Quantum dynamics simulations using Gaussian wavepackets: the vMCG method
Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrödinger equation (TDSE). They have an underlying trajectory picture that has a natural connection to semi-classical mechanics, allowing a simple pictorial interpretation of an evolving wavepacket. They also have better...
Saved in:
Published in | International reviews in physical chemistry Vol. 34; no. 2; pp. 269 - 308 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.04.2015
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrödinger equation (TDSE). They have an underlying trajectory picture that has a natural connection to semi-classical mechanics, allowing a simple pictorial interpretation of an evolving wavepacket. They also have better scaling with system size compared to conventional grid-based techniques. Here we review the variational multi-configurational Gaussian (vMCG) method. This is a variational solution to the TDSE, with explicit coupling between the Gaussian basis functions, resulting in a favourable convergence on the exact solution. The implementation of the method and its performance will be discussed with examples from non-adiabatic photo-excited dynamics and tunneling to show that it can correctly describe both of these strongly quantum mechanical processes. Particular emphasis is given to the implementation of the direct dynamics variant, DD-vMCG, where the potential surfaces are calculated on-the-fly via an interface to quantum chemistry programs. |
---|---|
AbstractList | Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrödinger equation (TDSE). They have an underlying trajectory picture that has a natural connection to semi-classical mechanics, allowing a simple pictorial interpretation of an evolving wavepacket. They also have better scaling with system size compared to conventional grid-based techniques. Here we review the variational multi-configurational Gaussian (vMCG) method. This is a variational solution to the TDSE, with explicit coupling between the Gaussian basis functions, resulting in a favourable convergence on the exact solution. The implementation of the method and its performance will be discussed with examples from non-adiabatic photo-excited dynamics and tunneling to show that it can correctly describe both of these strongly quantum mechanical processes. Particular emphasis is given to the implementation of the direct dynamics variant, DD-vMCG, where the potential surfaces are calculated on-the-fly via an interface to quantum chemistry programs. Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrodinger equation (TDSE). They have an underlying trajectory picture that has a natural connection to semi-classical mechanics, allowing a simple pictorial interpretation of an evolving wavepacket. They also have better scaling with system size compared to conventional grid-based techniques. Here we review the variational multi-configurational Gaussian (vMCG) method. This is a variational solution to the TDSE, with explicit coupling between the Gaussian basis functions, resulting in a favourable convergence on the exact solution. The implementation of the method and its performance will be discussed with examples from non-adiabatic photo-excited dynamics and tunneling to show that it can correctly describe both of these strongly quantum mechanical processes. Particular emphasis is given to the implementation of the direct dynamics variant, DD-vMCG, where the potential surfaces are calculated on-the-fly via an interface to quantum chemistry programs. |
Author | Lasorne, B. Polyak, I. Spinlove, K.E. Worth, G.A. Richings, G.W. Burghardt, I. |
Author_xml | – sequence: 1 givenname: G.W. surname: Richings fullname: Richings, G.W. organization: School of Chemistry, University of Birmingham – sequence: 2 givenname: I. surname: Polyak fullname: Polyak, I. organization: School of Chemistry, University of Birmingham – sequence: 3 givenname: K.E. surname: Spinlove fullname: Spinlove, K.E. organization: School of Chemistry, University of Birmingham – sequence: 4 givenname: G.A. surname: Worth fullname: Worth, G.A. email: g.a.worth@bham.ac.uk organization: School of Chemistry, University of Birmingham – sequence: 5 givenname: I. surname: Burghardt fullname: Burghardt, I. organization: Institute of Theoretical and Physical Chemistry, University of Frankfurt – sequence: 6 givenname: B. surname: Lasorne fullname: Lasorne, B. organization: Institue of Charles Gerhardt, University of Montpellier |
BackLink | https://hal.science/hal-01508593$$DView record in HAL |
BookMark | eNqFkV9rFDEUxYNU6Lb2IxQGfNGHqcncZP7oi2Wpu8KKCBb6Fq5Jxk2dSdYks2W_vRm3femDPl24_M7h3nPOyInzzhByyegVoy19RxnnFYi7q4oykVeCgeAvyIJBXZeiY3cnZDEz5QydkrMY7yllULFuQdbfJnRpGgt9cDhaFYtox2nAZL2LxRSt-1mscIrRoisecG92qH6ZFN8XaWuK_ZflqhhN2nr9irzscYjm4nGek9tPN9-X63LzdfV5eb0pFacilS1WFW80tqzHHpqqUWgYr5lWAA3teN2CFvmdClvxg4LWUKNotABjqAGkcE7eHn23OMhdsCOGg_Ro5fp6I-ddzoC2ooM9y-ybI7sL_vdkYpKjjcoMAzrjpyhZw9oOOuCQ0dfP0Hs_BZc_yVROi4u2rjL14Uip4GMMppfKpr9ZpYB2kIzKuRH51IicG5GPjWS1eKZ-uv9_uo9HnXW9DyM--DBomfAw-NAHdMpGCf-2-AOfE6JN |
CitedBy_id | crossref_primary_10_1021_acs_jpca_4c02979 crossref_primary_10_1088_1361_648X_aa948a crossref_primary_10_1021_acs_jctc_7b00507 crossref_primary_10_1039_D0CP01353F crossref_primary_10_1021_acs_jpclett_4c02418 crossref_primary_10_1063_1_4967432 crossref_primary_10_1017_S0962492920000033 crossref_primary_10_1039_C9FD00065H crossref_primary_10_1021_acs_jpclett_1c00123 crossref_primary_10_1063_1_5053417 crossref_primary_10_1039_C8CP02321B crossref_primary_10_1039_D1CP04733G crossref_primary_10_1021_acs_chemrev_2c00329 crossref_primary_10_1021_acs_jpca_3c06295 crossref_primary_10_1021_acs_jpclett_1c02016 crossref_primary_10_1021_acs_jpca_7b07069 crossref_primary_10_1103_PhysRevA_103_042209 crossref_primary_10_3390_molecules26237247 crossref_primary_10_1021_acs_jpca_5b12192 crossref_primary_10_1021_acs_chemrev_7b00577 crossref_primary_10_1021_acs_jctc_1c00131 crossref_primary_10_1021_acs_jpclett_7b00596 crossref_primary_10_1021_acs_jpca_4c02108 crossref_primary_10_1021_acs_jpclett_4c02549 crossref_primary_10_1103_PhysRevLett_130_166401 crossref_primary_10_1140_epjs_s11734_023_00923_4 crossref_primary_10_1039_D3CP00510K crossref_primary_10_1039_C8FD00090E crossref_primary_10_1039_C5CP07332D crossref_primary_10_1098_rsta_2020_0386 crossref_primary_10_1021_acs_chemrev_7b00177 crossref_primary_10_1021_acs_jpca_0c03969 crossref_primary_10_1021_acs_jctc_2c00108 crossref_primary_10_3390_e26050412 crossref_primary_10_1098_rsta_2020_0379 crossref_primary_10_1021_acs_jctc_9b00532 crossref_primary_10_1140_epjd_s10053_021_00155_y crossref_primary_10_1021_acs_jctc_4c01697 crossref_primary_10_1002_wcms_1417 crossref_primary_10_1016_j_cpc_2023_109016 crossref_primary_10_1021_acs_chemrev_7b00617 crossref_primary_10_1002_wcms_1370 crossref_primary_10_1002_wcms_1492 crossref_primary_10_1021_acs_jctc_0c00379 crossref_primary_10_1039_C8CP05693E crossref_primary_10_1007_s00214_016_1937_2 crossref_primary_10_1021_acs_jpclett_8b00827 crossref_primary_10_1021_jacs_9b02600 crossref_primary_10_1039_D4CP02489C crossref_primary_10_1088_1742_6596_2769_1_012012 crossref_primary_10_1088_2516_1075_ab58fc crossref_primary_10_1063_1_4996339 crossref_primary_10_1021_acs_jctc_9b00948 crossref_primary_10_1080_0144235X_2019_1672987 crossref_primary_10_1002_qua_27212 crossref_primary_10_1103_PhysRevLett_124_150601 crossref_primary_10_1021_acs_jpca_2c09088 crossref_primary_10_1039_C7CP02054F crossref_primary_10_3389_fchem_2019_00576 crossref_primary_10_1021_acs_jctc_9b00301 crossref_primary_10_1063_1_4964902 crossref_primary_10_1021_acs_jpca_4c05354 crossref_primary_10_1021_acs_jpca_9b10503 crossref_primary_10_1039_D0CP01092H crossref_primary_10_1002_ange_201916381 crossref_primary_10_1039_C9CP03019K crossref_primary_10_1021_acs_jpca_9b00940 crossref_primary_10_1039_C7CS00627F crossref_primary_10_1103_PhysRevLett_125_083001 crossref_primary_10_1021_acs_jctc_8b00211 crossref_primary_10_1039_D1CP05885A crossref_primary_10_1016_j_chemphys_2016_05_013 crossref_primary_10_1021_acs_jctc_1c00259 crossref_primary_10_1021_acs_jctc_5b01042 crossref_primary_10_1021_acs_jpca_4c03612 crossref_primary_10_1016_j_bbabio_2016_06_010 crossref_primary_10_3390_app7060534 crossref_primary_10_1021_acs_jpclett_4c00106 crossref_primary_10_1016_j_chemphys_2017_04_003 crossref_primary_10_1016_j_cplett_2017_03_032 crossref_primary_10_1039_D0CP05116K crossref_primary_10_1080_0144235X_2020_1823168 crossref_primary_10_1103_PhysRevB_101_174315 crossref_primary_10_1146_annurev_physchem_082620_021809 crossref_primary_10_1002_anie_201916381 crossref_primary_10_1016_j_chemphys_2018_08_003 crossref_primary_10_1063_1_4958637 crossref_primary_10_1021_acs_jctc_0c01249 crossref_primary_10_1016_j_ccr_2023_215346 crossref_primary_10_1021_acs_chemrev_7b00423 crossref_primary_10_1146_annurev_physchem_052516_050721 crossref_primary_10_1088_1742_6596_2883_1_012005 crossref_primary_10_1021_acs_jctc_9b00844 crossref_primary_10_1002_wcms_1589 crossref_primary_10_1103_PhysRevLett_118_083001 crossref_primary_10_1146_annurev_physchem_101419_012625 crossref_primary_10_1063_1_4929478 crossref_primary_10_1021_acs_chemrev_9b00447 crossref_primary_10_1039_C8CP05662E crossref_primary_10_1016_j_energy_2020_117166 crossref_primary_10_1007_s00214_023_03004_w crossref_primary_10_1021_acs_jctc_8b00355 crossref_primary_10_1021_acs_jpclett_2c01455 crossref_primary_10_1021_acs_jctc_3c00908 crossref_primary_10_1039_D1CP03008F crossref_primary_10_1021_acs_jctc_1c00158 crossref_primary_10_1103_PhysRevA_99_013404 crossref_primary_10_1021_acs_jctc_1c00438 crossref_primary_10_1021_acs_accounts_4c00687 crossref_primary_10_1016_j_chemphys_2022_111542 crossref_primary_10_1021_jacs_0c04952 crossref_primary_10_1080_0144235X_2018_1472353 crossref_primary_10_1002_wcms_1731 crossref_primary_10_1021_acs_jpclett_8b03061 crossref_primary_10_1021_acs_jpclett_1c01379 crossref_primary_10_1140_epjb_e2018_90144_3 crossref_primary_10_1021_acs_jctc_2c00030 crossref_primary_10_1021_acs_jctc_4c00326 crossref_primary_10_1039_C9CP03975A crossref_primary_10_1021_acs_jpca_4c03481 crossref_primary_10_1021_acs_chemrev_3c00643 crossref_primary_10_1021_acs_jpca_8b03404 crossref_primary_10_1016_j_cpc_2019_107040 crossref_primary_10_1016_j_jobe_2023_107267 crossref_primary_10_1021_acs_jctc_6b01129 crossref_primary_10_1021_acs_jpca_0c07168 crossref_primary_10_1038_s41467_022_30999_w crossref_primary_10_1002_qua_25233 crossref_primary_10_1039_D0CP05907B crossref_primary_10_1016_j_cplett_2017_01_063 crossref_primary_10_1002_jcc_70028 crossref_primary_10_1021_acs_jctc_3c00962 crossref_primary_10_1038_s41570_021_00278_1 crossref_primary_10_1021_acs_jpclett_4c00535 crossref_primary_10_1016_j_chemphys_2019_110526 crossref_primary_10_1021_acs_jpcb_0c01685 crossref_primary_10_1002_wcms_70001 crossref_primary_10_1063_1_4954189 crossref_primary_10_1002_jcc_27443 crossref_primary_10_1016_j_comptc_2020_113032 crossref_primary_10_1139_cjc_2022_0267 crossref_primary_10_1021_acs_jpclett_0c00527 crossref_primary_10_1103_PhysRevLett_133_203201 crossref_primary_10_1021_acs_jpca_5b07921 crossref_primary_10_1016_j_chemphys_2016_10_007 crossref_primary_10_1016_j_chemphys_2018_05_029 crossref_primary_10_1021_acs_jctc_8b00771 crossref_primary_10_1021_acs_jctc_2c01019 crossref_primary_10_1039_D0CP04052E crossref_primary_10_1021_acs_jpca_4c02449 crossref_primary_10_1021_acs_jpclett_3c02735 crossref_primary_10_1038_s41598_021_82232_1 crossref_primary_10_1021_acs_jpca_4c03657 crossref_primary_10_1039_D2CP05576G crossref_primary_10_3389_fphy_2023_1106324 crossref_primary_10_3390_molecules22010049 crossref_primary_10_1021_acs_jpclett_2c03295 crossref_primary_10_1146_annurev_physchem_090419_040306 crossref_primary_10_1002_cphc_202200482 crossref_primary_10_1039_C9FD00050J crossref_primary_10_1063_5_0046933 crossref_primary_10_1039_C7CP01473B crossref_primary_10_1021_acs_chemrev_7b00081 crossref_primary_10_1021_acs_jctc_8b01051 crossref_primary_10_1080_00268976_2019_1665199 crossref_primary_10_1021_acs_jctc_0c00079 crossref_primary_10_1021_acs_jctc_4c00666 crossref_primary_10_1039_D1CP01843D crossref_primary_10_1021_acs_jpca_6b00274 |
Cites_doi | 10.1063/1.476142 10.1063/1.453647 10.1021/jp072217m 10.12693/APhysPolA.88.1081 10.1021/jp953105a 10.1063/1.466801 10.1063/1.450175 10.1016/S0009-2614(02)01920-6 10.1063/1.4765087 10.1080/01442350802137656 10.1063/1.466618 10.1103/PhysRevLett.69.402 10.1063/1.4891530 10.1080/00268970500417937 10.1063/1.2356477 10.1063/1.3242082 10.1007/978-3-642-45290-1 10.1063/1.472486 10.1063/1.2839607 10.1063/1.443342 10.1016/j.chemphys.2004.06.013 10.1063/1.450255 10.1039/b700297a 10.1063/1.478061 10.1021/jp101574b 10.1063/1.450774 10.1063/1.3153302 10.1016/0021-9991(91)90137-A 10.1039/b314253a 10.1063/1.2362821 10.1021/j100319a003 10.1146/annurev.pc.45.100194.001045 10.1002/cphc.201200560 10.1063/1.1383986 10.1021/jp0723665 10.1063/1.430620 10.1016/0009-2614(94)00826-4 10.1063/1.449204 10.1017/S0305004100016108 10.1021/jp001460h 10.1063/1.3671978 10.1063/1.1560636 10.1063/1.478902 10.1063/1.442382 10.1063/1.2202847 10.1016/S0370-1573(99)00047-2 10.1063/1.479574 10.1080/00268976.2013.844371 10.1063/1.2787596 10.1021/jp035688r 10.1039/c3cp51199e 10.1246/bcsj.59.2897 10.1016/j.cplett.2010.02.068 10.1039/c001556c 10.1016/0009-2614(90)87014-I 10.1021/jp803740a 10.1039/c0cp01757d 10.1021/jp2097185 10.1103/PhysRevLett.110.263202 10.1021/ja0365025 10.1080/00268970802172503 10.1063/1.2969101 10.1063/1.1599275 10.1063/1.4788830 10.1063/1.2996349 10.1063/1.4734313 10.1021/jp5081884 10.1063/1.480344 10.1063/1.451245 10.1063/1.2772265 10.1103/PhysRevA.79.062708 10.1063/1.459848 10.1063/1.1801991 10.1063/1.3603453 10.1063/1.1580111 10.1063/1.1675384 10.1039/c1cp20969h 10.1063/1.4868637 10.1002/0471264318.ch7 10.1002/cphc.201301205 10.1021/jp0604600 |
ContentType | Journal Article |
Copyright | 2015 Taylor & Francis 2015 Copyright Taylor & Francis Ltd. 2015 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 Taylor & Francis 2015 – notice: Copyright Taylor & Francis Ltd. 2015 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7U5 8FD L7M 1XC |
DOI | 10.1080/0144235X.2015.1051354 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1366-591X |
EndPage | 308 |
ExternalDocumentID | oai_HAL_hal_01508593v1 3763390921 10_1080_0144235X_2015_1051354 1051354 |
Genre | Article Feature |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 30N 4.4 53G 5GY 5VS AAENE AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NW0 O9- P2P PQQKQ RIG RNANH RNS ROSJB RTWRZ S-T SNACF TBQAZ TCY TDBHL TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7U5 8FD L7M TASJS 1XC |
ID | FETCH-LOGICAL-c405t-8a2247da81faf3727cae1461dc337094683d54422a85b03dd36a57d53ee0e3a03 |
ISSN | 0144-235X |
IngestDate | Thu Aug 14 06:48:39 EDT 2025 Fri Jul 11 09:07:41 EDT 2025 Wed Aug 13 03:05:31 EDT 2025 Tue Jul 01 01:55:41 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Wed Dec 25 09:00:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-8a2247da81faf3727cae1461dc337094683d54422a85b03dd36a57d53ee0e3a03 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9943-1905 0000-0002-9727-9049 |
PQID | 1700145862 |
PQPubID | 53227 |
PageCount | 40 |
ParticipantIDs | crossref_citationtrail_10_1080_0144235X_2015_1051354 proquest_journals_1700145862 proquest_miscellaneous_1718939343 crossref_primary_10_1080_0144235X_2015_1051354 hal_primary_oai_HAL_hal_01508593v1 informaworld_taylorfrancis_310_1080_0144235X_2015_1051354 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-03 |
PublicationDateYYYYMMDD | 2015-04-03 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International reviews in physical chemistry |
PublicationYear | 2015 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0072 CIT0071 CIT0030 Zhang J. (CIT0009) 1999 CIT0073 CIT0032 CIT0076 CIT0031 Mendive-Tapia D. (CIT0054) 2012; 548 CIT0075 CIT0034 CIT0033 CIT0077 CIT0070 Frenkel J. (CIT0056) 1934 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0083 CIT0082 CIT0041 CIT0085 CIT0040 CIT0084 CIT0043 CIT0087 CIT0042 CIT0086 CIT0001 Meyer H.D. (CIT0014) 2008 CIT0045 CIT0089 CIT0044 CIT0088 CIT0081 CIT0080 Lasorne B. (CIT0079) 2006; 432 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0008 CIT0050 CIT0093 CIT0052 CIT0051 CIT0010 CIT0053 CIT0012 CIT0011 CIT0055 Lasorne B. (CIT0090) 2010; 7 Polyak I. (CIT0058) 2015 CIT0092 CIT0091 CIT0057 Grabowska A. (CIT0074) 1995; 88 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0023 CIT0067 CIT0022 CIT0066 Tikhonov A.N. (CIT0064) 1943; 39 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 Kulander K.C. (CIT0013) 1991 |
References_xml | – ident: CIT0024 doi: 10.1063/1.476142 – ident: CIT0019 doi: 10.1063/1.453647 – ident: CIT0044 doi: 10.1021/jp072217m – volume: 88 start-page: 1081 issue: 6 year: 1995 ident: CIT0074 publication-title: Acta. Phys. Pol. A doi: 10.12693/APhysPolA.88.1081 – ident: CIT0023 doi: 10.1021/jp953105a – volume: 7 start-page: 12016 year: 2010 ident: CIT0090 publication-title: J. Phys. Chem. A – ident: CIT0085 doi: 10.1063/1.466801 – ident: CIT0022 doi: 10.1063/1.450175 – volume: 432 start-page: 604 year: 2006 ident: CIT0079 publication-title: Phys. Chem. Chem. Phys – ident: CIT0050 doi: 10.1016/S0009-2614(02)01920-6 – volume: 548 start-page: 22A548 issue: 22 year: 2012 ident: CIT0054 publication-title: J. Chem. Phys doi: 10.1063/1.4765087 – ident: CIT0041 doi: 10.1080/01442350802137656 – ident: CIT0066 doi: 10.1063/1.466618 – ident: CIT0017 doi: 10.1103/PhysRevLett.69.402 – ident: CIT0034 doi: 10.1063/1.4891530 – volume: 39 start-page: 195 issue: 5 year: 1943 ident: CIT0064 publication-title: Dokl. Akad. Nauk SSSR – ident: CIT0093 doi: 10.1080/00268970500417937 – ident: CIT0037 doi: 10.1063/1.2356477 – ident: CIT0083 doi: 10.1063/1.3242082 – ident: CIT0015 doi: 10.1007/978-3-642-45290-1 – ident: CIT0025 doi: 10.1063/1.472486 – ident: CIT0089 doi: 10.1063/1.2839607 – ident: CIT0016 doi: 10.1063/1.443342 – ident: CIT0030 doi: 10.1016/j.chemphys.2004.06.013 – ident: CIT0063 doi: 10.1063/1.450255 – ident: CIT0052 doi: 10.1039/b700297a – ident: CIT0067 doi: 10.1063/1.478061 – ident: CIT0080 doi: 10.1021/jp101574b – ident: CIT0021 doi: 10.1063/1.450774 – ident: CIT0031 doi: 10.1063/1.3153302 – ident: CIT0004 doi: 10.1016/0021-9991(91)90137-A – ident: CIT0051 doi: 10.1039/b314253a – ident: CIT0049 doi: 10.1063/1.2362821 – ident: CIT0003 doi: 10.1021/j100319a003 – ident: CIT0005 doi: 10.1146/annurev.pc.45.100194.001045 – ident: CIT0070 doi: 10.1002/cphc.201200560 – volume-title: Wave Mechanics year: 1934 ident: CIT0056 – ident: CIT0092 doi: 10.1063/1.1383986 – ident: CIT0027 doi: 10.1021/jp0723665 – ident: CIT0001 doi: 10.1063/1.430620 – ident: CIT0073 doi: 10.1016/0009-2614(94)00826-4 – ident: CIT0020 doi: 10.1063/1.449204 – ident: CIT0055 doi: 10.1017/S0305004100016108 – ident: CIT0010 doi: 10.1021/jp001460h – ident: CIT0057 – ident: CIT0038 doi: 10.1063/1.3671978 – volume-title: High Dimensional Quantum Dynamics: Basic Theory, Extensions, and Applications of the MCTDH Method year: 2008 ident: CIT0014 – ident: CIT0035 doi: 10.1063/1.1560636 – ident: CIT0091 doi: 10.1063/1.478902 – ident: CIT0002 doi: 10.1063/1.442382 – volume-title: Time-dependent Methods for Quantum Dynamics year: 1991 ident: CIT0013 – ident: CIT0036 doi: 10.1063/1.2202847 – ident: CIT0006 doi: 10.1016/S0370-1573(99)00047-2 – ident: CIT0046 doi: 10.1063/1.479574 – ident: CIT0059 doi: 10.1080/00268976.2013.844371 – ident: CIT0042 doi: 10.1063/1.2787596 – ident: CIT0068 doi: 10.1021/jp035688r – ident: CIT0033 doi: 10.1039/c3cp51199e – ident: CIT0072 doi: 10.1246/bcsj.59.2897 – ident: CIT0087 doi: 10.1016/j.cplett.2010.02.068 – ident: CIT0081 doi: 10.1039/c001556c – ident: CIT0040 doi: 10.1016/0009-2614(90)87014-I – ident: CIT0084 doi: 10.1021/jp803740a – ident: CIT0082 doi: 10.1039/c0cp01757d – ident: CIT0028 doi: 10.1021/jp2097185 – ident: CIT0039 doi: 10.1103/PhysRevLett.110.263202 – ident: CIT0029 doi: 10.1021/ja0365025 – ident: CIT0053 doi: 10.1080/00268970802172503 – ident: CIT0061 doi: 10.1063/1.2969101 – ident: CIT0062 doi: 10.1063/1.449204 – ident: CIT0047 doi: 10.1063/1.1599275 – ident: CIT0065 doi: 10.1063/1.4788830 – ident: CIT0060 doi: 10.1063/1.2996349 – ident: CIT0032 doi: 10.1063/1.4734313 – ident: CIT0077 doi: 10.1021/jp5081884 – ident: CIT0086 doi: 10.1063/1.480344 – ident: CIT0008 doi: 10.1063/1.451245 – ident: CIT0045 doi: 10.1063/1.2772265 – ident: CIT0011 doi: 10.1103/PhysRevA.79.062708 – ident: CIT0018 doi: 10.1063/1.459848 – ident: CIT0075 doi: 10.1063/1.1801991 – ident: CIT0012 doi: 10.1063/1.3603453 – ident: CIT0043 doi: 10.1063/1.1580111 – ident: CIT0048 doi: 10.1063/1.2996349 – ident: CIT0007 doi: 10.1063/1.1675384 – ident: CIT0076 doi: 10.1039/c1cp20969h – ident: CIT0088 doi: 10.1063/1.4868637 – ident: CIT0026 doi: 10.1002/0471264318.ch7 – year: 2015 ident: CIT0058 publication-title: J. Chem. Phys – volume-title: Theory and Application of Quantum Molecular Dynamics year: 1999 ident: CIT0009 – ident: CIT0071 doi: 10.1002/cphc.201301205 – ident: CIT0069 doi: 10.1021/jp0604600 |
SSID | ssj0013219 |
Score | 2.5442657 |
Snippet | Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrödinger equation (TDSE). They have an underlying trajectory picture that has... Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrodinger equation (TDSE). They have an underlying trajectory picture that has... |
SourceID | hal proquest crossref informaworld |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 269 |
SubjectTerms | Chemical Sciences Convergence direct quantum dynamics Dynamics Evolution Exact solutions Gaussian Gaussian wavepackets Mathematical analysis Mathematical functions Mathematical problems Normal distribution or physical chemistry Quantum chemistry quantum dynamics simulations Quantum physics Schrodinger equation Schroedinger equation Simulation Theoretical and theoretical chemistry Waveform analysis |
Title | Quantum dynamics simulations using Gaussian wavepackets: the vMCG method |
URI | https://www.tandfonline.com/doi/abs/10.1080/0144235X.2015.1051354 https://www.proquest.com/docview/1700145862 https://www.proquest.com/docview/1718939343 https://hal.science/hal-01508593 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QFeEJ-ibKCAeJsSxXGcD96qMloQICE2teIlcmxHVNrSiSSd4L_gP-bs2MFlE2O8RJWb2HF-5_P5_PMdQi_BZuU0T6jPS07VNiP2GZEpGHKiwhWrQAo02-JjMj-J3y3pcjT66bCWurYM-I8rz5X8D6pQBriqU7I3QHaoFArgN-ALV0AYrv-E8acOvkt3dij6tPLNYbM66yy5rdNegBnrGn1O8oJtYOaBMds2lsux-TCdmRTSro267SQ04Uo129xiym2WuGG7ZqUpmb2XPVgEg8Jdn35nWt--Hco-n69qRRzVKiY4GsoXlqw4CyaB64zAVHNYyJZ_MvYjQpf99NLrVJIkPs3x0lW6xoO5cta-RoP2mVvMZEx00IfLet4QI6E11Zhi6FGVsRiTPiL1dlztP-a7gYWIbXhUU02hqilMNTtoL4KVB6jOvcn89ZeFszWls8UMPbXHwlTA9qveZ8vg2fmq6bZuUNxLRoC2bI7vojtmSeJNevm6h0ayvo9uTS3GD9DcyJln5cxz5MzTcuZZOfMcOXvlgZR5Ssq8XsoeopM3R8fTuW8ycPgcDPnWzxhYeKlgmRq2BExdzqRKBC84IWmYx0lGBIU-RyyjZUiEIAmjqaBEylASFpJHaLde1_Ix8rBMQxaXXJQRjiXmLOFRKAUJy7yimWBjFNvPVHATnl5lSTkt_grTGAXDY-d9fJbrHngBGAz3qujq88n7QpUp558K_7fBY5S7EBWt9p5VfaqbglzTwIHFszC6oilUFEwc0yyJxuj58DfAqLbnWC3XnboHw-IhJzF5ctNO7aPbv0fjAdptv3XyKRjLbfnMiO8vdYizWw |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB615VAu_CMWChgExyxxHCdZJA7VQpvS7UpIrbQ349gOVO2miCRblcfiVXghZvKzWkCoB9QD19iJ7czYM2OPvw_gBfqsRo4i6ZnMSDpm5J4WLkZHzuY81zlqQZNtMY3So_D9TM7W4Ht_F4bSKimGzlugiGatpslNm9F9StwrigICIWeUmSWJqZYLGXaJlfvu4hzDtvLN3luU8csg2Hl3OE69jlnAM-igVF6i0XLFVifUHYEm3GhHBNfWCBFjwBMlwkpsI9CJzHxhrYi0jK0UzvlOaF_gd9fhGg4yprkl_OnKyUVDJkJd9KiP_a2hv3X7F3u4_rnJxlzFTP3DRjSGb-cm_Oh_WZvvcjKsq2xovv2GJvl__dNbcKPzw9l2O3Fuw5or7sDmuKe_uwvphxqVrp4ze1Ho-bEpWXk877jOSkbXBT6xXV2XdAmVnesFmnVcEKvyNUOXmi0OxrusZee-B0dXMpD7sFGcFe4BMO5iX4eZsVnAQ8eNjkzgOyv8bJTLxOoBhL3wlekw2Yka5FTxHrq1E4sisahOLAMYLl_70oKSXPbCc9SsZV2CFE-3J4qe0Y4XYd4t-ABGq4qnqmbLKG_5XZS4pIGtXktVtwiWiqAfeSgxZh7As2UxipHOpHThzmqqw9FjHolQPPyH5p_CZnp4MFGTven-I7hORU12ldiCjepr7R6j41hlT5qZyuDjVavxTywiaoY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB71IQGX8hZbChgExyxxHCdZJA7VttstLSuQqLQ317EdqGDTiiRblX_FX-EXMZPHagGhHlAPXJM4djJjz4w9830Az9FnNXIQSc-kRtIxI_e0cDE6cjbjmc5QC-psi0k0PgrfTOV0Bb53tTCUVkkxdNYARdRrNU3uM5t1GXEvKQgIhJxSYpYkolouZNjmVR64i3OM2orX-zso4hdBMNr9MBx7LbGAZ9A_Kb1Eo-GKrU5oNAItuNGO-K2tESLGeCdKhJXYR6ATmfrCWhFpGVspnPOd0L7A967CekSFnVQ14k-WDi5qLhEaokdj7IqG_jbsX8zh6qc6GXMZMvUPE1HbvdFN-NH9sSbd5XO_KtO--fYbmOR_9UtvwUbrhbPtZtrchhWX34Hrw4787i6M31eoctWM2Ytcz05MwYqTWct0VjAqFvjI9nRVUAkqO9dzNOq4HJbFK4YONZu_He6xhpv7HhxdyYfch7X8NHcPgHEX-zpMjU0DHjpudGQC31nhp4NMJlb3IOxkr0yLyE7EIF8U74BbW7EoEotqxdKD_qLZWQNJclmDZ6hYi2cJUHy8fajoGu13EeLdnPdgsKx3qqw3jLKG3UWJSzrY6pRUtUtgoQj4kYcSI-YePF3cRjHSiZTO3WlFz3D0lwciFJv_0P0TuPZuZ6QO9ycHD-EG3alTq8QWrJVfK_cIvcYyfVzPUwbHV63FPwEiemkq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+dynamics+simulations+using+Gaussian+wavepackets%3A+the+vMCG+method&rft.jtitle=International+reviews+in+physical+chemistry&rft.au=Richings%2C+G.W.&rft.au=Polyak%2C+I.&rft.au=Spinlove%2C+K.E.&rft.au=Worth%2C+G.A.&rft.date=2015-04-03&rft.issn=0144-235X&rft.eissn=1366-591X&rft.volume=34&rft.issue=2&rft.spage=269&rft.epage=308&rft_id=info:doi/10.1080%2F0144235X.2015.1051354&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0144235X_2015_1051354 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-235X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-235X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-235X&client=summon |