Quantum dynamics simulations using Gaussian wavepackets: the vMCG method

Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrödinger equation (TDSE). They have an underlying trajectory picture that has a natural connection to semi-classical mechanics, allowing a simple pictorial interpretation of an evolving wavepacket. They also have better...

Full description

Saved in:
Bibliographic Details
Published inInternational reviews in physical chemistry Vol. 34; no. 2; pp. 269 - 308
Main Authors Richings, G.W., Polyak, I., Spinlove, K.E., Worth, G.A., Burghardt, I., Lasorne, B.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.04.2015
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrödinger equation (TDSE). They have an underlying trajectory picture that has a natural connection to semi-classical mechanics, allowing a simple pictorial interpretation of an evolving wavepacket. They also have better scaling with system size compared to conventional grid-based techniques. Here we review the variational multi-configurational Gaussian (vMCG) method. This is a variational solution to the TDSE, with explicit coupling between the Gaussian basis functions, resulting in a favourable convergence on the exact solution. The implementation of the method and its performance will be discussed with examples from non-adiabatic photo-excited dynamics and tunneling to show that it can correctly describe both of these strongly quantum mechanical processes. Particular emphasis is given to the implementation of the direct dynamics variant, DD-vMCG, where the potential surfaces are calculated on-the-fly via an interface to quantum chemistry programs.
AbstractList Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrödinger equation (TDSE). They have an underlying trajectory picture that has a natural connection to semi-classical mechanics, allowing a simple pictorial interpretation of an evolving wavepacket. They also have better scaling with system size compared to conventional grid-based techniques. Here we review the variational multi-configurational Gaussian (vMCG) method. This is a variational solution to the TDSE, with explicit coupling between the Gaussian basis functions, resulting in a favourable convergence on the exact solution. The implementation of the method and its performance will be discussed with examples from non-adiabatic photo-excited dynamics and tunneling to show that it can correctly describe both of these strongly quantum mechanical processes. Particular emphasis is given to the implementation of the direct dynamics variant, DD-vMCG, where the potential surfaces are calculated on-the-fly via an interface to quantum chemistry programs.
Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrodinger equation (TDSE). They have an underlying trajectory picture that has a natural connection to semi-classical mechanics, allowing a simple pictorial interpretation of an evolving wavepacket. They also have better scaling with system size compared to conventional grid-based techniques. Here we review the variational multi-configurational Gaussian (vMCG) method. This is a variational solution to the TDSE, with explicit coupling between the Gaussian basis functions, resulting in a favourable convergence on the exact solution. The implementation of the method and its performance will be discussed with examples from non-adiabatic photo-excited dynamics and tunneling to show that it can correctly describe both of these strongly quantum mechanical processes. Particular emphasis is given to the implementation of the direct dynamics variant, DD-vMCG, where the potential surfaces are calculated on-the-fly via an interface to quantum chemistry programs.
Author Lasorne, B.
Polyak, I.
Spinlove, K.E.
Worth, G.A.
Richings, G.W.
Burghardt, I.
Author_xml – sequence: 1
  givenname: G.W.
  surname: Richings
  fullname: Richings, G.W.
  organization: School of Chemistry, University of Birmingham
– sequence: 2
  givenname: I.
  surname: Polyak
  fullname: Polyak, I.
  organization: School of Chemistry, University of Birmingham
– sequence: 3
  givenname: K.E.
  surname: Spinlove
  fullname: Spinlove, K.E.
  organization: School of Chemistry, University of Birmingham
– sequence: 4
  givenname: G.A.
  surname: Worth
  fullname: Worth, G.A.
  email: g.a.worth@bham.ac.uk
  organization: School of Chemistry, University of Birmingham
– sequence: 5
  givenname: I.
  surname: Burghardt
  fullname: Burghardt, I.
  organization: Institute of Theoretical and Physical Chemistry, University of Frankfurt
– sequence: 6
  givenname: B.
  surname: Lasorne
  fullname: Lasorne, B.
  organization: Institue of Charles Gerhardt, University of Montpellier
BackLink https://hal.science/hal-01508593$$DView record in HAL
BookMark eNqFkV9rFDEUxYNU6Lb2IxQGfNGHqcncZP7oi2Wpu8KKCBb6Fq5Jxk2dSdYks2W_vRm3femDPl24_M7h3nPOyInzzhByyegVoy19RxnnFYi7q4oykVeCgeAvyIJBXZeiY3cnZDEz5QydkrMY7yllULFuQdbfJnRpGgt9cDhaFYtox2nAZL2LxRSt-1mscIrRoisecG92qH6ZFN8XaWuK_ZflqhhN2nr9irzscYjm4nGek9tPN9-X63LzdfV5eb0pFacilS1WFW80tqzHHpqqUWgYr5lWAA3teN2CFvmdClvxg4LWUKNotABjqAGkcE7eHn23OMhdsCOGg_Ro5fp6I-ddzoC2ooM9y-ybI7sL_vdkYpKjjcoMAzrjpyhZw9oOOuCQ0dfP0Hs_BZc_yVROi4u2rjL14Uip4GMMppfKpr9ZpYB2kIzKuRH51IicG5GPjWS1eKZ-uv9_uo9HnXW9DyM--DBomfAw-NAHdMpGCf-2-AOfE6JN
CitedBy_id crossref_primary_10_1021_acs_jpca_4c02979
crossref_primary_10_1088_1361_648X_aa948a
crossref_primary_10_1021_acs_jctc_7b00507
crossref_primary_10_1039_D0CP01353F
crossref_primary_10_1021_acs_jpclett_4c02418
crossref_primary_10_1063_1_4967432
crossref_primary_10_1017_S0962492920000033
crossref_primary_10_1039_C9FD00065H
crossref_primary_10_1021_acs_jpclett_1c00123
crossref_primary_10_1063_1_5053417
crossref_primary_10_1039_C8CP02321B
crossref_primary_10_1039_D1CP04733G
crossref_primary_10_1021_acs_chemrev_2c00329
crossref_primary_10_1021_acs_jpca_3c06295
crossref_primary_10_1021_acs_jpclett_1c02016
crossref_primary_10_1021_acs_jpca_7b07069
crossref_primary_10_1103_PhysRevA_103_042209
crossref_primary_10_3390_molecules26237247
crossref_primary_10_1021_acs_jpca_5b12192
crossref_primary_10_1021_acs_chemrev_7b00577
crossref_primary_10_1021_acs_jctc_1c00131
crossref_primary_10_1021_acs_jpclett_7b00596
crossref_primary_10_1021_acs_jpca_4c02108
crossref_primary_10_1021_acs_jpclett_4c02549
crossref_primary_10_1103_PhysRevLett_130_166401
crossref_primary_10_1140_epjs_s11734_023_00923_4
crossref_primary_10_1039_D3CP00510K
crossref_primary_10_1039_C8FD00090E
crossref_primary_10_1039_C5CP07332D
crossref_primary_10_1098_rsta_2020_0386
crossref_primary_10_1021_acs_chemrev_7b00177
crossref_primary_10_1021_acs_jpca_0c03969
crossref_primary_10_1021_acs_jctc_2c00108
crossref_primary_10_3390_e26050412
crossref_primary_10_1098_rsta_2020_0379
crossref_primary_10_1021_acs_jctc_9b00532
crossref_primary_10_1140_epjd_s10053_021_00155_y
crossref_primary_10_1021_acs_jctc_4c01697
crossref_primary_10_1002_wcms_1417
crossref_primary_10_1016_j_cpc_2023_109016
crossref_primary_10_1021_acs_chemrev_7b00617
crossref_primary_10_1002_wcms_1370
crossref_primary_10_1002_wcms_1492
crossref_primary_10_1021_acs_jctc_0c00379
crossref_primary_10_1039_C8CP05693E
crossref_primary_10_1007_s00214_016_1937_2
crossref_primary_10_1021_acs_jpclett_8b00827
crossref_primary_10_1021_jacs_9b02600
crossref_primary_10_1039_D4CP02489C
crossref_primary_10_1088_1742_6596_2769_1_012012
crossref_primary_10_1088_2516_1075_ab58fc
crossref_primary_10_1063_1_4996339
crossref_primary_10_1021_acs_jctc_9b00948
crossref_primary_10_1080_0144235X_2019_1672987
crossref_primary_10_1002_qua_27212
crossref_primary_10_1103_PhysRevLett_124_150601
crossref_primary_10_1021_acs_jpca_2c09088
crossref_primary_10_1039_C7CP02054F
crossref_primary_10_3389_fchem_2019_00576
crossref_primary_10_1021_acs_jctc_9b00301
crossref_primary_10_1063_1_4964902
crossref_primary_10_1021_acs_jpca_4c05354
crossref_primary_10_1021_acs_jpca_9b10503
crossref_primary_10_1039_D0CP01092H
crossref_primary_10_1002_ange_201916381
crossref_primary_10_1039_C9CP03019K
crossref_primary_10_1021_acs_jpca_9b00940
crossref_primary_10_1039_C7CS00627F
crossref_primary_10_1103_PhysRevLett_125_083001
crossref_primary_10_1021_acs_jctc_8b00211
crossref_primary_10_1039_D1CP05885A
crossref_primary_10_1016_j_chemphys_2016_05_013
crossref_primary_10_1021_acs_jctc_1c00259
crossref_primary_10_1021_acs_jctc_5b01042
crossref_primary_10_1021_acs_jpca_4c03612
crossref_primary_10_1016_j_bbabio_2016_06_010
crossref_primary_10_3390_app7060534
crossref_primary_10_1021_acs_jpclett_4c00106
crossref_primary_10_1016_j_chemphys_2017_04_003
crossref_primary_10_1016_j_cplett_2017_03_032
crossref_primary_10_1039_D0CP05116K
crossref_primary_10_1080_0144235X_2020_1823168
crossref_primary_10_1103_PhysRevB_101_174315
crossref_primary_10_1146_annurev_physchem_082620_021809
crossref_primary_10_1002_anie_201916381
crossref_primary_10_1016_j_chemphys_2018_08_003
crossref_primary_10_1063_1_4958637
crossref_primary_10_1021_acs_jctc_0c01249
crossref_primary_10_1016_j_ccr_2023_215346
crossref_primary_10_1021_acs_chemrev_7b00423
crossref_primary_10_1146_annurev_physchem_052516_050721
crossref_primary_10_1088_1742_6596_2883_1_012005
crossref_primary_10_1021_acs_jctc_9b00844
crossref_primary_10_1002_wcms_1589
crossref_primary_10_1103_PhysRevLett_118_083001
crossref_primary_10_1146_annurev_physchem_101419_012625
crossref_primary_10_1063_1_4929478
crossref_primary_10_1021_acs_chemrev_9b00447
crossref_primary_10_1039_C8CP05662E
crossref_primary_10_1016_j_energy_2020_117166
crossref_primary_10_1007_s00214_023_03004_w
crossref_primary_10_1021_acs_jctc_8b00355
crossref_primary_10_1021_acs_jpclett_2c01455
crossref_primary_10_1021_acs_jctc_3c00908
crossref_primary_10_1039_D1CP03008F
crossref_primary_10_1021_acs_jctc_1c00158
crossref_primary_10_1103_PhysRevA_99_013404
crossref_primary_10_1021_acs_jctc_1c00438
crossref_primary_10_1021_acs_accounts_4c00687
crossref_primary_10_1016_j_chemphys_2022_111542
crossref_primary_10_1021_jacs_0c04952
crossref_primary_10_1080_0144235X_2018_1472353
crossref_primary_10_1002_wcms_1731
crossref_primary_10_1021_acs_jpclett_8b03061
crossref_primary_10_1021_acs_jpclett_1c01379
crossref_primary_10_1140_epjb_e2018_90144_3
crossref_primary_10_1021_acs_jctc_2c00030
crossref_primary_10_1021_acs_jctc_4c00326
crossref_primary_10_1039_C9CP03975A
crossref_primary_10_1021_acs_jpca_4c03481
crossref_primary_10_1021_acs_chemrev_3c00643
crossref_primary_10_1021_acs_jpca_8b03404
crossref_primary_10_1016_j_cpc_2019_107040
crossref_primary_10_1016_j_jobe_2023_107267
crossref_primary_10_1021_acs_jctc_6b01129
crossref_primary_10_1021_acs_jpca_0c07168
crossref_primary_10_1038_s41467_022_30999_w
crossref_primary_10_1002_qua_25233
crossref_primary_10_1039_D0CP05907B
crossref_primary_10_1016_j_cplett_2017_01_063
crossref_primary_10_1002_jcc_70028
crossref_primary_10_1021_acs_jctc_3c00962
crossref_primary_10_1038_s41570_021_00278_1
crossref_primary_10_1021_acs_jpclett_4c00535
crossref_primary_10_1016_j_chemphys_2019_110526
crossref_primary_10_1021_acs_jpcb_0c01685
crossref_primary_10_1002_wcms_70001
crossref_primary_10_1063_1_4954189
crossref_primary_10_1002_jcc_27443
crossref_primary_10_1016_j_comptc_2020_113032
crossref_primary_10_1139_cjc_2022_0267
crossref_primary_10_1021_acs_jpclett_0c00527
crossref_primary_10_1103_PhysRevLett_133_203201
crossref_primary_10_1021_acs_jpca_5b07921
crossref_primary_10_1016_j_chemphys_2016_10_007
crossref_primary_10_1016_j_chemphys_2018_05_029
crossref_primary_10_1021_acs_jctc_8b00771
crossref_primary_10_1021_acs_jctc_2c01019
crossref_primary_10_1039_D0CP04052E
crossref_primary_10_1021_acs_jpca_4c02449
crossref_primary_10_1021_acs_jpclett_3c02735
crossref_primary_10_1038_s41598_021_82232_1
crossref_primary_10_1021_acs_jpca_4c03657
crossref_primary_10_1039_D2CP05576G
crossref_primary_10_3389_fphy_2023_1106324
crossref_primary_10_3390_molecules22010049
crossref_primary_10_1021_acs_jpclett_2c03295
crossref_primary_10_1146_annurev_physchem_090419_040306
crossref_primary_10_1002_cphc_202200482
crossref_primary_10_1039_C9FD00050J
crossref_primary_10_1063_5_0046933
crossref_primary_10_1039_C7CP01473B
crossref_primary_10_1021_acs_chemrev_7b00081
crossref_primary_10_1021_acs_jctc_8b01051
crossref_primary_10_1080_00268976_2019_1665199
crossref_primary_10_1021_acs_jctc_0c00079
crossref_primary_10_1021_acs_jctc_4c00666
crossref_primary_10_1039_D1CP01843D
crossref_primary_10_1021_acs_jpca_6b00274
Cites_doi 10.1063/1.476142
10.1063/1.453647
10.1021/jp072217m
10.12693/APhysPolA.88.1081
10.1021/jp953105a
10.1063/1.466801
10.1063/1.450175
10.1016/S0009-2614(02)01920-6
10.1063/1.4765087
10.1080/01442350802137656
10.1063/1.466618
10.1103/PhysRevLett.69.402
10.1063/1.4891530
10.1080/00268970500417937
10.1063/1.2356477
10.1063/1.3242082
10.1007/978-3-642-45290-1
10.1063/1.472486
10.1063/1.2839607
10.1063/1.443342
10.1016/j.chemphys.2004.06.013
10.1063/1.450255
10.1039/b700297a
10.1063/1.478061
10.1021/jp101574b
10.1063/1.450774
10.1063/1.3153302
10.1016/0021-9991(91)90137-A
10.1039/b314253a
10.1063/1.2362821
10.1021/j100319a003
10.1146/annurev.pc.45.100194.001045
10.1002/cphc.201200560
10.1063/1.1383986
10.1021/jp0723665
10.1063/1.430620
10.1016/0009-2614(94)00826-4
10.1063/1.449204
10.1017/S0305004100016108
10.1021/jp001460h
10.1063/1.3671978
10.1063/1.1560636
10.1063/1.478902
10.1063/1.442382
10.1063/1.2202847
10.1016/S0370-1573(99)00047-2
10.1063/1.479574
10.1080/00268976.2013.844371
10.1063/1.2787596
10.1021/jp035688r
10.1039/c3cp51199e
10.1246/bcsj.59.2897
10.1016/j.cplett.2010.02.068
10.1039/c001556c
10.1016/0009-2614(90)87014-I
10.1021/jp803740a
10.1039/c0cp01757d
10.1021/jp2097185
10.1103/PhysRevLett.110.263202
10.1021/ja0365025
10.1080/00268970802172503
10.1063/1.2969101
10.1063/1.1599275
10.1063/1.4788830
10.1063/1.2996349
10.1063/1.4734313
10.1021/jp5081884
10.1063/1.480344
10.1063/1.451245
10.1063/1.2772265
10.1103/PhysRevA.79.062708
10.1063/1.459848
10.1063/1.1801991
10.1063/1.3603453
10.1063/1.1580111
10.1063/1.1675384
10.1039/c1cp20969h
10.1063/1.4868637
10.1002/0471264318.ch7
10.1002/cphc.201301205
10.1021/jp0604600
ContentType Journal Article
Copyright 2015 Taylor & Francis 2015
Copyright Taylor & Francis Ltd. 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 Taylor & Francis 2015
– notice: Copyright Taylor & Francis Ltd. 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7U5
8FD
L7M
1XC
DOI 10.1080/0144235X.2015.1051354
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1366-591X
EndPage 308
ExternalDocumentID oai_HAL_hal_01508593v1
3763390921
10_1080_0144235X_2015_1051354
1051354
Genre Article
Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
30N
4.4
53G
5GY
5VS
AAENE
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NW0
O9-
P2P
PQQKQ
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TCY
TDBHL
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7U5
8FD
L7M
TASJS
1XC
ID FETCH-LOGICAL-c405t-8a2247da81faf3727cae1461dc337094683d54422a85b03dd36a57d53ee0e3a03
ISSN 0144-235X
IngestDate Thu Aug 14 06:48:39 EDT 2025
Fri Jul 11 09:07:41 EDT 2025
Wed Aug 13 03:05:31 EDT 2025
Tue Jul 01 01:55:41 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Wed Dec 25 09:00:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-8a2247da81faf3727cae1461dc337094683d54422a85b03dd36a57d53ee0e3a03
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9943-1905
0000-0002-9727-9049
PQID 1700145862
PQPubID 53227
PageCount 40
ParticipantIDs crossref_citationtrail_10_1080_0144235X_2015_1051354
proquest_journals_1700145862
proquest_miscellaneous_1718939343
crossref_primary_10_1080_0144235X_2015_1051354
hal_primary_oai_HAL_hal_01508593v1
informaworld_taylorfrancis_310_1080_0144235X_2015_1051354
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-03
PublicationDateYYYYMMDD 2015-04-03
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International reviews in physical chemistry
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0072
CIT0071
CIT0030
Zhang J. (CIT0009) 1999
CIT0073
CIT0032
CIT0076
CIT0031
Mendive-Tapia D. (CIT0054) 2012; 548
CIT0075
CIT0034
CIT0033
CIT0077
CIT0070
Frenkel J. (CIT0056) 1934
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0083
CIT0082
CIT0041
CIT0085
CIT0040
CIT0084
CIT0043
CIT0087
CIT0042
CIT0086
CIT0001
Meyer H.D. (CIT0014) 2008
CIT0045
CIT0089
CIT0044
CIT0088
CIT0081
CIT0080
Lasorne B. (CIT0079) 2006; 432
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0008
CIT0050
CIT0093
CIT0052
CIT0051
CIT0010
CIT0053
CIT0012
CIT0011
CIT0055
Lasorne B. (CIT0090) 2010; 7
Polyak I. (CIT0058) 2015
CIT0092
CIT0091
CIT0057
Grabowska A. (CIT0074) 1995; 88
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0065
CIT0020
CIT0023
CIT0067
CIT0022
CIT0066
Tikhonov A.N. (CIT0064) 1943; 39
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
Kulander K.C. (CIT0013) 1991
References_xml – ident: CIT0024
  doi: 10.1063/1.476142
– ident: CIT0019
  doi: 10.1063/1.453647
– ident: CIT0044
  doi: 10.1021/jp072217m
– volume: 88
  start-page: 1081
  issue: 6
  year: 1995
  ident: CIT0074
  publication-title: Acta. Phys. Pol. A
  doi: 10.12693/APhysPolA.88.1081
– ident: CIT0023
  doi: 10.1021/jp953105a
– volume: 7
  start-page: 12016
  year: 2010
  ident: CIT0090
  publication-title: J. Phys. Chem. A
– ident: CIT0085
  doi: 10.1063/1.466801
– ident: CIT0022
  doi: 10.1063/1.450175
– volume: 432
  start-page: 604
  year: 2006
  ident: CIT0079
  publication-title: Phys. Chem. Chem. Phys
– ident: CIT0050
  doi: 10.1016/S0009-2614(02)01920-6
– volume: 548
  start-page: 22A548
  issue: 22
  year: 2012
  ident: CIT0054
  publication-title: J. Chem. Phys
  doi: 10.1063/1.4765087
– ident: CIT0041
  doi: 10.1080/01442350802137656
– ident: CIT0066
  doi: 10.1063/1.466618
– ident: CIT0017
  doi: 10.1103/PhysRevLett.69.402
– ident: CIT0034
  doi: 10.1063/1.4891530
– volume: 39
  start-page: 195
  issue: 5
  year: 1943
  ident: CIT0064
  publication-title: Dokl. Akad. Nauk SSSR
– ident: CIT0093
  doi: 10.1080/00268970500417937
– ident: CIT0037
  doi: 10.1063/1.2356477
– ident: CIT0083
  doi: 10.1063/1.3242082
– ident: CIT0015
  doi: 10.1007/978-3-642-45290-1
– ident: CIT0025
  doi: 10.1063/1.472486
– ident: CIT0089
  doi: 10.1063/1.2839607
– ident: CIT0016
  doi: 10.1063/1.443342
– ident: CIT0030
  doi: 10.1016/j.chemphys.2004.06.013
– ident: CIT0063
  doi: 10.1063/1.450255
– ident: CIT0052
  doi: 10.1039/b700297a
– ident: CIT0067
  doi: 10.1063/1.478061
– ident: CIT0080
  doi: 10.1021/jp101574b
– ident: CIT0021
  doi: 10.1063/1.450774
– ident: CIT0031
  doi: 10.1063/1.3153302
– ident: CIT0004
  doi: 10.1016/0021-9991(91)90137-A
– ident: CIT0051
  doi: 10.1039/b314253a
– ident: CIT0049
  doi: 10.1063/1.2362821
– ident: CIT0003
  doi: 10.1021/j100319a003
– ident: CIT0005
  doi: 10.1146/annurev.pc.45.100194.001045
– ident: CIT0070
  doi: 10.1002/cphc.201200560
– volume-title: Wave Mechanics
  year: 1934
  ident: CIT0056
– ident: CIT0092
  doi: 10.1063/1.1383986
– ident: CIT0027
  doi: 10.1021/jp0723665
– ident: CIT0001
  doi: 10.1063/1.430620
– ident: CIT0073
  doi: 10.1016/0009-2614(94)00826-4
– ident: CIT0020
  doi: 10.1063/1.449204
– ident: CIT0055
  doi: 10.1017/S0305004100016108
– ident: CIT0010
  doi: 10.1021/jp001460h
– ident: CIT0057
– ident: CIT0038
  doi: 10.1063/1.3671978
– volume-title: High Dimensional Quantum Dynamics: Basic Theory, Extensions, and Applications of the MCTDH Method
  year: 2008
  ident: CIT0014
– ident: CIT0035
  doi: 10.1063/1.1560636
– ident: CIT0091
  doi: 10.1063/1.478902
– ident: CIT0002
  doi: 10.1063/1.442382
– volume-title: Time-dependent Methods for Quantum Dynamics
  year: 1991
  ident: CIT0013
– ident: CIT0036
  doi: 10.1063/1.2202847
– ident: CIT0006
  doi: 10.1016/S0370-1573(99)00047-2
– ident: CIT0046
  doi: 10.1063/1.479574
– ident: CIT0059
  doi: 10.1080/00268976.2013.844371
– ident: CIT0042
  doi: 10.1063/1.2787596
– ident: CIT0068
  doi: 10.1021/jp035688r
– ident: CIT0033
  doi: 10.1039/c3cp51199e
– ident: CIT0072
  doi: 10.1246/bcsj.59.2897
– ident: CIT0087
  doi: 10.1016/j.cplett.2010.02.068
– ident: CIT0081
  doi: 10.1039/c001556c
– ident: CIT0040
  doi: 10.1016/0009-2614(90)87014-I
– ident: CIT0084
  doi: 10.1021/jp803740a
– ident: CIT0082
  doi: 10.1039/c0cp01757d
– ident: CIT0028
  doi: 10.1021/jp2097185
– ident: CIT0039
  doi: 10.1103/PhysRevLett.110.263202
– ident: CIT0029
  doi: 10.1021/ja0365025
– ident: CIT0053
  doi: 10.1080/00268970802172503
– ident: CIT0061
  doi: 10.1063/1.2969101
– ident: CIT0062
  doi: 10.1063/1.449204
– ident: CIT0047
  doi: 10.1063/1.1599275
– ident: CIT0065
  doi: 10.1063/1.4788830
– ident: CIT0060
  doi: 10.1063/1.2996349
– ident: CIT0032
  doi: 10.1063/1.4734313
– ident: CIT0077
  doi: 10.1021/jp5081884
– ident: CIT0086
  doi: 10.1063/1.480344
– ident: CIT0008
  doi: 10.1063/1.451245
– ident: CIT0045
  doi: 10.1063/1.2772265
– ident: CIT0011
  doi: 10.1103/PhysRevA.79.062708
– ident: CIT0018
  doi: 10.1063/1.459848
– ident: CIT0075
  doi: 10.1063/1.1801991
– ident: CIT0012
  doi: 10.1063/1.3603453
– ident: CIT0043
  doi: 10.1063/1.1580111
– ident: CIT0048
  doi: 10.1063/1.2996349
– ident: CIT0007
  doi: 10.1063/1.1675384
– ident: CIT0076
  doi: 10.1039/c1cp20969h
– ident: CIT0088
  doi: 10.1063/1.4868637
– ident: CIT0026
  doi: 10.1002/0471264318.ch7
– year: 2015
  ident: CIT0058
  publication-title: J. Chem. Phys
– volume-title: Theory and Application of Quantum Molecular Dynamics
  year: 1999
  ident: CIT0009
– ident: CIT0071
  doi: 10.1002/cphc.201301205
– ident: CIT0069
  doi: 10.1021/jp0604600
SSID ssj0013219
Score 2.5442657
Snippet Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrödinger equation (TDSE). They have an underlying trajectory picture that has...
Gaussian wavepacket methods are an attractive way to solve the time-dependent Schrodinger equation (TDSE). They have an underlying trajectory picture that has...
SourceID hal
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms Chemical Sciences
Convergence
direct quantum dynamics
Dynamics
Evolution
Exact solutions
Gaussian
Gaussian wavepackets
Mathematical analysis
Mathematical functions
Mathematical problems
Normal distribution
or physical chemistry
Quantum chemistry
quantum dynamics simulations
Quantum physics
Schrodinger equation
Schroedinger equation
Simulation
Theoretical and
theoretical chemistry
Waveform analysis
Title Quantum dynamics simulations using Gaussian wavepackets: the vMCG method
URI https://www.tandfonline.com/doi/abs/10.1080/0144235X.2015.1051354
https://www.proquest.com/docview/1700145862
https://www.proquest.com/docview/1718939343
https://hal.science/hal-01508593
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QFeEJ-ibKCAeJsSxXGcD96qMloQICE2teIlcmxHVNrSiSSd4L_gP-bs2MFlE2O8RJWb2HF-5_P5_PMdQi_BZuU0T6jPS07VNiP2GZEpGHKiwhWrQAo02-JjMj-J3y3pcjT66bCWurYM-I8rz5X8D6pQBriqU7I3QHaoFArgN-ALV0AYrv-E8acOvkt3dij6tPLNYbM66yy5rdNegBnrGn1O8oJtYOaBMds2lsux-TCdmRTSro267SQ04Uo129xiym2WuGG7ZqUpmb2XPVgEg8Jdn35nWt--Hco-n69qRRzVKiY4GsoXlqw4CyaB64zAVHNYyJZ_MvYjQpf99NLrVJIkPs3x0lW6xoO5cta-RoP2mVvMZEx00IfLet4QI6E11Zhi6FGVsRiTPiL1dlztP-a7gYWIbXhUU02hqilMNTtoL4KVB6jOvcn89ZeFszWls8UMPbXHwlTA9qveZ8vg2fmq6bZuUNxLRoC2bI7vojtmSeJNevm6h0ayvo9uTS3GD9DcyJln5cxz5MzTcuZZOfMcOXvlgZR5Ssq8XsoeopM3R8fTuW8ycPgcDPnWzxhYeKlgmRq2BExdzqRKBC84IWmYx0lGBIU-RyyjZUiEIAmjqaBEylASFpJHaLde1_Ix8rBMQxaXXJQRjiXmLOFRKAUJy7yimWBjFNvPVHATnl5lSTkt_grTGAXDY-d9fJbrHngBGAz3qujq88n7QpUp558K_7fBY5S7EBWt9p5VfaqbglzTwIHFszC6oilUFEwc0yyJxuj58DfAqLbnWC3XnboHw-IhJzF5ctNO7aPbv0fjAdptv3XyKRjLbfnMiO8vdYizWw
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB615VAu_CMWChgExyxxHCdZJA7VQpvS7UpIrbQ349gOVO2miCRblcfiVXghZvKzWkCoB9QD19iJ7czYM2OPvw_gBfqsRo4i6ZnMSDpm5J4WLkZHzuY81zlqQZNtMY3So_D9TM7W4Ht_F4bSKimGzlugiGatpslNm9F9StwrigICIWeUmSWJqZYLGXaJlfvu4hzDtvLN3luU8csg2Hl3OE69jlnAM-igVF6i0XLFVifUHYEm3GhHBNfWCBFjwBMlwkpsI9CJzHxhrYi0jK0UzvlOaF_gd9fhGg4yprkl_OnKyUVDJkJd9KiP_a2hv3X7F3u4_rnJxlzFTP3DRjSGb-cm_Oh_WZvvcjKsq2xovv2GJvl__dNbcKPzw9l2O3Fuw5or7sDmuKe_uwvphxqVrp4ze1Ho-bEpWXk877jOSkbXBT6xXV2XdAmVnesFmnVcEKvyNUOXmi0OxrusZee-B0dXMpD7sFGcFe4BMO5iX4eZsVnAQ8eNjkzgOyv8bJTLxOoBhL3wlekw2Yka5FTxHrq1E4sisahOLAMYLl_70oKSXPbCc9SsZV2CFE-3J4qe0Y4XYd4t-ABGq4qnqmbLKG_5XZS4pIGtXktVtwiWiqAfeSgxZh7As2UxipHOpHThzmqqw9FjHolQPPyH5p_CZnp4MFGTven-I7hORU12ldiCjepr7R6j41hlT5qZyuDjVavxTywiaoY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB71IQGX8hZbChgExyxxHCdZJA7VttstLSuQqLQ317EdqGDTiiRblX_FX-EXMZPHagGhHlAPXJM4djJjz4w9830Az9FnNXIQSc-kRtIxI_e0cDE6cjbjmc5QC-psi0k0PgrfTOV0Bb53tTCUVkkxdNYARdRrNU3uM5t1GXEvKQgIhJxSYpYkolouZNjmVR64i3OM2orX-zso4hdBMNr9MBx7LbGAZ9A_Kb1Eo-GKrU5oNAItuNGO-K2tESLGeCdKhJXYR6ATmfrCWhFpGVspnPOd0L7A967CekSFnVQ14k-WDi5qLhEaokdj7IqG_jbsX8zh6qc6GXMZMvUPE1HbvdFN-NH9sSbd5XO_KtO--fYbmOR_9UtvwUbrhbPtZtrchhWX34Hrw4787i6M31eoctWM2Ytcz05MwYqTWct0VjAqFvjI9nRVUAkqO9dzNOq4HJbFK4YONZu_He6xhpv7HhxdyYfch7X8NHcPgHEX-zpMjU0DHjpudGQC31nhp4NMJlb3IOxkr0yLyE7EIF8U74BbW7EoEotqxdKD_qLZWQNJclmDZ6hYi2cJUHy8fajoGu13EeLdnPdgsKx3qqw3jLKG3UWJSzrY6pRUtUtgoQj4kYcSI-YePF3cRjHSiZTO3WlFz3D0lwciFJv_0P0TuPZuZ6QO9ycHD-EG3alTq8QWrJVfK_cIvcYyfVzPUwbHV63FPwEiemkq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+dynamics+simulations+using+Gaussian+wavepackets%3A+the+vMCG+method&rft.jtitle=International+reviews+in+physical+chemistry&rft.au=Richings%2C+G.W.&rft.au=Polyak%2C+I.&rft.au=Spinlove%2C+K.E.&rft.au=Worth%2C+G.A.&rft.date=2015-04-03&rft.issn=0144-235X&rft.eissn=1366-591X&rft.volume=34&rft.issue=2&rft.spage=269&rft.epage=308&rft_id=info:doi/10.1080%2F0144235X.2015.1051354&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0144235X_2015_1051354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-235X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-235X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-235X&client=summon