From the litter layer to the saprolite: Chemical changes in water-soluble soil organic matter and their correlation to microbial community composition
Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically important, its chemical interaction with soil processes is not well understood. In this study we used fluorescence spectroscopy, which has been used...
Saved in:
Published in | Soil biology & biochemistry Vol. 68; pp. 166 - 176 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.01.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically important, its chemical interaction with soil processes is not well understood. In this study we used fluorescence spectroscopy, which has been used extensively for understanding the role of organic matter in aquatic systems, to identify chemical changes in organic matter with depth in a soil system. Soil was collected from nine different pits in a first-order montane catchment in the Colorado Front Range. The water-soluble soil organic matter was extracted from each sample and fluorescence and UV–vis spectroscopy was used to analyze its chemical character. While organic matter chemistry had little correlation with landscape location and local vegetation, there were noticeable consistent trends between soil horizon and organic matter chemistry in each pit. Total organic matter decreased with depth and became less aromatic with increasing depth. This less aromatic material in the saprolite also had a greater microbial signature. The redox character of the organic matter accompanied this change in source and molecular structure, with more oxidized character corresponding with organic matter with more microbial input and more reduced character corresponding to organic matter with more plant input. A concurrent investigation of the microbial population of the same soil samples also showed microbial population composition varying more with soil depth than landscape position, and depth changes in microbial diversity occurred concomitantly with depth changes in organic matter chemistry.
•Chemistry of water-soluble organic matter, as measured by fluorescence spectroscopy, changed noticeably with soil depth.•The degree of microbial input to water-soluble organic matter correlated to the redox state of the organic matter.•Microbial community diversity and organic mater chemistry changed concomitantly with soil depth. |
---|---|
AbstractList | Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically important, its chemical interaction with soil processes is not well understood. In this study we used fluorescence spectroscopy, which has been used extensively for understanding the role of organic matter in aquatic systems, to identify chemical changes in organic matter with depth in a soil system. Soil was collected from nine different pits in a first-order montane catchment in the Colorado Front Range. The water-soluble soil organic matter was extracted from each sample and fluorescence and UV–vis spectroscopy was used to analyze its chemical character. While organic matter chemistry had little correlation with landscape location and local vegetation, there were noticeable consistent trends between soil horizon and organic matter chemistry in each pit. Total organic matter decreased with depth and became less aromatic with increasing depth. This less aromatic material in the saprolite also had a greater microbial signature. The redox character of the organic matter accompanied this change in source and molecular structure, with more oxidized character corresponding with organic matter with more microbial input and more reduced character corresponding to organic matter with more plant input. A concurrent investigation of the microbial population of the same soil samples also showed microbial population composition varying more with soil depth than landscape position, and depth changes in microbial diversity occurred concomitantly with depth changes in organic matter chemistry. Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically important, its chemical interaction with soil processes is not well understood. In this study we used fluorescence spectroscopy, which has been used extensively for understanding the role of organic matter in aquatic systems, to identify chemical changes in organic matter with depth in a soil system. Soil was collected from nine different pits in a first-order montane catchment in the Colorado Front Range. The water-soluble soil organic matter was extracted from each sample and fluorescence and UV–vis spectroscopy was used to analyze its chemical character. While organic matter chemistry had little correlation with landscape location and local vegetation, there were noticeable consistent trends between soil horizon and organic matter chemistry in each pit. Total organic matter decreased with depth and became less aromatic with increasing depth. This less aromatic material in the saprolite also had a greater microbial signature. The redox character of the organic matter accompanied this change in source and molecular structure, with more oxidized character corresponding with organic matter with more microbial input and more reduced character corresponding to organic matter with more plant input. A concurrent investigation of the microbial population of the same soil samples also showed microbial population composition varying more with soil depth than landscape position, and depth changes in microbial diversity occurred concomitantly with depth changes in organic matter chemistry. •Chemistry of water-soluble organic matter, as measured by fluorescence spectroscopy, changed noticeably with soil depth.•The degree of microbial input to water-soluble organic matter correlated to the redox state of the organic matter.•Microbial community diversity and organic mater chemistry changed concomitantly with soil depth. |
Author | Eilers, Kathryn Anderson, Suzanne P. McKnight, Diane M. Fierer, Noah Gabor, Rachel S. |
Author_xml | – sequence: 1 givenname: Rachel S. surname: Gabor fullname: Gabor, Rachel S. email: Rachel.gabor@colorado.edu organization: Department of Environmental Studies, University of Colorado, Boulder, CO 80309, USA – sequence: 2 givenname: Kathryn surname: Eilers fullname: Eilers, Kathryn organization: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA – sequence: 3 givenname: Diane M. surname: McKnight fullname: McKnight, Diane M. organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA – sequence: 4 givenname: Noah surname: Fierer fullname: Fierer, Noah organization: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA – sequence: 5 givenname: Suzanne P. surname: Anderson fullname: Anderson, Suzanne P. organization: Department of Geography, University of Colorado, Boulder, CO 80309, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28067598$$DView record in Pascal Francis |
BookMark | eNqFkUGP1CAcxYlZE2dXP4IJFxMvHf-U0hY9GDNx1WQTL3om_1K6w4TCCIyb-SJ-XunMePEyl1Lg9x7w3i258cEbQl4zWDNg7bvdOgXrBhvWNTC-BrmGWj4jK9Z3suJN3d-QFQDvK-hY94LcprQDgFowviJ_7mOYad4a6mzOJlKHx_LN4bSWcB9D2TDv6WZrZqvRUb1F_2gStZ4-YVFUKbjD4ApcLkFDfERvNZ3x5IZ-XIxspDrEaBxmG_ziXrxiGOziF-b54G0-Ln_7kOyCvCTPJ3TJvLqMd-Tn_ecfm6_Vw_cv3zafHirdgMiVhEF0XPaiEdhONUMcWSO50IiAMA0TmwY-Mt6axgwdaD32ZSo1mAZ0YfkdeXv2Le_8dTApq9kmbZxDb8IhKdbzthWy6cR1VAB0bSdlU9A3FxRTiWyK6LVNah_tjPGo6h7aTsi-cB_OXMkipWgmpW0-RZQjWqcYqKVgtVOXgtVSsAKpSsFFLf5T_zvgmu7jWWdKsL-tiSppa7w2o41GZzUGe8XhL-WdyQk |
CODEN | SBIOAH |
CitedBy_id | crossref_primary_10_1016_j_electacta_2025_145746 crossref_primary_10_1128_mra_01089_23 crossref_primary_10_1016_j_jhydrol_2016_06_004 crossref_primary_10_1088_1755_1315_1466_1_012002 crossref_primary_10_3390_f15101797 crossref_primary_10_1016_j_proeps_2014_08_006 crossref_primary_10_3390_su12239787 crossref_primary_10_1016_j_soilbio_2020_107844 crossref_primary_10_1128_AEM_02643_15 crossref_primary_10_1029_2019WR025662 crossref_primary_10_1002_jpln_202200218 crossref_primary_10_1016_j_atmosenv_2022_119247 crossref_primary_10_1016_j_jaap_2015_03_006 crossref_primary_10_1016_j_soilbio_2020_107880 crossref_primary_10_1007_s11104_016_2914_1 crossref_primary_10_1016_j_geoderma_2021_115509 crossref_primary_10_1021_acsearthspacechem_1c00033 crossref_primary_10_1093_femsec_fiab083 crossref_primary_10_3389_ffgc_2024_1344784 crossref_primary_10_5004_dwt_2020_25847 crossref_primary_10_1016_j_geoderma_2023_116463 crossref_primary_10_1016_j_quageo_2017_10_006 crossref_primary_10_1016_j_scitotenv_2019_135102 crossref_primary_10_1021_es504881t crossref_primary_10_1002_2015WR017878 crossref_primary_10_3390_soilsystems3020028 crossref_primary_10_3390_app14072806 crossref_primary_10_1016_j_envpol_2020_115996 crossref_primary_10_1016_j_envpol_2021_118326 crossref_primary_10_1007_s11557_018_1414_5 crossref_primary_10_1029_2020GB006719 crossref_primary_10_1038_s41467_022_35671_x crossref_primary_10_1007_s11356_018_2122_z crossref_primary_10_1016_j_apsoil_2018_01_002 crossref_primary_10_1002_jeq2_20613 crossref_primary_10_1029_2024EF005356 crossref_primary_10_1016_j_foreco_2016_08_029 crossref_primary_10_1016_j_still_2024_106100 crossref_primary_10_5194_soil_1_313_2015 crossref_primary_10_1007_s11356_023_28179_4 crossref_primary_10_1002_2016WR018970 crossref_primary_10_5194_bg_14_2831_2017 crossref_primary_10_1130_G35388Y_1 crossref_primary_10_1016_j_scitotenv_2016_07_033 crossref_primary_10_1016_j_chemosphere_2023_138755 crossref_primary_10_1016_j_soilbio_2015_07_008 crossref_primary_10_1016_j_chemosphere_2021_132454 crossref_primary_10_1021_acsearthspacechem_9b00262 crossref_primary_10_3389_ffgc_2020_594473 crossref_primary_10_7717_peerj_4575 crossref_primary_10_1002_2016WR019708 crossref_primary_10_1128_mBio_02776_19 crossref_primary_10_3389_fmicb_2020_491425 crossref_primary_10_1016_j_still_2024_106272 crossref_primary_10_1021_es405570c crossref_primary_10_1016_j_geoderma_2019_03_019 crossref_primary_10_1002_2015WR016884 crossref_primary_10_1002_hyp_13407 crossref_primary_10_1016_j_gca_2016_06_009 crossref_primary_10_1016_j_soilbio_2015_08_004 crossref_primary_10_3390_toxics11110904 crossref_primary_10_3724_j_issn_1007_2802_20240119 crossref_primary_10_1525_elementa_287 crossref_primary_10_1016_S1002_0160_15_60007_8 crossref_primary_10_1016_j_chemosphere_2022_137556 crossref_primary_10_1007_s11104_022_05773_y crossref_primary_10_1016_j_scitotenv_2021_152904 crossref_primary_10_3389_feart_2018_00168 |
Cites_doi | 10.1016/S0045-6535(98)00166-0 10.2113/gselements.3.5.321 10.1016/S0168-6496(03)00245-9 10.1016/j.geoderma.2006.08.004 10.1016/j.geoderma.2009.11.026 10.1038/ngeo870 10.1016/j.soilbio.2005.08.012 10.1021/es00086a012 10.1007/s00027-010-0130-2 10.1021/es901472g 10.2136/sssaj2007.0418 10.1016/j.chemosphere.2007.04.036 10.1016/j.soilbio.2012.03.011 10.1021/es900179s 10.1021/es101859b 10.4319/lo.2001.46.1.0038 10.1021/es030360x 10.1016/0146-6380(92)90119-I 10.1021/es0155276 10.1097/00010694-199110000-00004 10.1016/S0048-9697(02)00538-7 10.1016/S0016-7061(02)00360-9 10.1016/S0016-7061(02)00365-8 10.1007/s00027-003-0691-4 10.1016/S0016-7061(02)00362-2 10.1016/S0146-6380(00)00124-8 10.1021/es980272q 10.1021/es060635j 10.2136/vzj2010.0108 10.1038/382445a0 10.1016/j.still.2004.03.008 10.1007/s10021-003-0151-y 10.4319/lo.2009.54.6.2213 10.1366/000370209788964548 10.4319/lo.2010.55.6.2452 10.4319/lom.2010.8.0067 10.1016/j.soilbio.2009.06.009 10.1021/es0506962 10.1021/es0109702 10.1016/S0038-0717(01)00158-4 10.1016/j.chemosphere.2005.07.065 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SN 7T7 7UA 8FD C1K F1W FR3 H95 L.G P64 7S9 L.6 |
DOI | 10.1016/j.soilbio.2013.09.029 |
DatabaseName | CrossRef Pascal-Francis Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
EndPage | 176 |
ExternalDocumentID | 28067598 10_1016_j_soilbio_2013_09_029 S0038071713003301 |
GeographicLocations | USA, Colorado Colorado |
GeographicLocations_xml | – name: USA, Colorado – name: Colorado |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SN 7T7 7UA 8FD C1K EFKBS F1W FR3 H95 L.G P64 7S9 L.6 |
ID | FETCH-LOGICAL-c405t-90b57398545a6f21aad14935caa0a0fbf1fb3d136e4eb70ccd83d19c0e40cad13 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Fri Jul 11 01:38:12 EDT 2025 Mon Jul 21 10:32:12 EDT 2025 Wed Apr 02 07:46:50 EDT 2025 Tue Jul 01 03:19:50 EDT 2025 Thu Apr 24 23:04:50 EDT 2025 Fri Feb 23 02:27:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Organic matter/microbe interactions EEM-PARAFAC Water soluble organic matter (WSOM) UV–vis absorbance and fluorescence spectroscopy XAD-8 resin fractionation Soil depth Community structure Fractionation Organic matter Litter UV―vis absorbance and fluorescence Fluorescence saprolite Depth Soils Absorbance Chemical modification Spectrometry spectroscopy Water solubility Soil science Microorganism Resins Microbial community |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-90b57398545a6f21aad14935caa0a0fbf1fb3d136e4eb70ccd83d19c0e40cad13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1500767994 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1836659475 proquest_miscellaneous_1500767994 pascalfrancis_primary_28067598 crossref_citationtrail_10_1016_j_soilbio_2013_09_029 crossref_primary_10_1016_j_soilbio_2013_09_029 elsevier_sciencedirect_doi_10_1016_j_soilbio_2013_09_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2014 2014-01-00 2014 20140101 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | McKnight, Boyer, Westerhoff, Doran, Kulbe, Andersen (bib26) 2001; 46 Corvasce, Zsolnay, D'Orazio, Lopez, Miano (bib8) 2006; 62 Lovley, Coates, Blunt-Harris, Phillips, Woodward (bib23) 1996; 382 Bauer, Kappler (bib3) 2009; 43 Chorover, Kretzschmer, Garcia-Pichel, Sparks (bib7) 2007; 3 Cory, Miller, McKnight, Guerard, Miller (bib10) 2010; 8 Cory, McKnight (bib9) 2005; 39 Kalbitz, Schmerwitz, Schwesig, Matzner (bib18) 2003; 113 Parlanti, Worz, Geoffrey, Lamotte (bib32) 2000; 31 Lawaetz, Stedmon (bib22) 2009; 63 Miller, Simone, McKnight, Cory, Williams, Boyer (bib29) 2010 Miller, McKnight, Cory, Williams, Runkel (bib27) 2006; 40 Kappler, Benz, Schink, Brune (bib19) 2004; 47 Senesi, Miano, Provenzano, Brunetti (bib37) 1991; 152 Weishaar, Aiken, Bergamaschi, Fram, Fujii, Mopper (bib40) 2003; 37 Chen, Gu, Royer, Burgos (bib6) 2003; 307 Klapper, McKnight, Fulton, Blunt-Harris, Nevin, Lovley, Hatcher (bib20) 2002; 36 Rakshit, Uchimiya, Sposito (bib34) 2009; 73 Brose, James (bib5) 2010; 44 Hassouna, Massiani, Dudal, Pech, Theraulax (bib16) 2010; 155 Roden, Kappler, Bauer, Jiang, Paul, Stoesser, Konishi, Xu (bib35) 2010; 3 Aiken, McKnight, Thorn, Thurman (bib1) 1992; 18 Ohno (bib31) 2002; 36 Marschner, Kalbitz (bib24) 2003; 113 McDowell (bib25) 2003; 113 Fulton, McKnight, Foreman, Cory, Stedmon, Blunt (bib15) 2004; 66 Mladenov, Zheng, Miller, Nemergut, Legg, Simone, Hageman, Rahman, Ahmed, McKnight (bib30) 2010; 44 Fierer, Chadwick, Trumbore (bib13) 2005; 8 Thurman, Malcolm (bib39) 1981; 15 Fierer, Grandky, Six, Paul (bib14) 2009; 41 Kögel-Knabner (bib21) 2002; 34 Jones, Willett (bib17) 2006; 38 Zsolnay, Baigar, Jimenez, Steinweg, Saccomandi (bib41) 1999; 38 Miller, McKnight, Chapra, Williams (bib28) 2009; 54 Befus, Sheehan, Leopold, Anderson, Anderson (bib4) 2011; 10 Peretyazhko, Sposito (bib33) 2006; 127 Six, Bossuyt, Degryze, Denef (bib38) 2004; 79 Akagi, Zsolnay, Bastida (bib2) 2007; 69 Eilers, Debenport, Anderson, Fierer (bib11) 2012; 50 Scott, McKnight, Blunt-Harris, Kolesar, Lovley (bib36) 1998; 32 Fellman, Hood, Spencer (bib12) 2010; 55 Akagi (10.1016/j.soilbio.2013.09.029_bib2) 2007; 69 Chorover (10.1016/j.soilbio.2013.09.029_bib7) 2007; 3 Hassouna (10.1016/j.soilbio.2013.09.029_bib16) 2010; 155 Miller (10.1016/j.soilbio.2013.09.029_bib28) 2009; 54 Klapper (10.1016/j.soilbio.2013.09.029_bib20) 2002; 36 Corvasce (10.1016/j.soilbio.2013.09.029_bib8) 2006; 62 Marschner (10.1016/j.soilbio.2013.09.029_bib24) 2003; 113 Fulton (10.1016/j.soilbio.2013.09.029_bib15) 2004; 66 Cory (10.1016/j.soilbio.2013.09.029_bib10) 2010; 8 Bauer (10.1016/j.soilbio.2013.09.029_bib3) 2009; 43 Fierer (10.1016/j.soilbio.2013.09.029_bib13) 2005; 8 Lawaetz (10.1016/j.soilbio.2013.09.029_bib22) 2009; 63 Zsolnay (10.1016/j.soilbio.2013.09.029_bib41) 1999; 38 Lovley (10.1016/j.soilbio.2013.09.029_bib23) 1996; 382 Rakshit (10.1016/j.soilbio.2013.09.029_bib34) 2009; 73 Chen (10.1016/j.soilbio.2013.09.029_bib6) 2003; 307 Roden (10.1016/j.soilbio.2013.09.029_bib35) 2010; 3 Fellman (10.1016/j.soilbio.2013.09.029_bib12) 2010; 55 Senesi (10.1016/j.soilbio.2013.09.029_bib37) 1991; 152 Ohno (10.1016/j.soilbio.2013.09.029_bib31) 2002; 36 Peretyazhko (10.1016/j.soilbio.2013.09.029_bib33) 2006; 127 Miller (10.1016/j.soilbio.2013.09.029_bib27) 2006; 40 Mladenov (10.1016/j.soilbio.2013.09.029_bib30) 2010; 44 Kögel-Knabner (10.1016/j.soilbio.2013.09.029_bib21) 2002; 34 Kappler (10.1016/j.soilbio.2013.09.029_bib19) 2004; 47 Fierer (10.1016/j.soilbio.2013.09.029_bib14) 2009; 41 Jones (10.1016/j.soilbio.2013.09.029_bib17) 2006; 38 Scott (10.1016/j.soilbio.2013.09.029_bib36) 1998; 32 Kalbitz (10.1016/j.soilbio.2013.09.029_bib18) 2003; 113 Six (10.1016/j.soilbio.2013.09.029_bib38) 2004; 79 Thurman (10.1016/j.soilbio.2013.09.029_bib39) 1981; 15 Cory (10.1016/j.soilbio.2013.09.029_bib9) 2005; 39 Parlanti (10.1016/j.soilbio.2013.09.029_bib32) 2000; 31 Aiken (10.1016/j.soilbio.2013.09.029_bib1) 1992; 18 Weishaar (10.1016/j.soilbio.2013.09.029_bib40) 2003; 37 Miller (10.1016/j.soilbio.2013.09.029_bib29) 2010 Befus (10.1016/j.soilbio.2013.09.029_bib4) 2011; 10 McDowell (10.1016/j.soilbio.2013.09.029_bib25) 2003; 113 McKnight (10.1016/j.soilbio.2013.09.029_bib26) 2001; 46 Brose (10.1016/j.soilbio.2013.09.029_bib5) 2010; 44 Eilers (10.1016/j.soilbio.2013.09.029_bib11) 2012; 50 |
References_xml | – volume: 37 start-page: 4702 year: 2003 end-page: 4708 ident: bib40 article-title: Evaluation of the specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon publication-title: Environ. Sci. Technol. – volume: 66 start-page: 27 year: 2004 end-page: 46 ident: bib15 article-title: Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake publication-title: Aquat. Sci. – volume: 62 start-page: 1583 year: 2006 end-page: 1590 ident: bib8 article-title: Characterization of water extractable organic matter in a deep soil profile publication-title: Chemosphere – volume: 113 start-page: 211 year: 2003 end-page: 235 ident: bib24 article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils publication-title: Geoderma – volume: 127 start-page: 140 year: 2006 end-page: 146 ident: bib33 article-title: Reducing capacity of terrestrial humic acids publication-title: Geoderma – volume: 63 start-page: 936 year: 2009 end-page: 940 ident: bib22 article-title: Fluorescence intensity calibration using the Raman peak of water publication-title: Appl. Spectrosc. – volume: 113 start-page: 273 year: 2003 end-page: 291 ident: bib18 article-title: Biodegradation of soil-derived dissolved organic matter as related to its properties publication-title: Geoderma – volume: 307 start-page: 167 year: 2003 end-page: 178 ident: bib6 article-title: The roles of natural organic matter in chemical and microbial reduction of ferric iron publication-title: Sci. Total Environ. – volume: 8 start-page: 412 year: 2005 end-page: 429 ident: bib13 article-title: Productions of CO publication-title: Ecosystems – volume: 55 start-page: 2452 year: 2010 end-page: 2462 ident: bib12 article-title: Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review publication-title: Limnol. Oceanogr. – volume: 46 start-page: 38 year: 2001 end-page: 48 ident: bib26 article-title: Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity publication-title: Limnol. Oceanogr. – volume: 73 start-page: 65 year: 2009 end-page: 71 ident: bib34 article-title: Iron(III) bioreduction in soil in the presence of added humic substances publication-title: Soil Sci. Soc. Am. J. – volume: 152 start-page: 259 year: 1991 end-page: 271 ident: bib37 article-title: Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy publication-title: Soil Sci. – volume: 36 start-page: 742 year: 2002 end-page: 746 ident: bib31 article-title: Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter publication-title: Environ. Sci. Technol. – volume: 47 start-page: 85 year: 2004 end-page: 92 ident: bib19 article-title: Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment publication-title: FEMS Microbiol. Ecol. – volume: 38 start-page: 991 year: 2006 end-page: 999 ident: bib17 article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil publication-title: Soil Biol. Biochem. – volume: 54 start-page: 2213 year: 2009 end-page: 2227 ident: bib28 article-title: A model of degradation and production of three pools of dissolved organic matter in an alpine lake publication-title: Limnol. Oceanogr. – volume: 44 start-page: 123 year: 2010 end-page: 128 ident: bib30 article-title: Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers publication-title: Environ. Sci. Technol. – volume: 15 start-page: 463 year: 1981 end-page: 466 ident: bib39 article-title: Preparative isolation of aquatic humic substances publication-title: Environ. Sci. Technol. – volume: 44 start-page: 9438 year: 2010 end-page: 9444 ident: bib5 article-title: Oxidation-reduction transformations of chromium in aerobic soils and the roles of electron-shuttling quinones publication-title: Environ. Sci. Technol. – volume: 39 start-page: 8142 year: 2005 end-page: 8149 ident: bib9 article-title: Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter publication-title: Environ. Sci. Technol. – volume: 50 start-page: 58 year: 2012 end-page: 65 ident: bib11 article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil publication-title: Soil Biol. Biochem. – volume: 41 start-page: 2249 year: 2009 end-page: 2256 ident: bib14 article-title: Searching for unifying principles in soil ecology publication-title: Soil Biol. Biochem. – volume: 155 start-page: 75 year: 2010 end-page: 85 ident: bib16 article-title: Changes in water extractable organic matter (WEOM) in calcareous soil under field conditions with time and soil depth publication-title: Geoderma – volume: 10 start-page: 915 year: 2011 end-page: 927 ident: bib4 article-title: Seismic constraints on critical zone architecture, Boulder Creek watershed, front range, Colorado publication-title: Vadose Zone J. – volume: 8 start-page: 67 year: 2010 end-page: 78 ident: bib10 article-title: Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra publication-title: Limnol. Oceanogr. Methods – volume: 3 start-page: 321 year: 2007 end-page: 326 ident: bib7 article-title: Soil biogeochemical processes within the critical zone publication-title: Elements – volume: 40 start-page: 5943 year: 2006 end-page: 5949 ident: bib27 article-title: Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado Front Range publication-title: Environ. Sci. Technol. – volume: 18 start-page: 567 year: 1992 end-page: 573 ident: bib1 article-title: Isolation of hydrophilic organic acids from water using nonionic macroporous resins publication-title: Org. Geochem. – volume: 38 start-page: 45 year: 1999 end-page: 50 ident: bib41 article-title: Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying publication-title: Chemosphere – volume: 69 start-page: 1040 year: 2007 end-page: 1046 ident: bib2 article-title: Quantity and spectroscopic properties of dissolved organic matter (DOM) as a function of soil sample treatments: air-dying and pre-incubation publication-title: Chemosphere – volume: 382 start-page: 445 year: 1996 end-page: 448 ident: bib23 article-title: Humic substances as electron acceptors for microbial respiration publication-title: Nature – volume: 32 start-page: 2984 year: 1998 end-page: 2989 ident: bib36 article-title: Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms publication-title: Environ. Sci. Technol. – volume: 3 start-page: 417 year: 2010 end-page: 421 ident: bib35 article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances publication-title: Nat. Geosci. – volume: 31 start-page: 1765 year: 2000 end-page: 1781 ident: bib32 article-title: Dissolved organic mater fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs publication-title: Org. Geochem. – year: 2010 ident: bib29 article-title: New light on a dark subject: comment publication-title: Aquat. Sci. – volume: 79 start-page: 7 year: 2004 end-page: 31 ident: bib38 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. – volume: 43 start-page: 4902 year: 2009 end-page: 4908 ident: bib3 article-title: Rates and extent of reduction of Fe(III) compounds and O publication-title: Environ. Sci. Technol. – volume: 36 start-page: 3170 year: 2002 end-page: 3175 ident: bib20 article-title: Fulvic acid oxidation state detection using fluorescence spectroscopy publication-title: Environ. Sci. Technol. – volume: 113 start-page: 179 year: 2003 end-page: 186 ident: bib25 article-title: Dissolved organic matter in soils – future directions and unanswered questions publication-title: Geoderma – volume: 34 start-page: 139 year: 2002 end-page: 162 ident: bib21 article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter publication-title: Soil Biol. Biochem. – volume: 38 start-page: 45 year: 1999 ident: 10.1016/j.soilbio.2013.09.029_bib41 article-title: Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying publication-title: Chemosphere doi: 10.1016/S0045-6535(98)00166-0 – volume: 3 start-page: 321 year: 2007 ident: 10.1016/j.soilbio.2013.09.029_bib7 article-title: Soil biogeochemical processes within the critical zone publication-title: Elements doi: 10.2113/gselements.3.5.321 – volume: 47 start-page: 85 year: 2004 ident: 10.1016/j.soilbio.2013.09.029_bib19 article-title: Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment publication-title: FEMS Microbiol. Ecol. doi: 10.1016/S0168-6496(03)00245-9 – volume: 127 start-page: 140 year: 2006 ident: 10.1016/j.soilbio.2013.09.029_bib33 article-title: Reducing capacity of terrestrial humic acids publication-title: Geoderma doi: 10.1016/j.geoderma.2006.08.004 – volume: 155 start-page: 75 year: 2010 ident: 10.1016/j.soilbio.2013.09.029_bib16 article-title: Changes in water extractable organic matter (WEOM) in calcareous soil under field conditions with time and soil depth publication-title: Geoderma doi: 10.1016/j.geoderma.2009.11.026 – volume: 3 start-page: 417 year: 2010 ident: 10.1016/j.soilbio.2013.09.029_bib35 article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances publication-title: Nat. Geosci. doi: 10.1038/ngeo870 – volume: 38 start-page: 991 year: 2006 ident: 10.1016/j.soilbio.2013.09.029_bib17 article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.08.012 – volume: 15 start-page: 463 year: 1981 ident: 10.1016/j.soilbio.2013.09.029_bib39 article-title: Preparative isolation of aquatic humic substances publication-title: Environ. Sci. Technol. doi: 10.1021/es00086a012 – year: 2010 ident: 10.1016/j.soilbio.2013.09.029_bib29 article-title: New light on a dark subject: comment publication-title: Aquat. Sci. doi: 10.1007/s00027-010-0130-2 – volume: 44 start-page: 123 year: 2010 ident: 10.1016/j.soilbio.2013.09.029_bib30 article-title: Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers publication-title: Environ. Sci. Technol. doi: 10.1021/es901472g – volume: 73 start-page: 65 year: 2009 ident: 10.1016/j.soilbio.2013.09.029_bib34 article-title: Iron(III) bioreduction in soil in the presence of added humic substances publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0418 – volume: 69 start-page: 1040 year: 2007 ident: 10.1016/j.soilbio.2013.09.029_bib2 article-title: Quantity and spectroscopic properties of dissolved organic matter (DOM) as a function of soil sample treatments: air-dying and pre-incubation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.04.036 – volume: 50 start-page: 58 year: 2012 ident: 10.1016/j.soilbio.2013.09.029_bib11 article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.03.011 – volume: 43 start-page: 4902 year: 2009 ident: 10.1016/j.soilbio.2013.09.029_bib3 article-title: Rates and extent of reduction of Fe(III) compounds and O2 by humic substances publication-title: Environ. Sci. Technol. doi: 10.1021/es900179s – volume: 44 start-page: 9438 year: 2010 ident: 10.1016/j.soilbio.2013.09.029_bib5 article-title: Oxidation-reduction transformations of chromium in aerobic soils and the roles of electron-shuttling quinones publication-title: Environ. Sci. Technol. doi: 10.1021/es101859b – volume: 46 start-page: 38 year: 2001 ident: 10.1016/j.soilbio.2013.09.029_bib26 article-title: Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2001.46.1.0038 – volume: 37 start-page: 4702 year: 2003 ident: 10.1016/j.soilbio.2013.09.029_bib40 article-title: Evaluation of the specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon publication-title: Environ. Sci. Technol. doi: 10.1021/es030360x – volume: 18 start-page: 567 year: 1992 ident: 10.1016/j.soilbio.2013.09.029_bib1 article-title: Isolation of hydrophilic organic acids from water using nonionic macroporous resins publication-title: Org. Geochem. doi: 10.1016/0146-6380(92)90119-I – volume: 36 start-page: 742 year: 2002 ident: 10.1016/j.soilbio.2013.09.029_bib31 article-title: Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es0155276 – volume: 152 start-page: 259 year: 1991 ident: 10.1016/j.soilbio.2013.09.029_bib37 article-title: Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy publication-title: Soil Sci. doi: 10.1097/00010694-199110000-00004 – volume: 307 start-page: 167 year: 2003 ident: 10.1016/j.soilbio.2013.09.029_bib6 article-title: The roles of natural organic matter in chemical and microbial reduction of ferric iron publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(02)00538-7 – volume: 113 start-page: 179 year: 2003 ident: 10.1016/j.soilbio.2013.09.029_bib25 article-title: Dissolved organic matter in soils – future directions and unanswered questions publication-title: Geoderma doi: 10.1016/S0016-7061(02)00360-9 – volume: 113 start-page: 273 year: 2003 ident: 10.1016/j.soilbio.2013.09.029_bib18 article-title: Biodegradation of soil-derived dissolved organic matter as related to its properties publication-title: Geoderma doi: 10.1016/S0016-7061(02)00365-8 – volume: 66 start-page: 27 year: 2004 ident: 10.1016/j.soilbio.2013.09.029_bib15 article-title: Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake publication-title: Aquat. Sci. doi: 10.1007/s00027-003-0691-4 – volume: 113 start-page: 211 year: 2003 ident: 10.1016/j.soilbio.2013.09.029_bib24 article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils publication-title: Geoderma doi: 10.1016/S0016-7061(02)00362-2 – volume: 31 start-page: 1765 year: 2000 ident: 10.1016/j.soilbio.2013.09.029_bib32 article-title: Dissolved organic mater fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs publication-title: Org. Geochem. doi: 10.1016/S0146-6380(00)00124-8 – volume: 32 start-page: 2984 year: 1998 ident: 10.1016/j.soilbio.2013.09.029_bib36 article-title: Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms publication-title: Environ. Sci. Technol. doi: 10.1021/es980272q – volume: 40 start-page: 5943 year: 2006 ident: 10.1016/j.soilbio.2013.09.029_bib27 article-title: Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado Front Range publication-title: Environ. Sci. Technol. doi: 10.1021/es060635j – volume: 10 start-page: 915 year: 2011 ident: 10.1016/j.soilbio.2013.09.029_bib4 article-title: Seismic constraints on critical zone architecture, Boulder Creek watershed, front range, Colorado publication-title: Vadose Zone J. doi: 10.2136/vzj2010.0108 – volume: 382 start-page: 445 year: 1996 ident: 10.1016/j.soilbio.2013.09.029_bib23 article-title: Humic substances as electron acceptors for microbial respiration publication-title: Nature doi: 10.1038/382445a0 – volume: 79 start-page: 7 year: 2004 ident: 10.1016/j.soilbio.2013.09.029_bib38 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.03.008 – volume: 8 start-page: 412 year: 2005 ident: 10.1016/j.soilbio.2013.09.029_bib13 article-title: Productions of CO2 in soil profiles of a California Annual Grassland publication-title: Ecosystems doi: 10.1007/s10021-003-0151-y – volume: 54 start-page: 2213 year: 2009 ident: 10.1016/j.soilbio.2013.09.029_bib28 article-title: A model of degradation and production of three pools of dissolved organic matter in an alpine lake publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2009.54.6.2213 – volume: 63 start-page: 936 year: 2009 ident: 10.1016/j.soilbio.2013.09.029_bib22 article-title: Fluorescence intensity calibration using the Raman peak of water publication-title: Appl. Spectrosc. doi: 10.1366/000370209788964548 – volume: 55 start-page: 2452 year: 2010 ident: 10.1016/j.soilbio.2013.09.029_bib12 article-title: Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2010.55.6.2452 – volume: 8 start-page: 67 year: 2010 ident: 10.1016/j.soilbio.2013.09.029_bib10 article-title: Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra publication-title: Limnol. Oceanogr. Methods doi: 10.4319/lom.2010.8.0067 – volume: 41 start-page: 2249 year: 2009 ident: 10.1016/j.soilbio.2013.09.029_bib14 article-title: Searching for unifying principles in soil ecology publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.06.009 – volume: 39 start-page: 8142 year: 2005 ident: 10.1016/j.soilbio.2013.09.029_bib9 article-title: Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es0506962 – volume: 36 start-page: 3170 year: 2002 ident: 10.1016/j.soilbio.2013.09.029_bib20 article-title: Fulvic acid oxidation state detection using fluorescence spectroscopy publication-title: Environ. Sci. Technol. doi: 10.1021/es0109702 – volume: 34 start-page: 139 year: 2002 ident: 10.1016/j.soilbio.2013.09.029_bib21 article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00158-4 – volume: 62 start-page: 1583 year: 2006 ident: 10.1016/j.soilbio.2013.09.029_bib8 article-title: Characterization of water extractable organic matter in a deep soil profile publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.07.065 |
SSID | ssj0002513 |
Score | 2.3779743 |
Snippet | Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 166 |
SubjectTerms | Agronomy. Soil science and plant productions Biochemistry and biology Biological and medical sciences chemical structure Chemical, physicochemical, biochemical and biological properties Colorado community structure EEM-PARAFAC fluorescence fluorescence emission spectroscopy Fundamental and applied biological sciences. Psychology landscape position landscapes microbial communities organic horizons Organic matter Organic matter/microbe interactions Physics, chemistry, biochemistry and biology of agricultural and forest soils saprolite Soil depth soil organic matter soil sampling Soil science UV–vis absorbance and fluorescence spectroscopy vegetation Water soluble organic matter (WSOM) watersheds XAD-8 resin fractionation |
Title | From the litter layer to the saprolite: Chemical changes in water-soluble soil organic matter and their correlation to microbial community composition |
URI | https://dx.doi.org/10.1016/j.soilbio.2013.09.029 https://www.proquest.com/docview/1500767994 https://www.proquest.com/docview/1836659475 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELam8QAIIRiglR-VkXjNmtS_Yt6qiqqA2BOT9mY5joMytWnVZkJ72Z_B38ud7WyaQEzirYnsNPVd777E931HyAdnIYsI6zMtuM24tSwrnSqywqHspNXMceQOfzuVyzP-5VycH5D5wIXBssoU-2NMD9E6nZmk1Zxs2xY5viiWXijckIGn8sBg5wq9_OT6tswD8ncS3i2RrKNuWTyTC9TLXVUtcgALFuROA9L8a356srV7WLUmtrv4I3KHdLR4Rp4mHEln8VafkwPfHZHHsx-7pKXhj8jD-dDM7QX5tdht1hTAHgXYDUtJVxawNu034dzebrF5T-8_0kFAgEZG8J62Hf0JeHSXoZNWKxgMv4bGZlCOroM8J7VdTcOWA3XY7SPW1-HV120QesLrRSZKf4WfhlKxl-Rs8en7fJmllgyZA2TXZzqvhGK6BNxlZTMtrK3hEYsJZ21u86ZqiqZidcGk575SuXN1CYfa5Z7nDsayV-Sw23T-mFDZCM5rqaeugWjNXVVaN-V1LUvOFJdiRPhgCOOSXjm2zViZoTDtwiT7GbSfybUB-43Iyc20bRTsuG9COVjZ3PE8A0nlvqnjO15x84W4Xa2ELkfk_eAmBgyOezG285vLvQEcniuptOb_GFMyKYXmSrz-_3t8Qx7BEY9vjd6Sw3536d8BjuqrcfijjMmD2eevy9PflrQhww |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7mEghGCAVj6GkXgNTeqP2LxVFVXHtj5t0t4sx3FQpjat2kyIf4S_l7vYKZpATOItH7bj-C53P8e-3xHy0VnwIsL6RAtuE24tS5TLsyRzSDtpNXMcY4cvF3J-zb_eiJsDMu1jYXBbZbT9waZ31jpeGcXRHG3qGmN8kSw9y3FBBmblMAU6RHYqMSCHk7Pz-WJvkMGFR-5dhfE6-e9AntEtUuYuixrDADPWMZ52YPOvLurJxu5g4KqQ8eIP4915pNkz8jRCSToJvX1ODnxzTB5Pvm0jnYY_JkfTPp_bC_Jztl2vKOA9CsgbRpMuLcBt2q67azu7wfw9rf9Mew4BGoKCd7Ru6HeApNsE9bRYQmF4GxryQTm66hg6qW1K2q06UIcJP8IWO2x9VXdcT9heCEZpf-BRv1vsJbmefbmazpOYlSFxAO7aRKeFyJlWAL2srMaZtSXMsphw1qY2rYoqqwpWZkx67os8da5UcKpd6nnqoCx7RQbNuvEnhMpKcF5KPXYVGGzuCmXdmJelVJzlXIoh4b0gjIuU5Zg5Y2n6vWm3JsrPoPxMqg3Ib0g-7attAmfHQxVUL2VzT_kM-JWHqp7e04r9A3HFOhdaDcmHXk0MCByXY2zj13c7A1A8zWWuNf9HGcWkFBq0-vX_9_E9OZpfXV6Yi7PF-RvyCO7w8BPpLRm02zv_DmBVW5zGz-YXY_IkdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+the+litter+layer+to+the+saprolite%3A+Chemical+changes+in+water-soluble+soil+organic+matter+and+their+correlation+to+microbial+community+composition&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=GABOR%2C+Rachel+S&rft.au=EILERS%2C+Kathryn&rft.au=MCKNIGHT%2C+Diane+M&rft.au=FIERER%2C+Noah&rft.date=2014&rft.pub=Elsevier&rft.issn=0038-0717&rft.volume=68&rft.spage=166&rft.epage=176&rft_id=info:doi/10.1016%2Fj.soilbio.2013.09.029&rft.externalDBID=n%2Fa&rft.externalDocID=28067598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |