AMF enhance secondary metabolite production in ashwagandha, licorice, and marigold in a fungi-host specific manner
Strategies to enhance the production of secondary metabolites, derived from medicinal and agriculturally important plants have been the subject of exploration to enable effective utilization of these biorepositories. Through symbiosis, arbuscular mycorrhizal fungi (AMF), modify plant primary and sec...
Saved in:
Published in | Rhizosphere Vol. 17; p. 100314 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Strategies to enhance the production of secondary metabolites, derived from medicinal and agriculturally important plants have been the subject of exploration to enable effective utilization of these biorepositories. Through symbiosis, arbuscular mycorrhizal fungi (AMF), modify plant primary and secondary metabolite biosynthesis. The relationship thus offers the opportunity to exploit combinations of host and fungus that maximize secondary metabolite production. We investigated different AMF host combinations for the enhancement of root-derived secondary metabolites from three plant species - ashwagandha (Withania somnifera (L.) Dunal), licorice (Glycyrrhiza glabra L.), and marigold (Tagetes erecta L.). Each host species was inoculated singly with each of five species of AMF, Glomus hoi, Claroideoglomus etunicatum, Claroideoglomus claroideum, Rhizophagus irregularis, and Acaulospora delicata and secondary metabolite production was assessed. Increased concentrations of the following secondary metabolites were found in roots after AMF establishment: for withaferin-A in ashwagandha (concentrations ranged from 11.5 to 43.5% above than in control non-mycorrhized roots depending on the host and AMF combination); in licorice, glycyrrhizic acid (1.51–3.92% above control) and glabridin (2.85–6.41% above control) and in marigold, alpha-terthienyl (1.51–7.18% above control). Specifically, among the AMF inoculations, the highest levels of secondary metabolite were found in ashwagandha and marigold inoculated with R. irregularis and for licorice following inoculation with C. etunicatum revealing the impact of different AMF species on different plant species. This underpinning knowledge of AMF symbioses with the plant host will augment the development of methods that will provide enhanced concentrations of secondary metabolites of commercial value.
•Inoculation of AMF improved secondary metabolite production in the host plants.•Ashwagandha and marigold showed maximum secondary metabolites production with Rhizophagus irregularis inoculation.•Licorice showed maximum secondary metabolites production with Claroideoglomus etunicatum inoculation. |
---|---|
AbstractList | Strategies to enhance the production of secondary metabolites, derived from medicinal and agriculturally important plants have been the subject of exploration to enable effective utilization of these biorepositories. Through symbiosis, arbuscular mycorrhizal fungi (AMF), modify plant primary and secondary metabolite biosynthesis. The relationship thus offers the opportunity to exploit combinations of host and fungus that maximize secondary metabolite production. We investigated different AMF host combinations for the enhancement of root-derived secondary metabolites from three plant species - ashwagandha (Withania somnifera (L.) Dunal), licorice (Glycyrrhiza glabra L.), and marigold (Tagetes erecta L.). Each host species was inoculated singly with each of five species of AMF, Glomus hoi, Claroideoglomus etunicatum, Claroideoglomus claroideum, Rhizophagus irregularis, and Acaulospora delicata and secondary metabolite production was assessed. Increased concentrations of the following secondary metabolites were found in roots after AMF establishment: for withaferin-A in ashwagandha (concentrations ranged from 11.5 to 43.5% above than in control non-mycorrhized roots depending on the host and AMF combination); in licorice, glycyrrhizic acid (1.51–3.92% above control) and glabridin (2.85–6.41% above control) and in marigold, alpha-terthienyl (1.51–7.18% above control). Specifically, among the AMF inoculations, the highest levels of secondary metabolite were found in ashwagandha and marigold inoculated with R. irregularis and for licorice following inoculation with C. etunicatum revealing the impact of different AMF species on different plant species. This underpinning knowledge of AMF symbioses with the plant host will augment the development of methods that will provide enhanced concentrations of secondary metabolites of commercial value.
•Inoculation of AMF improved secondary metabolite production in the host plants.•Ashwagandha and marigold showed maximum secondary metabolites production with Rhizophagus irregularis inoculation.•Licorice showed maximum secondary metabolites production with Claroideoglomus etunicatum inoculation. Strategies to enhance the production of secondary metabolites, derived from medicinal and agriculturally important plants have been the subject of exploration to enable effective utilization of these biorepositories. Through symbiosis, arbuscular mycorrhizal fungi (AMF), modify plant primary and secondary metabolite biosynthesis. The relationship thus offers the opportunity to exploit combinations of host and fungus that maximize secondary metabolite production. We investigated different AMF host combinations for the enhancement of root-derived secondary metabolites from three plant species - ashwagandha (Withania somnifera (L.) Dunal), licorice (Glycyrrhiza glabra L.), and marigold (Tagetes erecta L.). Each host species was inoculated singly with each of five species of AMF, Glomus hoi, Claroideoglomus etunicatum, Claroideoglomus claroideum, Rhizophagus irregularis, and Acaulospora delicata and secondary metabolite production was assessed. Increased concentrations of the following secondary metabolites were found in roots after AMF establishment: for withaferin-A in ashwagandha (concentrations ranged from 11.5 to 43.5% above than in control non-mycorrhized roots depending on the host and AMF combination); in licorice, glycyrrhizic acid (1.51–3.92% above control) and glabridin (2.85–6.41% above control) and in marigold, alpha-terthienyl (1.51–7.18% above control). Specifically, among the AMF inoculations, the highest levels of secondary metabolite were found in ashwagandha and marigold inoculated with R. irregularis and for licorice following inoculation with C. etunicatum revealing the impact of different AMF species on different plant species. This underpinning knowledge of AMF symbioses with the plant host will augment the development of methods that will provide enhanced concentrations of secondary metabolites of commercial value. |
ArticleNumber | 100314 |
Author | Cahill, David M. Adholeya, Alok Johny, Leena |
Author_xml | – sequence: 1 givenname: Leena surname: Johny fullname: Johny, Leena organization: Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahadi, Gurugram, Haryana, 122001, India – sequence: 2 givenname: David M. surname: Cahill fullname: Cahill, David M. organization: Deakin University, Geelong, School of Life and Environmental Sciences, Geelong Campus, Waurn Ponds, Victoria, Australia – sequence: 3 givenname: Alok surname: Adholeya fullname: Adholeya, Alok email: aloka@teri.res.in organization: Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahadi, Gurugram, Haryana, 122001, India |
BookMark | eNqFkU9v1DAQxS1UJErpN-DgI4dmsZ0_TjggVRUFpFa9lLM1sSebWWXtxfaC-u3xNhwQBzjNaPTek95vXrMzHzwy9laKjRSye7_bxJnSYd4ooWQ5iVo2L9i5alpVKTn0Z3_sr9hlSjshhNRd3Xb1OYvX97cc_QzeIk9og3cQn_geM4xhoYz8EIM72kzBc_Ic0vwTtuDdDFd8IRsiWbzi5cD3EGkbFvcs49PRb6maQ8o8HdDSRLYovMf4hr2cYEl4-XtesG-3nx5vvlR3D5-_3lzfVbYRba6GDmrnRis01DAOve4soHYateyFdK4dp2kEUINoQdZ90wjRWyd0bzWiKhgu2Ls1tzT4fsSUzZ6SxWUBj-GYjGqllFo1cijSD6vUxpBSxMlYynDqnCPQYqQwJ9ZmZ1bW5sTarKyLufnLfIhUYDz9z_ZxtWFh8IMwmmQJyxscRbTZuED_DvgFTo2eDw |
CitedBy_id | crossref_primary_10_3389_fmicb_2024_1360988 crossref_primary_10_1016_j_scienta_2023_112646 crossref_primary_10_1016_j_bse_2023_104759 crossref_primary_10_3390_horticulturae8121106 crossref_primary_10_1016_j_jbiosc_2022_07_016 crossref_primary_10_1016_j_micres_2021_126940 crossref_primary_10_1007_s42729_021_00721_8 crossref_primary_10_1016_j_indcrop_2021_114327 crossref_primary_10_1016_j_plaphy_2023_107662 crossref_primary_10_1007_s00572_022_01079_0 crossref_primary_10_1016_j_apsoil_2024_105278 crossref_primary_10_18393_ejss_1390588 crossref_primary_10_1186_s12870_023_04053_w crossref_primary_10_3390_f13091491 crossref_primary_10_3390_genes16030285 crossref_primary_10_1111_jac_12672 crossref_primary_10_3390_plants11212941 crossref_primary_10_1007_s10123_024_00548_0 crossref_primary_10_1007_s13199_023_00905_z crossref_primary_10_1016_j_rhisph_2023_100685 crossref_primary_10_3390_plants12203580 crossref_primary_10_1038_s41598_024_73479_5 crossref_primary_10_1016_j_jarmap_2024_100574 crossref_primary_10_3390_plants11182338 crossref_primary_10_1007_s11104_023_06303_0 |
Cites_doi | 10.1016/j.funbio.2018.05.009 10.13187/ejbr.2014.2.93 10.1080/01448765.2012.727541 10.1128/AEM.01287-12 10.1111/pce.12508 10.1007/s00572-013-0484-0 10.1016/j.phytochem.2007.06.032 10.1016/j.funeco.2009.07.003 10.3389/fmicb.2018.02920 10.1016/j.sjbs.2010.06.007 10.1007/s00425-007-0649-1 10.1016/j.plaphy.2015.02.010 10.3389/fpls.2018.01329 10.1016/j.saa.2016.06.008 10.1007/s11240-017-1344-y 10.1002/jsfa.3950 10.3852/11-229 10.2174/1389557519666190119111125 10.1007/s40003-012-0047-1 10.1007/s00572-015-0631-x 10.1007/s13213-015-1097-y 10.1104/pp.109.136390 10.1007/s40333-013-0208-5 10.1007/s11104-018-3861-9 10.1111/j.1399-3054.1962.tb08052.x 10.1128/AEM.64.12.5004-5007.1998 10.1007/s00709-016-0959-x 10.1016/j.apsoil.2010.09.005 10.3389/fmicb.2015.00598 10.1073/pnas.2000926117 10.1016/j.biortech.2011.03.058 10.1007/978-3-319-74240-3_5 10.1016/j.rhisph.2020.100191 10.1007/s00572-007-0135-4 10.1073/pnas.0608136104 10.1007/s11104-013-1681-5 10.1007/s00572-006-0104-3 10.1016/j.nbt.2011.05.009 10.1016/j.ijpharm.2019.01.047 10.3390/ijms20215310 10.1007/s00572-009-0254-1 10.1093/mp/ssq035 10.4161/psb.22015 10.1134/S1021443713050129 10.1007/s11240-014-0673-3 10.1017/S0029665116002937 10.1007/s11101-016-9486-9 10.1007/s00572-016-0707-2 10.1093/jxb/50.340.1663 10.1111/j.1469-8137.1981.tb01690.x 10.1002/ptr.6178 10.3389/fpls.2018.01089 10.1007/s11104-015-2388-6 10.3390/plants9030375 10.3390/metabo10080335 10.1007/s11738-012-1130-8 10.1105/tpc.004861 10.1093/pcp/pcj069 10.1111/j.1469-8137.1996.tb04341.x 10.2174/1874285801711010283 10.1071/FP18327 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.rhisph.2021.100314 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-2198 |
ExternalDocumentID | 10_1016_j_rhisph_2021_100314 S2452219821000100 |
GroupedDBID | --M 0R~ AABVA AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AFKWA AFTJW AFXIZ AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPCBC SSA SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c405t-96a3ddbc07a3ab9876cae7d7e71801dd5bffbaa2905a13844008cd078c7ee2003 |
IEDL.DBID | AIKHN |
ISSN | 2452-2198 |
IngestDate | Sun Aug 24 04:08:05 EDT 2025 Tue Jul 01 03:12:55 EDT 2025 Thu Apr 24 23:03:16 EDT 2025 Fri Feb 23 02:36:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Glabridin Arbuscular mycorrhizal fungi Withaferin-A Alpha-terthienyl Secondary metabolites Glycyrrhizic acid DW GLY α-T AMF SEM CLSM GLA HPLC |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-96a3ddbc07a3ab9876cae7d7e71801dd5bffbaa2905a13844008cd078c7ee2003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2511172419 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2511172419 crossref_citationtrail_10_1016_j_rhisph_2021_100314 crossref_primary_10_1016_j_rhisph_2021_100314 elsevier_sciencedirect_doi_10_1016_j_rhisph_2021_100314 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Rhizosphere |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Campos, Carvalho, Brígido, Goss, Nobre (bib9) 2018; 9 Javot, Penmetsa, Terzaghi, Cook, Harrison (bib27) 2007; 104 Yadav, Aggarwal, Singh (bib66) 2013; 2 Avio, Turrini, Giovannetti, Sbrana (bib3) 2018; 9 Torrecillas, Alguacil, Roldán (bib57) 2012; 78 Zeng, Guo, Chen, Hao, Wang, Huang, Yang, Cui, Yang, Wu, Chen (bib67) 2013; 23 Hosamani, Lakshman, Sandeepkumar, Kadam, Kerur (bib26) 2011; 2 Biermann, Linderman (bib5) 1981; 87 Kaur, Suseela (bib34) 2020; 10 Liu, Tan, Nell, Zitter-Eglseer, Wawscrah, Kopp, Wang, Novak (bib36) 2014; 6 Harrison, Dewbre, Liu (bib23) 2002; 14 Öztürk, Altay, Hakeem, Akçiçek (bib44) 2017 Chen, Yu, Huang (bib10) 2016; 168 Marotti, Marotti, Piccaglia, Nastri, Grandi, Dinelli (bib39) 2010; 90 Mensah, Koch, Antunes, Kiers, Hart, Bücking (bib40) 2015; 25 Wang, Chen, Xie, Yang, Luo, Chen, Zeng, Ren, Yang, Wang, Feng (bib64) 2020; 117 Guether, Neuhäuser, Balestrini, Dynowski, Ludewig, Bonfante (bib21) 2009; 150 Sun, Zhao, Lu, Yang, Zhu (bib56) 2019; 19 Pastorino, Cornara, Soares, Rodrigues, Oliveira (bib47) 2018; 32 Johnson, Houngnandan, Kane, Chatagnier, Sanon, Neyra, van Tuinen (bib28) 2016; 66 Fellbaum, Mensah, Pfeffer, Kiers, Bücking (bib18) 2012; 7 Chirumamilla, Pérez-Novo, Van Ostade, Berghe (bib11) 2017; 76 Golubkina, Logvinenko, Novitsky, Zamana, Sokolov, Molchanova, Shevchuk, Sekara, Tallarita, Caruso (bib20) 2020; 9 Rivero, Gamir, Aroca, Pozo, Flors (bib51) 2015; 6 Treseder (bib60) 2013; 371 Toussaint, Smith, Smith (bib58) 2007; 17 Feddermann, Boller, Salzer, Elfstrand, Wiemken, Elfstrand (bib16) 2008; 227 Pedone-Bonfim, da Silva, da Silva-Batista, de Oliveira, da Silva Almeida, Yano-Melo, Maia (bib48) 2018; 122 Zhang, Zhou (bib68) 2010; 3 Asrar, Elhindi (bib2) 2011; 18 Bitterlich, Rouphael, Graefe, Franken (bib6) 2018; 9 Johny, Conlan, Adholeya, Cahill (bib30) 2018; 132 Kapoor, Chaudhary, Bhatnagar (bib32) 2007; 17 Kumar, Prasad, Kumar, Tuteja, Varma (bib35) 2017 Schliemann, Ammer, Strack (bib52) 2008; 69 Gupta (bib22) 1999 Johny, Cahill, Conlan, Adholeya (bib29) 2015; 120 Smith, Smith (bib55) 2012; 104 Hoagland, Arnon (bib24) 1950 Kapulnik, Volpin, Itzhaki, Ganon, Galili, David, Shaul, Elad, Chet, Okon (bib33) 1996; 133 Das, Uppal, Singh, Beri, Mohan, Gupta, Adholeya (bib12) 2011; 102 Andrade, Malik, Sawaya, Bottcher, Mazzafera (bib1) 2013; 35 Dutta, Khalil, Green, Mohapatra, Mohapatra (bib15) 2019; 20 Perez, Urcelay (bib49) 2009; 19 Blilou, Ocampo, García-Garrido (bib7) 1999; 50 Rayees, Malik (bib50) 2017 Selyutina, Polyakov (bib53) 2019; 559 Murashige, Skoog (bib41) 1962; 15 De Souza Ferrari, dos Santos Queiroz, de Andrade, Alberton, Gonçalves, Gazim, Magalhães (bib13) 2020; 13 Dos Santos, Da Silva, Da Silva (bib14) 2017; 11 Pal, Yadav, Singh, Rastogi, Gupta, Verma, Nagegowda, Pal, Shasany (bib45) 2017; 254 Vaingankar, Rodrigues (bib61) 2012; 28 Feddermann, Finlay, Boller, Elfstrand (bib17) 2010; 3 Hooks, Wang, Ploeg, McSorley (bib25) 2010; 46 Maeda, Ashida, Iguchi, Chechetka, Hijikata, Okusako, Deguchi, Izui, Hata (bib37) 2006; 47 Gerlach, Schmitz, Polatajko, Schlueter, Fahnenstich, Witt, Fernie, Uroic, Scholz, Sonnewald, Bucher (bib19) 2015; 38 Orujei, Shabani, Sharifi-Tehrani (bib43) 2013; 60 Pandey, Kaur, Dey (bib46) 2018 Tran, Watts-Williams, Cavagnaro (bib59) 2019; 46 Negahban, Aboutalebi, Zakerin (bib42) 2014; 2 Vierheilig, Coughlan, Wyss, Piché (bib63) 1998; 64 Van Der Heijden (bib62) 2002 Castillo, Dasgupta-Schubert, Alvarado, Zaragoza, Villegas (bib8) 2011; 29 Kapoor, Anand, Gupta, Mandal (bib31) 2017; 16 Mandal, Upadhyay, Singh, Kapoor (bib38) 2015; 89 Battini, Bernardi, Turrini, Agnolucci, Giovannetti (bib4) 2016; 26 Xie, Hao, Yu, Wu, Zhao, Li, Zhang, Chen (bib65) 2019; 439 Smith, Read (bib54) 2008 Zubek, Rola, Szewczyk, Majewska, Turnau (bib69) 2015; 390 Kapoor (10.1016/j.rhisph.2021.100314_bib32) 2007; 17 Smith (10.1016/j.rhisph.2021.100314_bib54) 2008 Wang (10.1016/j.rhisph.2021.100314_bib64) 2020; 117 Murashige (10.1016/j.rhisph.2021.100314_bib41) 1962; 15 Dutta (10.1016/j.rhisph.2021.100314_bib15) 2019; 20 Golubkina (10.1016/j.rhisph.2021.100314_bib20) 2020; 9 Kapoor (10.1016/j.rhisph.2021.100314_bib31) 2017; 16 Kumar (10.1016/j.rhisph.2021.100314_bib35) 2017 Maeda (10.1016/j.rhisph.2021.100314_bib37) 2006; 47 Kapulnik (10.1016/j.rhisph.2021.100314_bib33) 1996; 133 Battini (10.1016/j.rhisph.2021.100314_bib4) 2016; 26 Hosamani (10.1016/j.rhisph.2021.100314_bib26) 2011; 2 Chen (10.1016/j.rhisph.2021.100314_bib10) 2016; 168 Gerlach (10.1016/j.rhisph.2021.100314_bib19) 2015; 38 Rivero (10.1016/j.rhisph.2021.100314_bib51) 2015; 6 Pandey (10.1016/j.rhisph.2021.100314_bib46) 2018 Perez (10.1016/j.rhisph.2021.100314_bib49) 2009; 19 Avio (10.1016/j.rhisph.2021.100314_bib3) 2018; 9 Blilou (10.1016/j.rhisph.2021.100314_bib7) 1999; 50 De Souza Ferrari (10.1016/j.rhisph.2021.100314_bib13) 2020; 13 Gupta (10.1016/j.rhisph.2021.100314_bib22) 1999 Pastorino (10.1016/j.rhisph.2021.100314_bib47) 2018; 32 Castillo (10.1016/j.rhisph.2021.100314_bib8) 2011; 29 Das (10.1016/j.rhisph.2021.100314_bib12) 2011; 102 Öztürk (10.1016/j.rhisph.2021.100314_bib44) 2017 Johnson (10.1016/j.rhisph.2021.100314_bib28) 2016; 66 Campos (10.1016/j.rhisph.2021.100314_bib9) 2018; 9 Feddermann (10.1016/j.rhisph.2021.100314_bib17) 2010; 3 Feddermann (10.1016/j.rhisph.2021.100314_bib16) 2008; 227 Bitterlich (10.1016/j.rhisph.2021.100314_bib6) 2018; 9 Liu (10.1016/j.rhisph.2021.100314_bib36) 2014; 6 Johny (10.1016/j.rhisph.2021.100314_bib30) 2018; 132 Andrade (10.1016/j.rhisph.2021.100314_bib1) 2013; 35 Zhang (10.1016/j.rhisph.2021.100314_bib68) 2010; 3 Toussaint (10.1016/j.rhisph.2021.100314_bib58) 2007; 17 Hoagland (10.1016/j.rhisph.2021.100314_bib24) 1950 Yadav (10.1016/j.rhisph.2021.100314_bib66) 2013; 2 Negahban (10.1016/j.rhisph.2021.100314_bib42) 2014; 2 Vierheilig (10.1016/j.rhisph.2021.100314_bib63) 1998; 64 Mandal (10.1016/j.rhisph.2021.100314_bib38) 2015; 89 Johny (10.1016/j.rhisph.2021.100314_bib29) 2015; 120 Sun (10.1016/j.rhisph.2021.100314_bib56) 2019; 19 Pal (10.1016/j.rhisph.2021.100314_bib45) 2017; 254 Rayees (10.1016/j.rhisph.2021.100314_bib50) 2017 Vaingankar (10.1016/j.rhisph.2021.100314_bib61) 2012; 28 Javot (10.1016/j.rhisph.2021.100314_bib27) 2007; 104 Marotti (10.1016/j.rhisph.2021.100314_bib39) 2010; 90 Harrison (10.1016/j.rhisph.2021.100314_bib23) 2002; 14 Schliemann (10.1016/j.rhisph.2021.100314_bib52) 2008; 69 Smith (10.1016/j.rhisph.2021.100314_bib55) 2012; 104 Fellbaum (10.1016/j.rhisph.2021.100314_bib18) 2012; 7 Xie (10.1016/j.rhisph.2021.100314_bib65) 2019; 439 Chirumamilla (10.1016/j.rhisph.2021.100314_bib11) 2017; 76 Zeng (10.1016/j.rhisph.2021.100314_bib67) 2013; 23 Orujei (10.1016/j.rhisph.2021.100314_bib43) 2013; 60 Tran (10.1016/j.rhisph.2021.100314_bib59) 2019; 46 Van Der Heijden (10.1016/j.rhisph.2021.100314_bib62) 2002 Torrecillas (10.1016/j.rhisph.2021.100314_bib57) 2012; 78 Kaur (10.1016/j.rhisph.2021.100314_bib34) 2020; 10 Selyutina (10.1016/j.rhisph.2021.100314_bib53) 2019; 559 Asrar (10.1016/j.rhisph.2021.100314_bib2) 2011; 18 Pedone-Bonfim (10.1016/j.rhisph.2021.100314_bib48) 2018; 122 Treseder (10.1016/j.rhisph.2021.100314_bib60) 2013; 371 Guether (10.1016/j.rhisph.2021.100314_bib21) 2009; 150 Biermann (10.1016/j.rhisph.2021.100314_bib5) 1981; 87 Hooks (10.1016/j.rhisph.2021.100314_bib25) 2010; 46 Zubek (10.1016/j.rhisph.2021.100314_bib69) 2015; 390 Dos Santos (10.1016/j.rhisph.2021.100314_bib14) 2017; 11 Mensah (10.1016/j.rhisph.2021.100314_bib40) 2015; 25 |
References_xml | – volume: 18 start-page: 93 year: 2011 end-page: 98 ident: bib2 article-title: Alleviation of drought stress of marigold ( publication-title: Saudi J. Biol. Sci. – volume: 104 start-page: 1 year: 2012 end-page: 13 ident: bib55 article-title: Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth publication-title: Mycol. – volume: 120 start-page: 1191 year: 2015 end-page: 1202 ident: bib29 article-title: and publication-title: Plant Cell Tissue Organ Cult. – volume: 102 start-page: 6541 year: 2011 end-page: 6546 ident: bib12 article-title: Co-composting of physic nut ( publication-title: Bioresour. Technol. – volume: 9 start-page: 2920 year: 2018 ident: bib9 article-title: Symbiosis specificity of the preceding host plant can dominate but not obliterate the association between wheat and its arbuscular mycorrhizal fungal partners publication-title: Front. Microbiol. – volume: 28 start-page: 167 year: 2012 end-page: 176 ident: bib61 article-title: Screening for efficient AM (arbuscular mycorrhizal) fungal bioinoculants for two commercially important ornamental flowering plant species of Asteraceae publication-title: Biol. Agric. Hortic. – volume: 66 start-page: 207 year: 2016 end-page: 221 ident: bib28 article-title: Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea ( publication-title: Ann. Microbiol. – volume: 2 start-page: 43 year: 2013 end-page: 47 ident: bib66 article-title: Arbuscular mycorrhizal fungi induced acclimatization and growth enhancement of publication-title: Agric. Res. – volume: 168 start-page: 111 year: 2016 end-page: 117 ident: bib10 article-title: Inhibitory mechanisms of glabridin on tyrosinase publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. – volume: 6 start-page: 598 year: 2015 ident: bib51 article-title: Metabolic transition in mycorrhizal tomato roots publication-title: Front. Microbiol. – volume: 69 start-page: 112 year: 2008 end-page: 146 ident: bib52 article-title: Metabolite profiling of mycorrhizal roots of publication-title: Phytochemistry (Oxf.) – volume: 78 start-page: 6180 year: 2012 end-page: 6186 ident: bib57 article-title: Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies publication-title: Appl. Environ. Microbiol. – volume: 371 start-page: 1 year: 2013 end-page: 13 ident: bib60 article-title: The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content publication-title: Plant Soil – volume: 132 start-page: 479 year: 2018 end-page: 495 ident: bib30 article-title: Growth kinetics and withanolide production in novel transformed roots of publication-title: Plant Cell Tissue Organ Cult. – volume: 76 start-page: 96 year: 2017 end-page: 105 ident: bib11 article-title: Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A publication-title: Proc. Nutr. Soc. – volume: 19 start-page: 826 year: 2019 end-page: 832 ident: bib56 article-title: Research progress of glycyrrhizic acid on antiviral activity publication-title: Mini Rev. Med. Chem. – volume: 38 start-page: 1591 year: 2015 end-page: 1612 ident: bib19 article-title: An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis publication-title: Plant Cell Environ. – volume: 46 start-page: 732 year: 2019 end-page: 742 ident: bib59 article-title: Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species publication-title: Funct. Plant Biol. – volume: 17 start-page: 291 year: 2007 end-page: 297 ident: bib58 article-title: Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition publication-title: Mycorrhiza – volume: 16 start-page: 677 year: 2017 end-page: 692 ident: bib31 article-title: Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza publication-title: Phytochemistry Rev. – volume: 117 start-page: 16649 year: 2020 end-page: 16659 ident: bib64 article-title: Functional analysis of the OsNPF4. 5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – start-page: 31 year: 2017 end-page: 40 ident: bib44 article-title: Liquorice–mycorrhiza interactions publication-title: Liquorice. SpringerBriefs in Plant Science – start-page: 243 year: 2002 end-page: 265 ident: bib62 article-title: Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles publication-title: Mycorrhizal Ecology. Ecological Studies (Analysis and Synthesis) – year: 1999 ident: bib22 article-title: Soil, Plant, Water and Fertilizer Analysis – volume: 15 start-page: 473 year: 1962 end-page: 497 ident: bib41 article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures publication-title: Physiol. Plantarum – volume: 13 start-page: 100191 year: 2020 ident: bib13 article-title: Substrate-associated mycorrhizal fungi promote changes in terpene composition, antioxidant activity, and enzymes in publication-title: Rhizosphere – volume: 19 start-page: 517 year: 2009 end-page: 523 ident: bib49 article-title: Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types publication-title: Mycorrhiza – volume: 439 start-page: 243 year: 2019 end-page: 257 ident: bib65 article-title: Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in publication-title: Plant Soil – volume: 87 start-page: 63 year: 1981 end-page: 67 ident: bib5 article-title: Quantifying vesicular-arbuscular mycorrhizae: proposed method towards standardization publication-title: New Phytol. – volume: 25 start-page: 533 year: 2015 end-page: 546 ident: bib40 article-title: High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism publication-title: Mycorrhiza – volume: 390 start-page: 129 year: 2015 end-page: 142 ident: bib69 article-title: Enhanced concentrations of elements and secondary metabolites in publication-title: Plant Soil – volume: 23 start-page: 253 year: 2013 end-page: 265 ident: bib67 article-title: Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives publication-title: Mycorrhiza – volume: 7 start-page: 1509 year: 2012 end-page: 1512 ident: bib18 article-title: The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis publication-title: Plant Signal. Behav. – volume: 50 start-page: 1663 year: 1999 end-page: 1668 ident: bib7 article-title: Resistance of pea roots to endomycorrhizal fungus or publication-title: J. Exp. Bot. – start-page: 507 year: 2018 end-page: 538 ident: bib46 article-title: Arbuscular mycorrhizal fungi: effects on secondary metabolite production in medicinal plants publication-title: Fungi and Their Role in Sustainable Development: Current Perspectives – volume: 20 start-page: 5310 year: 2019 ident: bib15 article-title: (Ashwagandha) and withaferin A: potential in integrative oncology publication-title: Int. J. Mol. Sci. – volume: 26 start-page: 699 year: 2016 end-page: 707 ident: bib4 article-title: or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil publication-title: Mycorrhiza – volume: 3 start-page: 783 year: 2010 end-page: 793 ident: bib68 article-title: Plant immunity triggered by microbial molecular signatures publication-title: Mol. Plant – volume: 32 start-page: 2323 year: 2018 end-page: 2339 ident: bib47 article-title: Liquorice ( publication-title: Phytother Res. – volume: 11 start-page: 283 year: 2017 ident: bib14 article-title: Arbuscular mycorrhizal fungi increase the phenolic compounds concentration in the bark of the stem of publication-title: Open Microbiol. J. – volume: 90 start-page: 1210 year: 2010 end-page: 1217 ident: bib39 article-title: Thiophene occurrence in different publication-title: J. Sci. Food Agric. – volume: 227 start-page: 671 year: 2008 end-page: 680 ident: bib16 article-title: shows distinct patterns of mycorrhiza-related gene expression after inoculation with three different arbuscular mycorrhizal fungi publication-title: Planta – volume: 6 start-page: 186 year: 2014 end-page: 194 ident: bib36 article-title: Arbuscular mycorrhizal fungal colonization of publication-title: J. Arid Land. – volume: 47 start-page: 807 year: 2006 end-page: 817 ident: bib37 article-title: Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of publication-title: Plant Cell Physiol. – volume: 17 start-page: 581 year: 2007 end-page: 587 ident: bib32 article-title: Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in publication-title: Mycorrhiza – volume: 10 start-page: 335 year: 2020 ident: bib34 article-title: Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome publication-title: Metabolites – volume: 29 start-page: 156 year: 2011 end-page: 164 ident: bib8 article-title: The effect of the symbiosis between publication-title: N. Biotech. – volume: 150 start-page: 73 year: 2009 end-page: 83 ident: bib21 article-title: A mycorrhizal-specific ammonium transporter from publication-title: Plant Physiol. – start-page: 183 year: 2017 end-page: 207 ident: bib35 article-title: Mycorrhizal fungi under biotic and abiotic stress publication-title: Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials – volume: 89 start-page: 100 year: 2015 end-page: 106 ident: bib38 article-title: Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes publication-title: Plant Physiol. Biochem. – volume: 9 start-page: 1089 year: 2018 ident: bib3 article-title: Designing the ideotype mycorrhizal symbionts for the production of healthy food publication-title: Front. Plant Sci. – volume: 35 start-page: 867 year: 2013 end-page: 880 ident: bib1 article-title: Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in publication-title: Acta Physiol. Plant. – volume: 104 start-page: 1720 year: 2007 end-page: 1725 ident: bib27 article-title: A publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 9 start-page: 1329 year: 2018 ident: bib6 article-title: Arbuscular mycorrhizas: a promising component of plant production systems provided favorable conditions for their growth publication-title: Front. Plant Sci. – volume: 2 start-page: 93 year: 2014 end-page: 99 ident: bib42 article-title: The effect of phosphorus on the growth and productivity of Mexican Marigold ( publication-title: Russ. J. Biol. Res. – volume: 60 start-page: 855 year: 2013 end-page: 860 ident: bib43 article-title: Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi publication-title: Russ. J. Plant Physiol. – volume: 122 start-page: 918 year: 2018 end-page: 927 ident: bib48 article-title: Mycorrhizal inoculation as an alternative for the sustainable production of publication-title: Fungal Biol – volume: 14 start-page: 2413 year: 2002 end-page: 2429 ident: bib23 article-title: A phosphate transporter from publication-title: Plant Cell – volume: 2 start-page: 201 year: 2011 end-page: 206 ident: bib26 article-title: Role of arbuscular mycorrhizae in conservation of publication-title: Biosci. Discov. J. – volume: 559 start-page: 271 year: 2019 end-page: 279 ident: bib53 article-title: Glycyrrhizic acid as a multifunctional drug carrier–from physicochemical properties to biomedical applications: a modern insight on the ancient drug publication-title: Int. J. Pharm. – volume: 254 start-page: 389 year: 2017 end-page: 399 ident: bib45 article-title: Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in publication-title: Protoplasma – start-page: 1 year: 2008 end-page: 9 ident: bib54 article-title: Introduction publication-title: Mycorrhizal Symbiosis – start-page: 81 year: 2017 end-page: 103 ident: bib50 article-title: : from traditional use to evidence based medicinal prominence publication-title: Science of Ashwagandha: Preventive and Therapeutic Potentials – volume: 64 start-page: 5004 year: 1998 end-page: 5007 ident: bib63 article-title: Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi publication-title: Appl. Environ. Microbiol. – year: 1950 ident: bib24 article-title: The Water-Culture Method for Growing Plants without Soil – volume: 46 start-page: 307 year: 2010 end-page: 320 ident: bib25 article-title: Using marigold ( publication-title: Appl. Soil Ecol. – volume: 133 start-page: 59 year: 1996 end-page: 64 ident: bib33 article-title: Suppression of defence responses in mycorrhizal alfalfa and tobacco roots publication-title: New Phytol. – volume: 9 start-page: 375 year: 2020 ident: bib20 article-title: Yield, essential oil and quality performances of publication-title: Plants – volume: 3 start-page: 1 year: 2010 end-page: 8 ident: bib17 article-title: Functional diversity in arbuscular mycorrhiza–the role of gene expression, phosphorous nutrition and symbiotic efficiency publication-title: Fungal Ecol – volume: 122 start-page: 918 year: 2018 ident: 10.1016/j.rhisph.2021.100314_bib48 article-title: Mycorrhizal inoculation as an alternative for the sustainable production of Mimosa tenuiflora seedlings with improved growth and secondary compounds content publication-title: Fungal Biol doi: 10.1016/j.funbio.2018.05.009 – volume: 2 start-page: 93 year: 2014 ident: 10.1016/j.rhisph.2021.100314_bib42 article-title: The effect of phosphorus on the growth and productivity of Mexican Marigold (Tagetes minuta L.) publication-title: Russ. J. Biol. Res. doi: 10.13187/ejbr.2014.2.93 – volume: 28 start-page: 167 year: 2012 ident: 10.1016/j.rhisph.2021.100314_bib61 article-title: Screening for efficient AM (arbuscular mycorrhizal) fungal bioinoculants for two commercially important ornamental flowering plant species of Asteraceae publication-title: Biol. Agric. Hortic. doi: 10.1080/01448765.2012.727541 – volume: 78 start-page: 6180 year: 2012 ident: 10.1016/j.rhisph.2021.100314_bib57 article-title: Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01287-12 – volume: 38 start-page: 1591 year: 2015 ident: 10.1016/j.rhisph.2021.100314_bib19 article-title: An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis publication-title: Plant Cell Environ. doi: 10.1111/pce.12508 – volume: 23 start-page: 253 year: 2013 ident: 10.1016/j.rhisph.2021.100314_bib67 article-title: Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives publication-title: Mycorrhiza doi: 10.1007/s00572-013-0484-0 – start-page: 243 year: 2002 ident: 10.1016/j.rhisph.2021.100314_bib62 article-title: Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles – volume: 69 start-page: 112 year: 2008 ident: 10.1016/j.rhisph.2021.100314_bib52 article-title: Metabolite profiling of mycorrhizal roots of Medicago truncatula publication-title: Phytochemistry (Oxf.) doi: 10.1016/j.phytochem.2007.06.032 – volume: 3 start-page: 1 year: 2010 ident: 10.1016/j.rhisph.2021.100314_bib17 article-title: Functional diversity in arbuscular mycorrhiza–the role of gene expression, phosphorous nutrition and symbiotic efficiency publication-title: Fungal Ecol doi: 10.1016/j.funeco.2009.07.003 – volume: 9 start-page: 2920 year: 2018 ident: 10.1016/j.rhisph.2021.100314_bib9 article-title: Symbiosis specificity of the preceding host plant can dominate but not obliterate the association between wheat and its arbuscular mycorrhizal fungal partners publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02920 – volume: 18 start-page: 93 year: 2011 ident: 10.1016/j.rhisph.2021.100314_bib2 article-title: Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2010.06.007 – volume: 227 start-page: 671 year: 2008 ident: 10.1016/j.rhisph.2021.100314_bib16 article-title: Medicago truncatula shows distinct patterns of mycorrhiza-related gene expression after inoculation with three different arbuscular mycorrhizal fungi publication-title: Planta doi: 10.1007/s00425-007-0649-1 – volume: 89 start-page: 100 year: 2015 ident: 10.1016/j.rhisph.2021.100314_bib38 article-title: Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.02.010 – volume: 9 start-page: 1329 year: 2018 ident: 10.1016/j.rhisph.2021.100314_bib6 article-title: Arbuscular mycorrhizas: a promising component of plant production systems provided favorable conditions for their growth publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01329 – volume: 168 start-page: 111 year: 2016 ident: 10.1016/j.rhisph.2021.100314_bib10 article-title: Inhibitory mechanisms of glabridin on tyrosinase publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2016.06.008 – volume: 132 start-page: 479 year: 2018 ident: 10.1016/j.rhisph.2021.100314_bib30 article-title: Growth kinetics and withanolide production in novel transformed roots of Withania somnifera and measurement of their antioxidant potential using chemiluminescence publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-017-1344-y – volume: 90 start-page: 1210 year: 2010 ident: 10.1016/j.rhisph.2021.100314_bib39 article-title: Thiophene occurrence in different Tagetes species: agricultural biomasses as sources of biocidal substances publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.3950 – volume: 104 start-page: 1 year: 2012 ident: 10.1016/j.rhisph.2021.100314_bib55 article-title: Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth publication-title: Mycol. doi: 10.3852/11-229 – volume: 19 start-page: 826 year: 2019 ident: 10.1016/j.rhisph.2021.100314_bib56 article-title: Research progress of glycyrrhizic acid on antiviral activity publication-title: Mini Rev. Med. Chem. doi: 10.2174/1389557519666190119111125 – volume: 2 start-page: 43 year: 2013 ident: 10.1016/j.rhisph.2021.100314_bib66 article-title: Arbuscular mycorrhizal fungi induced acclimatization and growth enhancement of Glycyrrhiza glabra L.: a potential medicinal plant publication-title: Agric. Res. doi: 10.1007/s40003-012-0047-1 – volume: 25 start-page: 533 year: 2015 ident: 10.1016/j.rhisph.2021.100314_bib40 article-title: High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism publication-title: Mycorrhiza doi: 10.1007/s00572-015-0631-x – start-page: 1 year: 2008 ident: 10.1016/j.rhisph.2021.100314_bib54 article-title: Introduction – volume: 66 start-page: 207 year: 2016 ident: 10.1016/j.rhisph.2021.100314_bib28 article-title: Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study publication-title: Ann. Microbiol. doi: 10.1007/s13213-015-1097-y – volume: 150 start-page: 73 year: 2009 ident: 10.1016/j.rhisph.2021.100314_bib21 article-title: A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi publication-title: Plant Physiol. doi: 10.1104/pp.109.136390 – volume: 6 start-page: 186 year: 2014 ident: 10.1016/j.rhisph.2021.100314_bib36 article-title: Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites publication-title: J. Arid Land. doi: 10.1007/s40333-013-0208-5 – volume: 439 start-page: 243 year: 2019 ident: 10.1016/j.rhisph.2021.100314_bib65 article-title: Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis publication-title: Plant Soil doi: 10.1007/s11104-018-3861-9 – volume: 15 start-page: 473 year: 1962 ident: 10.1016/j.rhisph.2021.100314_bib41 article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures publication-title: Physiol. Plantarum doi: 10.1111/j.1399-3054.1962.tb08052.x – start-page: 183 year: 2017 ident: 10.1016/j.rhisph.2021.100314_bib35 article-title: Mycorrhizal fungi under biotic and abiotic stress – volume: 64 start-page: 5004 year: 1998 ident: 10.1016/j.rhisph.2021.100314_bib63 article-title: Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.12.5004-5007.1998 – volume: 254 start-page: 389 year: 2017 ident: 10.1016/j.rhisph.2021.100314_bib45 article-title: Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in Withania somnifera (L.) Dunal publication-title: Protoplasma doi: 10.1007/s00709-016-0959-x – volume: 46 start-page: 307 year: 2010 ident: 10.1016/j.rhisph.2021.100314_bib25 article-title: Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2010.09.005 – volume: 6 start-page: 598 year: 2015 ident: 10.1016/j.rhisph.2021.100314_bib51 article-title: Metabolic transition in mycorrhizal tomato roots publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00598 – volume: 117 start-page: 16649 year: 2020 ident: 10.1016/j.rhisph.2021.100314_bib64 article-title: Functional analysis of the OsNPF4. 5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.2000926117 – year: 1950 ident: 10.1016/j.rhisph.2021.100314_bib24 – volume: 102 start-page: 6541 year: 2011 ident: 10.1016/j.rhisph.2021.100314_bib12 article-title: Co-composting of physic nut (Jatropha curcas) deoiled cake with rice straw and different animal dung publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.058 – volume: 2 start-page: 201 year: 2011 ident: 10.1016/j.rhisph.2021.100314_bib26 article-title: Role of arbuscular mycorrhizae in conservation of Withania somnifera publication-title: Biosci. Discov. J. – start-page: 31 year: 2017 ident: 10.1016/j.rhisph.2021.100314_bib44 article-title: Liquorice–mycorrhiza interactions doi: 10.1007/978-3-319-74240-3_5 – volume: 13 start-page: 100191 year: 2020 ident: 10.1016/j.rhisph.2021.100314_bib13 article-title: Substrate-associated mycorrhizal fungi promote changes in terpene composition, antioxidant activity, and enzymes in Curcuma longa L. acclimatized plants publication-title: Rhizosphere doi: 10.1016/j.rhisph.2020.100191 – volume: 17 start-page: 581 year: 2007 ident: 10.1016/j.rhisph.2021.100314_bib32 article-title: Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L publication-title: Mycorrhiza doi: 10.1007/s00572-007-0135-4 – volume: 104 start-page: 1720 year: 2007 ident: 10.1016/j.rhisph.2021.100314_bib27 article-title: A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0608136104 – volume: 371 start-page: 1 year: 2013 ident: 10.1016/j.rhisph.2021.100314_bib60 article-title: The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content publication-title: Plant Soil doi: 10.1007/s11104-013-1681-5 – volume: 17 start-page: 291 year: 2007 ident: 10.1016/j.rhisph.2021.100314_bib58 article-title: Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition publication-title: Mycorrhiza doi: 10.1007/s00572-006-0104-3 – volume: 29 start-page: 156 year: 2011 ident: 10.1016/j.rhisph.2021.100314_bib8 article-title: The effect of the symbiosis between Tagetes erecta L. (marigold) and Glomus intraradices in the uptake of Copper(II) and its implications for phytoremediation publication-title: N. Biotech. doi: 10.1016/j.nbt.2011.05.009 – volume: 559 start-page: 271 year: 2019 ident: 10.1016/j.rhisph.2021.100314_bib53 article-title: Glycyrrhizic acid as a multifunctional drug carrier–from physicochemical properties to biomedical applications: a modern insight on the ancient drug publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.01.047 – volume: 20 start-page: 5310 year: 2019 ident: 10.1016/j.rhisph.2021.100314_bib15 article-title: Withania somnifera (Ashwagandha) and withaferin A: potential in integrative oncology publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20215310 – volume: 19 start-page: 517 year: 2009 ident: 10.1016/j.rhisph.2021.100314_bib49 article-title: Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types publication-title: Mycorrhiza doi: 10.1007/s00572-009-0254-1 – volume: 3 start-page: 783 year: 2010 ident: 10.1016/j.rhisph.2021.100314_bib68 article-title: Plant immunity triggered by microbial molecular signatures publication-title: Mol. Plant doi: 10.1093/mp/ssq035 – volume: 7 start-page: 1509 year: 2012 ident: 10.1016/j.rhisph.2021.100314_bib18 article-title: The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis publication-title: Plant Signal. Behav. doi: 10.4161/psb.22015 – volume: 60 start-page: 855 year: 2013 ident: 10.1016/j.rhisph.2021.100314_bib43 article-title: Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443713050129 – volume: 120 start-page: 1191 year: 2015 ident: 10.1016/j.rhisph.2021.100314_bib29 article-title: In vitro and in situ screening systems for morphological and phytochemical analysis of Withania somnifera germplasms publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-014-0673-3 – start-page: 507 year: 2018 ident: 10.1016/j.rhisph.2021.100314_bib46 article-title: Arbuscular mycorrhizal fungi: effects on secondary metabolite production in medicinal plants – year: 1999 ident: 10.1016/j.rhisph.2021.100314_bib22 – volume: 76 start-page: 96 year: 2017 ident: 10.1016/j.rhisph.2021.100314_bib11 article-title: Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A publication-title: Proc. Nutr. Soc. doi: 10.1017/S0029665116002937 – volume: 16 start-page: 677 year: 2017 ident: 10.1016/j.rhisph.2021.100314_bib31 article-title: Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza publication-title: Phytochemistry Rev. doi: 10.1007/s11101-016-9486-9 – volume: 26 start-page: 699 year: 2016 ident: 10.1016/j.rhisph.2021.100314_bib4 article-title: Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil publication-title: Mycorrhiza doi: 10.1007/s00572-016-0707-2 – volume: 50 start-page: 1663 year: 1999 ident: 10.1016/j.rhisph.2021.100314_bib7 article-title: Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid publication-title: J. Exp. Bot. doi: 10.1093/jxb/50.340.1663 – volume: 87 start-page: 63 year: 1981 ident: 10.1016/j.rhisph.2021.100314_bib5 article-title: Quantifying vesicular-arbuscular mycorrhizae: proposed method towards standardization publication-title: New Phytol. doi: 10.1111/j.1469-8137.1981.tb01690.x – volume: 32 start-page: 2323 year: 2018 ident: 10.1016/j.rhisph.2021.100314_bib47 article-title: Liquorice (Glycyrrhiza glabra): a phytochemical and pharmacological review publication-title: Phytother Res. doi: 10.1002/ptr.6178 – volume: 9 start-page: 1089 year: 2018 ident: 10.1016/j.rhisph.2021.100314_bib3 article-title: Designing the ideotype mycorrhizal symbionts for the production of healthy food publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01089 – volume: 390 start-page: 129 year: 2015 ident: 10.1016/j.rhisph.2021.100314_bib69 article-title: Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi publication-title: Plant Soil doi: 10.1007/s11104-015-2388-6 – start-page: 81 year: 2017 ident: 10.1016/j.rhisph.2021.100314_bib50 article-title: Withania somnifera: from traditional use to evidence based medicinal prominence – volume: 9 start-page: 375 year: 2020 ident: 10.1016/j.rhisph.2021.100314_bib20 article-title: Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management publication-title: Plants doi: 10.3390/plants9030375 – volume: 10 start-page: 335 year: 2020 ident: 10.1016/j.rhisph.2021.100314_bib34 article-title: Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome publication-title: Metabolites doi: 10.3390/metabo10080335 – volume: 35 start-page: 867 year: 2013 ident: 10.1016/j.rhisph.2021.100314_bib1 article-title: Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-012-1130-8 – volume: 14 start-page: 2413 year: 2002 ident: 10.1016/j.rhisph.2021.100314_bib23 article-title: A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi publication-title: Plant Cell doi: 10.1105/tpc.004861 – volume: 47 start-page: 807 year: 2006 ident: 10.1016/j.rhisph.2021.100314_bib37 article-title: Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcj069 – volume: 133 start-page: 59 year: 1996 ident: 10.1016/j.rhisph.2021.100314_bib33 article-title: Suppression of defence responses in mycorrhizal alfalfa and tobacco roots publication-title: New Phytol. doi: 10.1111/j.1469-8137.1996.tb04341.x – volume: 11 start-page: 283 year: 2017 ident: 10.1016/j.rhisph.2021.100314_bib14 article-title: Arbuscular mycorrhizal fungi increase the phenolic compounds concentration in the bark of the stem of Libidibia ferrea in field conditions publication-title: Open Microbiol. J. doi: 10.2174/1874285801711010283 – volume: 46 start-page: 732 year: 2019 ident: 10.1016/j.rhisph.2021.100314_bib59 article-title: Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species publication-title: Funct. Plant Biol. doi: 10.1071/FP18327 |
SSID | ssj0001763563 |
Score | 2.3062177 |
Snippet | Strategies to enhance the production of secondary metabolites, derived from medicinal and agriculturally important plants have been the subject of exploration... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100314 |
SubjectTerms | Acaulospora Alpha-terthienyl Arbuscular mycorrhizal fungi biosynthesis Claroideoglomus claroideum Claroideoglomus etunicatum crops Glabridin Glomus hoi Glycyrrhiza glabra Glycyrrhizic acid glycyrrhizin host plants knowledge licorice methodology mycorrhizal fungi Rhizophagus irregularis rhizosphere roots Secondary metabolites symbiosis Tagetes erecta Withaferin-A Withania somnifera |
Title | AMF enhance secondary metabolite production in ashwagandha, licorice, and marigold in a fungi-host specific manner |
URI | https://dx.doi.org/10.1016/j.rhisph.2021.100314 https://www.proquest.com/docview/2511172419 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNMzt4kUUFecXETyubGnapT2O4ZjKdtHBbiFt0m2ydaXtEP-97_VDUZCBhx4a8kp53y_vI4Tcazd0POUGFrALBCheJECkBLdsIXjEmfF1iBndybQ_njlPc3feIMO6FwbLKivdX-r0QltXK90Km91kteq-YM4Q5M2z8YgangPSssG69pqkNXh8Hk-_j1qKIWyYa0YQC2HqJrqi0itdrrIEExM2w6IBzpy_jNQvdV3YoNExOaqcRzoo_--ENEx8StLBZERNvETy0QzjW63SD7oxOdAXO4xpUk51BQrQVUxVtnxXCxXrperQNTACjhXqUFigGwicF9u1LrZRMHkQOWMXCMV-TKwpgh14VdcZmY0eXodjq7pJwQrBIcstv6-41kHYE4qrwAcNGCojtDBgmXpMazeIokAp2--5inHPAcH2Qg3eQyiMwfK1c9KMt7G5INQVmgeRZmDUbEdp5kcQszmG2X0PXSPVJrxGnQyrMeN428Va1vVkb7JEuESEyxLhbWJ9QSXlmI09-0VNFfmDXSRYgj2QdzURJUgSpkdUbLa7TGKwBe6cw_zLf3_9ihziW1mkdk2aebozN-C15MFtxZWf6Onq3w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT8IwtEE46MVo1PhtTTyyQNeNbkdCJCAfFyHh1nRrBxgYBEaM_9739qHRxJB42KXrW5b3_fo-SsiTdkPHU25gAbtAgOJFAkRKcMsWgkecGV-HmNEdDBudsfMycScl0ip6YbCsMtf9mU5PtXW-UsuxWVvP57VXzBmCvHk2HlHDc0AqOJ0K2LzS7PY6w--jlnQIG-aaEcRCmKKJLq302szm2zUmJmyGRQOcOX8ZqV_qOrVB7RNynDuPtJn93ykpmfiMbJqDNjXxDMlHtxjfarX5oEuTAH2xw5ius6muQAE6j6nazt7VVMV6pqp0AYyAY4WqFBboEgLn6Wqh020UTB5EztgFQrEfE2uKYAde1XVOxu3nUatj5TcpWCE4ZInlNxTXOgjrQnEV-KABQ2WEFgYsU51p7QZRFChl-3VXMe45INheqMF7CIUxWL52QcrxKjaXhLpC8yDSDIya7SjN_AhiNscwu-Gha6SuCC9QJ8N8zDjedrGQRT3Zm8wQLhHhMkP4FbG-oNbZmI09-0VBFfmDXSRYgj2QjwURJUgSpkdUbFa7rcRgC9w5h_nX__76AznsjAZ92e8OezfkCN9kBWu3pJxsduYOPJgkuM859BMZmu3O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMF+enhance+secondary+metabolite+production+in+ashwagandha%2C+licorice%2C+and+marigold+in+a+fungi-host+specific+manner&rft.jtitle=Rhizosphere&rft.au=Johny%2C+Leena&rft.au=Cahill%2C+David+M&rft.au=Adholeya%2C+Alok&rft.date=2021-03-01&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=17+p.100314-&rft_id=info:doi/10.1016%2Fj.rhisph.2021.100314&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon |