Iterative algorithms for solving inverse problems of heat conduction in multiply connected domains
The presented paper displays a method of solving the inverse problems of heat transfer in multi-connected regions, consisting in iterative solving of convergent series of the direct problems. For known temperature and flux values at the outer boundary of the region the temperature and flux values at...
Saved in:
Published in | International journal of heat and mass transfer Vol. 55; no. 4; pp. 744 - 751 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
31.01.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The presented paper displays a method of solving the inverse problems of heat transfer in multi-connected regions, consisting in iterative solving of convergent series of the direct problems. For known temperature and flux values at the outer boundary of the region the temperature and flux values at the inner boundaries are sought (the cauchy problem for the Laplace equation). In case of such a formulation of the problem, the solution does not always exist, one of the conditions is met in the mean-square sense, providing the optimization criterion. The idea of the process consists in solving the direct problem in which the boundary condition is subject to iterative changes so as to attain minimum of the optimization criterion (the square functional). Two algorithms have been formulated. In the first of them the heat flux at the inner boundaries of the region, while in the other the temperature were subject to changes. Convergence of both the algorithms have been compared.
The numerical calculation has been made for selected examples, for which an analytical solution is known. The effect of random disturbance of the boundary conditions on the solution obtained with iterative algorithms has been checked. Moreover, a function was defined, serving as convergence measure of the solution of the inverse problem solved with the algorithms proposed in the paper. The properties of the function give evidence that it tends to the value exceeding unity. |
---|---|
AbstractList | The presented paper displays a method of solving the inverse problems of heat transfer in multi-connected regions, consisting in iterative solving of convergent series of the direct problems. For known temperature and flux values at the outer boundary of the region the temperature and flux values at the inner boundaries are sought (the cauchy problem for the Laplace equation). In case of such a formulation of the problem, the solution does not always exist, one of the conditions is met in the mean-square sense, providing the optimization criterion. The idea of the process consists in solving the direct problem in which the boundary condition is subject to iterative changes so as to attain minimum of the optimization criterion (the square functional). Two algorithms have been formulated. In the first of them the heat flux at the inner boundaries of the region, while in the other the temperature were subject to changes. Convergence of both the algorithms have been compared. The numerical calculation has been made for selected examples, for which an analytical solution is known. The effect of random disturbance of the boundary conditions on the solution obtained with iterative algorithms has been checked. Moreover, a function was defined, serving as convergence measure of the solution of the inverse problem solved with the algorithms proposed in the paper. The properties of the function give evidence that it tends to the value exceeding unity. The presented paper displays a method of solving the inverse problems of heat transfer in multi-connected regions, consisting in iterative solving of convergent series of the direct problems. For known temperature and flux values at the outer boundary of the region the temperature and flux values at the inner boundaries are sought (the cauchy problem for the Laplace equation). In case of such a formulation of the problem, the solution does not always exist, one of the conditions is met in the mean-square sense, providing the optimization criterion. The idea of the process consists in solving the direct problem in which the boundary condition is subject to iterative changes so as to attain minimum of the optimization criterion (the square functional). Two algorithms have been formulated. In the first of them the heat flux at the inner boundaries of the region, while in the other the temperature were subject to changes. Convergence of both the algorithms have been compared. The numerical calculation has been made for selected examples, for which an analytical solution is known. The effect of random disturbance of the boundary conditions on the solution obtained with iterative algorithms has been checked. Moreover, a function was defined, serving as convergence measure of the solution of the inverse problem solved with the algorithms proposed in the paper. The properties of the function give evidence that it tends to the value exceeding unity. |
Author | Frąckowiak, A. Wróblewska, A. Ciałkowski, M. |
Author_xml | – sequence: 1 givenname: A. surname: Frckowiak fullname: Frckowiak, A. – sequence: 2 givenname: M. surname: Ciakowski fullname: Ciakowski, M. – sequence: 3 givenname: A. surname: Wrblewska fullname: Wrblewska, A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25390565$$DView record in Pascal Francis |
BookMark | eNqVkUFr3DAQhUVIIJuk_0GXQi7eSrZlW7eW0KQpgV7asxjL40SLLG012oX8-8psemkvLQiE9B7fSO9dsfMQAzJ2K8VWCtl92G3d7gUhL0CUEwSaMW1rIWWRt6JRZ2wjh15XtRz0OdsIIftKN1Jcsiui3XoUbbdh42PGBNkdkYN_jsnll4X4HBOn6I8uPHMXjpgI-T7F0WMR48zXwdzGMB1sdjEUD18OPru9f12vA9qME5_iAi7QDbuYwRO-e9uv2Y_7z9_vvlRP3x4e7z49VbYVKldaiWZohrruu7JaLcd-rK2q1Th0OEIDWmI7WjVCC3bSqIUFmISqUZU8AJprdnvilpf-PCBlsziy6D0EjAcyJTYx9KrtRbG-f7MCWfBzyc86MvvkFkivplaNFqpTxXd_8tkUiRLOxroM65dL5M4X5ErtzM78XYZZy1gdpYwC-vgH6Pes_0B8PSGwZHh0RSXrMFicXCp5mym6f4f9Ak08udw |
CODEN | IJHMAK |
CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2014_03_014 crossref_primary_10_1016_j_camwa_2023_07_031 crossref_primary_10_1016_j_ijthermalsci_2015_02_016 crossref_primary_10_1108_HFF_09_2017_0381 crossref_primary_10_1016_j_ijthermalsci_2017_04_016 crossref_primary_10_3390_en15228425 crossref_primary_10_1080_17415977_2015_1017480 crossref_primary_10_1080_01495739_2016_1152109 |
Cites_doi | 10.1080/17415971003624322 10.1016/S0955-7997(97)00056-8 10.1093/imamat/65.2.199 10.1515/156939406778247615 10.1142/9789812774194_0001 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2011.10.035 |
DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 751 |
ExternalDocumentID | 25390565 10_1016_j_ijheatmasstransfer_2011_10_035 S0017931011006132 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c405t-95038382276276491b7b2c525b86eba3a91e4bc5ba4acd9e90caad052e5016aa3 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 11 03:51:41 EDT 2025 Mon Jul 21 09:14:39 EDT 2025 Tue Jul 01 02:39:53 EDT 2025 Thu Apr 24 22:50:23 EDT 2025 Fri Feb 23 02:23:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Iterative algorithm Inverse problem Cauchy problem Laplace equations Algorithms Inverse problems Digital simulation Modelling Iterative methods Thermal conduction |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-95038382276276491b7b2c525b86eba3a91e4bc5ba4acd9e90caad052e5016aa3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1010875470 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1010875470 pascalfrancis_primary_25390565 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2011_10_035 crossref_primary_10_1016_j_ijheatmasstransfer_2011_10_035 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2011_10_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-31 |
PublicationDateYYYYMMDD | 2012-01-31 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Brebbia, Telles, Wrobel (b0015) 1984 J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique, Princeton University Bulletin, 1902, pp. 49–52. Kabanikhin, Iskakov (b0045) 2007 Beck, Blackwell, Clair (b0010) 1985 Cheng, Choulli, Yang (b0020) 2006; 6 Wróblewska, Frąckowiak, Ciałkowski, Kołodziej (b0060) 2010; 18 Helsing, Johansson (b0040) 2010; 18 Hao, Lesnic (b0030) 2000; 65 Louis (b0055) 1989 Alifanov (b0005) 1994 Hasanov, Du Chateau, Pektas (b0035) 2006; 14 Lesnic, Elliot, Ingham (b0050) 1997; 20 Cheng (10.1016/j.ijheatmasstransfer.2011.10.035_b0020) 2006; 6 Hasanov (10.1016/j.ijheatmasstransfer.2011.10.035_b0035) 2006; 14 Wr?blewska (10.1016/j.ijheatmasstransfer.2011.10.035_b0060) 2010; 18 Brebbia (10.1016/j.ijheatmasstransfer.2011.10.035_b0015) 1984 Alifanov (10.1016/j.ijheatmasstransfer.2011.10.035_b0005) 1994 Beck (10.1016/j.ijheatmasstransfer.2011.10.035_b0010) 1985 Helsing (10.1016/j.ijheatmasstransfer.2011.10.035_b0040) 2010; 18 Louis (10.1016/j.ijheatmasstransfer.2011.10.035_b0055) 1989 Hao (10.1016/j.ijheatmasstransfer.2011.10.035_b0030) 2000; 65 Kabanikhin (10.1016/j.ijheatmasstransfer.2011.10.035_b0045) 2007 10.1016/j.ijheatmasstransfer.2011.10.035_b0065 Lesnic (10.1016/j.ijheatmasstransfer.2011.10.035_b0050) 1997; 20 |
References_xml | – year: 1984 ident: b0015 article-title: Boundary Element Technique Theory and Applications in Engineering – reference: J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique, Princeton University Bulletin, 1902, pp. 49–52. – year: 1989 ident: b0055 article-title: Inverse und schlecht gestellte Probleme – volume: 65 start-page: 199 year: 2000 end-page: 217 ident: b0030 article-title: The Cauchy problem for Laplace’s equation via the conjugate gradient method publication-title: IMA J. Appl. Math. – year: 2007 ident: b0045 article-title: Inverse and Ill-Posed Problems for Hyperbolic Equations – volume: 6 start-page: 1 year: 2006 end-page: 17 ident: b0020 article-title: An iterative BEM for the inverse problem of detecting corrosion in a pipe publication-title: Frontiers Prospects Contemp. Appl. Math. – volume: 20 start-page: 123 year: 1997 end-page: 133 ident: b0050 article-title: An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation publication-title: Eng. Anal. Boundary Elem. – volume: 18 start-page: 441 year: 2010 end-page: 460 ident: b0060 article-title: Solution of Cauchy problem to stationary heat conduction equation by modified method of elementary balances with interpolation of the solution in physical plane publication-title: Inverse Probl. Sci. Eng. – year: 1994 ident: b0005 article-title: Inverse Heat Transfer Problems – volume: 14 start-page: 435 year: 2006 end-page: 463 ident: b0035 article-title: An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation publication-title: J. Inverse Ill-Posed Probl. – year: 1985 ident: b0010 article-title: Inverse Heat Conduction: Ill-Posed Problems – volume: 18 start-page: 381 year: 2010 end-page: 399 ident: b0040 article-title: Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques publication-title: Inverse Probl. Sci. Eng. – volume: 18 start-page: 381 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0040 article-title: Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques publication-title: Inverse Probl. Sci. Eng. doi: 10.1080/17415971003624322 – volume: 20 start-page: 123 issue: 2 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0050 article-title: An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation publication-title: Eng. Anal. Boundary Elem. doi: 10.1016/S0955-7997(97)00056-8 – ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0065 – year: 1989 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0055 – year: 1985 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0010 – volume: 65 start-page: 199 issue: 2 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0030 article-title: The Cauchy problem for Laplace?s equation via the conjugate gradient method publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/65.2.199 – volume: 14 start-page: 435 issue: 5 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0035 article-title: An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/156939406778247615 – year: 1994 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0005 – volume: 6 start-page: 1 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0020 article-title: An iterative BEM for the inverse problem of detecting corrosion in a pipe publication-title: Frontiers Prospects Contemp. Appl. Math. doi: 10.1142/9789812774194_0001 – year: 1984 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0015 – year: 2007 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0045 – volume: 18 start-page: 441 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0060 article-title: Solution of Cauchy problem to stationary heat conduction equation by modified method of elementary balances with interpolation of the solution in physical plane publication-title: Inverse Probl. Sci. Eng. |
SSID | ssj0017046 |
Score | 2.0694344 |
Snippet | The presented paper displays a method of solving the inverse problems of heat transfer in multi-connected regions, consisting in iterative solving of... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 744 |
SubjectTerms | Algorithms Analytical and numerical techniques Boundaries Cauchy problem Criteria Exact sciences and technology Fundamental areas of phenomenology (including applications) Heat conduction Heat transfer Inverse problem Inverse problems Iterative algorithm Iterative algorithms Mathematical analysis Mathematical models Physics |
Title | Iterative algorithms for solving inverse problems of heat conduction in multiply connected domains |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.035 https://www.proquest.com/docview/1010875470 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF6CS0shlPRFnbZmAz30olqPXUl7KsHUODHxodQ0N7EvtwqxZCz50Et_e2dWKxeTXAI5CS2zyzIz-mYkfTtDyCcdZ0ZZGwZKcBMwY_Igz1MTCJPnMANCrjuVdrVIZ0t2ec2vj8ikPwuDtEqP_R2mO7T2I2OvzfGmLPGMLzpX5IqeQVBCHGYsQy__8ndP84iysDusg2iM0s_I5_8cr_IGEW8NaWrr0kS77Yp6It_LNYC7N1Qdb2QDClx1nS_ugLiLTNMT8sKnlPS82_VLcmSrV-Spo3bq5jVRF65wMqAalbe_6m3Z_l43FHJVCm6HnxNoWSE3w1LfXKah9Yrijim8K5uuuizIUM89_IPDFejMGmrqtSyr5g1ZTr_9mMwC31kh0JCgtYHAIjAJ5AYAhVnKRKQyFWsec5WnVslEisgypbmSTGojrAi1lCbkseWgOCmTt2RQ1ZV9R2iitRUp10xCZhWqCBfA_uo5FvJhq9WQfO2VWGhfdhy7X9wWPb_sprhrhgLNgBJghiER-xU2XQmOB8yd9HYrDtyqgIjxgFVGBybfbyPmiQB3BoGz3gcKeDzxn4usbL1rcH3sGcCy8PRRtvKePIc7ZNNA9PxABu12Zz9CWtSqkfP7EXlyfjGfLfA6__5z_g8T0RWV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB2hoNJKCFHaqlCgi8ShFwvH9treE4oiUFIgp0TKzdqvFCNiR7E59N8zY69TIXpB4mrvrlYzs2_G3pk3AOc6SIyy1veU4MaLjEm9NI2NJ0ya4gx0uU1V2t0kHs2i33M-34JhVwtDaZUO-1tMb9DaPblw0rxY5TnV-JJx9RvSM3RKiMPbxE7Fe7A9GN-MJpvLhMRv63UIkGnCDvz6l-aVPxDoLTFSrZtI0a5bXk9K-Wp6wP3XW-2uZIUyXLTNL17heOOcrvdhz0WVbNBu_DNs2eIAPjTZnbr6AmrccCcjsDH5-Kdc5_X9smIYrjK0PPqjwPKC0jMsc_1lKlYuGO2Y4eeyaQlmcQxz6Yd_6XGBYrOGmXIp86L6CrPrq-lw5LnmCp7GGK32BPHAhBgeIBomcST6KlGB5gFXaWyVDKXo20hprmQktRFW-FpK4_PAchSclOE36BVlYb8DC7W2IuY6khhc-apPC1CL9ZS4fKLF4hAuOyFm2jGPUwOMx6xLMXvIXqshIzXQCFTDIYjNCquWheMNc4ed3rIXlpWh03jDKqcvVL7ZRsBDgRaNA846G8jwhNK1iyxs-VTR-tQ2IEr8o3fZyk_4OJre3Wa348nND_iEbyi5Bp3pMfTq9ZM9wSipVqfuFDwDxPkWow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+algorithms+for+solving+inverse+problems+of+heat+conduction+in+multiply+connected+domains&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=FRACKOWIAK%2C+A&rft.au=CIALKOWSKI%2C+M&rft.au=WROBLEWSKA%2C+A&rft.date=2012-01-31&rft.pub=Elsevier&rft.issn=0017-9310&rft.volume=55&rft.issue=4&rft.spage=744&rft.epage=751&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2011.10.035&rft.externalDBID=n%2Fa&rft.externalDocID=25390565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |