From the litter layer to the saprolite: Chemical changes in water-soluble soil organic matter and their correlation to microbial community composition

Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically important, its chemical interaction with soil processes is not well understood. In this study we used fluorescence spectroscopy, which has been used...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 68; pp. 166 - 176
Main Authors Gabor, Rachel S., Eilers, Kathryn, McKnight, Diane M., Fierer, Noah, Anderson, Suzanne P.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.01.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically important, its chemical interaction with soil processes is not well understood. In this study we used fluorescence spectroscopy, which has been used extensively for understanding the role of organic matter in aquatic systems, to identify chemical changes in organic matter with depth in a soil system. Soil was collected from nine different pits in a first-order montane catchment in the Colorado Front Range. The water-soluble soil organic matter was extracted from each sample and fluorescence and UV–vis spectroscopy was used to analyze its chemical character. While organic matter chemistry had little correlation with landscape location and local vegetation, there were noticeable consistent trends between soil horizon and organic matter chemistry in each pit. Total organic matter decreased with depth and became less aromatic with increasing depth. This less aromatic material in the saprolite also had a greater microbial signature. The redox character of the organic matter accompanied this change in source and molecular structure, with more oxidized character corresponding with organic matter with more microbial input and more reduced character corresponding to organic matter with more plant input. A concurrent investigation of the microbial population of the same soil samples also showed microbial population composition varying more with soil depth than landscape position, and depth changes in microbial diversity occurred concomitantly with depth changes in organic matter chemistry. •Chemistry of water-soluble organic matter, as measured by fluorescence spectroscopy, changed noticeably with soil depth.•The degree of microbial input to water-soluble organic matter correlated to the redox state of the organic matter.•Microbial community diversity and organic mater chemistry changed concomitantly with soil depth.
AbstractList Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically important, its chemical interaction with soil processes is not well understood. In this study we used fluorescence spectroscopy, which has been used extensively for understanding the role of organic matter in aquatic systems, to identify chemical changes in organic matter with depth in a soil system. Soil was collected from nine different pits in a first-order montane catchment in the Colorado Front Range. The water-soluble soil organic matter was extracted from each sample and fluorescence and UV–vis spectroscopy was used to analyze its chemical character. While organic matter chemistry had little correlation with landscape location and local vegetation, there were noticeable consistent trends between soil horizon and organic matter chemistry in each pit. Total organic matter decreased with depth and became less aromatic with increasing depth. This less aromatic material in the saprolite also had a greater microbial signature. The redox character of the organic matter accompanied this change in source and molecular structure, with more oxidized character corresponding with organic matter with more microbial input and more reduced character corresponding to organic matter with more plant input. A concurrent investigation of the microbial population of the same soil samples also showed microbial population composition varying more with soil depth than landscape position, and depth changes in microbial diversity occurred concomitantly with depth changes in organic matter chemistry.
Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically important, its chemical interaction with soil processes is not well understood. In this study we used fluorescence spectroscopy, which has been used extensively for understanding the role of organic matter in aquatic systems, to identify chemical changes in organic matter with depth in a soil system. Soil was collected from nine different pits in a first-order montane catchment in the Colorado Front Range. The water-soluble soil organic matter was extracted from each sample and fluorescence and UV–vis spectroscopy was used to analyze its chemical character. While organic matter chemistry had little correlation with landscape location and local vegetation, there were noticeable consistent trends between soil horizon and organic matter chemistry in each pit. Total organic matter decreased with depth and became less aromatic with increasing depth. This less aromatic material in the saprolite also had a greater microbial signature. The redox character of the organic matter accompanied this change in source and molecular structure, with more oxidized character corresponding with organic matter with more microbial input and more reduced character corresponding to organic matter with more plant input. A concurrent investigation of the microbial population of the same soil samples also showed microbial population composition varying more with soil depth than landscape position, and depth changes in microbial diversity occurred concomitantly with depth changes in organic matter chemistry. •Chemistry of water-soluble organic matter, as measured by fluorescence spectroscopy, changed noticeably with soil depth.•The degree of microbial input to water-soluble organic matter correlated to the redox state of the organic matter.•Microbial community diversity and organic mater chemistry changed concomitantly with soil depth.
Author Eilers, Kathryn
Anderson, Suzanne P.
McKnight, Diane M.
Fierer, Noah
Gabor, Rachel S.
Author_xml – sequence: 1
  givenname: Rachel S.
  surname: Gabor
  fullname: Gabor, Rachel S.
  email: Rachel.gabor@colorado.edu
  organization: Department of Environmental Studies, University of Colorado, Boulder, CO 80309, USA
– sequence: 2
  givenname: Kathryn
  surname: Eilers
  fullname: Eilers, Kathryn
  organization: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
– sequence: 3
  givenname: Diane M.
  surname: McKnight
  fullname: McKnight, Diane M.
  organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA
– sequence: 4
  givenname: Noah
  surname: Fierer
  fullname: Fierer, Noah
  organization: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
– sequence: 5
  givenname: Suzanne P.
  surname: Anderson
  fullname: Anderson, Suzanne P.
  organization: Department of Geography, University of Colorado, Boulder, CO 80309, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28067598$$DView record in Pascal Francis
BookMark eNqFkUGP1CAcxYlZE2dXP4IJFxMvHf-U0hY9GDNx1WQTL3om_1K6w4TCCIyb-SJ-XunMePEyl1Lg9x7w3i258cEbQl4zWDNg7bvdOgXrBhvWNTC-BrmGWj4jK9Z3suJN3d-QFQDvK-hY94LcprQDgFowviJ_7mOYad4a6mzOJlKHx_LN4bSWcB9D2TDv6WZrZqvRUb1F_2gStZ4-YVFUKbjD4ApcLkFDfERvNZ3x5IZ-XIxspDrEaBxmG_ziXrxiGOziF-b54G0-Ln_7kOyCvCTPJ3TJvLqMd-Tn_ecfm6_Vw_cv3zafHirdgMiVhEF0XPaiEdhONUMcWSO50IiAMA0TmwY-Mt6axgwdaD32ZSo1mAZ0YfkdeXv2Le_8dTApq9kmbZxDb8IhKdbzthWy6cR1VAB0bSdlU9A3FxRTiWyK6LVNah_tjPGo6h7aTsi-cB_OXMkipWgmpW0-RZQjWqcYqKVgtVOXgtVSsAKpSsFFLf5T_zvgmu7jWWdKsL-tiSppa7w2o41GZzUGe8XhL-WdyQk
CODEN SBIOAH
CitedBy_id crossref_primary_10_1016_j_electacta_2025_145746
crossref_primary_10_1128_mra_01089_23
crossref_primary_10_1016_j_jhydrol_2016_06_004
crossref_primary_10_1088_1755_1315_1466_1_012002
crossref_primary_10_3390_f15101797
crossref_primary_10_1016_j_proeps_2014_08_006
crossref_primary_10_3390_su12239787
crossref_primary_10_1016_j_soilbio_2020_107844
crossref_primary_10_1128_AEM_02643_15
crossref_primary_10_1029_2019WR025662
crossref_primary_10_1002_jpln_202200218
crossref_primary_10_1016_j_atmosenv_2022_119247
crossref_primary_10_1016_j_jaap_2015_03_006
crossref_primary_10_1016_j_soilbio_2020_107880
crossref_primary_10_1007_s11104_016_2914_1
crossref_primary_10_1016_j_geoderma_2021_115509
crossref_primary_10_1021_acsearthspacechem_1c00033
crossref_primary_10_1093_femsec_fiab083
crossref_primary_10_3389_ffgc_2024_1344784
crossref_primary_10_5004_dwt_2020_25847
crossref_primary_10_1016_j_geoderma_2023_116463
crossref_primary_10_1016_j_quageo_2017_10_006
crossref_primary_10_1016_j_scitotenv_2019_135102
crossref_primary_10_1021_es504881t
crossref_primary_10_1002_2015WR017878
crossref_primary_10_3390_soilsystems3020028
crossref_primary_10_3390_app14072806
crossref_primary_10_1016_j_envpol_2020_115996
crossref_primary_10_1016_j_envpol_2021_118326
crossref_primary_10_1007_s11557_018_1414_5
crossref_primary_10_1029_2020GB006719
crossref_primary_10_1038_s41467_022_35671_x
crossref_primary_10_1007_s11356_018_2122_z
crossref_primary_10_1016_j_apsoil_2018_01_002
crossref_primary_10_1002_jeq2_20613
crossref_primary_10_1029_2024EF005356
crossref_primary_10_1016_j_foreco_2016_08_029
crossref_primary_10_1016_j_still_2024_106100
crossref_primary_10_5194_soil_1_313_2015
crossref_primary_10_1007_s11356_023_28179_4
crossref_primary_10_1002_2016WR018970
crossref_primary_10_5194_bg_14_2831_2017
crossref_primary_10_1130_G35388Y_1
crossref_primary_10_1016_j_scitotenv_2016_07_033
crossref_primary_10_1016_j_chemosphere_2023_138755
crossref_primary_10_1016_j_soilbio_2015_07_008
crossref_primary_10_1016_j_chemosphere_2021_132454
crossref_primary_10_1021_acsearthspacechem_9b00262
crossref_primary_10_3389_ffgc_2020_594473
crossref_primary_10_7717_peerj_4575
crossref_primary_10_1002_2016WR019708
crossref_primary_10_1128_mBio_02776_19
crossref_primary_10_3389_fmicb_2020_491425
crossref_primary_10_1016_j_still_2024_106272
crossref_primary_10_1021_es405570c
crossref_primary_10_1016_j_geoderma_2019_03_019
crossref_primary_10_1002_2015WR016884
crossref_primary_10_1002_hyp_13407
crossref_primary_10_1016_j_gca_2016_06_009
crossref_primary_10_1016_j_soilbio_2015_08_004
crossref_primary_10_3390_toxics11110904
crossref_primary_10_3724_j_issn_1007_2802_20240119
crossref_primary_10_1525_elementa_287
crossref_primary_10_1016_S1002_0160_15_60007_8
crossref_primary_10_1016_j_chemosphere_2022_137556
crossref_primary_10_1007_s11104_022_05773_y
crossref_primary_10_1016_j_scitotenv_2021_152904
crossref_primary_10_3389_feart_2018_00168
Cites_doi 10.1016/S0045-6535(98)00166-0
10.2113/gselements.3.5.321
10.1016/S0168-6496(03)00245-9
10.1016/j.geoderma.2006.08.004
10.1016/j.geoderma.2009.11.026
10.1038/ngeo870
10.1016/j.soilbio.2005.08.012
10.1021/es00086a012
10.1007/s00027-010-0130-2
10.1021/es901472g
10.2136/sssaj2007.0418
10.1016/j.chemosphere.2007.04.036
10.1016/j.soilbio.2012.03.011
10.1021/es900179s
10.1021/es101859b
10.4319/lo.2001.46.1.0038
10.1021/es030360x
10.1016/0146-6380(92)90119-I
10.1021/es0155276
10.1097/00010694-199110000-00004
10.1016/S0048-9697(02)00538-7
10.1016/S0016-7061(02)00360-9
10.1016/S0016-7061(02)00365-8
10.1007/s00027-003-0691-4
10.1016/S0016-7061(02)00362-2
10.1016/S0146-6380(00)00124-8
10.1021/es980272q
10.1021/es060635j
10.2136/vzj2010.0108
10.1038/382445a0
10.1016/j.still.2004.03.008
10.1007/s10021-003-0151-y
10.4319/lo.2009.54.6.2213
10.1366/000370209788964548
10.4319/lo.2010.55.6.2452
10.4319/lom.2010.8.0067
10.1016/j.soilbio.2009.06.009
10.1021/es0506962
10.1021/es0109702
10.1016/S0038-0717(01)00158-4
10.1016/j.chemosphere.2005.07.065
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SN
7T7
7UA
8FD
C1K
F1W
FR3
H95
L.G
P64
7S9
L.6
DOI 10.1016/j.soilbio.2013.09.029
DatabaseName CrossRef
Pascal-Francis
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
EndPage 176
ExternalDocumentID 28067598
10_1016_j_soilbio_2013_09_029
S0038071713003301
GeographicLocations USA, Colorado
Colorado
GeographicLocations_xml – name: USA, Colorado
– name: Colorado
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7SN
7T7
7UA
8FD
C1K
EFKBS
F1W
FR3
H95
L.G
P64
7S9
L.6
ID FETCH-LOGICAL-c405t-90b57398545a6f21aad14935caa0a0fbf1fb3d136e4eb70ccd83d19c0e40cad13
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Fri Jul 11 01:38:12 EDT 2025
Mon Jul 21 10:32:12 EDT 2025
Wed Apr 02 07:46:50 EDT 2025
Tue Jul 01 03:19:50 EDT 2025
Thu Apr 24 23:04:50 EDT 2025
Fri Feb 23 02:27:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Organic matter/microbe interactions
EEM-PARAFAC
Water soluble organic matter (WSOM)
UV–vis absorbance and fluorescence spectroscopy
XAD-8 resin fractionation
Soil depth
Community structure
Fractionation
Organic matter
Litter
UV―vis absorbance and fluorescence
Fluorescence
saprolite
Depth
Soils
Absorbance
Chemical modification
Spectrometry
spectroscopy
Water solubility
Soil science
Microorganism
Resins
Microbial community
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-90b57398545a6f21aad14935caa0a0fbf1fb3d136e4eb70ccd83d19c0e40cad13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1500767994
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1836659475
proquest_miscellaneous_1500767994
pascalfrancis_primary_28067598
crossref_citationtrail_10_1016_j_soilbio_2013_09_029
crossref_primary_10_1016_j_soilbio_2013_09_029
elsevier_sciencedirect_doi_10_1016_j_soilbio_2013_09_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2014
2014-01-00
2014
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Soil biology & biochemistry
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References McKnight, Boyer, Westerhoff, Doran, Kulbe, Andersen (bib26) 2001; 46
Corvasce, Zsolnay, D'Orazio, Lopez, Miano (bib8) 2006; 62
Lovley, Coates, Blunt-Harris, Phillips, Woodward (bib23) 1996; 382
Bauer, Kappler (bib3) 2009; 43
Chorover, Kretzschmer, Garcia-Pichel, Sparks (bib7) 2007; 3
Cory, Miller, McKnight, Guerard, Miller (bib10) 2010; 8
Cory, McKnight (bib9) 2005; 39
Kalbitz, Schmerwitz, Schwesig, Matzner (bib18) 2003; 113
Parlanti, Worz, Geoffrey, Lamotte (bib32) 2000; 31
Lawaetz, Stedmon (bib22) 2009; 63
Miller, Simone, McKnight, Cory, Williams, Boyer (bib29) 2010
Miller, McKnight, Cory, Williams, Runkel (bib27) 2006; 40
Kappler, Benz, Schink, Brune (bib19) 2004; 47
Senesi, Miano, Provenzano, Brunetti (bib37) 1991; 152
Weishaar, Aiken, Bergamaschi, Fram, Fujii, Mopper (bib40) 2003; 37
Chen, Gu, Royer, Burgos (bib6) 2003; 307
Klapper, McKnight, Fulton, Blunt-Harris, Nevin, Lovley, Hatcher (bib20) 2002; 36
Rakshit, Uchimiya, Sposito (bib34) 2009; 73
Brose, James (bib5) 2010; 44
Hassouna, Massiani, Dudal, Pech, Theraulax (bib16) 2010; 155
Roden, Kappler, Bauer, Jiang, Paul, Stoesser, Konishi, Xu (bib35) 2010; 3
Aiken, McKnight, Thorn, Thurman (bib1) 1992; 18
Ohno (bib31) 2002; 36
Marschner, Kalbitz (bib24) 2003; 113
McDowell (bib25) 2003; 113
Fulton, McKnight, Foreman, Cory, Stedmon, Blunt (bib15) 2004; 66
Mladenov, Zheng, Miller, Nemergut, Legg, Simone, Hageman, Rahman, Ahmed, McKnight (bib30) 2010; 44
Fierer, Chadwick, Trumbore (bib13) 2005; 8
Thurman, Malcolm (bib39) 1981; 15
Fierer, Grandky, Six, Paul (bib14) 2009; 41
Kögel-Knabner (bib21) 2002; 34
Jones, Willett (bib17) 2006; 38
Zsolnay, Baigar, Jimenez, Steinweg, Saccomandi (bib41) 1999; 38
Miller, McKnight, Chapra, Williams (bib28) 2009; 54
Befus, Sheehan, Leopold, Anderson, Anderson (bib4) 2011; 10
Peretyazhko, Sposito (bib33) 2006; 127
Six, Bossuyt, Degryze, Denef (bib38) 2004; 79
Akagi, Zsolnay, Bastida (bib2) 2007; 69
Eilers, Debenport, Anderson, Fierer (bib11) 2012; 50
Scott, McKnight, Blunt-Harris, Kolesar, Lovley (bib36) 1998; 32
Fellman, Hood, Spencer (bib12) 2010; 55
Akagi (10.1016/j.soilbio.2013.09.029_bib2) 2007; 69
Chorover (10.1016/j.soilbio.2013.09.029_bib7) 2007; 3
Hassouna (10.1016/j.soilbio.2013.09.029_bib16) 2010; 155
Miller (10.1016/j.soilbio.2013.09.029_bib28) 2009; 54
Klapper (10.1016/j.soilbio.2013.09.029_bib20) 2002; 36
Corvasce (10.1016/j.soilbio.2013.09.029_bib8) 2006; 62
Marschner (10.1016/j.soilbio.2013.09.029_bib24) 2003; 113
Fulton (10.1016/j.soilbio.2013.09.029_bib15) 2004; 66
Cory (10.1016/j.soilbio.2013.09.029_bib10) 2010; 8
Bauer (10.1016/j.soilbio.2013.09.029_bib3) 2009; 43
Fierer (10.1016/j.soilbio.2013.09.029_bib13) 2005; 8
Lawaetz (10.1016/j.soilbio.2013.09.029_bib22) 2009; 63
Zsolnay (10.1016/j.soilbio.2013.09.029_bib41) 1999; 38
Lovley (10.1016/j.soilbio.2013.09.029_bib23) 1996; 382
Rakshit (10.1016/j.soilbio.2013.09.029_bib34) 2009; 73
Chen (10.1016/j.soilbio.2013.09.029_bib6) 2003; 307
Roden (10.1016/j.soilbio.2013.09.029_bib35) 2010; 3
Fellman (10.1016/j.soilbio.2013.09.029_bib12) 2010; 55
Senesi (10.1016/j.soilbio.2013.09.029_bib37) 1991; 152
Ohno (10.1016/j.soilbio.2013.09.029_bib31) 2002; 36
Peretyazhko (10.1016/j.soilbio.2013.09.029_bib33) 2006; 127
Miller (10.1016/j.soilbio.2013.09.029_bib27) 2006; 40
Mladenov (10.1016/j.soilbio.2013.09.029_bib30) 2010; 44
Kögel-Knabner (10.1016/j.soilbio.2013.09.029_bib21) 2002; 34
Kappler (10.1016/j.soilbio.2013.09.029_bib19) 2004; 47
Fierer (10.1016/j.soilbio.2013.09.029_bib14) 2009; 41
Jones (10.1016/j.soilbio.2013.09.029_bib17) 2006; 38
Scott (10.1016/j.soilbio.2013.09.029_bib36) 1998; 32
Kalbitz (10.1016/j.soilbio.2013.09.029_bib18) 2003; 113
Six (10.1016/j.soilbio.2013.09.029_bib38) 2004; 79
Thurman (10.1016/j.soilbio.2013.09.029_bib39) 1981; 15
Cory (10.1016/j.soilbio.2013.09.029_bib9) 2005; 39
Parlanti (10.1016/j.soilbio.2013.09.029_bib32) 2000; 31
Aiken (10.1016/j.soilbio.2013.09.029_bib1) 1992; 18
Weishaar (10.1016/j.soilbio.2013.09.029_bib40) 2003; 37
Miller (10.1016/j.soilbio.2013.09.029_bib29) 2010
Befus (10.1016/j.soilbio.2013.09.029_bib4) 2011; 10
McDowell (10.1016/j.soilbio.2013.09.029_bib25) 2003; 113
McKnight (10.1016/j.soilbio.2013.09.029_bib26) 2001; 46
Brose (10.1016/j.soilbio.2013.09.029_bib5) 2010; 44
Eilers (10.1016/j.soilbio.2013.09.029_bib11) 2012; 50
References_xml – volume: 37
  start-page: 4702
  year: 2003
  end-page: 4708
  ident: bib40
  article-title: Evaluation of the specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon
  publication-title: Environ. Sci. Technol.
– volume: 66
  start-page: 27
  year: 2004
  end-page: 46
  ident: bib15
  article-title: Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake
  publication-title: Aquat. Sci.
– volume: 62
  start-page: 1583
  year: 2006
  end-page: 1590
  ident: bib8
  article-title: Characterization of water extractable organic matter in a deep soil profile
  publication-title: Chemosphere
– volume: 113
  start-page: 211
  year: 2003
  end-page: 235
  ident: bib24
  article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils
  publication-title: Geoderma
– volume: 127
  start-page: 140
  year: 2006
  end-page: 146
  ident: bib33
  article-title: Reducing capacity of terrestrial humic acids
  publication-title: Geoderma
– volume: 63
  start-page: 936
  year: 2009
  end-page: 940
  ident: bib22
  article-title: Fluorescence intensity calibration using the Raman peak of water
  publication-title: Appl. Spectrosc.
– volume: 113
  start-page: 273
  year: 2003
  end-page: 291
  ident: bib18
  article-title: Biodegradation of soil-derived dissolved organic matter as related to its properties
  publication-title: Geoderma
– volume: 307
  start-page: 167
  year: 2003
  end-page: 178
  ident: bib6
  article-title: The roles of natural organic matter in chemical and microbial reduction of ferric iron
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 412
  year: 2005
  end-page: 429
  ident: bib13
  article-title: Productions of CO
  publication-title: Ecosystems
– volume: 55
  start-page: 2452
  year: 2010
  end-page: 2462
  ident: bib12
  article-title: Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review
  publication-title: Limnol. Oceanogr.
– volume: 46
  start-page: 38
  year: 2001
  end-page: 48
  ident: bib26
  article-title: Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity
  publication-title: Limnol. Oceanogr.
– volume: 73
  start-page: 65
  year: 2009
  end-page: 71
  ident: bib34
  article-title: Iron(III) bioreduction in soil in the presence of added humic substances
  publication-title: Soil Sci. Soc. Am. J.
– volume: 152
  start-page: 259
  year: 1991
  end-page: 271
  ident: bib37
  article-title: Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy
  publication-title: Soil Sci.
– volume: 36
  start-page: 742
  year: 2002
  end-page: 746
  ident: bib31
  article-title: Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 85
  year: 2004
  end-page: 92
  ident: bib19
  article-title: Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment
  publication-title: FEMS Microbiol. Ecol.
– volume: 38
  start-page: 991
  year: 2006
  end-page: 999
  ident: bib17
  article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil
  publication-title: Soil Biol. Biochem.
– volume: 54
  start-page: 2213
  year: 2009
  end-page: 2227
  ident: bib28
  article-title: A model of degradation and production of three pools of dissolved organic matter in an alpine lake
  publication-title: Limnol. Oceanogr.
– volume: 44
  start-page: 123
  year: 2010
  end-page: 128
  ident: bib30
  article-title: Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 463
  year: 1981
  end-page: 466
  ident: bib39
  article-title: Preparative isolation of aquatic humic substances
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 9438
  year: 2010
  end-page: 9444
  ident: bib5
  article-title: Oxidation-reduction transformations of chromium in aerobic soils and the roles of electron-shuttling quinones
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 8142
  year: 2005
  end-page: 8149
  ident: bib9
  article-title: Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 58
  year: 2012
  end-page: 65
  ident: bib11
  article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil
  publication-title: Soil Biol. Biochem.
– volume: 41
  start-page: 2249
  year: 2009
  end-page: 2256
  ident: bib14
  article-title: Searching for unifying principles in soil ecology
  publication-title: Soil Biol. Biochem.
– volume: 155
  start-page: 75
  year: 2010
  end-page: 85
  ident: bib16
  article-title: Changes in water extractable organic matter (WEOM) in calcareous soil under field conditions with time and soil depth
  publication-title: Geoderma
– volume: 10
  start-page: 915
  year: 2011
  end-page: 927
  ident: bib4
  article-title: Seismic constraints on critical zone architecture, Boulder Creek watershed, front range, Colorado
  publication-title: Vadose Zone J.
– volume: 8
  start-page: 67
  year: 2010
  end-page: 78
  ident: bib10
  article-title: Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra
  publication-title: Limnol. Oceanogr. Methods
– volume: 3
  start-page: 321
  year: 2007
  end-page: 326
  ident: bib7
  article-title: Soil biogeochemical processes within the critical zone
  publication-title: Elements
– volume: 40
  start-page: 5943
  year: 2006
  end-page: 5949
  ident: bib27
  article-title: Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado Front Range
  publication-title: Environ. Sci. Technol.
– volume: 18
  start-page: 567
  year: 1992
  end-page: 573
  ident: bib1
  article-title: Isolation of hydrophilic organic acids from water using nonionic macroporous resins
  publication-title: Org. Geochem.
– volume: 38
  start-page: 45
  year: 1999
  end-page: 50
  ident: bib41
  article-title: Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying
  publication-title: Chemosphere
– volume: 69
  start-page: 1040
  year: 2007
  end-page: 1046
  ident: bib2
  article-title: Quantity and spectroscopic properties of dissolved organic matter (DOM) as a function of soil sample treatments: air-dying and pre-incubation
  publication-title: Chemosphere
– volume: 382
  start-page: 445
  year: 1996
  end-page: 448
  ident: bib23
  article-title: Humic substances as electron acceptors for microbial respiration
  publication-title: Nature
– volume: 32
  start-page: 2984
  year: 1998
  end-page: 2989
  ident: bib36
  article-title: Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms
  publication-title: Environ. Sci. Technol.
– volume: 3
  start-page: 417
  year: 2010
  end-page: 421
  ident: bib35
  article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances
  publication-title: Nat. Geosci.
– volume: 31
  start-page: 1765
  year: 2000
  end-page: 1781
  ident: bib32
  article-title: Dissolved organic mater fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs
  publication-title: Org. Geochem.
– year: 2010
  ident: bib29
  article-title: New light on a dark subject: comment
  publication-title: Aquat. Sci.
– volume: 79
  start-page: 7
  year: 2004
  end-page: 31
  ident: bib38
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
– volume: 43
  start-page: 4902
  year: 2009
  end-page: 4908
  ident: bib3
  article-title: Rates and extent of reduction of Fe(III) compounds and O
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 3170
  year: 2002
  end-page: 3175
  ident: bib20
  article-title: Fulvic acid oxidation state detection using fluorescence spectroscopy
  publication-title: Environ. Sci. Technol.
– volume: 113
  start-page: 179
  year: 2003
  end-page: 186
  ident: bib25
  article-title: Dissolved organic matter in soils – future directions and unanswered questions
  publication-title: Geoderma
– volume: 34
  start-page: 139
  year: 2002
  end-page: 162
  ident: bib21
  article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter
  publication-title: Soil Biol. Biochem.
– volume: 38
  start-page: 45
  year: 1999
  ident: 10.1016/j.soilbio.2013.09.029_bib41
  article-title: Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(98)00166-0
– volume: 3
  start-page: 321
  year: 2007
  ident: 10.1016/j.soilbio.2013.09.029_bib7
  article-title: Soil biogeochemical processes within the critical zone
  publication-title: Elements
  doi: 10.2113/gselements.3.5.321
– volume: 47
  start-page: 85
  year: 2004
  ident: 10.1016/j.soilbio.2013.09.029_bib19
  article-title: Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/S0168-6496(03)00245-9
– volume: 127
  start-page: 140
  year: 2006
  ident: 10.1016/j.soilbio.2013.09.029_bib33
  article-title: Reducing capacity of terrestrial humic acids
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.08.004
– volume: 155
  start-page: 75
  year: 2010
  ident: 10.1016/j.soilbio.2013.09.029_bib16
  article-title: Changes in water extractable organic matter (WEOM) in calcareous soil under field conditions with time and soil depth
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.11.026
– volume: 3
  start-page: 417
  year: 2010
  ident: 10.1016/j.soilbio.2013.09.029_bib35
  article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo870
– volume: 38
  start-page: 991
  year: 2006
  ident: 10.1016/j.soilbio.2013.09.029_bib17
  article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.08.012
– volume: 15
  start-page: 463
  year: 1981
  ident: 10.1016/j.soilbio.2013.09.029_bib39
  article-title: Preparative isolation of aquatic humic substances
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00086a012
– year: 2010
  ident: 10.1016/j.soilbio.2013.09.029_bib29
  article-title: New light on a dark subject: comment
  publication-title: Aquat. Sci.
  doi: 10.1007/s00027-010-0130-2
– volume: 44
  start-page: 123
  year: 2010
  ident: 10.1016/j.soilbio.2013.09.029_bib30
  article-title: Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es901472g
– volume: 73
  start-page: 65
  year: 2009
  ident: 10.1016/j.soilbio.2013.09.029_bib34
  article-title: Iron(III) bioreduction in soil in the presence of added humic substances
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0418
– volume: 69
  start-page: 1040
  year: 2007
  ident: 10.1016/j.soilbio.2013.09.029_bib2
  article-title: Quantity and spectroscopic properties of dissolved organic matter (DOM) as a function of soil sample treatments: air-dying and pre-incubation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.04.036
– volume: 50
  start-page: 58
  year: 2012
  ident: 10.1016/j.soilbio.2013.09.029_bib11
  article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.03.011
– volume: 43
  start-page: 4902
  year: 2009
  ident: 10.1016/j.soilbio.2013.09.029_bib3
  article-title: Rates and extent of reduction of Fe(III) compounds and O2 by humic substances
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900179s
– volume: 44
  start-page: 9438
  year: 2010
  ident: 10.1016/j.soilbio.2013.09.029_bib5
  article-title: Oxidation-reduction transformations of chromium in aerobic soils and the roles of electron-shuttling quinones
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101859b
– volume: 46
  start-page: 38
  year: 2001
  ident: 10.1016/j.soilbio.2013.09.029_bib26
  article-title: Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2001.46.1.0038
– volume: 37
  start-page: 4702
  year: 2003
  ident: 10.1016/j.soilbio.2013.09.029_bib40
  article-title: Evaluation of the specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es030360x
– volume: 18
  start-page: 567
  year: 1992
  ident: 10.1016/j.soilbio.2013.09.029_bib1
  article-title: Isolation of hydrophilic organic acids from water using nonionic macroporous resins
  publication-title: Org. Geochem.
  doi: 10.1016/0146-6380(92)90119-I
– volume: 36
  start-page: 742
  year: 2002
  ident: 10.1016/j.soilbio.2013.09.029_bib31
  article-title: Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0155276
– volume: 152
  start-page: 259
  year: 1991
  ident: 10.1016/j.soilbio.2013.09.029_bib37
  article-title: Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy
  publication-title: Soil Sci.
  doi: 10.1097/00010694-199110000-00004
– volume: 307
  start-page: 167
  year: 2003
  ident: 10.1016/j.soilbio.2013.09.029_bib6
  article-title: The roles of natural organic matter in chemical and microbial reduction of ferric iron
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(02)00538-7
– volume: 113
  start-page: 179
  year: 2003
  ident: 10.1016/j.soilbio.2013.09.029_bib25
  article-title: Dissolved organic matter in soils – future directions and unanswered questions
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00360-9
– volume: 113
  start-page: 273
  year: 2003
  ident: 10.1016/j.soilbio.2013.09.029_bib18
  article-title: Biodegradation of soil-derived dissolved organic matter as related to its properties
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00365-8
– volume: 66
  start-page: 27
  year: 2004
  ident: 10.1016/j.soilbio.2013.09.029_bib15
  article-title: Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake
  publication-title: Aquat. Sci.
  doi: 10.1007/s00027-003-0691-4
– volume: 113
  start-page: 211
  year: 2003
  ident: 10.1016/j.soilbio.2013.09.029_bib24
  article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00362-2
– volume: 31
  start-page: 1765
  year: 2000
  ident: 10.1016/j.soilbio.2013.09.029_bib32
  article-title: Dissolved organic mater fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(00)00124-8
– volume: 32
  start-page: 2984
  year: 1998
  ident: 10.1016/j.soilbio.2013.09.029_bib36
  article-title: Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980272q
– volume: 40
  start-page: 5943
  year: 2006
  ident: 10.1016/j.soilbio.2013.09.029_bib27
  article-title: Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado Front Range
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060635j
– volume: 10
  start-page: 915
  year: 2011
  ident: 10.1016/j.soilbio.2013.09.029_bib4
  article-title: Seismic constraints on critical zone architecture, Boulder Creek watershed, front range, Colorado
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2010.0108
– volume: 382
  start-page: 445
  year: 1996
  ident: 10.1016/j.soilbio.2013.09.029_bib23
  article-title: Humic substances as electron acceptors for microbial respiration
  publication-title: Nature
  doi: 10.1038/382445a0
– volume: 79
  start-page: 7
  year: 2004
  ident: 10.1016/j.soilbio.2013.09.029_bib38
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.03.008
– volume: 8
  start-page: 412
  year: 2005
  ident: 10.1016/j.soilbio.2013.09.029_bib13
  article-title: Productions of CO2 in soil profiles of a California Annual Grassland
  publication-title: Ecosystems
  doi: 10.1007/s10021-003-0151-y
– volume: 54
  start-page: 2213
  year: 2009
  ident: 10.1016/j.soilbio.2013.09.029_bib28
  article-title: A model of degradation and production of three pools of dissolved organic matter in an alpine lake
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2009.54.6.2213
– volume: 63
  start-page: 936
  year: 2009
  ident: 10.1016/j.soilbio.2013.09.029_bib22
  article-title: Fluorescence intensity calibration using the Raman peak of water
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370209788964548
– volume: 55
  start-page: 2452
  year: 2010
  ident: 10.1016/j.soilbio.2013.09.029_bib12
  article-title: Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2010.55.6.2452
– volume: 8
  start-page: 67
  year: 2010
  ident: 10.1016/j.soilbio.2013.09.029_bib10
  article-title: Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra
  publication-title: Limnol. Oceanogr. Methods
  doi: 10.4319/lom.2010.8.0067
– volume: 41
  start-page: 2249
  year: 2009
  ident: 10.1016/j.soilbio.2013.09.029_bib14
  article-title: Searching for unifying principles in soil ecology
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.06.009
– volume: 39
  start-page: 8142
  year: 2005
  ident: 10.1016/j.soilbio.2013.09.029_bib9
  article-title: Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0506962
– volume: 36
  start-page: 3170
  year: 2002
  ident: 10.1016/j.soilbio.2013.09.029_bib20
  article-title: Fulvic acid oxidation state detection using fluorescence spectroscopy
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0109702
– volume: 34
  start-page: 139
  year: 2002
  ident: 10.1016/j.soilbio.2013.09.029_bib21
  article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00158-4
– volume: 62
  start-page: 1583
  year: 2006
  ident: 10.1016/j.soilbio.2013.09.029_bib8
  article-title: Characterization of water extractable organic matter in a deep soil profile
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.07.065
SSID ssj0002513
Score 2.3779743
Snippet Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 166
SubjectTerms Agronomy. Soil science and plant productions
Biochemistry and biology
Biological and medical sciences
chemical structure
Chemical, physicochemical, biochemical and biological properties
Colorado
community structure
EEM-PARAFAC
fluorescence
fluorescence emission spectroscopy
Fundamental and applied biological sciences. Psychology
landscape position
landscapes
microbial communities
organic horizons
Organic matter
Organic matter/microbe interactions
Physics, chemistry, biochemistry and biology of agricultural and forest soils
saprolite
Soil depth
soil organic matter
soil sampling
Soil science
UV–vis absorbance and fluorescence spectroscopy
vegetation
Water soluble organic matter (WSOM)
watersheds
XAD-8 resin fractionation
Title From the litter layer to the saprolite: Chemical changes in water-soluble soil organic matter and their correlation to microbial community composition
URI https://dx.doi.org/10.1016/j.soilbio.2013.09.029
https://www.proquest.com/docview/1500767994
https://www.proquest.com/docview/1836659475
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELam8QAIIRiglR-VkXjNmtS_Yt6qiqqA2BOT9mY5joMytWnVZkJ72Z_B38ud7WyaQEzirYnsNPVd777E931HyAdnIYsI6zMtuM24tSwrnSqywqHspNXMceQOfzuVyzP-5VycH5D5wIXBssoU-2NMD9E6nZmk1Zxs2xY5viiWXijckIGn8sBg5wq9_OT6tswD8ncS3i2RrKNuWTyTC9TLXVUtcgALFuROA9L8a356srV7WLUmtrv4I3KHdLR4Rp4mHEln8VafkwPfHZHHsx-7pKXhj8jD-dDM7QX5tdht1hTAHgXYDUtJVxawNu034dzebrF5T-8_0kFAgEZG8J62Hf0JeHSXoZNWKxgMv4bGZlCOroM8J7VdTcOWA3XY7SPW1-HV120QesLrRSZKf4WfhlKxl-Rs8en7fJmllgyZA2TXZzqvhGK6BNxlZTMtrK3hEYsJZ21u86ZqiqZidcGk575SuXN1CYfa5Z7nDsayV-Sw23T-mFDZCM5rqaeugWjNXVVaN-V1LUvOFJdiRPhgCOOSXjm2zViZoTDtwiT7GbSfybUB-43Iyc20bRTsuG9COVjZ3PE8A0nlvqnjO15x84W4Xa2ELkfk_eAmBgyOezG285vLvQEcniuptOb_GFMyKYXmSrz-_3t8Qx7BEY9vjd6Sw3536d8BjuqrcfijjMmD2eevy9PflrQhww
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7mEghGCAVj6GkXgNTeqP2LxVFVXHtj5t0t4sx3FQpjat2kyIf4S_l7vYKZpATOItH7bj-C53P8e-3xHy0VnwIsL6RAtuE24tS5TLsyRzSDtpNXMcY4cvF3J-zb_eiJsDMu1jYXBbZbT9waZ31jpeGcXRHG3qGmN8kSw9y3FBBmblMAU6RHYqMSCHk7Pz-WJvkMGFR-5dhfE6-e9AntEtUuYuixrDADPWMZ52YPOvLurJxu5g4KqQ8eIP4915pNkz8jRCSToJvX1ODnxzTB5Pvm0jnYY_JkfTPp_bC_Jztl2vKOA9CsgbRpMuLcBt2q67azu7wfw9rf9Mew4BGoKCd7Ru6HeApNsE9bRYQmF4GxryQTm66hg6qW1K2q06UIcJP8IWO2x9VXdcT9heCEZpf-BRv1vsJbmefbmazpOYlSFxAO7aRKeFyJlWAL2srMaZtSXMsphw1qY2rYoqqwpWZkx67os8da5UcKpd6nnqoCx7RQbNuvEnhMpKcF5KPXYVGGzuCmXdmJelVJzlXIoh4b0gjIuU5Zg5Y2n6vWm3JsrPoPxMqg3Ib0g-7attAmfHQxVUL2VzT_kM-JWHqp7e04r9A3HFOhdaDcmHXk0MCByXY2zj13c7A1A8zWWuNf9HGcWkFBq0-vX_9_E9OZpfXV6Yi7PF-RvyCO7w8BPpLRm02zv_DmBVW5zGz-YXY_IkdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+the+litter+layer+to+the+saprolite%3A+Chemical+changes+in+water-soluble+soil+organic+matter+and+their+correlation+to+microbial+community+composition&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=GABOR%2C+Rachel+S&rft.au=EILERS%2C+Kathryn&rft.au=MCKNIGHT%2C+Diane+M&rft.au=FIERER%2C+Noah&rft.date=2014&rft.pub=Elsevier&rft.issn=0038-0717&rft.volume=68&rft.spage=166&rft.epage=176&rft_id=info:doi/10.1016%2Fj.soilbio.2013.09.029&rft.externalDBID=n%2Fa&rft.externalDocID=28067598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon