Text mining for identification of biological entities related to antibiotic resistant organisms
Antimicrobial resistance is a significant public health problem worldwide. In recent years, the scientific community has been intensifying efforts to combat this problem; many experiments have been developed, and many articles are published in this area. However, the growing volume of biological lit...
Saved in:
Published in | PeerJ (San Francisco, CA) Vol. 10; p. e13351 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ, Inc
05.05.2022
PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antimicrobial resistance is a significant public health problem worldwide. In recent years, the scientific community has been intensifying efforts to combat this problem; many experiments have been developed, and many articles are published in this area. However, the growing volume of biological literature increases the difficulty of the biocuration process due to the cost and time required. Modern text mining tools with the adoption of artificial intelligence technology are helpful to assist in the evolution of research. In this article, we propose a text mining model capable of identifying and ranking prioritizing scientific articles in the context of antimicrobial resistance. We retrieved scientific articles from the PubMed database, adopted machine learning techniques to generate the vector representation of the retrieved scientific articles, and identified their similarity with the context. As a result of this process, we obtained a dataset labeled “Relevant” and “Irrelevant” and used this dataset to implement one supervised learning algorithm to classify new records. The model’s overall performance reached 90% accuracy and the f-measure (harmonic mean between the metrics) reached 82% accuracy for positive class and 93% for negative class, showing quality in the identification of scientific articles relevant to the context. The dataset, scripts and models are available at
https://github.com/engbiopct/TextMiningAMR
. |
---|---|
AbstractList | Antimicrobial resistance is a significant public health problem worldwide. In recent years, the scientific community has been intensifying efforts to combat this problem; many experiments have been developed, and many articles are published in this area. However, the growing volume of biological literature increases the difficulty of the biocuration process due to the cost and time required. Modern text mining tools with the adoption of artificial intelligence technology are helpful to assist in the evolution of research. In this article, we propose a text mining model capable of identifying and ranking prioritizing scientific articles in the context of antimicrobial resistance. We retrieved scientific articles from the PubMed database, adopted machine learning techniques to generate the vector representation of the retrieved scientific articles, and identified their similarity with the context. As a result of this process, we obtained a dataset labeled "Relevant" and "Irrelevant" and used this dataset to implement one supervised learning algorithm to classify new records. The model's overall performance reached 90% accuracy and the f-measure (harmonic mean between the metrics) reached 82% accuracy for positive class and 93% for negative class, showing quality in the identification of scientific articles relevant to the context. The dataset, scripts and models are available at https://github.com/engbiopct/TextMiningAMR. Antimicrobial resistance is a significant public health problem worldwide. In recent years, the scientific community has been intensifying efforts to combat this problem; many experiments have been developed, and many articles are published in this area. However, the growing volume of biological literature increases the difficulty of the biocuration process due to the cost and time required. Modern text mining tools with the adoption of artificial intelligence technology are helpful to assist in the evolution of research. In this article, we propose a text mining model capable of identifying and ranking prioritizing scientific articles in the context of antimicrobial resistance. We retrieved scientific articles from the PubMed database, adopted machine learning techniques to generate the vector representation of the retrieved scientific articles, and identified their similarity with the context. As a result of this process, we obtained a dataset labeled “Relevant” and “Irrelevant” and used this dataset to implement one supervised learning algorithm to classify new records. The model’s overall performance reached 90% accuracy and the f-measure (harmonic mean between the metrics) reached 82% accuracy for positive class and 93% for negative class, showing quality in the identification of scientific articles relevant to the context. The dataset, scripts and models are available at https://github.com/engbiopct/TextMiningAMR . Antimicrobial resistance is a significant public health problem worldwide. In recent years, the scientific community has been intensifying efforts to combat this problem; many experiments have been developed, and many articles are published in this area. However, the growing volume of biological literature increases the difficulty of the biocuration process due to the cost and time required. Modern text mining tools with the adoption of artificial intelligence technology are helpful to assist in the evolution of research. In this article, we propose a text mining model capable of identifying and ranking prioritizing scientific articles in the context of antimicrobial resistance. We retrieved scientific articles from the PubMed database, adopted machine learning techniques to generate the vector representation of the retrieved scientific articles, and identified their similarity with the context. As a result of this process, we obtained a dataset labeled "Relevant" and "Irrelevant" and used this dataset to implement one supervised learning algorithm to classify new records. The model's overall performance reached 90% accuracy and the f-measure (harmonic mean between the metrics) reached 82% accuracy for positive class and 93% for negative class, showing quality in the identification of scientific articles relevant to the context. The dataset, scripts and models are available at https://github.com/engbiopct/TextMiningAMR.Antimicrobial resistance is a significant public health problem worldwide. In recent years, the scientific community has been intensifying efforts to combat this problem; many experiments have been developed, and many articles are published in this area. However, the growing volume of biological literature increases the difficulty of the biocuration process due to the cost and time required. Modern text mining tools with the adoption of artificial intelligence technology are helpful to assist in the evolution of research. In this article, we propose a text mining model capable of identifying and ranking prioritizing scientific articles in the context of antimicrobial resistance. We retrieved scientific articles from the PubMed database, adopted machine learning techniques to generate the vector representation of the retrieved scientific articles, and identified their similarity with the context. As a result of this process, we obtained a dataset labeled "Relevant" and "Irrelevant" and used this dataset to implement one supervised learning algorithm to classify new records. The model's overall performance reached 90% accuracy and the f-measure (harmonic mean between the metrics) reached 82% accuracy for positive class and 93% for negative class, showing quality in the identification of scientific articles relevant to the context. The dataset, scripts and models are available at https://github.com/engbiopct/TextMiningAMR. |
ArticleNumber | e13351 |
Author | Morais, Jefferson Ramos, Rommel T. J. Lisboa Frances, Carlos Renato Fortunato Costa, Kelle Almeida Araújo, Fabrício |
Author_xml | – sequence: 1 givenname: Kelle surname: Fortunato Costa fullname: Fortunato Costa, Kelle organization: Programa de pós-graduação em Engenharia Elétrica, Universidade Federal do Pará, Belém, Pará, Brazil – sequence: 2 givenname: Fabrício surname: Almeida Araújo fullname: Almeida Araújo, Fabrício organization: Biological Science Institute, Universidade Federal do Pará, Belém, Pará, Brazil, Universidade Federal Rural da Amazônia, Belém, Pará, Brazil – sequence: 3 givenname: Jefferson orcidid: 0000-0002-8566-3238 surname: Morais fullname: Morais, Jefferson organization: Universidade Federal do Pará, Belém, Pará, Brazil – sequence: 4 givenname: Carlos Renato surname: Lisboa Frances fullname: Lisboa Frances, Carlos Renato organization: Programa de pós-graduação em Engenharia Elétrica, Universidade Federal do Pará, Belém, Pará, Brazil – sequence: 5 givenname: Rommel T. J. orcidid: 0000-0002-8032-1474 surname: Ramos fullname: Ramos, Rommel T. J. organization: Biological Science Institute, Universidade Federal do Para, Belém, Pará, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35539017$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstrVDEUxoNUbK1duZeAG0Gm5nVvcjeCFB-Fgpu6Drl5jBlykzHJFP3vPZ1ppS1mk_CdL798Sc5LdJRL9gi9puRcSio_bL2vm3PK-UCfoRNGR7lSfJiOHqyP0VlrGwJDsZEo_gId82HgE6HyBOlr_7vjJeaY1ziUiqPzuccQremxZFwCnmNJZQ1CwrelHn3D1SfTvcO9YAMaWHq0oLbYOgi41LXJsS3tFXoeTGr-7G4-RT--fL6--La6-v718uLT1coKMvTVxIISJAhhbJBKEeZmRZ0NE2fGitmPk5ydgpVVIjDvwyjkMAthDTWUCspP0eWB64rZ6G2Ni6l_dDFR7wXIo02FjMlraqfZDDI4DmjhrGEjnRWApDfUsQFYHw-s7W5evLNw62rSI-jjSo4_9brc6IkoIvgEgHd3gFp-7XzreonN-pRM9mXXNBtHOEZKJsD69ol1U3Y1w1OBa5jgJRhT4HrzMNG_KPf_CAZ6MNhaWqs-aBv7_gchYEyaEn3bLnrfLnrfLrDn_ZM999j_uf8CAMvEPA |
CitedBy_id | crossref_primary_10_52810_CJNS_2024_002 |
Cites_doi | 10.1038/75556 10.1093/bioinformatics/btl388 10.1039/c0cc05111j 10.1002/bjs.7109 10.1016/j.fm.2018.04.011 10.1093/bioinformatics/btr214 10.1016/j.jbi.2013.07.009 10.1186/1471-2105-7-424 10.1186/1471-2105-6-75 10.1038/nbt0609-508 10.1093/database/bas020 10.1093/jac/dks261 10.1016/j.ymeth.2015.01.015 10.1093/nar/gkt441 10.1145/361219.361220 10.1093/bioinformatics/btm557 10.1093/nar/gkp876 10.1186/1471-2164-10-390 10.1038/s41564-018-0192-9 10.1128/AAC.01009-09 10.1093/nar/gky1069 10.1093/bioinformatics/bty053 10.1186/1471-2105-4-61 10.1093/database/baw165 10.1093/nar/gkh453 10.1038/ismej.2014.106 10.1093/database/bas052 10.1142/9781860948732_0036 10.1016/j.patrec.2016.11.004 10.1093/nar/gkm298 10.1186/gb-2005-6-9-r80 10.1093/bioinformatics/btn033 10.1152/physiolgenomics.00008.2010 10.1093/nar/gkp353 10.1093/nar/gkr310 10.1093/bioinformatics/btr073 10.1007/978-3-642-19309-5_55 10.1186/1747-5333-3-2 10.1093/nar/gkz935 10.12928/telkomnika.v14i4.3956 10.48550/arXiv.2008.05756 10.1017/CBO9780511809071 10.1038/s41564-018-0292-6 10.1128/AAC.01310-13 10.1093/nar/gks1094 10.1093/database/bau111 10.1093/nar/gkw1009 10.1111/nyas.12948 10.1016/S0968-0004(01)01926-0 10.1186/1472-6947-5-5 10.1093/database/bat030 10.1186/1471-2105-5-147 10.1080/14756366.2017.1344235 10.1093/nar/gkn656 10.1186/1471-2164-11-563 10.1371/journal.pcbi.1000597 10.1093/bioinformatics/btl408 |
ContentType | Journal Article |
Copyright | 2022 Fortunato Costa et al. 2022 Fortunato Costa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Fortunato Costa et al. 2022 Fortunato Costa et al. |
Copyright_xml | – notice: 2022 Fortunato Costa et al. – notice: 2022 Fortunato Costa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Fortunato Costa et al. 2022 Fortunato Costa et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7717/peerj.13351 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 2167-8359 |
ExternalDocumentID | oai_doaj_org_article_1c9ba57fd3ac44dca261b8a1a7ea1d25 PMC9080439 35539017 10_7717_peerj_13351 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Dean of Research and Graduate Studies (PROPESP) grantid: 06/2021 |
GroupedDBID | 53G 5VS 88I 8FE 8FH AAFWJ AAYXX ABUWG ADBBV ADRAZ AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO ECGQY GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE IAO IEA IHR IHW ITC KQ8 LK8 M2P M48 M7P M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC RPM W2D YAO 3V. CGR CUY CVF ECM EIF H13 NPM 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c405t-92f840f44acf78802db81dcf932ac4be697bd8c4bc84f2eef6475b44ca1a11413 |
IEDL.DBID | M48 |
ISSN | 2167-8359 |
IngestDate | Wed Aug 27 01:27:14 EDT 2025 Thu Aug 21 14:09:21 EDT 2025 Fri Jul 11 06:44:50 EDT 2025 Fri Jul 25 11:51:04 EDT 2025 Thu Jan 02 22:53:37 EST 2025 Tue Jul 01 02:47:15 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Text mining Antimicrobial resistance Biological literature Machine learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2022 Fortunato Costa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-92f840f44acf78802db81dcf932ac4be697bd8c4bc84f2eef6475b44ca1a11413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8032-1474 0000-0002-8566-3238 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7717/peerj.13351 |
PMID | 35539017 |
PQID | 2659802228 |
PQPubID | 2045935 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1c9ba57fd3ac44dca261b8a1a7ea1d25 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9080439 proquest_miscellaneous_2662537724 proquest_journals_2659802228 pubmed_primary_35539017 crossref_citationtrail_10_7717_peerj_13351 crossref_primary_10_7717_peerj_13351 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-05 |
PublicationDateYYYYMMDD | 2022-05-05 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
PublicationTitle | PeerJ (San Francisco, CA) |
PublicationTitleAlternate | PeerJ |
PublicationYear | 2022 |
Publisher | PeerJ, Inc PeerJ Inc |
Publisher_xml | – name: PeerJ, Inc – name: PeerJ Inc |
References | Wright (10.7717/peerj.13351/ref-66) 2011; 47 Liu (10.7717/peerj.13351/ref-35) 2009; 37 Raja (10.7717/peerj.13351/ref-46) 2013; 2013 De (10.7717/peerj.13351/ref-13) 2010; 42A Tsuruoka (10.7717/peerj.13351/ref-63) 2011; 27 Rebholz-Schuhmann (10.7717/peerj.13351/ref-47) 2008; 24 Huang (10.7717/peerj.13351/ref-30) 2013; 46 Chen (10.7717/peerj.13351/ref-10) 2017; 93 Wei (10.7717/peerj.13351/ref-65) 2013; 41 Zankari (10.7717/peerj.13351/ref-69) 2012; 67 Manning (10.7717/peerj.13351/ref-36) 2008 Syarif (10.7717/peerj.13351/ref-59) 2016; 14 Naas (10.7717/peerj.13351/ref-39) 2017; 32 Hokamp (10.7717/peerj.13351/ref-29) 2004; 32 Bush (10.7717/peerj.13351/ref-8) 2010; 54 Fleuren (10.7717/peerj.13351/ref-17) 2015; 74 Chaix (10.7717/peerj.13351/ref-9) 2018; 81 Fernandez (10.7717/peerj.13351/ref-16) 2007; 35 Le (10.7717/peerj.13351/ref-32) 2014 Soldatos (10.7717/peerj.13351/ref-55) 2010; 38 Brancotte (10.7717/peerj.13351/ref-7) 2011; 27 Boser (10.7717/peerj.13351/ref-6) 1992 Sayers (10.7717/peerj.13351/ref-52) 2019; 47 Suomela (10.7717/peerj.13351/ref-58) 2005; 6 States (10.7717/peerj.13351/ref-57) 2009; 25 Fleuren (10.7717/peerj.13351/ref-18) 2011; 39 Lakin (10.7717/peerj.13351/ref-31) 2017; 45 Review on Antimicrobial Resistance (10.7717/peerj.13351/ref-48) 2016 Srivastava (10.7717/peerj.13351/ref-56) 2014; 2014 Fontelo (10.7717/peerj.13351/ref-20) 2005; 5 Socher (10.7717/peerj.13351/ref-54) 2013a Bengio (10.7717/peerj.13351/ref-5) 2006 Ruppe (10.7717/peerj.13351/ref-50) 2019; 4 Grandini (10.7717/peerj.13351/ref-26) 2020 Thai (10.7717/peerj.13351/ref-60) 2009; 10 Becker (10.7717/peerj.13351/ref-4) 2003; 4 Nguyen (10.7717/peerj.13351/ref-40) 2011; 6493 Plake (10.7717/peerj.13351/ref-44) 2006; 22 Rodriguez-Esteban (10.7717/peerj.13351/ref-49) 2009; 5 Zhila (10.7717/peerj.13351/ref-70) 2013 Salton (10.7717/peerj.13351/ref-51) 1975; 18 Plikus (10.7717/peerj.13351/ref-45) 2006; 7 Glynn (10.7717/peerj.13351/ref-25) 2010; 97 Ashburner (10.7717/peerj.13351/ref-3) 2000; 25 Pafilis (10.7717/peerj.13351/ref-41) 2009; 27 Thai (10.7717/peerj.13351/ref-61) 2010; 11 Yin (10.7717/peerj.13351/ref-68) 2018; 34 Hirschman (10.7717/peerj.13351/ref-28) 2012; 2012 Chen (10.7717/peerj.13351/ref-11) 2004; 5 Drucker (10.7717/peerj.13351/ref-15) 1997 Frome (10.7717/peerj.13351/ref-22) 2013 Annual Reports for NLM Program and Services (10.7717/peerj.13351/ref-2) 2016 Gibson (10.7717/peerj.13351/ref-23) 2015; 9 Munk (10.7717/peerj.13351/ref-38) 2018; 3 Collobert (10.7717/peerj.13351/ref-12) 2008 Lewis (10.7717/peerj.13351/ref-33) 2006; 22 Paik (10.7717/peerj.13351/ref-42) 2013 Douglas (10.7717/peerj.13351/ref-14) 2005; 6 Wallace (10.7717/peerj.13351/ref-64) 2017; 2017 Xuan (10.7717/peerj.13351/ref-67) 2007; 6 Giglia (10.7717/peerj.13351/ref-24) 2011; 47 Tran (10.7717/peerj.13351/ref-62) 2015; 1354 Franceschini (10.7717/peerj.13351/ref-21) 2013; 41 Smalheiser (10.7717/peerj.13351/ref-53) 2008; 3 Zou (10.7717/peerj.13351/ref-71) 2013 Alcock (10.7717/peerj.13351/ref-1) 2020; 48 Perez-Iratxeta (10.7717/peerj.13351/ref-43) 2001; 26 Gupta (10.7717/peerj.13351/ref-27) 2014; 58 Li (10.7717/peerj.13351/ref-34) 2013; 2013 Fontaine (10.7717/peerj.13351/ref-19) 2009; 37 Mikolov (10.7717/peerj.13351/ref-37) 2013 |
References_xml | – volume: 25 start-page: 25 issue: 1 year: 2000 ident: 10.7717/peerj.13351/ref-3 article-title: Gene ontology: tool for the unification of biology publication-title: Nature Genetics doi: 10.1038/75556 – start-page: 155 volume-title: Support vector regression machines: advances in neural information processing systems year: 1997 ident: 10.7717/peerj.13351/ref-15 – volume: 22 start-page: 2298 issue: 18 year: 2006 ident: 10.7717/peerj.13351/ref-33 article-title: Text similarity: an alternative way to search MEDLINE publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl388 – volume: 47 start-page: 4055 issue: 14 year: 2011 ident: 10.7717/peerj.13351/ref-66 article-title: Molecular mechanisms of antibiotic resistance publication-title: Chemical Communications doi: 10.1039/c0cc05111j – volume: 97 start-page: 1304 issue: 8 year: 2010 ident: 10.7717/peerj.13351/ref-25 article-title: Authorship trends in the surgical literature publication-title: British Journal of Surgery doi: 10.1002/bjs.7109 – volume: 81 start-page: 63 issue: 2 year: 2018 ident: 10.7717/peerj.13351/ref-9 article-title: Text mining tools for extracting information about microbial biodiversity in food publication-title: Food Microbiology doi: 10.1016/j.fm.2018.04.011 – volume: 27 start-page: i111 issue: 13 year: 2011 ident: 10.7717/peerj.13351/ref-63 article-title: Discovering and visualizing indirect associations between biomedical concepts publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr214 – volume: 46 start-page: 940 issue: 5 year: 2013 ident: 10.7717/peerj.13351/ref-30 article-title: PICO element detection in medical text without metadata: are first sentences enough? publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2013.07.009 – volume: 7 start-page: 2424 year: 2006 ident: 10.7717/peerj.13351/ref-45 article-title: PubFocus: semantic MEDLINE/PubMed citations analytics through integration of controlled biomedical dictionaries and ranking algorithm publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-424 – start-page: 343 year: 2013 ident: 10.7717/peerj.13351/ref-42 article-title: A novel TF-IDF weighting scheme for effective ranking – start-page: 144 year: 1992 ident: 10.7717/peerj.13351/ref-6 article-title: A training algorithm for optimal margin classifiers – volume: 6 start-page: 75 year: 2005 ident: 10.7717/peerj.13351/ref-58 article-title: Ranking the whole MEDLINE database according to a large training set using text indexing publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-75 – volume: 27 start-page: 508 issue: 6 year: 2009 ident: 10.7717/peerj.13351/ref-41 article-title: Reflect: augmented browsing for the life scientist publication-title: Nature Biotechnology doi: 10.1038/nbt0609-508 – volume: 2012 start-page: bas020 year: 2012 ident: 10.7717/peerj.13351/ref-28 article-title: Text mining for the biocuration workflow publication-title: Database doi: 10.1093/database/bas020 – volume: 67 start-page: 2640 year: 2012 ident: 10.7717/peerj.13351/ref-69 article-title: Identification of acquired antimicrobial resistance genes publication-title: Journal of Antimicrobial Chemotherapy doi: 10.1093/jac/dks261 – volume: 74 start-page: 97 issue: 2 year: 2015 ident: 10.7717/peerj.13351/ref-17 article-title: Application of text mining in the biomedical domain publication-title: Methods doi: 10.1016/j.ymeth.2015.01.015 – volume: 41 start-page: W518 issue: W1 year: 2013 ident: 10.7717/peerj.13351/ref-65 article-title: PubTator: a web-based text mining tool for assisting biocuration publication-title: Nucleic Acids Research doi: 10.1093/nar/gkt441 – volume: 18 start-page: 613 issue: 11 year: 1975 ident: 10.7717/peerj.13351/ref-51 article-title: A vector space model for automatic indexing publication-title: Communications of the ACM doi: 10.1145/361219.361220 – volume: 24 start-page: 296 issue: 2 year: 2008 ident: 10.7717/peerj.13351/ref-47 article-title: Text processing through Web services: calling Whatizit publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm557 – volume: 38 start-page: 26 issue: 1 year: 2010 ident: 10.7717/peerj.13351/ref-55 article-title: Martini: using literature keywords to compare gene sets publication-title: Nucleic Acids Research doi: 10.1093/nar/gkp876 – volume: 10 start-page: 390 issue: 1 year: 2009 ident: 10.7717/peerj.13351/ref-60 article-title: The lactamase engineering database: a critical survey of TEM sequences in public databases publication-title: BMC Genomics doi: 10.1186/1471-2164-10-390 – year: 2013a ident: 10.7717/peerj.13351/ref-54 article-title: Reasoning with neural tensor networks for knowledge base completion – year: 2013 ident: 10.7717/peerj.13351/ref-70 article-title: Combining heterogeneous models for measuring relational similarity – volume: 3 start-page: 898 year: 2018 ident: 10.7717/peerj.13351/ref-38 article-title: Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries publication-title: Nature Microbiology doi: 10.1038/s41564-018-0192-9 – volume: 54 start-page: 969 issue: 3 year: 2010 ident: 10.7717/peerj.13351/ref-8 article-title: Updated functional classification of β-lactamases publication-title: Antimicrobial Agents and Chemotherapy doi: 10.1128/AAC.01009-09 – volume: 47 start-page: D23 issue: D1 year: 2019 ident: 10.7717/peerj.13351/ref-52 article-title: Database resources of the National Center for Biotechnology Information publication-title: Nucleic Acids Research doi: 10.1093/nar/gky1069 – volume: 34 start-page: 2263 year: 2018 ident: 10.7717/peerj.13351/ref-68 article-title: ARGs-OAP v2.0 with an expanded SARG database and hidden Markov models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty053 – volume: 4 start-page: 2061 year: 2003 ident: 10.7717/peerj.13351/ref-4 article-title: PubMatrix: a tool for multiplex literature mining publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-4-61 – volume: 2017 start-page: baw165 issue: 3 year: 2017 ident: 10.7717/peerj.13351/ref-64 article-title: FARME DB: a functional antibiotic resistance element database publication-title: Database doi: 10.1093/database/baw165 – year: 2016 ident: 10.7717/peerj.13351/ref-2 article-title: National Library of Medicine–NIH – start-page: 1188 year: 2014 ident: 10.7717/peerj.13351/ref-32 article-title: Distributed representations of sentences and documents – volume: 32 start-page: W16 issue: Suppl. 2 year: 2004 ident: 10.7717/peerj.13351/ref-29 article-title: PubCrawler: keeping up comfortably with PubMed and GenBank publication-title: Nucleic Acids Research doi: 10.1093/nar/gkh453 – volume: 9 start-page: 207 issue: 1 year: 2015 ident: 10.7717/peerj.13351/ref-23 article-title: Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology publication-title: The ISME Journal doi: 10.1038/ismej.2014.106 – volume: 2013 start-page: bas052 year: 2013 ident: 10.7717/peerj.13351/ref-46 article-title: PPInterFinder—a mining tool for extracting causal relations on human proteins from literature publication-title: Database doi: 10.1093/database/bas052 – volume: 6 start-page: 359 year: 2007 ident: 10.7717/peerj.13351/ref-67 article-title: An active visual search interface for Medline publication-title: Computational Systems Bioinformatics Conference doi: 10.1142/9781860948732_0036 – volume: 93 start-page: 113 issue: 4 year: 2017 ident: 10.7717/peerj.13351/ref-10 article-title: Improved TF-IDF in big news retrieval: an empirical study publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2016.11.004 – volume: 35 start-page: W21 issue: Web Server issue year: 2007 ident: 10.7717/peerj.13351/ref-16 article-title: iHOP web services publication-title: Nucleic Acids Research doi: 10.1093/nar/gkm298 – year: 2016 ident: 10.7717/peerj.13351/ref-48 article-title: Antimicrobial resistance: TACKLING DRUG-resistant infections globally: final report and recommendations – volume: 6 start-page: R80 issue: 9 year: 2005 ident: 10.7717/peerj.13351/ref-14 article-title: PubNet: a flexible system for visualizing literature derived networks publication-title: Genome Biology doi: 10.1186/gb-2005-6-9-r80 – volume: 25 start-page: 974 issue: 7 year: 2009 ident: 10.7717/peerj.13351/ref-57 article-title: MiSearch adaptive pubMed search tool publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn033 – volume: 42A start-page: 162 issue: 2 year: 2010 ident: 10.7717/peerj.13351/ref-13 article-title: Disease and phenotype gene set analysis of disease-based gene expression in mouse and human publication-title: Physiological Genomics doi: 10.1152/physiolgenomics.00008.2010 – volume: 37 start-page: W141 year: 2009 ident: 10.7717/peerj.13351/ref-19 article-title: MedlineRanker: flexible ranking of biomedical literature publication-title: Nucleic Acids Research doi: 10.1093/nar/gkp353 – volume: 39 start-page: W450 issue: Suppl. 2 year: 2011 ident: 10.7717/peerj.13351/ref-18 article-title: CoPub update: CoPub 5.0 a text mining system to answer biological questions publication-title: Nucleic Acids Research doi: 10.1093/nar/gkr310 – volume: 27 start-page: 1187 issue: 8 year: 2011 ident: 10.7717/peerj.13351/ref-7 article-title: Gene List significance at-a-glance with GeneValorization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr073 – volume: 6493 start-page: 709 volume-title: Computer Vision C ACCV 2010: Lecture Notes in Computer Science year: 2011 ident: 10.7717/peerj.13351/ref-40 article-title: Cosine similarity metric learning for face verification doi: 10.1007/978-3-642-19309-5_55 – volume: 3 start-page: 2 year: 2008 ident: 10.7717/peerj.13351/ref-53 article-title: Anne O’Tate: a tool to support user-driven summarization, drill-down and browsing of PubMed search results publication-title: Journal of Biomedical Discovery and Collaboration doi: 10.1186/1747-5333-3-2 – volume: 48 start-page: D517 issue: D1 year: 2020 ident: 10.7717/peerj.13351/ref-1 article-title: CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database publication-title: Nucleic Acids Research doi: 10.1093/nar/gkz935 – volume: 14 start-page: 1502 issue: 4 year: 2016 ident: 10.7717/peerj.13351/ref-59 article-title: SVM parameter optimization using grid search and genetic algorithm to improve classification performance publication-title: Telkomnika doi: 10.12928/telkomnika.v14i4.3956 – year: 2020 ident: 10.7717/peerj.13351/ref-26 article-title: Metrics for multi-class classification: an overview publication-title: ArXiv preprint doi: 10.48550/arXiv.2008.05756 – volume-title: Introduction to information retrieval year: 2008 ident: 10.7717/peerj.13351/ref-36 doi: 10.1017/CBO9780511809071 – year: 2013 ident: 10.7717/peerj.13351/ref-22 article-title: DeViSE: a deep visual-semantic embedding model – volume: 4 start-page: 112 year: 2019 ident: 10.7717/peerj.13351/ref-50 article-title: Prediction of the intestinal resistome by a three-dimensional structure-based method publication-title: Nature Microbiology doi: 10.1038/s41564-018-0292-6 – year: 2013 ident: 10.7717/peerj.13351/ref-37 article-title: Exploiting similarities among languages for machine translation – volume: 58 start-page: 212 year: 2014 ident: 10.7717/peerj.13351/ref-27 article-title: ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes publication-title: Antimicrobial Agents and Chemotherapy doi: 10.1128/AAC.01310-13 – volume: 41 start-page: D808 issue: Database issue year: 2013 ident: 10.7717/peerj.13351/ref-21 article-title: STRING v9.1: protein–protein interaction networks, with increased coverage and integration publication-title: Nucleic Acids Research doi: 10.1093/nar/gks1094 – volume: 2014 start-page: bau111 year: 2014 ident: 10.7717/peerj.13351/ref-56 article-title: CBMAR: a comprehensive beta-lactamase molecular annotation resource publication-title: Database doi: 10.1093/database/bau111 – start-page: 160 year: 2008 ident: 10.7717/peerj.13351/ref-12 article-title: A unified architecture for natural language processing: deep neural networks with multitask learning – volume: 45 start-page: D574 issue: D1 year: 2017 ident: 10.7717/peerj.13351/ref-31 article-title: MEGARes: an antimicrobial resistance database for high throughput sequencing publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw1009 – volume: 1354 start-page: 32 issue: 1 year: 2015 ident: 10.7717/peerj.13351/ref-62 article-title: Mechanisms of drug resistance: daptomycin resistance publication-title: Annals of the New York Academy of Sciences doi: 10.1111/nyas.12948 – volume: 26 start-page: 573 issue: 9 year: 2001 ident: 10.7717/peerj.13351/ref-43 article-title: XplorMed: a tool for exploring MEDLINE abstracts publication-title: Trends in Biochemical Sciences doi: 10.1016/S0968-0004(01)01926-0 – year: 2013 ident: 10.7717/peerj.13351/ref-71 article-title: Bilingual word embeddings for phrase based machine translation – volume: 5 start-page: 5 year: 2005 ident: 10.7717/peerj.13351/ref-20 article-title: ask MEDLINE: a free-text, natural language query tool for MEDLINE/PubMed publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/1472-6947-5-5 – volume: 2013 start-page: bat030 year: 2013 ident: 10.7717/peerj.13351/ref-34 article-title: PCorral—interactive mining of protein interactions from MEDLINE publication-title: Database doi: 10.1093/database/bat030 – volume: 5 start-page: 147 year: 2004 ident: 10.7717/peerj.13351/ref-11 article-title: Content-rich biological network constructed by mining PubMed abstracts publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-147 – start-page: 137 year: 2006 ident: 10.7717/peerj.13351/ref-5 article-title: A neural probabilistic language models – volume: 32 start-page: 917 issue: 1 year: 2017 ident: 10.7717/peerj.13351/ref-39 article-title: Beta-lactamase database (BLDB)-structure and function publication-title: Journal of Enzyme Inhibition and Medicinal Chemistry doi: 10.1080/14756366.2017.1344235 – volume: 37 start-page: D443 issue: Database year: 2009 ident: 10.7717/peerj.13351/ref-35 article-title: ARDB—antibiotic resistance genes database publication-title: Nucleic Acids Research doi: 10.1093/nar/gkn656 – volume: 11 start-page: 563 issue: 1 year: 2010 ident: 10.7717/peerj.13351/ref-61 article-title: SHV lactamase engineering database: a reconciliation tool for SHV beta-lactamases in public databases publication-title: BMC Genomics doi: 10.1186/1471-2164-11-563 – volume: 47 start-page: 687 issue: 4 year: 2011 ident: 10.7717/peerj.13351/ref-24 article-title: Quertle and KNALIJ: searching PubMed has never been so easy and effective publication-title: European Journal of Physical and Rehabilitation Medicine – volume: 5 start-page: e1000597 issue: 12 year: 2009 ident: 10.7717/peerj.13351/ref-49 article-title: Biomedical text mining and its applications publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1000597 – volume: 22 start-page: 2444 issue: 19 year: 2006 ident: 10.7717/peerj.13351/ref-44 article-title: AliBaba: PubMed as a graph publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl408 |
SSID | ssj0000826083 |
Score | 2.2457836 |
Snippet | Antimicrobial resistance is a significant public health problem worldwide. In recent years, the scientific community has been intensifying efforts to combat... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e13351 |
SubjectTerms | Algorithms Annotations Annual reports Anti-Infective Agents Antibiotic resistance Antibiotics Antimicrobial agents Antimicrobial resistance Application programming interface Artificial Intelligence Bioinformatics Biological literature Classification Computational Science Data Mining - methods Data Mining and Machine Learning Drug resistance Genes Information retrieval Keywords Knowledge discovery Machine Learning Medical Subject Headings-MeSH Microbiology Natural language Ontology Proteins Public health Text mining |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAGFykB_Eivo0vVvAkBM1mk02OKooIemrB27JPLNhUbPz_zm7S0orgxVtJPsJm9jXTfDsfIRdFmDNcsNRlWAK5cTrFuBGp13lmKw2RoWOW70v5OOJPr8XrUqmvkBPW2QN3wF1lptaqEN7mynBujQLl15XKlHAqsyy6l2LPWxJTcQ0Gawa56A7kCUiWqw_nPkNSV15kK1tQdOr_jV7-zJJc2nYetshmzxfpTdfObbLmmh2y_tx_Ed8lcojVlU5imQcKAkrHts__iZDTqaedz1LoDDp3UKXxCIuztJ1SQDtGCJ6Pq7NAJ5uWdsWeZpPZHhk93A_vHtO-aEJqwL3atGYems1zroyHvL1mVoOSGg-eBgC1K2uhbYVfpuKeOedLLgrNuQGk0EZZvk8GzbRxh4Qqj83Lu9IZrfBIrUVua1OVgnOuWVEl5HKOozS9o3gobPEuoSwC6DKCLiPoCblYBH90Rhq_h92GDlmEBPfreAHvLfsxIf8aEwk5mXen7KfkTLKyqMO5YoZ2ny9uYzKFLySqcdOvEAM5mENw8IQcdL2_aAmIWfh_SCRErIyLlaau3mnGb9GwuwYtB_E7-o93OyYbLJzACDmXxQkZtJ9f7hS8qNVncQp8A2sJEm4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aDZRCKWn6cpIWFXIqmNSyZMmnkoSEUGgoJYHchJ50IbG3sfP_M5K1breE3hZ78Eqa0eib0TwADnjcM0zQ0leoApn1pkS5EWUwdeWkQSPDpCjfi-b8in275tfZ4TbksMq1TkyK2vU2-sgPacPbmBZK5dfV7zJ2jYq3q7mFxlPYQhUs5QK2jk8vfvycvSx4wDUIMqbEPIGmy-HK-7sY3FXzauMoShX7H4OZ_0ZL_nX8nG3Dy4wbydHE6FfwxHc78Ox7vhnfgReT_41MaUWvQV2i1iW3qf0DQWBKli7HBSVWkD6Qqf5SZBJZV1YlKbXFOzL2BJd8iST4f_h0iDCzG8nUBGq4Hd7A1dnp5cl5mZsplBYx2Vi2NKAtFxjTNqDZ-4U6g1DVBsRv2jLjm1YYJ_GXlSxQ70PDBDeMWV1ptJmq-i0sur7z74HogGsdfOOt0fhJY0TtWisbwRgzlMsCPq_XVdlcaTw2vLhRaHFEJqjEBJWYUMDBTLyaCmw8TnYcGTSTxKrY6QHOW-VNpirbGs1FcDVOiTmr0Tw0EicgvK4c5QXsr9mr8lYd1B_BKuDT_Bo3Wbw50Z3v7yMNmok1GiKsgHeTNMwjQcAW_UaiALEhJxtD3XzTLX-lQt4twnUEhLv_H9YePKcx5yJGWfJ9WIx39_4DIqHRfMzi_gCDKw7h priority: 102 providerName: ProQuest |
Title | Text mining for identification of biological entities related to antibiotic resistant organisms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35539017 https://www.proquest.com/docview/2659802228 https://www.proquest.com/docview/2662537724 https://pubmed.ncbi.nlm.nih.gov/PMC9080439 https://doaj.org/article/1c9ba57fd3ac44dca261b8a1a7ea1d25 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1da9swFL2UFsZgjK37ctcFDfo0cDfLsmU_jXW0K4OWMRrIm5BkiQVap0tcWP_9jmQ7LCXsJQT7JpZ0daVz5PtBdFQEmxGSpy7DEiisMynmjUy9ybOmMiAZJnr5XpbnU_F9Vsx2aCzGOQzgaiu1C_Wkpsvr4z-_7z_D4IFfjyXYyMdb55bBXysPodR72JJkKGVwMeD8uCQDRANr9PF5D3-zsSPFxP3b0OZDp8l_dqGzZ_R0gI_sS6_v57Tj2n16dDG8IN-nJ_0xHOuji16QusLiy25iFQgGfMrmzeAeFDXCFp71aZiCrtiYYJXFCBfXsG7BMPJziOB5uLoKaLPtWF8LanWzeknTs9Orr-fpUFMhtYBmXVpzD0rnhdDWg_1-4o0BYrUeME5bYVxZS9NU-GYr4blzvhSyMEJYnWlQpyx_RbvtonVviGmPvc270lmj8ZfGyLypbVVKIYThRZXQh3FclR0Sjoe6F9cKxCMoQUUlqKiEhI7Wwrd9no3tYidBQWuRkBw7XkC_1WBrKrO10YX0TY4uicZqsERToQPS6azhRUKHo3rVOOEUL4s6hB1ztPv9-jZsLbxA0a1b3AUZsMUcfEQk9LqfDeuWALeF4yOZkNyYJxtN3bzTzn_FfN41UDtw4cH_m_WWHvMQehGcLYtD2u2Wd-4dAFFnJrR3cnr54-ckHijg89ssm0QD-AvyXxOd |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULaggovUWrTpCfRFCm8kkkzyIWG3Z2nYR2ULfpnPFBZusTYr4p_yNnplcdKX41reQHJKZnDMz3zdzLgBbmR8zjNPYJjgFMm1VjHbDY6fSxBQKSYYKXr6zfHrCPp1mp2vwa4iF8W6Vw5wYJmpTa79Hvk3zrPRhobR4t_we-6pR_nR1KKHRmcWh_fkDKVvz9uAj6vc1pft78w_TuK8qEGsEJ21cUoekxjEmtUP-t0ONQsymHQIZqZmyecmVKfBKF8xRa13OeKYY0zKRSB6SFN97A9ZZmu_QCazv7s0-fxl3dXBBzRHUdIGAHKnS9tLaC-9MlmbJytIXKgRcBWv_9c78a7nbvwd3e5xK3neGdR_WbLUBN4_7k_gNuNPt95EujOkBiDnO8uQ8lJsgCITJwvR-SEH1pHaky_fkjYIMmVxJCKWxhrQ1QRUvUAS_h3cbD2urlnRFp5rz5iGcXMtvfgSTqq7sEyDS4SLqbG61kvhKpXhqSl3knDGmaFZE8Gb4r0L3mc19gY1vAhmOV4IIShBBCRFsjcLLLqHH1WK7XkGjiM_CHW5gv0U_qEWiSyUz7kyKXWJGS6SjqsAOcCsTQ7MINgf1in5qaMQfQ47g1fgYB7U_qZGVrS-9DNLSFIkPi-BxZw1jSxAg-n0qHgFfsZOVpq4-qRZfQ-LwEukBAtCn_2_WS7g1nR8fiaOD2eEzuE19vIf38Mw2YdJeXNrniMJa9aI3fQJn1z3afgOvPkyk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULRShiNZbtOoI9UUIayaTTPIgYm2X1upSpIW-jXPFhTZZmxTxr_nrPDO56ErxrW9LcsjOzDkz830z5wKwk_k5wziNbYJLINNWxWg3PHYqTUyhkGSo4OU7zw9O2cez7GwNfg2xMN6tclgTw0Jtau3PyKc0z0ofFkqLqevdIo73Zu-W32NfQcrftA7lNDoTObI_fyB9a94e7qGuX1E62z_5cBD3FQZijUCljUvqkOA4xqR2yAXfUKMQv2mHoEZqpmxecmUK_KUL5qi1Lmc8U4xpmUgkEkmK370F69yzogms7-7Pj7-MJzy4ueYIcLqgQI60abq09tI7lqVZsrINhmoB10Hcfz01_9r6ZnfhTo9ZyfvOyO7Bmq22YONzfyu_BZvd2R_pQprugzjBYSMXofQEQVBMFqb3SQpmQGpHutxP3kDIkNWVhLAaa0hbE1T3AkXw__Bp4yFu1ZKuAFVz0TyA0xsZ5ocwqerKPgYiHW6ozuZWK4mfVIqnptRFzhljimZFBK-HcRW6z3Lui22cC2Q7XgkiKEEEJUSwMwovu-Qe14vtegWNIj4jd3iA_Rb9BBeJLpXMuDMpdokZLZGaqgI7wK1MDM0i2B7UK_plohF_jDqCl-NrnOD-1kZWtr7yMkhRUyRBLIJHnTWMLUGw6M-seAR8xU5Wmrr6plp8C0nES6QKCEaf_L9ZL2ADZ5n4dDg_egq3qQ_98M6e2TZM2ssr-wwBWaue95ZP4OtNT7bfvXpQ2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+mining+for+identification+of+biological+entities+related+to+antibiotic+resistant+organisms&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Kelle+Fortunato+Costa&rft.au=Fabr%C3%ADcio+Almeida+Ara%C3%BAjo&rft.au=Morais%2C+Jefferson&rft.au=Carlos+Renato+Lisboa+Frances&rft.date=2022-05-05&rft.pub=PeerJ%2C+Inc&rft.eissn=2167-8359&rft_id=info:doi/10.7717%2Fpeerj.13351&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon |