Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification

We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 120; no. 9; p. 093601
Main Authors Qin, Wei, Miranowicz, Adam, Li, Peng-Bo, Lü, Xin-You, You, J Q, Nori, Franco
Format Journal Article
LanguageEnglish
Published United States 02.03.2018
Online AccessGet more information

Cover

Loading…
Abstract We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing.
AbstractList We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing.
Author Nori, Franco
Lü, Xin-You
Li, Peng-Bo
You, J Q
Miranowicz, Adam
Qin, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Qin
  fullname: Qin, Wei
  organization: CEMS, RIKEN, Wako-shi, Saitama 351-0198, Japan
– sequence: 2
  givenname: Adam
  surname: Miranowicz
  fullname: Miranowicz, Adam
  organization: Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
– sequence: 3
  givenname: Peng-Bo
  surname: Li
  fullname: Li, Peng-Bo
  organization: Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 4
  givenname: Xin-You
  surname:
  fullname: Lü, Xin-You
  organization: School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 5
  givenname: J Q
  surname: You
  fullname: You, J Q
  organization: Department of Physics, Zhejiang University, Hangzhou 310027, China
– sequence: 6
  givenname: Franco
  surname: Nori
  fullname: Nori, Franco
  organization: Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29547303$$D View this record in MEDLINE/PubMed
BookMark eNo10MFKw0AQBuBFFGurr1D2AZo6u8km2WMpVQsRi7XnMs1O2pVkE5K1mIvPbkS9zPDD8ME_Y3bpakeMTQXMhYDwfnPqu1c6Z-T9XEiYgw5jEBfsRkCig0SIaMTGXfcOAELG6TUbSa2iJITwhn2tPptBc95iWfZ85U7ocjI8s8eTD57Re2r52g0Tc29rN-PLum6G5O3ZekvdjKMzfOsJTR9sPXoaEI_uWFI1sHzXWXfkG2yxIt_anC-qprSFzfGHu2VXBZYd3f3tCds9rN6WT0H28rheLrIgj0D5II2GRhqNQpMA4EHHKEEJjJWGqEgjTAoBw2UsNGoy6YGUkkqQzAsVakI5YdNft_k4VGT2TWsrbPv9_yPkN6N4ZQM
CitedBy_id crossref_primary_10_1088_1612_202X_ac83c2
crossref_primary_10_1103_PhysRevA_98_062327
crossref_primary_10_1002_qute_202300239
crossref_primary_10_1007_s11433_023_2245_9
crossref_primary_10_1103_PhysRevLett_126_023602
crossref_primary_10_1103_PhysRevA_106_032416
crossref_primary_10_1364_PRJ_459794
crossref_primary_10_1093_ptep_ptaa129
crossref_primary_10_1103_PhysRevResearch_4_033112
crossref_primary_10_1116_5_0082239
crossref_primary_10_1103_PhysRevLett_130_073602
crossref_primary_10_1103_PhysRevA_109_043714
crossref_primary_10_1088_1361_6463_ace9e6
crossref_primary_10_1103_PhysRevA_109_043712
crossref_primary_10_1007_s12274_023_5386_7
crossref_primary_10_1088_1612_202X_ac9403
crossref_primary_10_1103_PhysRevLett_129_123602
crossref_primary_10_1364_OL_464060
crossref_primary_10_1039_D2NR03376C
crossref_primary_10_1103_PhysRevB_109_174410
crossref_primary_10_1103_PhysRevLett_132_193601
crossref_primary_10_1103_PhysRevLett_132_193602
crossref_primary_10_1016_j_rinp_2021_103832
crossref_primary_10_1103_PhysRevLett_124_240503
crossref_primary_10_1103_PhysRevA_98_053834
crossref_primary_10_1103_PRXQuantum_5_040345
crossref_primary_10_1103_PhysRevA_108_023716
crossref_primary_10_1364_OE_493208
crossref_primary_10_1103_PhysRevA_100_042112
crossref_primary_10_1103_PhysRevApplied_22_064001
crossref_primary_10_1103_PhysRevLett_127_083602
crossref_primary_10_1002_qute_202400065
crossref_primary_10_1103_PhysRevA_106_042430
crossref_primary_10_1103_PhysRevA_100_012339
crossref_primary_10_1103_PhysRevA_101_013826
crossref_primary_10_1103_PhysRevApplied_17_024009
crossref_primary_10_1103_PhysRevA_102_033716
crossref_primary_10_1103_PhysRevLett_134_090401
crossref_primary_10_1364_OE_423373
crossref_primary_10_1364_OE_499778
crossref_primary_10_1038_s41567_021_01237_9
crossref_primary_10_1007_s10773_019_04339_6
crossref_primary_10_1088_1367_2630_aadc9f
crossref_primary_10_1103_PhysRevA_102_023707
crossref_primary_10_1103_PhysRevLett_130_203605
crossref_primary_10_1038_s41467_021_26573_5
crossref_primary_10_1364_OL_459917
crossref_primary_10_1002_qute_202000149
crossref_primary_10_1364_OL_532966
crossref_primary_10_1002_lpor_202301154
crossref_primary_10_1103_PhysRevB_104_L220503
crossref_primary_10_1103_PhysRevA_97_033807
crossref_primary_10_1103_PhysRevLett_125_153602
crossref_primary_10_1103_PhysRevA_100_062501
crossref_primary_10_1103_PhysRevA_109_023519
crossref_primary_10_1103_PhysRevA_103_063510
crossref_primary_10_1126_sciadv_adi2042
crossref_primary_10_1364_OPTICAQ_523480
crossref_primary_10_1002_qute_202400288
crossref_primary_10_1109_JSTQE_2024_3492261
crossref_primary_10_1103_PhysRevA_97_052321
crossref_primary_10_1103_PhysRevA_111_013709
crossref_primary_10_1016_j_physleta_2025_130368
crossref_primary_10_1364_OE_496528
crossref_primary_10_1103_PhysRevX_9_049903
crossref_primary_10_1016_j_rinp_2022_105425
crossref_primary_10_1016_j_physrep_2022_03_002
crossref_primary_10_1007_s11433_022_2073_9
crossref_primary_10_1002_andp_201800430
crossref_primary_10_1103_PhysRevA_99_023833
crossref_primary_10_1002_andp_201900606
crossref_primary_10_1103_PhysRevB_108_L241404
crossref_primary_10_1103_PhysRevA_108_013516
crossref_primary_10_1364_OE_512280
crossref_primary_10_1209_0295_5075_123_24002
crossref_primary_10_1364_OE_538074
crossref_primary_10_1364_OE_382254
crossref_primary_10_1103_PhysRevResearch_6_023216
crossref_primary_10_1103_PhysRevResearch_7_L012014
crossref_primary_10_1088_1402_4896_ad6eca
crossref_primary_10_1063_5_0041406
crossref_primary_10_1088_1674_1056_ac140a
crossref_primary_10_1088_1612_202X_ab3453
crossref_primary_10_1103_PhysRevA_102_032601
crossref_primary_10_1103_PhysRevLett_124_103602
crossref_primary_10_35848_1347_4065_ac92b2
crossref_primary_10_1007_s11433_019_9451_3
crossref_primary_10_1142_S0219749923500296
crossref_primary_10_1364_OE_26_020459
crossref_primary_10_1007_s11433_023_2147_3
crossref_primary_10_1103_PhysRevApplied_16_064008
crossref_primary_10_1088_1361_6463_ad31e4
crossref_primary_10_1088_1402_4896_acbba7
crossref_primary_10_1021_acs_jpclett_2c00172
crossref_primary_10_1103_PhysRevA_98_063815
crossref_primary_10_1063_5_0021099
crossref_primary_10_1103_PhysRevA_106_012407
crossref_primary_10_1364_OE_510160
crossref_primary_10_1002_andp_202000002
crossref_primary_10_1103_PhysRevA_101_063822
crossref_primary_10_3389_fphy_2023_1332496
crossref_primary_10_22331_qv_2020_07_20_41
crossref_primary_10_1103_PhysRevA_105_022617
crossref_primary_10_1088_1674_1056_abd7d9
crossref_primary_10_1364_JOSAB_481012
crossref_primary_10_1364_OL_398859
crossref_primary_10_1103_PhysRevA_100_053857
crossref_primary_10_1103_PhysRevA_110_063717
crossref_primary_10_1103_PhysRevLett_129_063602
crossref_primary_10_1103_PhysRevA_100_013843
crossref_primary_10_1007_s11071_019_05084_5
crossref_primary_10_1063_5_0208107
crossref_primary_10_1103_PhysRevB_100_100503
crossref_primary_10_1103_PhysRevB_106_184426
crossref_primary_10_1103_PhysRevA_101_042313
crossref_primary_10_1103_PhysRevLett_131_113601
crossref_primary_10_1103_PhysRevA_104_013717
crossref_primary_10_1088_1402_4896_ad4319
crossref_primary_10_1103_PhysRevA_104_013715
crossref_primary_10_1103_PhysRevLett_133_043601
crossref_primary_10_1103_PhysRevB_103_174106
crossref_primary_10_1103_PhysRevA_107_023722
crossref_primary_10_1088_1367_2630_acf2b9
crossref_primary_10_1088_1674_1056_acbd2b
crossref_primary_10_1142_S0217984921502134
crossref_primary_10_1007_s43673_023_00076_5
crossref_primary_10_1364_OE_438114
crossref_primary_10_1364_JOSAB_444507
crossref_primary_10_1103_PhysRevA_104_053518
crossref_primary_10_1103_PhysRevLett_133_233605
crossref_primary_10_1103_PhysRevA_110_033505
crossref_primary_10_1103_PhysRevB_100_174407
crossref_primary_10_1007_s11467_021_1144_z
crossref_primary_10_1103_PhysRevA_109_L040402
crossref_primary_10_1016_j_fmre_2022_07_001
crossref_primary_10_1088_2040_8986_acd202
crossref_primary_10_1103_PhysRevA_108_043723
crossref_primary_10_1103_PhysRevA_103_023714
crossref_primary_10_1103_PhysRevA_109_033701
crossref_primary_10_1140_epjd_s10053_024_00881_z
crossref_primary_10_1103_RevModPhys_91_025005
crossref_primary_10_1007_s11433_023_2180_x
crossref_primary_10_1364_OE_27_015540
crossref_primary_10_1002_qute_202400200
crossref_primary_10_1103_PhysRevA_101_053826
crossref_primary_10_1364_OE_534446
crossref_primary_10_1364_OE_509811
crossref_primary_10_1002_andp_202200348
crossref_primary_10_1209_0295_5075_127_60001
crossref_primary_10_1103_PRXQuantum_5_020306
crossref_primary_10_1007_s43673_023_00077_4
crossref_primary_10_1007_s11433_019_9396_8
crossref_primary_10_1103_PhysRevLett_131_143602
crossref_primary_10_1007_s11433_023_2340_7
crossref_primary_10_1364_OE_487883
crossref_primary_10_1103_PhysRevA_108_033717
crossref_primary_10_1364_OE_509918
crossref_primary_10_1364_OE_383152
crossref_primary_10_1007_s11467_021_1151_0
crossref_primary_10_1103_PhysRevA_101_012329
crossref_primary_10_1002_qute_202400217
crossref_primary_10_1088_1572_9494_abec3a
crossref_primary_10_1103_PhysRevA_104_L031701
crossref_primary_10_1103_PRXQuantum_5_020314
crossref_primary_10_1103_PhysRevA_100_023838
crossref_primary_10_1038_s42005_023_01457_w
crossref_primary_10_1103_PhysRevA_100_052332
crossref_primary_10_1103_PhysRevLett_127_183603
crossref_primary_10_1103_PhysRevResearch_4_013014
crossref_primary_10_1103_PhysRevResearch_4_L042013
crossref_primary_10_1038_s41534_019_0172_9
crossref_primary_10_1088_1367_2630_ad2bad
crossref_primary_10_1103_PhysRevLett_133_033603
crossref_primary_10_1007_s11433_023_2188_2
crossref_primary_10_1364_OPTICA_514075
crossref_primary_10_1103_PhysRevA_110_052612
crossref_primary_10_1103_PhysRevLett_128_083604
crossref_primary_10_1016_j_physrep_2024_05_003
crossref_primary_10_1103_PhysRevResearch_5_033136
crossref_primary_10_1364_OE_504383
crossref_primary_10_1088_1674_1056_ad8f9e
crossref_primary_10_1088_1674_1056_ad9ba2
crossref_primary_10_1103_PRXQuantum_2_020323
crossref_primary_10_1103_PhysRevA_111_023701
crossref_primary_10_1103_PhysRevA_100_023825
crossref_primary_10_1103_PhysRevLett_133_203605
crossref_primary_10_1103_PhysRevLett_125_143605
crossref_primary_10_1002_andp_201900220
crossref_primary_10_1515_nanoph_2020_0513
crossref_primary_10_1063_1_5125224
crossref_primary_10_1364_OE_558988
crossref_primary_10_1364_OPTICA_447782
crossref_primary_10_1103_PhysRevA_104_053718
crossref_primary_10_1103_PhysRevResearch_5_033002
crossref_primary_10_1209_0295_5075_131_60001
crossref_primary_10_1103_PhysRevA_102_032202
crossref_primary_10_1002_adpr_202000175
crossref_primary_10_1103_PhysRevResearch_4_013233
crossref_primary_10_1016_j_optcom_2021_127138
crossref_primary_10_1038_s42254_018_0006_2
crossref_primary_10_1103_PhysRevA_100_023814
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.120.093601
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 29547303
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c405t-843609ad5ad700ab96a2051a65904f84a7f10405619a9ed8be55251e2cf539ea2
IngestDate Thu Jan 02 23:09:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-843609ad5ad700ab96a2051a65904f84a7f10405619a9ed8be55251e2cf539ea2
PMID 29547303
ParticipantIDs pubmed_primary_29547303
PublicationCentury 2000
PublicationDate 2018-03-02
PublicationDateYYYYMMDD 2018-03-02
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2018
SSID ssj0001268
Score 2.6518254
Snippet We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e.,...
SourceID pubmed
SourceType Index Database
StartPage 093601
Title Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification
URI https://www.ncbi.nlm.nih.gov/pubmed/29547303
Volume 120
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2IKReEO838oHbNot38_RxWy2qEEUFtWJvlZOM20jbZAXLoxz4Q_xJZjxJ6m6LeOQQRbZixfm-TGbGM2MhXgDQTpIwpihxNFB0GQamwM8dUHUwEKcpKMpG3nub7B5Gr-fxfDD46UUtfV7lo-L7lXkl_4MqtiGulCX7D8j2g2IDXiO-eEaE8fxXGM--LZuawn3MYnE2nNUnvJz_xhUH2XOVM9nlx9kLzinaNEv4yHtGVCwiXPAmYX0WONUTB0KN8ZjjyoccU7BvKIiLqvkPpxSDbltXn6_b7neQt-kwC5cp1Ovs77hawQeoepAr_FE2X6vCObGnpTntw4Mqjh2uj4Ptpm-kRf3tHeqZV3WAcsp3WYxdDp9imQssZlWqg3TM6aO9HJ4oj3Dak6pKhwm7PC4LfEWFJ2iC7-ELZUCNcJjR5RsQuOWpowEtbKJYC__cu1aIu-vaEBtoktAeq-QY2uzceUnWJqDjI728-oGo8nQ7yJoV47SZg1viZmuGyClz6rYYQH1H3GAEP90VPy4wS3bMkj6zpMesLbnGqy2JrJI-q6TPKulYJc9ZJS-w6p44fDU72NkN2p06ggIV_lWQRTg9bcrYlKlSJteJmaC0N0msVWSzyKQWzX4yVrXRUGY5xDEq1jApbBxqMJP74lqN03ooJCrsaZjkqgCjogQyPGxUKGstmhqpKh-JB_zijpZcjuWoe6WPf9vzRGye0_CpuG7x-4dnqEyu8ucOxl8TGHdh
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponentially+Enhanced+Light-Matter+Interaction%2C+Cooperativities%2C+and+Steady-State+Entanglement+Using+Parametric+Amplification&rft.jtitle=Physical+review+letters&rft.au=Qin%2C+Wei&rft.au=Miranowicz%2C+Adam&rft.au=Li%2C+Peng-Bo&rft.au=L%C3%BC%2C+Xin-You&rft.date=2018-03-02&rft.eissn=1079-7114&rft.volume=120&rft.issue=9&rft.spage=093601&rft_id=info:doi/10.1103%2FPhysRevLett.120.093601&rft_id=info%3Apmid%2F29547303&rft_id=info%3Apmid%2F29547303&rft.externalDocID=29547303