713050129
10.1007/s11240-014-0673-3
10.1017/S0029665116002937
10.1007/s11101-016-9486-9
10.1007/s00572-016-0707-2
10.1093/jxb/50.340.1663
10.1111/j.1469-8137.1981.tb01690.x
10.1002/ptr.6178
10.3389/fpls.2018.01089
10.1007/s11104-015-2388-6
10.3390/plants9030375
10.3390/metabo10080335
10.1007/s11738-012-1130-8
10.1105/tpc.004861
10.1093/pcp/pcj069
10.1111/j.1469-8137.1996.tb04341.x
10.2174/1874285801711010283
10.1071/FP18327
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rhisph.2021.100314
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2452-2198
ExternalDocumentID 10_1016_j_rhisph_2021_100314
S2452219821000100
GroupedDBID --M
0R~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AFKWA
AFTJW
AFXIZ
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPCBC
SSA
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c405t-96a3ddbc07a3ab9876cae7d7e71801dd5bffbaa2905a13844008cd078c7ee2003
IEDL.DBID AIKHN
ISSN 2452-2198
IngestDate Sun Aug 24 04:08:05 EDT 2025
Tue Jul 01 03:12:55 EDT 2025
Thu Apr 24 23:03:16 EDT 2025
Fri Feb 23 02:36:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Glabridin
Arbuscular mycorrhizal fungi
Withaferin-A
Alpha-terthienyl
Secondary metabolites
Glycyrrhizic acid
DW
GLY
α-T
AMF
SEM
CLSM
GLA
HPLC
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-96a3ddbc07a3ab9876cae7d7e71801dd5bffbaa2905a13844008cd078c7ee2003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2511172419
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2511172419
crossref_citationtrail_10_1016_j_rhisph_2021_100314
crossref_primary_10_1016_j_rhisph_2021_100314
elsevier_sciencedirect_doi_10_1016_j_rhisph_2021_100314
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Rhizosphere
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Campos, Carvalho, Brígido, Goss, Nobre (bib9) 2018; 9
Javot, Penmetsa, Terzaghi, Cook, Harrison (bib27) 2007; 104
Yadav, Aggarwal, Singh (bib66) 2013; 2
Avio, Turrini, Giovannetti, Sbrana (bib3) 2018; 9
Torrecillas, Alguacil, Roldán (bib57) 2012; 78
Zeng, Guo, Chen, Hao, Wang, Huang, Yang, Cui, Yang, Wu, Chen (bib67) 2013; 23
Hosamani, Lakshman, Sandeepkumar, Kadam, Kerur (bib26) 2011; 2
Biermann, Linderman (bib5) 1981; 87
Kaur, Suseela (bib34) 2020; 10
Liu, Tan, Nell, Zitter-Eglseer, Wawscrah, Kopp, Wang, Novak (bib36) 2014; 6
Harrison, Dewbre, Liu (bib23) 2002; 14
Öztürk, Altay, Hakeem, Akçiçek (bib44) 2017
Chen, Yu, Huang (bib10) 2016; 168
Marotti, Marotti, Piccaglia, Nastri, Grandi, Dinelli (bib39) 2010; 90
Mensah, Koch, Antunes, Kiers, Hart, Bücking (bib40) 2015; 25
Wang, Chen, Xie, Yang, Luo, Chen, Zeng, Ren, Yang, Wang, Feng (bib64) 2020; 117
Guether, Neuhäuser, Balestrini, Dynowski, Ludewig, Bonfante (bib21) 2009; 150
Sun, Zhao, Lu, Yang, Zhu (bib56) 2019; 19
Pastorino, Cornara, Soares, Rodrigues, Oliveira (bib47) 2018; 32
Johnson, Houngnandan, Kane, Chatagnier, Sanon, Neyra, van Tuinen (bib28) 2016; 66
Fellbaum, Mensah, Pfeffer, Kiers, Bücking (bib18) 2012; 7
Chirumamilla, Pérez-Novo, Van Ostade, Berghe (bib11) 2017; 76
Golubkina, Logvinenko, Novitsky, Zamana, Sokolov, Molchanova, Shevchuk, Sekara, Tallarita, Caruso (bib20) 2020; 9
Rivero, Gamir, Aroca, Pozo, Flors (bib51) 2015; 6
Treseder (bib60) 2013; 371
Toussaint, Smith, Smith (bib58) 2007; 17
Feddermann, Boller, Salzer, Elfstrand, Wiemken, Elfstrand (bib16) 2008; 227
Pedone-Bonfim, da Silva, da Silva-Batista, de Oliveira, da Silva Almeida, Yano-Melo, Maia (bib48) 2018; 122
Zhang, Zhou (bib68) 2010; 3
Asrar, Elhindi (bib2) 2011; 18
Bitterlich, Rouphael, Graefe, Franken (bib6) 2018; 9
Johny, Conlan, Adholeya, Cahill (bib30) 2018; 132
Kapoor, Chaudhary, Bhatnagar (bib32) 2007; 17
Kumar, Prasad, Kumar, Tuteja, Varma (bib35) 2017
Schliemann, Ammer, Strack (bib52) 2008; 69
Gupta (bib22) 1999
Johny, Cahill, Conlan, Adholeya (bib29) 2015; 120
Smith, Smith (bib55) 2012; 104
Hoagland, Arnon (bib24) 1950
Kapulnik, Volpin, Itzhaki, Ganon, Galili, David, Shaul, Elad, Chet, Okon (bib33) 1996; 133
Das, Uppal, Singh, Beri, Mohan, Gupta, Adholeya (bib12) 2011; 102
Andrade, Malik, Sawaya, Bottcher, Mazzafera (bib1) 2013; 35
Dutta, Khalil, Green, Mohapatra, Mohapatra (bib15) 2019; 20
Perez, Urcelay (bib49) 2009; 19
Blilou, Ocampo, García-Garrido (bib7) 1999; 50
Rayees, Malik (bib50) 2017
Selyutina, Polyakov (bib53) 2019; 559
Murashige, Skoog (bib41) 1962; 15
De Souza Ferrari, dos Santos Queiroz, de Andrade, Alberton, Gonçalves, Gazim, Magalhães (bib13) 2020; 13
Dos Santos, Da Silva, Da Silva (bib14) 2017; 11
Pal, Yadav, Singh, Rastogi, Gupta, Verma, Nagegowda, Pal, Shasany (bib45) 2017; 254
Vaingankar, Rodrigues (bib61) 2012; 28
Feddermann, Finlay, Boller, Elfstrand (bib17) 2010; 3
Hooks, Wang, Ploeg, McSorley (bib25) 2010; 46
Maeda, Ashida, Iguchi, Chechetka, Hijikata, Okusako, Deguchi, Izui, Hata (bib37) 2006; 47
Gerlach, Schmitz, Polatajko, Schlueter, Fahnenstich, Witt, Fernie, Uroic, Scholz, Sonnewald, Bucher (bib19) 2015; 38
Orujei, Shabani, Sharifi-Tehrani (bib43) 2013; 60
Pandey, Kaur, Dey (bib46) 2018
Tran, Watts-Williams, Cavagnaro (bib59) 2019; 46
Negahban, Aboutalebi, Zakerin (bib42) 2014; 2
Vierheilig, Coughlan, Wyss, Piché (bib63) 1998; 64
Van Der Heijden (bib62) 2002
Castillo, Dasgupta-Schubert, Alvarado, Zaragoza, Villegas (bib8) 2011; 29
Kapoor, Anand, Gupta, Mandal (bib31) 2017; 16
Mandal, Upadhyay, Singh, Kapoor (bib38) 2015; 89
Battini, Bernardi, Turrini, Agnolucci, Giovannetti (bib4) 2016; 26
Xie, Hao, Yu, Wu, Zhao, Li, Zhang, Chen (bib65) 2019; 439
Smith, Read (bib54) 2008
Zubek, Rola, Szewczyk, Majewska, Turnau (bib69) 2015; 390
Kapoor (10.1016/j.rhisph.2021.100314_bib32) 2007; 17
Smith (10.1016/j.rhisph.2021.100314_bib54) 2008
Wang (10.1016/j.rhisph.2021.100314_bib64) 2020; 117
Murashige (10.1016/j.rhisph.2021.100314_bib41) 1962; 15
Dutta (10.1016/j.rhisph.2021.100314_bib15) 2019; 20
Golubkina (10.1016/j.rhisph.2021.100314_bib20) 2020; 9
Kapoor (10.1016/j.rhisph.2021.100314_bib31) 2017; 16
Kumar (10.1016/j.rhisph.2021.100314_bib35) 2017
Maeda (10.1016/j.rhisph.2021.100314_bib37) 2006; 47
Kapulnik (10.1016/j.rhisph.2021.100314_bib33) 1996; 133
Battini (10.1016/j.rhisph.2021.100314_bib4) 2016; 26
Hosamani (10.1016/j.rhisph.2021.100314_bib26) 2011; 2
Chen (10.1016/j.rhisph.2021.100314_bib10) 2016; 168
Gerlach (10.1016/j.rhisph.2021.100314_bib19) 2015; 38
Rivero (10.1016/j.rhisph.2021.100314_bib51) 2015; 6
Pandey (10.1016/j.rhisph.2021.100314_bib46) 2018
Perez (10.1016/j.rhisph.2021.100314_bib49) 2009; 19
Avio (10.1016/j.rhisph.2021.100314_bib3) 2018; 9
Blilou (10.1016/j.rhisph.2021.100314_bib7) 1999; 50
De Souza Ferrari (10.1016/j.rhisph.2021.100314_bib13) 2020; 13
Gupta (10.1016/j.rhisph.2021.100314_bib22) 1999
Pastorino (10.1016/j.rhisph.2021.100314_bib47) 2018; 32
Castillo (10.1016/j.rhisph.2021.100314_bib8) 2011; 29
Das (10.1016/j.rhisph.2021.100314_bib12) 2011; 102
Öztürk (10.1016/j.rhisph.2021.100314_bib44) 2017
Johnson (10.1016/j.rhisph.2021.100314_bib28) 2016; 66
Campos (10.1016/j.rhisph.2021.100314_bib9) 2018; 9
Feddermann (10.1016/j.rhisph.2021.100314_bib17) 2010; 3
Feddermann (10.1016/j.rhisph.2021.100314_bib16) 2008; 227
Bitterlich (10.1016/j.rhisph.2021.100314_bib6) 2018; 9
Liu (10.1016/j.rhisph.2021.100314_bib36) 2014; 6
Johny (10.1016/j.rhisph.2021.100314_bib30) 2018; 132
Andrade (10.1016/j.rhisph.2021.100314_bib1) 2013; 35
Zhang (10.1016/j.rhisph.2021.100314_bib68) 2010; 3
Toussaint (10.1016/j.rhisph.2021.100314_bib58) 2007; 17
Hoagland (10.1016/j.rhisph.2021.100314_bib24) 1950
Yadav (10.1016/j.rhisph.2021.100314_bib66) 2013; 2
Negahban (10.1016/j.rhisph.2021.100314_bib42) 2014; 2
Vierheilig (10.1016/j.rhisph.2021.100314_bib63) 1998; 64
Mandal (10.1016/j.rhisph.2021.100314_bib38) 2015; 89
Johny (10.1016/j.rhisph.2021.100314_bib29) 2015; 120
Sun (10.1016/j.rhisph.2021.100314_bib56) 2019; 19
Pal (10.1016/j.rhisph.2021.100314_bib45) 2017; 254
Rayees (10.1016/j.rhisph.2021.100314_bib50) 2017
Vaingankar (10.1016/j.rhisph.2021.100314_bib61) 2012; 28
Javot (10.1016/j.rhisph.2021.100314_bib27) 2007; 104
Marotti (10.1016/j.rhisph.2021.100314_bib39) 2010; 90
Harrison (10.1016/j.rhisph.2021.100314_bib23) 2002; 14
Schliemann (10.1016/j.rhisph.2021.100314_bib52) 2008; 69
Smith (10.1016/j.rhisph.2021.100314_bib55) 2012; 104
Fellbaum (10.1016/j.rhisph.2021.100314_bib18) 2012; 7
Xie (10.1016/j.rhisph.2021.100314_bib65) 2019; 439
Chirumamilla (10.1016/j.rhisph.2021.100314_bib11) 2017; 76
Zeng (10.1016/j.rhisph.2021.100314_bib67) 2013; 23
Orujei (10.1016/j.rhisph.2021.100314_bib43) 2013; 60
Tran (10.1016/j.rhisph.2021.100314_bib59) 2019; 46
Van Der Heijden (10.1016/j.rhisph.2021.100314_bib62) 2002
Torrecillas (10.1016/j.rhisph.2021.100314_bib57) 2012; 78
Kaur (10.1016/j.rhisph.2021.100314_bib34) 2020; 10
Selyutina (10.1016/j.rhisph.2021.100314_bib53) 2019; 559
Asrar (10.1016/j.rhisph.2021.100314_bib2) 2011; 18
Pedone-Bonfim (10.1016/j.rhisph.2021.100314_bib48) 2018; 122
Treseder (10.1016/j.rhisph.2021.100314_bib60) 2013; 371
Guether (10.1016/j.rhisph.2021.100314_bib21) 2009; 150
Biermann (10.1016/j.rhisph.2021.100314_bib5) 1981; 87
Hooks (10.1016/j.rhisph.2021.100314_bib25) 2010; 46
Zubek (10.1016/j.rhisph.2021.100314_bib69) 2015; 390
Dos Santos (10.1016/j.rhisph.2021.100314_bib14) 2017; 11
Mensah (10.1016/j.rhisph.2021.100314_bib40) 2015; 25
References_xml – volume: 18
  start-page: 93
  year: 2011
  end-page: 98
  ident: bib2
  article-title: Alleviation of drought stress of marigold (
  publication-title: Saudi J. Biol. Sci.
– volume: 104
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib55
  article-title: Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth
  publication-title: Mycol.
– volume: 120
  start-page: 1191
  year: 2015
  end-page: 1202
  ident: bib29
  article-title: and
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 102
  start-page: 6541
  year: 2011
  end-page: 6546
  ident: bib12
  article-title: Co-composting of physic nut (
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 2920
  year: 2018
  ident: bib9
  article-title: Symbiosis specificity of the preceding host plant can dominate but not obliterate the association between wheat and its arbuscular mycorrhizal fungal partners
  publication-title: Front. Microbiol.
– volume: 28
  start-page: 167
  year: 2012
  end-page: 176
  ident: bib61
  article-title: Screening for efficient AM (arbuscular mycorrhizal) fungal bioinoculants for two commercially important ornamental flowering plant species of Asteraceae
  publication-title: Biol. Agric. Hortic.
– volume: 66
  start-page: 207
  year: 2016
  end-page: 221
  ident: bib28
  article-title: Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (
  publication-title: Ann. Microbiol.
– volume: 2
  start-page: 43
  year: 2013
  end-page: 47
  ident: bib66
  article-title: Arbuscular mycorrhizal fungi induced acclimatization and growth enhancement of
  publication-title: Agric. Res.
– volume: 168
  start-page: 111
  year: 2016
  end-page: 117
  ident: bib10
  article-title: Inhibitory mechanisms of glabridin on tyrosinase
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 6
  start-page: 598
  year: 2015
  ident: bib51
  article-title: Metabolic transition in mycorrhizal tomato roots
  publication-title: Front. Microbiol.
– volume: 69
  start-page: 112
  year: 2008
  end-page: 146
  ident: bib52
  article-title: Metabolite profiling of mycorrhizal roots of
  publication-title: Phytochemistry (Oxf.)
– volume: 78
  start-page: 6180
  year: 2012
  end-page: 6186
  ident: bib57
  article-title: Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies
  publication-title: Appl. Environ. Microbiol.
– volume: 371
  start-page: 1
  year: 2013
  end-page: 13
  ident: bib60
  article-title: The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content
  publication-title: Plant Soil
– volume: 132
  start-page: 479
  year: 2018
  end-page: 495
  ident: bib30
  article-title: Growth kinetics and withanolide production in novel transformed roots of
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 76
  start-page: 96
  year: 2017
  end-page: 105
  ident: bib11
  article-title: Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
  publication-title: Proc. Nutr. Soc.
– volume: 19
  start-page: 826
  year: 2019
  end-page: 832
  ident: bib56
  article-title: Research progress of glycyrrhizic acid on antiviral activity
  publication-title: Mini Rev. Med. Chem.
– volume: 38
  start-page: 1591
  year: 2015
  end-page: 1612
  ident: bib19
  article-title: An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis
  publication-title: Plant Cell Environ.
– volume: 46
  start-page: 732
  year: 2019
  end-page: 742
  ident: bib59
  article-title: Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species
  publication-title: Funct. Plant Biol.
– volume: 17
  start-page: 291
  year: 2007
  end-page: 297
  ident: bib58
  article-title: Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition
  publication-title: Mycorrhiza
– volume: 16
  start-page: 677
  year: 2017
  end-page: 692
  ident: bib31
  article-title: Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza
  publication-title: Phytochemistry Rev.
– volume: 117
  start-page: 16649
  year: 2020
  end-page: 16659
  ident: bib64
  article-title: Functional analysis of the OsNPF4. 5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– start-page: 31
  year: 2017
  end-page: 40
  ident: bib44
  article-title: Liquorice–mycorrhiza interactions
  publication-title: Liquorice. SpringerBriefs in Plant Science
– start-page: 243
  year: 2002
  end-page: 265
  ident: bib62
  article-title: Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles
  publication-title: Mycorrhizal Ecology. Ecological Studies (Analysis and Synthesis)
– year: 1999
  ident: bib22
  article-title: Soil, Plant, Water and Fertilizer Analysis
– volume: 15
  start-page: 473
  year: 1962
  end-page: 497
  ident: bib41
  article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures
  publication-title: Physiol. Plantarum
– volume: 13
  start-page: 100191
  year: 2020
  ident: bib13
  article-title: Substrate-associated mycorrhizal fungi promote changes in terpene composition, antioxidant activity, and enzymes in
  publication-title: Rhizosphere
– volume: 19
  start-page: 517
  year: 2009
  end-page: 523
  ident: bib49
  article-title: Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types
  publication-title: Mycorrhiza
– volume: 439
  start-page: 243
  year: 2019
  end-page: 257
  ident: bib65
  article-title: Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in
  publication-title: Plant Soil
– volume: 87
  start-page: 63
  year: 1981
  end-page: 67
  ident: bib5
  article-title: Quantifying vesicular-arbuscular mycorrhizae: proposed method towards standardization
  publication-title: New Phytol.
– volume: 25
  start-page: 533
  year: 2015
  end-page: 546
  ident: bib40
  article-title: High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism
  publication-title: Mycorrhiza
– volume: 390
  start-page: 129
  year: 2015
  end-page: 142
  ident: bib69
  article-title: Enhanced concentrations of elements and secondary metabolites in
  publication-title: Plant Soil
– volume: 23
  start-page: 253
  year: 2013
  end-page: 265
  ident: bib67
  article-title: Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives
  publication-title: Mycorrhiza
– volume: 7
  start-page: 1509
  year: 2012
  end-page: 1512
  ident: bib18
  article-title: The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis
  publication-title: Plant Signal. Behav.
– volume: 50
  start-page: 1663
  year: 1999
  end-page: 1668
  ident: bib7
  article-title: Resistance of pea roots to endomycorrhizal fungus or
  publication-title: J. Exp. Bot.
– start-page: 507
  year: 2018
  end-page: 538
  ident: bib46
  article-title: Arbuscular mycorrhizal fungi: effects on secondary metabolite production in medicinal plants
  publication-title: Fungi and Their Role in Sustainable Development: Current Perspectives
– volume: 20
  start-page: 5310
  year: 2019
  ident: bib15
  article-title: (Ashwagandha) and withaferin A: potential in integrative oncology
  publication-title: Int. J. Mol. Sci.
– volume: 26
  start-page: 699
  year: 2016
  end-page: 707
  ident: bib4
  article-title: or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil
  publication-title: Mycorrhiza
– volume: 3
  start-page: 783
  year: 2010
  end-page: 793
  ident: bib68
  article-title: Plant immunity triggered by microbial molecular signatures
  publication-title: Mol. Plant
– volume: 32
  start-page: 2323
  year: 2018
  end-page: 2339
  ident: bib47
  article-title: Liquorice (
  publication-title: Phytother Res.
– volume: 11
  start-page: 283
  year: 2017
  ident: bib14
  article-title: Arbuscular mycorrhizal fungi increase the phenolic compounds concentration in the bark of the stem of
  publication-title: Open Microbiol. J.
– volume: 90
  start-page: 1210
  year: 2010
  end-page: 1217
  ident: bib39
  article-title: Thiophene occurrence in different
  publication-title: J. Sci. Food Agric.
– volume: 227
  start-page: 671
  year: 2008
  end-page: 680
  ident: bib16
  article-title: shows distinct patterns of mycorrhiza-related gene expression after inoculation with three different arbuscular mycorrhizal fungi
  publication-title: Planta
– volume: 6
  start-page: 186
  year: 2014
  end-page: 194
  ident: bib36
  article-title: Arbuscular mycorrhizal fungal colonization of
  publication-title: J. Arid Land.
– volume: 47
  start-page: 807
  year: 2006
  end-page: 817
  ident: bib37
  article-title: Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of
  publication-title: Plant Cell Physiol.
– volume: 17
  start-page: 581
  year: 2007
  end-page: 587
  ident: bib32
  article-title: Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in
  publication-title: Mycorrhiza
– volume: 10
  start-page: 335
  year: 2020
  ident: bib34
  article-title: Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome
  publication-title: Metabolites
– volume: 29
  start-page: 156
  year: 2011
  end-page: 164
  ident: bib8
  article-title: The effect of the symbiosis between
  publication-title: N. Biotech.
– volume: 150
  start-page: 73
  year: 2009
  end-page: 83
  ident: bib21
  article-title: A mycorrhizal-specific ammonium transporter from
  publication-title: Plant Physiol.
– start-page: 183
  year: 2017
  end-page: 207
  ident: bib35
  article-title: Mycorrhizal fungi under biotic and abiotic stress
  publication-title: Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials
– volume: 89
  start-page: 100
  year: 2015
  end-page: 106
  ident: bib38
  article-title: Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes
  publication-title: Plant Physiol. Biochem.
– volume: 9
  start-page: 1089
  year: 2018
  ident: bib3
  article-title: Designing the ideotype mycorrhizal symbionts for the production of healthy food
  publication-title: Front. Plant Sci.
– volume: 35
  start-page: 867
  year: 2013
  end-page: 880
  ident: bib1
  article-title: Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in
  publication-title: Acta Physiol. Plant.
– volume: 104
  start-page: 1720
  year: 2007
  end-page: 1725
  ident: bib27
  article-title: A
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 9
  start-page: 1329
  year: 2018
  ident: bib6
  article-title: Arbuscular mycorrhizas: a promising component of plant production systems provided favorable conditions for their growth
  publication-title: Front. Plant Sci.
– volume: 2
  start-page: 93
  year: 2014
  end-page: 99
  ident: bib42
  article-title: The effect of phosphorus on the growth and productivity of Mexican Marigold (
  publication-title: Russ. J. Biol. Res.
– volume: 60
  start-page: 855
  year: 2013
  end-page: 860
  ident: bib43
  article-title: Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi
  publication-title: Russ. J. Plant Physiol.
– volume: 122
  start-page: 918
  year: 2018
  end-page: 927
  ident: bib48
  article-title: Mycorrhizal inoculation as an alternative for the sustainable production of
  publication-title: Fungal Biol
– volume: 14
  start-page: 2413
  year: 2002
  end-page: 2429
  ident: bib23
  article-title: A phosphate transporter from
  publication-title: Plant Cell
– volume: 2
  start-page: 201
  year: 2011
  end-page: 206
  ident: bib26
  article-title: Role of arbuscular mycorrhizae in conservation of
  publication-title: Biosci. Discov. J.
– volume: 559
  start-page: 271
  year: 2019
  end-page: 279
  ident: bib53
  article-title: Glycyrrhizic acid as a multifunctional drug carrier–from physicochemical properties to biomedical applications: a modern insight on the ancient drug
  publication-title: Int. J. Pharm.
– volume: 254
  start-page: 389
  year: 2017
  end-page: 399
  ident: bib45
  article-title: Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in
  publication-title: Protoplasma
– start-page: 1
  year: 2008
  end-page: 9
  ident: bib54
  article-title: Introduction
  publication-title: Mycorrhizal Symbiosis
– start-page: 81
  year: 2017
  end-page: 103
  ident: bib50
  article-title: : from traditional use to evidence based medicinal prominence
  publication-title: Science of Ashwagandha: Preventive and Therapeutic Potentials
– volume: 64
  start-page: 5004
  year: 1998
  end-page: 5007
  ident: bib63
  article-title: Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi
  publication-title: Appl. Environ. Microbiol.
– year: 1950
  ident: bib24
  article-title: The Water-Culture Method for Growing Plants without Soil
– volume: 46
  start-page: 307
  year: 2010
  end-page: 320
  ident: bib25
  article-title: Using marigold (
  publication-title: Appl. Soil Ecol.
– volume: 133
  start-page: 59
  year: 1996
  end-page: 64
  ident: bib33
  article-title: Suppression of defence responses in mycorrhizal alfalfa and tobacco roots
  publication-title: New Phytol.
– volume: 9
  start-page: 375
  year: 2020
  ident: bib20
  article-title: Yield, essential oil and quality performances of
  publication-title: Plants
– volume: 3
  start-page: 1
  year: 2010
  end-page: 8
  ident: bib17
  article-title: Functional diversity in arbuscular mycorrhiza–the role of gene expression, phosphorous nutrition and symbiotic efficiency
  publication-title: Fungal Ecol
– volume: 122
  start-page: 918
  year: 2018
  ident: 10.1016/j.rhisph.2021.100314_bib48
  article-title: Mycorrhizal inoculation as an alternative for the sustainable production of Mimosa tenuiflora seedlings with improved growth and secondary compounds content
  publication-title: Fungal Biol
  doi: 10.1016/j.funbio.2018.05.009
– volume: 2
  start-page: 93
  year: 2014
  ident: 10.1016/j.rhisph.2021.100314_bib42
  article-title: The effect of phosphorus on the growth and productivity of Mexican Marigold (Tagetes minuta L.)
  publication-title: Russ. J. Biol. Res.
  doi: 10.13187/ejbr.2014.2.93
– volume: 28
  start-page: 167
  year: 2012
  ident: 10.1016/j.rhisph.2021.100314_bib61
  article-title: Screening for efficient AM (arbuscular mycorrhizal) fungal bioinoculants for two commercially important ornamental flowering plant species of Asteraceae
  publication-title: Biol. Agric. Hortic.
  doi: 10.1080/01448765.2012.727541
– volume: 78
  start-page: 6180
  year: 2012
  ident: 10.1016/j.rhisph.2021.100314_bib57
  article-title: Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01287-12
– volume: 38
  start-page: 1591
  year: 2015
  ident: 10.1016/j.rhisph.2021.100314_bib19
  article-title: An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12508
– volume: 23
  start-page: 253
  year: 2013
  ident: 10.1016/j.rhisph.2021.100314_bib67
  article-title: Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-013-0484-0
– start-page: 243
  year: 2002
  ident: 10.1016/j.rhisph.2021.100314_bib62
  article-title: Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles
– volume: 69
  start-page: 112
  year: 2008
  ident: 10.1016/j.rhisph.2021.100314_bib52
  article-title: Metabolite profiling of mycorrhizal roots of Medicago truncatula
  publication-title: Phytochemistry (Oxf.)
  doi: 10.1016/j.phytochem.2007.06.032
– volume: 3
  start-page: 1
  year: 2010
  ident: 10.1016/j.rhisph.2021.100314_bib17
  article-title: Functional diversity in arbuscular mycorrhiza–the role of gene expression, phosphorous nutrition and symbiotic efficiency
  publication-title: Fungal Ecol
  doi: 10.1016/j.funeco.2009.07.003
– volume: 9
  start-page: 2920
  year: 2018
  ident: 10.1016/j.rhisph.2021.100314_bib9
  article-title: Symbiosis specificity of the preceding host plant can dominate but not obliterate the association between wheat and its arbuscular mycorrhizal fungal partners
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02920
– volume: 18
  start-page: 93
  year: 2011
  ident: 10.1016/j.rhisph.2021.100314_bib2
  article-title: Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2010.06.007
– volume: 227
  start-page: 671
  year: 2008
  ident: 10.1016/j.rhisph.2021.100314_bib16
  article-title: Medicago truncatula shows distinct patterns of mycorrhiza-related gene expression after inoculation with three different arbuscular mycorrhizal fungi
  publication-title: Planta
  doi: 10.1007/s00425-007-0649-1
– volume: 89
  start-page: 100
  year: 2015
  ident: 10.1016/j.rhisph.2021.100314_bib38
  article-title: Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.02.010
– volume: 9
  start-page: 1329
  year: 2018
  ident: 10.1016/j.rhisph.2021.100314_bib6
  article-title: Arbuscular mycorrhizas: a promising component of plant production systems provided favorable conditions for their growth
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01329
– volume: 168
  start-page: 111
  year: 2016
  ident: 10.1016/j.rhisph.2021.100314_bib10
  article-title: Inhibitory mechanisms of glabridin on tyrosinase
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2016.06.008
– volume: 132
  start-page: 479
  year: 2018
  ident: 10.1016/j.rhisph.2021.100314_bib30
  article-title: Growth kinetics and withanolide production in novel transformed roots of Withania somnifera and measurement of their antioxidant potential using chemiluminescence
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-017-1344-y
– volume: 90
  start-page: 1210
  year: 2010
  ident: 10.1016/j.rhisph.2021.100314_bib39
  article-title: Thiophene occurrence in different Tagetes species: agricultural biomasses as sources of biocidal substances
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.3950
– volume: 104
  start-page: 1
  year: 2012
  ident: 10.1016/j.rhisph.2021.100314_bib55
  article-title: Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth
  publication-title: Mycol.
  doi: 10.3852/11-229
– volume: 19
  start-page: 826
  year: 2019
  ident: 10.1016/j.rhisph.2021.100314_bib56
  article-title: Research progress of glycyrrhizic acid on antiviral activity
  publication-title: Mini Rev. Med. Chem.
  doi: 10.2174/1389557519666190119111125
– volume: 2
  start-page: 43
  year: 2013
  ident: 10.1016/j.rhisph.2021.100314_bib66
  article-title: Arbuscular mycorrhizal fungi induced acclimatization and growth enhancement of Glycyrrhiza glabra L.: a potential medicinal plant
  publication-title: Agric. Res.
  doi: 10.1007/s40003-012-0047-1
– volume: 25
  start-page: 533
  year: 2015
  ident: 10.1016/j.rhisph.2021.100314_bib40
  article-title: High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-015-0631-x
– start-page: 1
  year: 2008
  ident: 10.1016/j.rhisph.2021.100314_bib54
  article-title: Introduction
– volume: 66
  start-page: 207
  year: 2016
  ident: 10.1016/j.rhisph.2021.100314_bib28
  article-title: Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study
  publication-title: Ann. Microbiol.
  doi: 10.1007/s13213-015-1097-y
– volume: 150
  start-page: 73
  year: 2009
  ident: 10.1016/j.rhisph.2021.100314_bib21
  article-title: A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.136390
– volume: 6
  start-page: 186
  year: 2014
  ident: 10.1016/j.rhisph.2021.100314_bib36
  article-title: Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites
  publication-title: J. Arid Land.
  doi: 10.1007/s40333-013-0208-5
– volume: 439
  start-page: 243
  year: 2019
  ident: 10.1016/j.rhisph.2021.100314_bib65
  article-title: Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3861-9
– volume: 15
  start-page: 473
  year: 1962
  ident: 10.1016/j.rhisph.2021.100314_bib41
  article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures
  publication-title: Physiol. Plantarum
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– start-page: 183
  year: 2017
  ident: 10.1016/j.rhisph.2021.100314_bib35
  article-title: Mycorrhizal fungi under biotic and abiotic stress
– volume: 64
  start-page: 5004
  year: 1998
  ident: 10.1016/j.rhisph.2021.100314_bib63
  article-title: Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.12.5004-5007.1998
– volume: 254
  start-page: 389
  year: 2017
  ident: 10.1016/j.rhisph.2021.100314_bib45
  article-title: Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in Withania somnifera (L.) Dunal
  publication-title: Protoplasma
  doi: 10.1007/s00709-016-0959-x
– volume: 46
  start-page: 307
  year: 2010
  ident: 10.1016/j.rhisph.2021.100314_bib25
  article-title: Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2010.09.005
– volume: 6
  start-page: 598
  year: 2015
  ident: 10.1016/j.rhisph.2021.100314_bib51
  article-title: Metabolic transition in mycorrhizal tomato roots
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00598
– volume: 117
  start-page: 16649
  year: 2020
  ident: 10.1016/j.rhisph.2021.100314_bib64
  article-title: Functional analysis of the OsNPF4. 5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.2000926117
– year: 1950
  ident: 10.1016/j.rhisph.2021.100314_bib24
– volume: 102
  start-page: 6541
  year: 2011
  ident: 10.1016/j.rhisph.2021.100314_bib12
  article-title: Co-composting of physic nut (Jatropha curcas) deoiled cake with rice straw and different animal dung
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.058
– volume: 2
  start-page: 201
  year: 2011
  ident: 10.1016/j.rhisph.2021.100314_bib26
  article-title: Role of arbuscular mycorrhizae in conservation of Withania somnifera
  publication-title: Biosci. Discov. J.
– start-page: 31
  year: 2017
  ident: 10.1016/j.rhisph.2021.100314_bib44
  article-title: Liquorice–mycorrhiza interactions
  doi: 10.1007/978-3-319-74240-3_5
– volume: 13
  start-page: 100191
  year: 2020
  ident: 10.1016/j.rhisph.2021.100314_bib13
  article-title: Substrate-associated mycorrhizal fungi promote changes in terpene composition, antioxidant activity, and enzymes in Curcuma longa L. acclimatized plants
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2020.100191
– volume: 17
  start-page: 581
  year: 2007
  ident: 10.1016/j.rhisph.2021.100314_bib32
  article-title: Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-007-0135-4
– volume: 104
  start-page: 1720
  year: 2007
  ident: 10.1016/j.rhisph.2021.100314_bib27
  article-title: A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.0608136104
– volume: 371
  start-page: 1
  year: 2013
  ident: 10.1016/j.rhisph.2021.100314_bib60
  article-title: The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1681-5
– volume: 17
  start-page: 291
  year: 2007
  ident: 10.1016/j.rhisph.2021.100314_bib58
  article-title: Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-006-0104-3
– volume: 29
  start-page: 156
  year: 2011
  ident: 10.1016/j.rhisph.2021.100314_bib8
  article-title: The effect of the symbiosis between Tagetes erecta L. (marigold) and Glomus intraradices in the uptake of Copper(II) and its implications for phytoremediation
  publication-title: N. Biotech.
  doi: 10.1016/j.nbt.2011.05.009
– volume: 559
  start-page: 271
  year: 2019
  ident: 10.1016/j.rhisph.2021.100314_bib53
  article-title: Glycyrrhizic acid as a multifunctional drug carrier–from physicochemical properties to biomedical applications: a modern insight on the ancient drug
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.01.047
– volume: 20
  start-page: 5310
  year: 2019
  ident: 10.1016/j.rhisph.2021.100314_bib15
  article-title: Withania somnifera (Ashwagandha) and withaferin A: potential in integrative oncology
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20215310
– volume: 19
  start-page: 517
  year: 2009
  ident: 10.1016/j.rhisph.2021.100314_bib49
  article-title: Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-009-0254-1
– volume: 3
  start-page: 783
  year: 2010
  ident: 10.1016/j.rhisph.2021.100314_bib68
  article-title: Plant immunity triggered by microbial molecular signatures
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssq035
– volume: 7
  start-page: 1509
  year: 2012
  ident: 10.1016/j.rhisph.2021.100314_bib18
  article-title: The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.22015
– volume: 60
  start-page: 855
  year: 2013
  ident: 10.1016/j.rhisph.2021.100314_bib43
  article-title: Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443713050129
– volume: 120
  start-page: 1191
  year: 2015
  ident: 10.1016/j.rhisph.2021.100314_bib29
  article-title: In vitro and in situ screening systems for morphological and phytochemical analysis of Withania somnifera germplasms
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-014-0673-3
– start-page: 507
  year: 2018
  ident: 10.1016/j.rhisph.2021.100314_bib46
  article-title: Arbuscular mycorrhizal fungi: effects on secondary metabolite production in medicinal plants
– year: 1999
  ident: 10.1016/j.rhisph.2021.100314_bib22
– volume: 76
  start-page: 96
  year: 2017
  ident: 10.1016/j.rhisph.2021.100314_bib11
  article-title: Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
  publication-title: Proc. Nutr. Soc.
  doi: 10.1017/S0029665116002937
– volume: 16
  start-page: 677
  year: 2017
  ident: 10.1016/j.rhisph.2021.100314_bib31
  article-title: Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza
  publication-title: Phytochemistry Rev.
  doi: 10.1007/s11101-016-9486-9
– volume: 26
  start-page: 699
  year: 2016
  ident: 10.1016/j.rhisph.2021.100314_bib4
  article-title: Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-016-0707-2
– volume: 50
  start-page: 1663
  year: 1999
  ident: 10.1016/j.rhisph.2021.100314_bib7
  article-title: Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/50.340.1663
– volume: 87
  start-page: 63
  year: 1981
  ident: 10.1016/j.rhisph.2021.100314_bib5
  article-title: Quantifying vesicular-arbuscular mycorrhizae: proposed method towards standardization
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1981.tb01690.x
– volume: 32
  start-page: 2323
  year: 2018
  ident: 10.1016/j.rhisph.2021.100314_bib47
  article-title: Liquorice (Glycyrrhiza glabra): a phytochemical and pharmacological review
  publication-title: Phytother Res.
  doi: 10.1002/ptr.6178
– volume: 9
  start-page: 1089
  year: 2018
  ident: 10.1016/j.rhisph.2021.100314_bib3
  article-title: Designing the ideotype mycorrhizal symbionts for the production of healthy food
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01089
– volume: 390
  start-page: 129
  year: 2015
  ident: 10.1016/j.rhisph.2021.100314_bib69
  article-title: Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2388-6
– start-page: 81
  year: 2017
  ident: 10.1016/j.rhisph.2021.100314_bib50
  article-title: Withania somnifera: from traditional use to evidence based medicinal prominence
– volume: 9
  start-page: 375
  year: 2020
  ident: 10.1016/j.rhisph.2021.100314_bib20
  article-title: Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management
  publication-title: Plants
  doi: 10.3390/plants9030375
– volume: 10
  start-page: 335
  year: 2020
  ident: 10.1016/j.rhisph.2021.100314_bib34
  article-title: Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome
  publication-title: Metabolites
  doi: 10.3390/metabo10080335
– volume: 35
  start-page: 867
  year: 2013
  ident: 10.1016/j.rhisph.2021.100314_bib1
  article-title: Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-012-1130-8
– volume: 14
  start-page: 2413
  year: 2002
  ident: 10.1016/j.rhisph.2021.100314_bib23
  article-title: A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi
  publication-title: Plant Cell
  doi: 10.1105/tpc.004861
– volume: 47
  start-page: 807
  year: 2006
  ident: 10.1016/j.rhisph.2021.100314_bib37
  article-title: Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcj069
– volume: 133
  start-page: 59
  year: 1996
  ident: 10.1016/j.rhisph.2021.100314_bib33
  article-title: Suppression of defence responses in mycorrhizal alfalfa and tobacco roots
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1996.tb04341.x
– volume: 11
  start-page: 283
  year: 2017
  ident: 10.1016/j.rhisph.2021.100314_bib14
  article-title: Arbuscular mycorrhizal fungi increase the phenolic compounds concentration in the bark of the stem of Libidibia ferrea in field conditions
  publication-title: Open Microbiol. J.
  doi: 10.2174/1874285801711010283
– volume: 46
  start-page: 732
  year: 2019
  ident: 10.1016/j.rhisph.2021.100314_bib59
  article-title: Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP18327
SSID ssj0001763563
Score 2.3062177
Snippet Strategies to enhance the production of secondary metabolites, derived from medicinal and agriculturally important plants have been the subject of exploration...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100314
SubjectTerms Acaulospora
Alpha-terthienyl
Arbuscular mycorrhizal fungi
biosynthesis
Claroideoglomus claroideum
Claroideoglomus etunicatum
crops
Glabridin
Glomus hoi
Glycyrrhiza glabra
Glycyrrhizic acid
glycyrrhizin
host plants
knowledge
licorice
methodology
mycorrhizal fungi
Rhizophagus irregularis
rhizosphere
roots
Secondary metabolites
symbiosis
Tagetes erecta
Withaferin-A
Withania somnifera
Title AMF enhance secondary metabolite production in ashwagandha, licorice, and marigold in a fungi-host specific manner
URI https://dx.doi.org/10.1016/j.rhisph.2021.100314
https://www.proquest.com/docview/2511172419
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNMzt4kUUFecXETyubGnapT2O4ZjKdtHBbiFt0m2ydaXtEP-97_VDUZCBhx4a8kp53y_vI4Tcazd0POUGFrALBCheJECkBLdsIXjEmfF1iBndybQ_njlPc3feIMO6FwbLKivdX-r0QltXK90Km91kteq-YM4Q5M2z8YgangPSssG69pqkNXh8Hk-_j1qKIWyYa0YQC2HqJrqi0itdrrIEExM2w6IBzpy_jNQvdV3YoNExOaqcRzoo_--ENEx8StLBZERNvETy0QzjW63SD7oxOdAXO4xpUk51BQrQVUxVtnxXCxXrperQNTACjhXqUFigGwicF9u1LrZRMHkQOWMXCMV-TKwpgh14VdcZmY0eXodjq7pJwQrBIcstv6-41kHYE4qrwAcNGCojtDBgmXpMazeIokAp2--5inHPAcH2Qg3eQyiMwfK1c9KMt7G5INQVmgeRZmDUbEdp5kcQszmG2X0PXSPVJrxGnQyrMeN428Va1vVkb7JEuESEyxLhbWJ9QSXlmI09-0VNFfmDXSRYgj2QdzURJUgSpkdUbLa7TGKwBe6cw_zLf3_9ihziW1mkdk2aebozN-C15MFtxZWf6Onq3w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT8IwtEE46MVo1PhtTTyyQNeNbkdCJCAfFyHh1nRrBxgYBEaM_9739qHRxJB42KXrW5b3_fo-SsiTdkPHU25gAbtAgOJFAkRKcMsWgkecGV-HmNEdDBudsfMycScl0ip6YbCsMtf9mU5PtXW-UsuxWVvP57VXzBmCvHk2HlHDc0AqOJ0K2LzS7PY6w--jlnQIG-aaEcRCmKKJLq302szm2zUmJmyGRQOcOX8ZqV_qOrVB7RNynDuPtJn93ykpmfiMbJqDNjXxDMlHtxjfarX5oEuTAH2xw5ius6muQAE6j6nazt7VVMV6pqp0AYyAY4WqFBboEgLn6Wqh020UTB5EztgFQrEfE2uKYAde1XVOxu3nUatj5TcpWCE4ZInlNxTXOgjrQnEV-KABQ2WEFgYsU51p7QZRFChl-3VXMe45INheqMF7CIUxWL52QcrxKjaXhLpC8yDSDIya7SjN_AhiNscwu-Gha6SuCC9QJ8N8zDjedrGQRT3Zm8wQLhHhMkP4FbG-oNbZmI09-0VBFfmDXSRYgj2QjwURJUgSpkdUbFa7rcRgC9w5h_nX__76AznsjAZ92e8OezfkCN9kBWu3pJxsduYOPJgkuM859BMZmu3O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMF+enhance+secondary+metabolite+production+in+ashwagandha%2C+licorice%2C+and+marigold+in+a+fungi-host+specific+manner&rft.jtitle=Rhizosphere&rft.au=Johny%2C+Leena&rft.au=Cahill%2C+David+M&rft.au=Adholeya%2C+Alok&rft.date=2021-03-01&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=17+p.100314-&rft_id=info:doi/10.1016%2Fj.rhisph.2021.100314&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon