Iterative algorithms for solving inverse problems of heat conduction in multiply connected domains

The presented paper displays a method of solving the inverse problems of heat transfer in multi-connected regions, consisting in iterative solving of convergent series of the direct problems. For known temperature and flux values at the outer boundary of the region the temperature and flux values at...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 55; no. 4; pp. 744 - 751
Main Authors Frckowiak, A., Ciakowski, M., Wrblewska, A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 31.01.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The presented paper displays a method of solving the inverse problems of heat transfer in multi-connected regions, consisting in iterative solving of convergent series of the direct problems. For known temperature and flux values at the outer boundary of the region the temperature and flux values at the inner boundaries are sought (the cauchy problem for the Laplace equation). In case of such a formulation of the problem, the solution does not always exist, one of the conditions is met in the mean-square sense, providing the optimization criterion. The idea of the process consists in solving the direct problem in which the boundary condition is subject to iterative changes so as to attain minimum of the optimization criterion (the square functional). Two algorithms have been formulated. In the first of them the heat flux at the inner boundaries of the region, while in the other the temperature were subject to changes. Convergence of both the algorithms have been compared. The numerical calculation has been made for selected examples, for which an analytical solution is known. The effect of random disturbance of the boundary conditions on the solution obtained with iterative algorithms has been checked. Moreover, a function was defined, serving as convergence measure of the solution of the inverse problem solved with the algorithms proposed in the paper. The properties of the function give evidence that it tends to the value exceeding unity.
AbstractList The presented paper displays a method of solving the inverse problems of heat transfer in multi-connected regions, consisting in iterative solving of convergent series of the direct problems. For known temperature and flux values at the outer boundary of the region the temperature and flux values at the inner boundaries are sought (the cauchy problem for the Laplace equation). In case of such a formulation of the problem, the solution does not always exist, one of the conditions is met in the mean-square sense, providing the optimization criterion. The idea of the process consists in solving the direct problem in which the boundary condition is subject to iterative changes so as to attain minimum of the optimization criterion (the square functional). Two algorithms have been formulated. In the first of them the heat flux at the inner boundaries of the region, while in the other the temperature were subject to changes. Convergence of both the algorithms have been compared. The numerical calculation has been made for selected examples, for which an analytical solution is known. The effect of random disturbance of the boundary conditions on the solution obtained with iterative algorithms has been checked. Moreover, a function was defined, serving as convergence measure of the solution of the inverse problem solved with the algorithms proposed in the paper. The properties of the function give evidence that it tends to the value exceeding unity.
The presented paper displays a method of solving the inverse problems of heat transfer in multi-connected regions, consisting in iterative solving of convergent series of the direct problems. For known temperature and flux values at the outer boundary of the region the temperature and flux values at the inner boundaries are sought (the cauchy problem for the Laplace equation). In case of such a formulation of the problem, the solution does not always exist, one of the conditions is met in the mean-square sense, providing the optimization criterion. The idea of the process consists in solving the direct problem in which the boundary condition is subject to iterative changes so as to attain minimum of the optimization criterion (the square functional). Two algorithms have been formulated. In the first of them the heat flux at the inner boundaries of the region, while in the other the temperature were subject to changes. Convergence of both the algorithms have been compared. The numerical calculation has been made for selected examples, for which an analytical solution is known. The effect of random disturbance of the boundary conditions on the solution obtained with iterative algorithms has been checked. Moreover, a function was defined, serving as convergence measure of the solution of the inverse problem solved with the algorithms proposed in the paper. The properties of the function give evidence that it tends to the value exceeding unity.
Author Frąckowiak, A.
Wróblewska, A.
Ciałkowski, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Frckowiak
  fullname: Frckowiak, A.
– sequence: 2
  givenname: M.
  surname: Ciakowski
  fullname: Ciakowski, M.
– sequence: 3
  givenname: A.
  surname: Wrblewska
  fullname: Wrblewska, A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25390565$$DView record in Pascal Francis
BookMark eNqVkUFr3DAQhUVIIJuk_0GXQi7eSrZlW7eW0KQpgV7asxjL40SLLG012oX8-8psemkvLQiE9B7fSO9dsfMQAzJ2K8VWCtl92G3d7gUhL0CUEwSaMW1rIWWRt6JRZ2wjh15XtRz0OdsIIftKN1Jcsiui3XoUbbdh42PGBNkdkYN_jsnll4X4HBOn6I8uPHMXjpgI-T7F0WMR48zXwdzGMB1sdjEUD18OPru9f12vA9qME5_iAi7QDbuYwRO-e9uv2Y_7z9_vvlRP3x4e7z49VbYVKldaiWZohrruu7JaLcd-rK2q1Th0OEIDWmI7WjVCC3bSqIUFmISqUZU8AJprdnvilpf-PCBlsziy6D0EjAcyJTYx9KrtRbG-f7MCWfBzyc86MvvkFkivplaNFqpTxXd_8tkUiRLOxroM65dL5M4X5ErtzM78XYZZy1gdpYwC-vgH6Pes_0B8PSGwZHh0RSXrMFicXCp5mym6f4f9Ak08udw
CODEN IJHMAK
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2014_03_014
crossref_primary_10_1016_j_camwa_2023_07_031
crossref_primary_10_1016_j_ijthermalsci_2015_02_016
crossref_primary_10_1108_HFF_09_2017_0381
crossref_primary_10_1016_j_ijthermalsci_2017_04_016
crossref_primary_10_3390_en15228425
crossref_primary_10_1080_17415977_2015_1017480
crossref_primary_10_1080_01495739_2016_1152109
Cites_doi 10.1080/17415971003624322
10.1016/S0955-7997(97)00056-8
10.1093/imamat/65.2.199
10.1515/156939406778247615
10.1142/9789812774194_0001
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2011.10.035
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 751
ExternalDocumentID 25390565
10_1016_j_ijheatmasstransfer_2011_10_035
S0017931011006132
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c405t-95038382276276491b7b2c525b86eba3a91e4bc5ba4acd9e90caad052e5016aa3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 11 03:51:41 EDT 2025
Mon Jul 21 09:14:39 EDT 2025
Tue Jul 01 02:39:53 EDT 2025
Thu Apr 24 22:50:23 EDT 2025
Fri Feb 23 02:23:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Iterative algorithm
Inverse problem
Cauchy problem
Laplace equations
Algorithms
Inverse problems
Digital simulation
Modelling
Iterative methods
Thermal conduction
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-95038382276276491b7b2c525b86eba3a91e4bc5ba4acd9e90caad052e5016aa3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1010875470
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1010875470
pascalfrancis_primary_25390565
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2011_10_035
crossref_primary_10_1016_j_ijheatmasstransfer_2011_10_035
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2011_10_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-31
PublicationDateYYYYMMDD 2012-01-31
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-31
  day: 31
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of heat and mass transfer
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Brebbia, Telles, Wrobel (b0015) 1984
J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique, Princeton University Bulletin, 1902, pp. 49–52.
Kabanikhin, Iskakov (b0045) 2007
Beck, Blackwell, Clair (b0010) 1985
Cheng, Choulli, Yang (b0020) 2006; 6
Wróblewska, Frąckowiak, Ciałkowski, Kołodziej (b0060) 2010; 18
Helsing, Johansson (b0040) 2010; 18
Hao, Lesnic (b0030) 2000; 65
Louis (b0055) 1989
Alifanov (b0005) 1994
Hasanov, Du Chateau, Pektas (b0035) 2006; 14
Lesnic, Elliot, Ingham (b0050) 1997; 20
Cheng (10.1016/j.ijheatmasstransfer.2011.10.035_b0020) 2006; 6
Hasanov (10.1016/j.ijheatmasstransfer.2011.10.035_b0035) 2006; 14
Wr?blewska (10.1016/j.ijheatmasstransfer.2011.10.035_b0060) 2010; 18
Brebbia (10.1016/j.ijheatmasstransfer.2011.10.035_b0015) 1984
Alifanov (10.1016/j.ijheatmasstransfer.2011.10.035_b0005) 1994
Beck (10.1016/j.ijheatmasstransfer.2011.10.035_b0010) 1985
Helsing (10.1016/j.ijheatmasstransfer.2011.10.035_b0040) 2010; 18
Louis (10.1016/j.ijheatmasstransfer.2011.10.035_b0055) 1989
Hao (10.1016/j.ijheatmasstransfer.2011.10.035_b0030) 2000; 65
Kabanikhin (10.1016/j.ijheatmasstransfer.2011.10.035_b0045) 2007
10.1016/j.ijheatmasstransfer.2011.10.035_b0065
Lesnic (10.1016/j.ijheatmasstransfer.2011.10.035_b0050) 1997; 20
References_xml – year: 1984
  ident: b0015
  article-title: Boundary Element Technique Theory and Applications in Engineering
– reference: J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique, Princeton University Bulletin, 1902, pp. 49–52.
– year: 1989
  ident: b0055
  article-title: Inverse und schlecht gestellte Probleme
– volume: 65
  start-page: 199
  year: 2000
  end-page: 217
  ident: b0030
  article-title: The Cauchy problem for Laplace’s equation via the conjugate gradient method
  publication-title: IMA J. Appl. Math.
– year: 2007
  ident: b0045
  article-title: Inverse and Ill-Posed Problems for Hyperbolic Equations
– volume: 6
  start-page: 1
  year: 2006
  end-page: 17
  ident: b0020
  article-title: An iterative BEM for the inverse problem of detecting corrosion in a pipe
  publication-title: Frontiers Prospects Contemp. Appl. Math.
– volume: 20
  start-page: 123
  year: 1997
  end-page: 133
  ident: b0050
  article-title: An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation
  publication-title: Eng. Anal. Boundary Elem.
– volume: 18
  start-page: 441
  year: 2010
  end-page: 460
  ident: b0060
  article-title: Solution of Cauchy problem to stationary heat conduction equation by modified method of elementary balances with interpolation of the solution in physical plane
  publication-title: Inverse Probl. Sci. Eng.
– year: 1994
  ident: b0005
  article-title: Inverse Heat Transfer Problems
– volume: 14
  start-page: 435
  year: 2006
  end-page: 463
  ident: b0035
  article-title: An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation
  publication-title: J. Inverse Ill-Posed Probl.
– year: 1985
  ident: b0010
  article-title: Inverse Heat Conduction: Ill-Posed Problems
– volume: 18
  start-page: 381
  year: 2010
  end-page: 399
  ident: b0040
  article-title: Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques
  publication-title: Inverse Probl. Sci. Eng.
– volume: 18
  start-page: 381
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0040
  article-title: Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques
  publication-title: Inverse Probl. Sci. Eng.
  doi: 10.1080/17415971003624322
– volume: 20
  start-page: 123
  issue: 2
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0050
  article-title: An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation
  publication-title: Eng. Anal. Boundary Elem.
  doi: 10.1016/S0955-7997(97)00056-8
– ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0065
– year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0055
– year: 1985
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0010
– volume: 65
  start-page: 199
  issue: 2
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0030
  article-title: The Cauchy problem for Laplace?s equation via the conjugate gradient method
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/65.2.199
– volume: 14
  start-page: 435
  issue: 5
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0035
  article-title: An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/156939406778247615
– year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0005
– volume: 6
  start-page: 1
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0020
  article-title: An iterative BEM for the inverse problem of detecting corrosion in a pipe
  publication-title: Frontiers Prospects Contemp. Appl. Math.
  doi: 10.1142/9789812774194_0001
– year: 1984
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0015
– year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0045
– volume: 18
  start-page: 441
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2011.10.035_b0060
  article-title: Solution of Cauchy problem to stationary heat conduction equation by modified method of elementary balances with interpolation of the solution in physical plane
  publication-title: Inverse Probl. Sci. Eng.
SSID ssj0017046
Score 2.0694344
Snippet The presented paper displays a method of solving the inverse problems of heat transfer in multi-connected regions, consisting in iterative solving of...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 744
SubjectTerms Algorithms
Analytical and numerical techniques
Boundaries
Cauchy problem
Criteria
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Heat conduction
Heat transfer
Inverse problem
Inverse problems
Iterative algorithm
Iterative algorithms
Mathematical analysis
Mathematical models
Physics
Title Iterative algorithms for solving inverse problems of heat conduction in multiply connected domains
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.035
https://www.proquest.com/docview/1010875470
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF6CS0shlPRFnbZmAz30olqPXUl7KsHUODHxodQ0N7EvtwqxZCz50Et_e2dWKxeTXAI5CS2zyzIz-mYkfTtDyCcdZ0ZZGwZKcBMwY_Igz1MTCJPnMANCrjuVdrVIZ0t2ec2vj8ikPwuDtEqP_R2mO7T2I2OvzfGmLPGMLzpX5IqeQVBCHGYsQy__8ndP84iysDusg2iM0s_I5_8cr_IGEW8NaWrr0kS77Yp6It_LNYC7N1Qdb2QDClx1nS_ugLiLTNMT8sKnlPS82_VLcmSrV-Spo3bq5jVRF65wMqAalbe_6m3Z_l43FHJVCm6HnxNoWSE3w1LfXKah9Yrijim8K5uuuizIUM89_IPDFejMGmrqtSyr5g1ZTr_9mMwC31kh0JCgtYHAIjAJ5AYAhVnKRKQyFWsec5WnVslEisgypbmSTGojrAi1lCbkseWgOCmTt2RQ1ZV9R2iitRUp10xCZhWqCBfA_uo5FvJhq9WQfO2VWGhfdhy7X9wWPb_sprhrhgLNgBJghiER-xU2XQmOB8yd9HYrDtyqgIjxgFVGBybfbyPmiQB3BoGz3gcKeDzxn4usbL1rcH3sGcCy8PRRtvKePIc7ZNNA9PxABu12Zz9CWtSqkfP7EXlyfjGfLfA6__5z_g8T0RWV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB2hoNJKCFHaqlCgi8ShFwvH9treE4oiUFIgp0TKzdqvFCNiR7E59N8zY69TIXpB4mrvrlYzs2_G3pk3AOc6SIyy1veU4MaLjEm9NI2NJ0ya4gx0uU1V2t0kHs2i33M-34JhVwtDaZUO-1tMb9DaPblw0rxY5TnV-JJx9RvSM3RKiMPbxE7Fe7A9GN-MJpvLhMRv63UIkGnCDvz6l-aVPxDoLTFSrZtI0a5bXk9K-Wp6wP3XW-2uZIUyXLTNL17heOOcrvdhz0WVbNBu_DNs2eIAPjTZnbr6AmrccCcjsDH5-Kdc5_X9smIYrjK0PPqjwPKC0jMsc_1lKlYuGO2Y4eeyaQlmcQxz6Yd_6XGBYrOGmXIp86L6CrPrq-lw5LnmCp7GGK32BPHAhBgeIBomcST6KlGB5gFXaWyVDKXo20hprmQktRFW-FpK4_PAchSclOE36BVlYb8DC7W2IuY6khhc-apPC1CL9ZS4fKLF4hAuOyFm2jGPUwOMx6xLMXvIXqshIzXQCFTDIYjNCquWheMNc4ed3rIXlpWh03jDKqcvVL7ZRsBDgRaNA846G8jwhNK1iyxs-VTR-tQ2IEr8o3fZyk_4OJre3Wa348nND_iEbyi5Bp3pMfTq9ZM9wSipVqfuFDwDxPkWow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+algorithms+for+solving+inverse+problems+of+heat+conduction+in+multiply+connected+domains&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=FRACKOWIAK%2C+A&rft.au=CIALKOWSKI%2C+M&rft.au=WROBLEWSKA%2C+A&rft.date=2012-01-31&rft.pub=Elsevier&rft.issn=0017-9310&rft.volume=55&rft.issue=4&rft.spage=744&rft.epage=751&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2011.10.035&rft.externalDBID=n%2Fa&rft.externalDocID=25390565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon