Fabrication of hierarchical CoP/ZnCdS/Co3O4 quantum dots (800>40>4.5 nm) bi-heterostructure cages for efficient photocatalytic hydrogen evolution
The design and construction of hierarchical CoP/ZnCdS/Co₃O₄ quantum dots (QDs) (800 > 40>4.5 nm) bi-heterostructure cages as an ultrahigh-performance photocatalyst for hydrogen evolution with visible light is investigated. Three excellent photoactive materials that ZnCdS solid solution, high-c...
Saved in:
Published in | Renewable energy Vol. 198; pp. 626 - 636 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design and construction of hierarchical CoP/ZnCdS/Co₃O₄ quantum dots (QDs) (800 > 40>4.5 nm) bi-heterostructure cages as an ultrahigh-performance photocatalyst for hydrogen evolution with visible light is investigated. Three excellent photoactive materials that ZnCdS solid solution, high-conductivity CoP and high-efficiency Co₃O₄ QDs were integrated into all-in-one bi-heterostructure cages architecture. The development of the two high-efficiency electron-transfer pathways in CoP/ZnCdS/Co₃O₄ QDs can seriously facilitate the separation and migration of light-induced electrons while the unique structure also can offer large reaction surface and expose abundant active sites for photocatalytic hydrogen evolution reaction. Because of the distinctively compositional and structural merits, the hierarchical CoP/ZnCdS/Co₃O₄ QDs bi-heterostructure cages without introducing any cocatalysts exhibit ultrahigh activity and favorable stability for generation of high-purity hydrogen under visible light irradiation. In comparison with pure ZnCdS nanoparticles (8.2 mmol‧g⁻¹‧h⁻¹) and 1.5 wt.% CoP/ZnCdS (12.4 mmol‧g⁻¹‧h⁻¹), the new-structure CoP/ZnCdS/Co₃O₄ QDs (O/ZCS/P-3) exhibits more excellent hydrogen evolution performance (24.2 mmol‧g⁻¹‧h⁻¹) under 5 W LED light irradiation, and the hydrogen evolution rate is up to 40 mmol‧g⁻¹‧h⁻¹ under 300 W xenon lamp irradiation. |
---|---|
AbstractList | The design and construction of hierarchical CoP/ZnCdS/Co₃O₄ quantum dots (QDs) (800 > 40>4.5 nm) bi-heterostructure cages as an ultrahigh-performance photocatalyst for hydrogen evolution with visible light is investigated. Three excellent photoactive materials that ZnCdS solid solution, high-conductivity CoP and high-efficiency Co₃O₄ QDs were integrated into all-in-one bi-heterostructure cages architecture. The development of the two high-efficiency electron-transfer pathways in CoP/ZnCdS/Co₃O₄ QDs can seriously facilitate the separation and migration of light-induced electrons while the unique structure also can offer large reaction surface and expose abundant active sites for photocatalytic hydrogen evolution reaction. Because of the distinctively compositional and structural merits, the hierarchical CoP/ZnCdS/Co₃O₄ QDs bi-heterostructure cages without introducing any cocatalysts exhibit ultrahigh activity and favorable stability for generation of high-purity hydrogen under visible light irradiation. In comparison with pure ZnCdS nanoparticles (8.2 mmol‧g⁻¹‧h⁻¹) and 1.5 wt.% CoP/ZnCdS (12.4 mmol‧g⁻¹‧h⁻¹), the new-structure CoP/ZnCdS/Co₃O₄ QDs (O/ZCS/P-3) exhibits more excellent hydrogen evolution performance (24.2 mmol‧g⁻¹‧h⁻¹) under 5 W LED light irradiation, and the hydrogen evolution rate is up to 40 mmol‧g⁻¹‧h⁻¹ under 300 W xenon lamp irradiation. |
Author | Zhu, Pengfei Jin, Zhiliang Tsubaki, Noritatsu Li, Yanbing |
Author_xml | – sequence: 1 givenname: Yanbing surname: Li fullname: Li, Yanbing – sequence: 2 givenname: Pengfei surname: Zhu fullname: Zhu, Pengfei – sequence: 3 givenname: Noritatsu surname: Tsubaki fullname: Tsubaki, Noritatsu – sequence: 4 givenname: Zhiliang orcidid: 0000-0002-3793-6588 surname: Jin fullname: Jin, Zhiliang |
BookMark | eNp9kM9u1DAQxn0oEm3hDTj4WA7J2rG98XJAQhEFpEqtBL30YjmTceNV1t7aTqV9DZ6AZ-HJmmU5cUAz0kij75s_vwtyFmJAQt5xVnPG16ttnTAsUTesaWqma6bEGTlnmzWruNT8NbnIecsYV7qV5-Tnte2TB1t8DDQ6OnpMNsG4tCbaxbvVQ-iG76suiltJn2YbyryjQyyZXmnGPsola_X7V9i9p72vRiyYYi5phjInpGAfMVMXE0XnPHgMhe7HWOKy0E6H4oGOhyHFRwwUn-M0H894Q145O2V8-7dekvvrzz-6r9XN7Zdv3aebCiRTpWplCxvRO6mg5e0wABfQgpRrrTgCa6BRQra9FU7YQbqGCyt6rZXb9OiGtRSX5Oo0d5_i04y5mJ3PgNNkA8Y5m6blWjRKCbFIP5yksHyXEzoDvvxhVpL1k-HMHOGbrTnBN0f4hmmzwF_M8h_zPvmdTYf_214ApniRzg |
CitedBy_id | crossref_primary_10_1016_j_jphotochem_2023_114986 crossref_primary_10_1002_bte2_20240033 crossref_primary_10_1016_j_jece_2024_113420 crossref_primary_10_1039_D2NR05466C crossref_primary_10_1021_acsanm_4c04058 crossref_primary_10_1016_j_jssc_2024_125156 crossref_primary_10_1016_j_renene_2024_120484 crossref_primary_10_3390_coatings13010080 crossref_primary_10_1016_j_renene_2024_121006 crossref_primary_10_1021_acs_jpcc_3c08343 crossref_primary_10_1016_j_ijhydene_2023_06_147 crossref_primary_10_1016_j_jclepro_2023_137700 crossref_primary_10_1016_j_ijhydene_2023_10_264 crossref_primary_10_1016_j_sna_2023_114778 crossref_primary_10_1016_j_colsurfa_2023_132935 |
Cites_doi | 10.1016/j.joule.2018.01.007 10.1039/C4CC08179J 10.1016/j.cej.2019.123051 10.1016/j.cattod.2008.09.019 10.1038/nnano.2016.194 10.1016/j.apcatb.2018.11.088 10.1016/j.apcatb.2016.07.046 10.1002/adma.201301947 10.1016/j.ijhydene.2016.01.008 10.1016/j.cej.2020.124496 10.1016/j.apcatb.2019.118439 10.1021/acsanm.0c00388 10.1016/j.cej.2021.131338 10.1039/C5CC01799H 10.1002/adma.201804294 10.1016/j.trechm.2019.06.009 10.1016/j.apcatb.2019.117770 10.1039/D1DT01333E 10.1039/C9NJ04584H 10.1016/j.apcatb.2019.118029 10.1021/acscatal.7b04228 10.1039/C5CS00434A 10.1021/cr900289f 10.1021/acsami.5b10280 10.1016/j.nanoen.2020.104810 10.1021/acs.chemmater.7b00867 10.1021/ja809307s 10.1016/j.apcatb.2020.118651 10.1021/cs4000975 10.1021/ja0540019 10.1016/j.jcis.2019.01.101 10.1016/j.renene.2018.07.028 10.1016/j.apcatb.2017.05.044 10.1016/j.apcatb.2019.117819 10.1002/solr.202000685 10.1039/D1TA04104E 10.1002/smll.201701530 10.1039/C7TA04589A 10.1039/C7CS00306D 10.1021/acsami.5b06009 10.1039/C6TA06705K 10.1016/j.apcatb.2017.06.014 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2022.08.053 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 636 |
ExternalDocumentID | 10_1016_j_renene_2022_08_053 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEGFY AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSH SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- 7S9 L.6 |
ID | FETCH-LOGICAL-c405t-747c93bf45c717ddc13c7c446851ec02c25347ba3f3ad4f213a3b885f9befd643 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 03:51:12 EDT 2025 Tue Jul 01 03:20:34 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-747c93bf45c717ddc13c7c446851ec02c25347ba3f3ad4f213a3b885f9befd643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3793-6588 |
PQID | 2718325533 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2718325533 crossref_citationtrail_10_1016_j_renene_2022_08_053 crossref_primary_10_1016_j_renene_2022_08_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-00 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2022 |
References | Xue (10.1016/j.renene.2022.08.053_bib11) 2018; 8 Shia (10.1016/j.renene.2022.08.053_bib23) 2016; 45 Wang (10.1016/j.renene.2022.08.053_bib41) 2009; 131 Wang (10.1016/j.renene.2022.08.053_bib36) 2019; 131 Huang (10.1016/j.renene.2022.08.053_bib14) 2020; 267 Cao (10.1016/j.renene.2022.08.053_bib40) 2018; 2 Shi (10.1016/j.renene.2022.08.053_bib30) 2015; 51 Wang (10.1016/j.renene.2022.08.053_bib39) 2022; 428 Ren (10.1016/j.renene.2022.08.053_bib4) 2020; 390 Guo (10.1016/j.renene.2022.08.053_bib33) 2017; 29 Luo (10.1016/j.renene.2022.08.053_bib31) 2019; 256 Dai (10.1016/j.renene.2022.08.053_bib38) 2017; 217 Huang (10.1016/j.renene.2022.08.053_bib15) 2021; 5 Jiang (10.1016/j.renene.2022.08.053_bib10) 2020; 268 Lewis (10.1016/j.renene.2022.08.053_bib2) 2016; 11 Liu (10.1016/j.renene.2022.08.053_bib12) 2017; 5 Xu (10.1016/j.renene.2022.08.053_bib3) 2019; 255 Hao (10.1016/j.renene.2022.08.053_bib32) 2021; 50 Zhang (10.1016/j.renene.2022.08.053_bib8) 2020; 73 Agarwal (10.1016/j.renene.2022.08.053_bib18) 2021; 9 Liu (10.1016/j.renene.2022.08.053_bib24) 2005; 127 Li (10.1016/j.renene.2022.08.053_bib17) 2019; 5451 Wang (10.1016/j.renene.2022.08.053_bib22) 2016; 4 Nozik (10.1016/j.renene.2022.08.053_bib28) 2010; 110 Kim (10.1016/j.renene.2022.08.053_bib27) 2013; 25 Tian (10.1016/j.renene.2022.08.053_bib42) 2019; 259 Guo (10.1016/j.renene.2022.08.053_bib13) 2016; 8 Cao (10.1016/j.renene.2022.08.053_bib26) 2015; 51 Li (10.1016/j.renene.2022.08.053_bib25) 2020; 382 Güttinger (10.1016/j.renene.2022.08.053_bib1) 2017; 46 Shen (10.1016/j.renene.2022.08.053_bib6) 2021; 42 Li (10.1016/j.renene.2022.08.053_bib16) 2013; 3 Gong (10.1016/j.renene.2022.08.053_bib34) 2019; 43 Moon (10.1016/j.renene.2022.08.053_bib29) 2019; 31 Yi (10.1016/j.renene.2022.08.053_bib37) 2017; 200 Gong (10.1016/j.renene.2022.08.053_bib35) 2020; 3 Cao (10.1016/j.renene.2022.08.053_bib7) 2020; 2 Li (10.1016/j.renene.2022.08.053_bib19) 2017; 13 Li (10.1016/j.renene.2022.08.053_bib9) 2019; 244 Yu (10.1016/j.renene.2022.08.053_bib43) 2016; 41 Wang (10.1016/j.renene.2022.08.053_bib5) 2017; 214 Oyama (10.1016/j.renene.2022.08.053_bib20) 2009; 143 Ma (10.1016/j.renene.2022.08.053_bib21) 2016; 8 |
References_xml | – volume: 2 start-page: 549 year: 2018 ident: 10.1016/j.renene.2022.08.053_bib40 article-title: Ultrasmall CoP nanoparticles as efficient cocatalysts for photocatalytic formic acid dehydrogenation publication-title: Joule doi: 10.1016/j.joule.2018.01.007 – volume: 51 start-page: 1338 year: 2015 ident: 10.1016/j.renene.2022.08.053_bib30 article-title: Facile synthesis of monodisperse Co3O4 quantum dots with efficient oxygen evolution activity publication-title: Chem. Commun. doi: 10.1039/C4CC08179J – volume: 382 year: 2020 ident: 10.1016/j.renene.2022.08.053_bib25 article-title: Performance of ZIF-67-derived fold polyhedrons for enhanced photocatalytic hydrogen evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123051 – volume: 143 year: 2009 ident: 10.1016/j.renene.2022.08.053_bib20 article-title: Transition metal phosphide hydroprocessing catalysts: a review publication-title: Catal. Today doi: 10.1016/j.cattod.2008.09.019 – volume: 11 start-page: 1010 year: 2016 ident: 10.1016/j.renene.2022.08.053_bib2 article-title: Developing a scalable artificial photosynthesis technology through nanomaterials by design publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.194 – volume: 244 start-page: 604 year: 2019 ident: 10.1016/j.renene.2022.08.053_bib9 article-title: Oriented ZnmIn2Sm+3@In2S3 heterojunction with hierarchical structure for efficient photocatalytic hydrogen evolution publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.11.088 – volume: 200 start-page: 477 year: 2017 ident: 10.1016/j.renene.2022.08.053_bib37 article-title: Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.07.046 – volume: 25 start-page: 4986 year: 2013 ident: 10.1016/j.renene.2022.08.053_bib27 article-title: 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances publication-title: Adv. Mater. doi: 10.1002/adma.201301947 – volume: 41 start-page: 4150 year: 2016 ident: 10.1016/j.renene.2022.08.053_bib43 article-title: Electrocatalytic performance of commercial vanadium carbide for oxygen reduction reaction publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.01.008 – volume: 390 year: 2020 ident: 10.1016/j.renene.2022.08.053_bib4 article-title: Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124496 – volume: 268 year: 2020 ident: 10.1016/j.renene.2022.08.053_bib10 article-title: In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118439 – volume: 3 start-page: 3665 year: 2020 ident: 10.1016/j.renene.2022.08.053_bib35 article-title: NiSe/Cd0.5Zn0.5S composite nanoparticles for use in p-n heterojunction-based photocatalysts for solar energy harvesting publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00388 – volume: 428 year: 2022 ident: 10.1016/j.renene.2022.08.053_bib39 article-title: Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131338 – volume: 51 start-page: 8708 year: 2015 ident: 10.1016/j.renene.2022.08.053_bib26 article-title: Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation publication-title: Chem. Commun. doi: 10.1039/C5CC01799H – volume: 31 year: 2019 ident: 10.1016/j.renene.2022.08.053_bib29 article-title: Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications publication-title: Adv. Mater. doi: 10.1002/adma.201804294 – volume: 2 start-page: 57 year: 2020 ident: 10.1016/j.renene.2022.08.053_bib7 article-title: Emerging photocatalysts for hydrogen evolution publication-title: Trends Chem doi: 10.1016/j.trechm.2019.06.009 – volume: 42 start-page: 25 year: 2021 ident: 10.1016/j.renene.2022.08.053_bib6 article-title: Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution, Chinese publication-title: J. Catal. – volume: 255 year: 2019 ident: 10.1016/j.renene.2022.08.053_bib3 article-title: Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.117770 – volume: 50 start-page: 10501 year: 2021 ident: 10.1016/j.renene.2022.08.053_bib32 article-title: Amorphous Co3O4 quantum dots hybridizing with 3D hexagonal CdS single crystals to construct a 0D/3D p-n heterojunction for a highly efficient photocatalytic H2 evolution publication-title: Dalton Trans. doi: 10.1039/D1DT01333E – volume: 43 year: 2019 ident: 10.1016/j.renene.2022.08.053_bib34 article-title: WP modified S-scheme Zn0.5Cd0.5S/WO3 for efficient photocatalytic hydrogen production publication-title: New J. Chem. doi: 10.1039/C9NJ04584H – volume: 259 year: 2019 ident: 10.1016/j.renene.2022.08.053_bib42 article-title: Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118029 – volume: 8 start-page: 1532 year: 2018 ident: 10.1016/j.renene.2022.08.053_bib11 article-title: NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.2S photocatalytic system via an rGO nanosheet “bridge” toward visible-light-driven hydrogen evolution publication-title: ACS Catal. doi: 10.1021/acscatal.7b04228 – volume: 45 start-page: 1529 year: 2016 ident: 10.1016/j.renene.2022.08.053_bib23 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 110 start-page: 6873 year: 2010 ident: 10.1016/j.renene.2022.08.053_bib28 article-title: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells publication-title: Chem. Rev. doi: 10.1021/cr900289f – volume: 8 start-page: 1992 year: 2016 ident: 10.1016/j.renene.2022.08.053_bib21 article-title: Nickel cobalt hydroxide@reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10280 – volume: 73 year: 2020 ident: 10.1016/j.renene.2022.08.053_bib8 article-title: Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104810 – volume: 29 start-page: 5566 year: 2017 ident: 10.1016/j.renene.2022.08.053_bib33 article-title: One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00867 – volume: 131 start-page: 1680 year: 2009 ident: 10.1016/j.renene.2022.08.053_bib41 article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809307s – volume: 267 year: 2020 ident: 10.1016/j.renene.2022.08.053_bib14 article-title: ZnxCd1-xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118651 – volume: 3 start-page: 882 year: 2013 ident: 10.1016/j.renene.2022.08.053_bib16 article-title: Zn1-xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity publication-title: ACS Catal. doi: 10.1021/cs4000975 – volume: 127 start-page: 14871 year: 2005 ident: 10.1016/j.renene.2022.08.053_bib24 article-title: Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0540019 – volume: 5451 start-page: 287 year: 2019 ident: 10.1016/j.renene.2022.08.053_bib17 article-title: Unique photocatalytic activities of transition metal phosphide for hydrogen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.01.101 – volume: 131 start-page: 180 year: 2019 ident: 10.1016/j.renene.2022.08.053_bib36 article-title: Fabrication of noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple heterojunctions for efficient and robust photocatalyst hydrogen evolution under visible light irradiation publication-title: Renew. Energy doi: 10.1016/j.renene.2018.07.028 – volume: 214 start-page: 158 year: 2017 ident: 10.1016/j.renene.2022.08.053_bib5 article-title: Synthesis of MFe2O4 (M = Ni, Co)/BiVO4 film for photoelectrochemical hydrogen production activity publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.05.044 – volume: 256 year: 2019 ident: 10.1016/j.renene.2022.08.053_bib31 article-title: Towards the prominent cocatalytic effect of ultra-small CoP particles anchored on g-C3N4 nanosheets for visible light driven photocatalytic H2 production publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.117819 – volume: 5 year: 2021 ident: 10.1016/j.renene.2022.08.053_bib15 article-title: Band structure-controlled Zn1-xCdxS solid solution for photocatalytic hydrogen production improvement via appropriately enhancing oxidation capacity publication-title: Solar RRL doi: 10.1002/solr.202000685 – volume: 9 start-page: 20241 year: 2021 ident: 10.1016/j.renene.2022.08.053_bib18 article-title: Metal phosphides: topical advances in the design of supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/D1TA04104E – volume: 13 year: 2017 ident: 10.1016/j.renene.2022.08.053_bib19 article-title: Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors publication-title: Small doi: 10.1002/smll.201701530 – volume: 5 start-page: 14682 year: 2017 ident: 10.1016/j.renene.2022.08.053_bib12 article-title: Dramatic enhancement of the photocatalytic activity of Cd0.5Zn0.5S nanosheets via phosphorization calcination for visible-light-driven H2 evolution publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04589A – volume: 46 start-page: 6124 year: 2017 ident: 10.1016/j.renene.2022.08.053_bib1 article-title: Frontiers of water oxidation: the quest for true catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00306D – volume: 8 start-page: 2928 year: 2016 ident: 10.1016/j.renene.2022.08.053_bib13 article-title: Stabilizing and improving solar H2 generation from Zn0.5Cd0.5S nanorods@MoS2/RGO hybrids via dual charge transfer pathways publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06009 – volume: 4 start-page: 14915 year: 2016 ident: 10.1016/j.renene.2022.08.053_bib22 article-title: Nanostructured metal phosphide-based materials for electrochemical energy storage publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06705K – volume: 217 start-page: 429 year: 2017 ident: 10.1016/j.renene.2022.08.053_bib38 article-title: In-situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.06.014 |
SSID | ssj0015874 |
Score | 2.4698927 |
Snippet | The design and construction of hierarchical CoP/ZnCdS/Co₃O₄ quantum dots (QDs) (800 > 40>4.5 nm) bi-heterostructure cages as an ultrahigh-performance... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 626 |
SubjectTerms | electron transfer hydrogen hydrogen production irradiation light nanoparticles photocatalysis photocatalysts renewable energy sources xenon |
Title | Fabrication of hierarchical CoP/ZnCdS/Co3O4 quantum dots (800>40>4.5 nm) bi-heterostructure cages for efficient photocatalytic hydrogen evolution |
URI | https://www.proquest.com/docview/2718325533 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7q-qIP4hX3ooygoJRkk8zk9iLI0rLI2hVtoe5LmJlMti02KbuNsj74F8R_7DmTiykVXIUSSpombc7HmXO-nPMdQp5jD5rDXWFpV3CLy9i1IMpwrEiCSYTgSpiu93ej4HjC3079aa_3o1O1VK6lrb79sa_kf6wK-8Cu2CX7D5ZtTwo74D3YF7ZgYdhey8ZDIS9qzs0EfXPsJjbDTZAReA8nPsuP0o-ogVuwU44dlLDELPuQiRqyFcK4F2zAzcb2-_kSOQI5t2ZYI1NU0rKlqQxDJQgjDm4UJ7B-YDUr1oUhf65Q83V2lV4U5zgy4Ev9l7th7wfwqF9Nk5Y2vYZtGZCpJfgkctmsoIbDLqvK4fw80_OWWrgspahmbI8KZDTW1cgWU_4zr1nvs7JYzMsukwFJcFMT11KSgWNBeuZueOc46q9sSLusgHU9beAFnUW7_mxrPaioiYWN8qA5qqJ6nlFsrQSKN-W3R6fJcHJykowH0_ENctODvAMdp_29rRly_aiS9W5-aNOLaQoGt6-xGetsLvUmfhnfJXfqxIO-qVB0j_R0fp_c7shRPiA_O3iiRUa7eKKAp0ODpkODJVpjiSKW6EtA0msOL9un-fIV3cYQNRiigCHaYohuYog2GKIthh6SyXAwPjq26pEdloLIf21BcqpiJjPuq9AN01S5TIWK8wACe60cT3k-46EULGMi5ZnnMsFkFPlZLHWWQnT8iOzkRa4fExpkvpNmrqMjjQ_vwWmE4DeUwpw5zmJvl7Dm5iaq1rPHsSqfk6ZwcZFUJknQJAlOW_XZLrHab60qPZe_HP-ssVsCjhefpolcF-Vl4oW4GvqQLu1d45h9cus35A_IDtx9_QTC2bV8aiD2C1XaoSY |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+hierarchical+CoP%2FZnCdS%2FCo3O4+quantum+dots+%28800%3E40%3E4.5+nm%29+bi-heterostructure+cages+for+efficient+photocatalytic+hydrogen+evolution&rft.jtitle=Renewable+energy&rft.au=Li%2C+Yanbing&rft.au=Zhu%2C+Pengfei&rft.au=Tsubaki%2C+Noritatsu&rft.au=Jiang%2C+Zuojiu&rft.date=2022-10-01&rft.issn=0960-1481&rft.volume=198+p.626-636&rft.spage=626&rft.epage=636&rft_id=info:doi/10.1016%2Fj.renene.2022.08.053&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |