Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification
We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the...
Saved in:
Published in | Physical review letters Vol. 120; no. 9; p. 093601 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
02.03.2018
|
Online Access | Get more information |
Cover
Loading…
Abstract | We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing. |
---|---|
AbstractList | We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing. |
Author | Nori, Franco Lü, Xin-You Li, Peng-Bo You, J Q Miranowicz, Adam Qin, Wei |
Author_xml | – sequence: 1 givenname: Wei surname: Qin fullname: Qin, Wei organization: CEMS, RIKEN, Wako-shi, Saitama 351-0198, Japan – sequence: 2 givenname: Adam surname: Miranowicz fullname: Miranowicz, Adam organization: Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland – sequence: 3 givenname: Peng-Bo surname: Li fullname: Li, Peng-Bo organization: Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 4 givenname: Xin-You surname: Lü fullname: Lü, Xin-You organization: School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 5 givenname: J Q surname: You fullname: You, J Q organization: Department of Physics, Zhejiang University, Hangzhou 310027, China – sequence: 6 givenname: Franco surname: Nori fullname: Nori, Franco organization: Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29547303$$D View this record in MEDLINE/PubMed |
BookMark | eNo10MFKw0AQBuBFFGurr1D2AZo6u8km2WMpVQsRi7XnMs1O2pVkE5K1mIvPbkS9zPDD8ME_Y3bpakeMTQXMhYDwfnPqu1c6Z-T9XEiYgw5jEBfsRkCig0SIaMTGXfcOAELG6TUbSa2iJITwhn2tPptBc95iWfZ85U7ocjI8s8eTD57Re2r52g0Tc29rN-PLum6G5O3ZekvdjKMzfOsJTR9sPXoaEI_uWFI1sHzXWXfkG2yxIt_anC-qprSFzfGHu2VXBZYd3f3tCds9rN6WT0H28rheLrIgj0D5II2GRhqNQpMA4EHHKEEJjJWGqEgjTAoBw2UsNGoy6YGUkkqQzAsVakI5YdNft_k4VGT2TWsrbPv9_yPkN6N4ZQM |
CitedBy_id | crossref_primary_10_1088_1612_202X_ac83c2 crossref_primary_10_1103_PhysRevA_98_062327 crossref_primary_10_1002_qute_202300239 crossref_primary_10_1007_s11433_023_2245_9 crossref_primary_10_1103_PhysRevLett_126_023602 crossref_primary_10_1103_PhysRevA_106_032416 crossref_primary_10_1364_PRJ_459794 crossref_primary_10_1093_ptep_ptaa129 crossref_primary_10_1103_PhysRevResearch_4_033112 crossref_primary_10_1116_5_0082239 crossref_primary_10_1103_PhysRevLett_130_073602 crossref_primary_10_1103_PhysRevA_109_043714 crossref_primary_10_1088_1361_6463_ace9e6 crossref_primary_10_1103_PhysRevA_109_043712 crossref_primary_10_1007_s12274_023_5386_7 crossref_primary_10_1088_1612_202X_ac9403 crossref_primary_10_1103_PhysRevLett_129_123602 crossref_primary_10_1364_OL_464060 crossref_primary_10_1039_D2NR03376C crossref_primary_10_1103_PhysRevB_109_174410 crossref_primary_10_1103_PhysRevLett_132_193601 crossref_primary_10_1103_PhysRevLett_132_193602 crossref_primary_10_1016_j_rinp_2021_103832 crossref_primary_10_1103_PhysRevLett_124_240503 crossref_primary_10_1103_PhysRevA_98_053834 crossref_primary_10_1103_PRXQuantum_5_040345 crossref_primary_10_1103_PhysRevA_108_023716 crossref_primary_10_1364_OE_493208 crossref_primary_10_1103_PhysRevA_100_042112 crossref_primary_10_1103_PhysRevApplied_22_064001 crossref_primary_10_1103_PhysRevLett_127_083602 crossref_primary_10_1002_qute_202400065 crossref_primary_10_1103_PhysRevA_106_042430 crossref_primary_10_1103_PhysRevA_100_012339 crossref_primary_10_1103_PhysRevA_101_013826 crossref_primary_10_1103_PhysRevApplied_17_024009 crossref_primary_10_1103_PhysRevA_102_033716 crossref_primary_10_1103_PhysRevLett_134_090401 crossref_primary_10_1364_OE_423373 crossref_primary_10_1364_OE_499778 crossref_primary_10_1038_s41567_021_01237_9 crossref_primary_10_1007_s10773_019_04339_6 crossref_primary_10_1088_1367_2630_aadc9f crossref_primary_10_1103_PhysRevA_102_023707 crossref_primary_10_1103_PhysRevLett_130_203605 crossref_primary_10_1038_s41467_021_26573_5 crossref_primary_10_1364_OL_459917 crossref_primary_10_1002_qute_202000149 crossref_primary_10_1364_OL_532966 crossref_primary_10_1002_lpor_202301154 crossref_primary_10_1103_PhysRevB_104_L220503 crossref_primary_10_1103_PhysRevA_97_033807 crossref_primary_10_1103_PhysRevLett_125_153602 crossref_primary_10_1103_PhysRevA_100_062501 crossref_primary_10_1103_PhysRevA_109_023519 crossref_primary_10_1103_PhysRevA_103_063510 crossref_primary_10_1126_sciadv_adi2042 crossref_primary_10_1364_OPTICAQ_523480 crossref_primary_10_1002_qute_202400288 crossref_primary_10_1109_JSTQE_2024_3492261 crossref_primary_10_1103_PhysRevA_97_052321 crossref_primary_10_1103_PhysRevA_111_013709 crossref_primary_10_1016_j_physleta_2025_130368 crossref_primary_10_1364_OE_496528 crossref_primary_10_1103_PhysRevX_9_049903 crossref_primary_10_1016_j_rinp_2022_105425 crossref_primary_10_1016_j_physrep_2022_03_002 crossref_primary_10_1007_s11433_022_2073_9 crossref_primary_10_1002_andp_201800430 crossref_primary_10_1103_PhysRevA_99_023833 crossref_primary_10_1002_andp_201900606 crossref_primary_10_1103_PhysRevB_108_L241404 crossref_primary_10_1103_PhysRevA_108_013516 crossref_primary_10_1364_OE_512280 crossref_primary_10_1209_0295_5075_123_24002 crossref_primary_10_1364_OE_538074 crossref_primary_10_1364_OE_382254 crossref_primary_10_1103_PhysRevResearch_6_023216 crossref_primary_10_1103_PhysRevResearch_7_L012014 crossref_primary_10_1088_1402_4896_ad6eca crossref_primary_10_1063_5_0041406 crossref_primary_10_1088_1674_1056_ac140a crossref_primary_10_1088_1612_202X_ab3453 crossref_primary_10_1103_PhysRevA_102_032601 crossref_primary_10_1103_PhysRevLett_124_103602 crossref_primary_10_35848_1347_4065_ac92b2 crossref_primary_10_1007_s11433_019_9451_3 crossref_primary_10_1142_S0219749923500296 crossref_primary_10_1364_OE_26_020459 crossref_primary_10_1007_s11433_023_2147_3 crossref_primary_10_1103_PhysRevApplied_16_064008 crossref_primary_10_1088_1361_6463_ad31e4 crossref_primary_10_1088_1402_4896_acbba7 crossref_primary_10_1021_acs_jpclett_2c00172 crossref_primary_10_1103_PhysRevA_98_063815 crossref_primary_10_1063_5_0021099 crossref_primary_10_1103_PhysRevA_106_012407 crossref_primary_10_1364_OE_510160 crossref_primary_10_1002_andp_202000002 crossref_primary_10_1103_PhysRevA_101_063822 crossref_primary_10_3389_fphy_2023_1332496 crossref_primary_10_22331_qv_2020_07_20_41 crossref_primary_10_1103_PhysRevA_105_022617 crossref_primary_10_1088_1674_1056_abd7d9 crossref_primary_10_1364_JOSAB_481012 crossref_primary_10_1364_OL_398859 crossref_primary_10_1103_PhysRevA_100_053857 crossref_primary_10_1103_PhysRevA_110_063717 crossref_primary_10_1103_PhysRevLett_129_063602 crossref_primary_10_1103_PhysRevA_100_013843 crossref_primary_10_1007_s11071_019_05084_5 crossref_primary_10_1063_5_0208107 crossref_primary_10_1103_PhysRevB_100_100503 crossref_primary_10_1103_PhysRevB_106_184426 crossref_primary_10_1103_PhysRevA_101_042313 crossref_primary_10_1103_PhysRevLett_131_113601 crossref_primary_10_1103_PhysRevA_104_013717 crossref_primary_10_1088_1402_4896_ad4319 crossref_primary_10_1103_PhysRevA_104_013715 crossref_primary_10_1103_PhysRevLett_133_043601 crossref_primary_10_1103_PhysRevB_103_174106 crossref_primary_10_1103_PhysRevA_107_023722 crossref_primary_10_1088_1367_2630_acf2b9 crossref_primary_10_1088_1674_1056_acbd2b crossref_primary_10_1142_S0217984921502134 crossref_primary_10_1007_s43673_023_00076_5 crossref_primary_10_1364_OE_438114 crossref_primary_10_1364_JOSAB_444507 crossref_primary_10_1103_PhysRevA_104_053518 crossref_primary_10_1103_PhysRevLett_133_233605 crossref_primary_10_1103_PhysRevA_110_033505 crossref_primary_10_1103_PhysRevB_100_174407 crossref_primary_10_1007_s11467_021_1144_z crossref_primary_10_1103_PhysRevA_109_L040402 crossref_primary_10_1016_j_fmre_2022_07_001 crossref_primary_10_1088_2040_8986_acd202 crossref_primary_10_1103_PhysRevA_108_043723 crossref_primary_10_1103_PhysRevA_103_023714 crossref_primary_10_1103_PhysRevA_109_033701 crossref_primary_10_1140_epjd_s10053_024_00881_z crossref_primary_10_1103_RevModPhys_91_025005 crossref_primary_10_1007_s11433_023_2180_x crossref_primary_10_1364_OE_27_015540 crossref_primary_10_1002_qute_202400200 crossref_primary_10_1103_PhysRevA_101_053826 crossref_primary_10_1364_OE_534446 crossref_primary_10_1364_OE_509811 crossref_primary_10_1002_andp_202200348 crossref_primary_10_1209_0295_5075_127_60001 crossref_primary_10_1103_PRXQuantum_5_020306 crossref_primary_10_1007_s43673_023_00077_4 crossref_primary_10_1007_s11433_019_9396_8 crossref_primary_10_1103_PhysRevLett_131_143602 crossref_primary_10_1007_s11433_023_2340_7 crossref_primary_10_1364_OE_487883 crossref_primary_10_1103_PhysRevA_108_033717 crossref_primary_10_1364_OE_509918 crossref_primary_10_1364_OE_383152 crossref_primary_10_1007_s11467_021_1151_0 crossref_primary_10_1103_PhysRevA_101_012329 crossref_primary_10_1002_qute_202400217 crossref_primary_10_1088_1572_9494_abec3a crossref_primary_10_1103_PhysRevA_104_L031701 crossref_primary_10_1103_PRXQuantum_5_020314 crossref_primary_10_1103_PhysRevA_100_023838 crossref_primary_10_1038_s42005_023_01457_w crossref_primary_10_1103_PhysRevA_100_052332 crossref_primary_10_1103_PhysRevLett_127_183603 crossref_primary_10_1103_PhysRevResearch_4_013014 crossref_primary_10_1103_PhysRevResearch_4_L042013 crossref_primary_10_1038_s41534_019_0172_9 crossref_primary_10_1088_1367_2630_ad2bad crossref_primary_10_1103_PhysRevLett_133_033603 crossref_primary_10_1007_s11433_023_2188_2 crossref_primary_10_1364_OPTICA_514075 crossref_primary_10_1103_PhysRevA_110_052612 crossref_primary_10_1103_PhysRevLett_128_083604 crossref_primary_10_1016_j_physrep_2024_05_003 crossref_primary_10_1103_PhysRevResearch_5_033136 crossref_primary_10_1364_OE_504383 crossref_primary_10_1088_1674_1056_ad8f9e crossref_primary_10_1088_1674_1056_ad9ba2 crossref_primary_10_1103_PRXQuantum_2_020323 crossref_primary_10_1103_PhysRevA_111_023701 crossref_primary_10_1103_PhysRevA_100_023825 crossref_primary_10_1103_PhysRevLett_133_203605 crossref_primary_10_1103_PhysRevLett_125_143605 crossref_primary_10_1002_andp_201900220 crossref_primary_10_1515_nanoph_2020_0513 crossref_primary_10_1063_1_5125224 crossref_primary_10_1364_OE_558988 crossref_primary_10_1364_OPTICA_447782 crossref_primary_10_1103_PhysRevA_104_053718 crossref_primary_10_1103_PhysRevResearch_5_033002 crossref_primary_10_1209_0295_5075_131_60001 crossref_primary_10_1103_PhysRevA_102_032202 crossref_primary_10_1002_adpr_202000175 crossref_primary_10_1103_PhysRevResearch_4_013233 crossref_primary_10_1016_j_optcom_2021_127138 crossref_primary_10_1038_s42254_018_0006_2 crossref_primary_10_1103_PhysRevA_100_023814 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevLett.120.093601 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 29547303 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM OK1 P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c405t-843609ad5ad700ab96a2051a65904f84a7f10405619a9ed8be55251e2cf539ea2 |
IngestDate | Thu Jan 02 23:09:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-843609ad5ad700ab96a2051a65904f84a7f10405619a9ed8be55251e2cf539ea2 |
PMID | 29547303 |
ParticipantIDs | pubmed_primary_29547303 |
PublicationCentury | 2000 |
PublicationDate | 2018-03-02 |
PublicationDateYYYYMMDD | 2018-03-02 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2018 |
SSID | ssj0001268 |
Score | 2.6518254 |
Snippet | We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e.,... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 093601 |
Title | Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29547303 |
Volume | 120 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2IKReEO838oHbNot38_RxWy2qEEUFtWJvlZOM20jbZAXLoxz4Q_xJZjxJ6m6LeOQQRbZixfm-TGbGM2MhXgDQTpIwpihxNFB0GQamwM8dUHUwEKcpKMpG3nub7B5Gr-fxfDD46UUtfV7lo-L7lXkl_4MqtiGulCX7D8j2g2IDXiO-eEaE8fxXGM--LZuawn3MYnE2nNUnvJz_xhUH2XOVM9nlx9kLzinaNEv4yHtGVCwiXPAmYX0WONUTB0KN8ZjjyoccU7BvKIiLqvkPpxSDbltXn6_b7neQt-kwC5cp1Ovs77hawQeoepAr_FE2X6vCObGnpTntw4Mqjh2uj4Ptpm-kRf3tHeqZV3WAcsp3WYxdDp9imQssZlWqg3TM6aO9HJ4oj3Dak6pKhwm7PC4LfEWFJ2iC7-ELZUCNcJjR5RsQuOWpowEtbKJYC__cu1aIu-vaEBtoktAeq-QY2uzceUnWJqDjI728-oGo8nQ7yJoV47SZg1viZmuGyClz6rYYQH1H3GAEP90VPy4wS3bMkj6zpMesLbnGqy2JrJI-q6TPKulYJc9ZJS-w6p44fDU72NkN2p06ggIV_lWQRTg9bcrYlKlSJteJmaC0N0msVWSzyKQWzX4yVrXRUGY5xDEq1jApbBxqMJP74lqN03ooJCrsaZjkqgCjogQyPGxUKGstmhqpKh-JB_zijpZcjuWoe6WPf9vzRGye0_CpuG7x-4dnqEyu8ucOxl8TGHdh |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponentially+Enhanced+Light-Matter+Interaction%2C+Cooperativities%2C+and+Steady-State+Entanglement+Using+Parametric+Amplification&rft.jtitle=Physical+review+letters&rft.au=Qin%2C+Wei&rft.au=Miranowicz%2C+Adam&rft.au=Li%2C+Peng-Bo&rft.au=L%C3%BC%2C+Xin-You&rft.date=2018-03-02&rft.eissn=1079-7114&rft.volume=120&rft.issue=9&rft.spage=093601&rft_id=info:doi/10.1103%2FPhysRevLett.120.093601&rft_id=info%3Apmid%2F29547303&rft_id=info%3Apmid%2F29547303&rft.externalDocID=29547303 |