Fabrication of hierarchical CoP/ZnCdS/Co3O4 quantum dots (800>40>4.5 nm) bi-heterostructure cages for efficient photocatalytic hydrogen evolution

The design and construction of hierarchical CoP/ZnCdS/Co₃O₄ quantum dots (QDs) (800 > 40>4.5 nm) bi-heterostructure cages as an ultrahigh-performance photocatalyst for hydrogen evolution with visible light is investigated. Three excellent photoactive materials that ZnCdS solid solution, high-c...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 198; pp. 626 - 636
Main Authors Li, Yanbing, Zhu, Pengfei, Tsubaki, Noritatsu, Jin, Zhiliang
Format Journal Article
LanguageEnglish
Published 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The design and construction of hierarchical CoP/ZnCdS/Co₃O₄ quantum dots (QDs) (800 > 40>4.5 nm) bi-heterostructure cages as an ultrahigh-performance photocatalyst for hydrogen evolution with visible light is investigated. Three excellent photoactive materials that ZnCdS solid solution, high-conductivity CoP and high-efficiency Co₃O₄ QDs were integrated into all-in-one bi-heterostructure cages architecture. The development of the two high-efficiency electron-transfer pathways in CoP/ZnCdS/Co₃O₄ QDs can seriously facilitate the separation and migration of light-induced electrons while the unique structure also can offer large reaction surface and expose abundant active sites for photocatalytic hydrogen evolution reaction. Because of the distinctively compositional and structural merits, the hierarchical CoP/ZnCdS/Co₃O₄ QDs bi-heterostructure cages without introducing any cocatalysts exhibit ultrahigh activity and favorable stability for generation of high-purity hydrogen under visible light irradiation. In comparison with pure ZnCdS nanoparticles (8.2 mmol‧g⁻¹‧h⁻¹) and 1.5 wt.% CoP/ZnCdS (12.4 mmol‧g⁻¹‧h⁻¹), the new-structure CoP/ZnCdS/Co₃O₄ QDs (O/ZCS/P-3) exhibits more excellent hydrogen evolution performance (24.2 mmol‧g⁻¹‧h⁻¹) under 5 W LED light irradiation, and the hydrogen evolution rate is up to 40 mmol‧g⁻¹‧h⁻¹ under 300 W xenon lamp irradiation.
AbstractList The design and construction of hierarchical CoP/ZnCdS/Co₃O₄ quantum dots (QDs) (800 > 40>4.5 nm) bi-heterostructure cages as an ultrahigh-performance photocatalyst for hydrogen evolution with visible light is investigated. Three excellent photoactive materials that ZnCdS solid solution, high-conductivity CoP and high-efficiency Co₃O₄ QDs were integrated into all-in-one bi-heterostructure cages architecture. The development of the two high-efficiency electron-transfer pathways in CoP/ZnCdS/Co₃O₄ QDs can seriously facilitate the separation and migration of light-induced electrons while the unique structure also can offer large reaction surface and expose abundant active sites for photocatalytic hydrogen evolution reaction. Because of the distinctively compositional and structural merits, the hierarchical CoP/ZnCdS/Co₃O₄ QDs bi-heterostructure cages without introducing any cocatalysts exhibit ultrahigh activity and favorable stability for generation of high-purity hydrogen under visible light irradiation. In comparison with pure ZnCdS nanoparticles (8.2 mmol‧g⁻¹‧h⁻¹) and 1.5 wt.% CoP/ZnCdS (12.4 mmol‧g⁻¹‧h⁻¹), the new-structure CoP/ZnCdS/Co₃O₄ QDs (O/ZCS/P-3) exhibits more excellent hydrogen evolution performance (24.2 mmol‧g⁻¹‧h⁻¹) under 5 W LED light irradiation, and the hydrogen evolution rate is up to 40 mmol‧g⁻¹‧h⁻¹ under 300 W xenon lamp irradiation.
Author Zhu, Pengfei
Jin, Zhiliang
Tsubaki, Noritatsu
Li, Yanbing
Author_xml – sequence: 1
  givenname: Yanbing
  surname: Li
  fullname: Li, Yanbing
– sequence: 2
  givenname: Pengfei
  surname: Zhu
  fullname: Zhu, Pengfei
– sequence: 3
  givenname: Noritatsu
  surname: Tsubaki
  fullname: Tsubaki, Noritatsu
– sequence: 4
  givenname: Zhiliang
  orcidid: 0000-0002-3793-6588
  surname: Jin
  fullname: Jin, Zhiliang
BookMark eNp9kM9u1DAQxn0oEm3hDTj4WA7J2rG98XJAQhEFpEqtBL30YjmTceNV1t7aTqV9DZ6AZ-HJmmU5cUAz0kij75s_vwtyFmJAQt5xVnPG16ttnTAsUTesaWqma6bEGTlnmzWruNT8NbnIecsYV7qV5-Tnte2TB1t8DDQ6OnpMNsG4tCbaxbvVQ-iG76suiltJn2YbyryjQyyZXmnGPsola_X7V9i9p72vRiyYYi5phjInpGAfMVMXE0XnPHgMhe7HWOKy0E6H4oGOhyHFRwwUn-M0H894Q145O2V8-7dekvvrzz-6r9XN7Zdv3aebCiRTpWplCxvRO6mg5e0wABfQgpRrrTgCa6BRQra9FU7YQbqGCyt6rZXb9OiGtRSX5Oo0d5_i04y5mJ3PgNNkA8Y5m6blWjRKCbFIP5yksHyXEzoDvvxhVpL1k-HMHOGbrTnBN0f4hmmzwF_M8h_zPvmdTYf_214ApniRzg
CitedBy_id crossref_primary_10_1016_j_jphotochem_2023_114986
crossref_primary_10_1002_bte2_20240033
crossref_primary_10_1016_j_jece_2024_113420
crossref_primary_10_1039_D2NR05466C
crossref_primary_10_1021_acsanm_4c04058
crossref_primary_10_1016_j_jssc_2024_125156
crossref_primary_10_1016_j_renene_2024_120484
crossref_primary_10_3390_coatings13010080
crossref_primary_10_1016_j_renene_2024_121006
crossref_primary_10_1021_acs_jpcc_3c08343
crossref_primary_10_1016_j_ijhydene_2023_06_147
crossref_primary_10_1016_j_jclepro_2023_137700
crossref_primary_10_1016_j_ijhydene_2023_10_264
crossref_primary_10_1016_j_sna_2023_114778
crossref_primary_10_1016_j_colsurfa_2023_132935
Cites_doi 10.1016/j.joule.2018.01.007
10.1039/C4CC08179J
10.1016/j.cej.2019.123051
10.1016/j.cattod.2008.09.019
10.1038/nnano.2016.194
10.1016/j.apcatb.2018.11.088
10.1016/j.apcatb.2016.07.046
10.1002/adma.201301947
10.1016/j.ijhydene.2016.01.008
10.1016/j.cej.2020.124496
10.1016/j.apcatb.2019.118439
10.1021/acsanm.0c00388
10.1016/j.cej.2021.131338
10.1039/C5CC01799H
10.1002/adma.201804294
10.1016/j.trechm.2019.06.009
10.1016/j.apcatb.2019.117770
10.1039/D1DT01333E
10.1039/C9NJ04584H
10.1016/j.apcatb.2019.118029
10.1021/acscatal.7b04228
10.1039/C5CS00434A
10.1021/cr900289f
10.1021/acsami.5b10280
10.1016/j.nanoen.2020.104810
10.1021/acs.chemmater.7b00867
10.1021/ja809307s
10.1016/j.apcatb.2020.118651
10.1021/cs4000975
10.1021/ja0540019
10.1016/j.jcis.2019.01.101
10.1016/j.renene.2018.07.028
10.1016/j.apcatb.2017.05.044
10.1016/j.apcatb.2019.117819
10.1002/solr.202000685
10.1039/D1TA04104E
10.1002/smll.201701530
10.1039/C7TA04589A
10.1039/C7CS00306D
10.1021/acsami.5b06009
10.1039/C6TA06705K
10.1016/j.apcatb.2017.06.014
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2022.08.053
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 636
ExternalDocumentID 10_1016_j_renene_2022_08_053
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSH
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
7S9
L.6
ID FETCH-LOGICAL-c405t-747c93bf45c717ddc13c7c446851ec02c25347ba3f3ad4f213a3b885f9befd643
ISSN 0960-1481
IngestDate Fri Jul 11 03:51:12 EDT 2025
Tue Jul 01 03:20:34 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-747c93bf45c717ddc13c7c446851ec02c25347ba3f3ad4f213a3b885f9befd643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3793-6588
PQID 2718325533
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2718325533
crossref_citationtrail_10_1016_j_renene_2022_08_053
crossref_primary_10_1016_j_renene_2022_08_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-00
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2022
References Xue (10.1016/j.renene.2022.08.053_bib11) 2018; 8
Shia (10.1016/j.renene.2022.08.053_bib23) 2016; 45
Wang (10.1016/j.renene.2022.08.053_bib41) 2009; 131
Wang (10.1016/j.renene.2022.08.053_bib36) 2019; 131
Huang (10.1016/j.renene.2022.08.053_bib14) 2020; 267
Cao (10.1016/j.renene.2022.08.053_bib40) 2018; 2
Shi (10.1016/j.renene.2022.08.053_bib30) 2015; 51
Wang (10.1016/j.renene.2022.08.053_bib39) 2022; 428
Ren (10.1016/j.renene.2022.08.053_bib4) 2020; 390
Guo (10.1016/j.renene.2022.08.053_bib33) 2017; 29
Luo (10.1016/j.renene.2022.08.053_bib31) 2019; 256
Dai (10.1016/j.renene.2022.08.053_bib38) 2017; 217
Huang (10.1016/j.renene.2022.08.053_bib15) 2021; 5
Jiang (10.1016/j.renene.2022.08.053_bib10) 2020; 268
Lewis (10.1016/j.renene.2022.08.053_bib2) 2016; 11
Liu (10.1016/j.renene.2022.08.053_bib12) 2017; 5
Xu (10.1016/j.renene.2022.08.053_bib3) 2019; 255
Hao (10.1016/j.renene.2022.08.053_bib32) 2021; 50
Zhang (10.1016/j.renene.2022.08.053_bib8) 2020; 73
Agarwal (10.1016/j.renene.2022.08.053_bib18) 2021; 9
Liu (10.1016/j.renene.2022.08.053_bib24) 2005; 127
Li (10.1016/j.renene.2022.08.053_bib17) 2019; 5451
Wang (10.1016/j.renene.2022.08.053_bib22) 2016; 4
Nozik (10.1016/j.renene.2022.08.053_bib28) 2010; 110
Kim (10.1016/j.renene.2022.08.053_bib27) 2013; 25
Tian (10.1016/j.renene.2022.08.053_bib42) 2019; 259
Guo (10.1016/j.renene.2022.08.053_bib13) 2016; 8
Cao (10.1016/j.renene.2022.08.053_bib26) 2015; 51
Li (10.1016/j.renene.2022.08.053_bib25) 2020; 382
Güttinger (10.1016/j.renene.2022.08.053_bib1) 2017; 46
Shen (10.1016/j.renene.2022.08.053_bib6) 2021; 42
Li (10.1016/j.renene.2022.08.053_bib16) 2013; 3
Gong (10.1016/j.renene.2022.08.053_bib34) 2019; 43
Moon (10.1016/j.renene.2022.08.053_bib29) 2019; 31
Yi (10.1016/j.renene.2022.08.053_bib37) 2017; 200
Gong (10.1016/j.renene.2022.08.053_bib35) 2020; 3
Cao (10.1016/j.renene.2022.08.053_bib7) 2020; 2
Li (10.1016/j.renene.2022.08.053_bib19) 2017; 13
Li (10.1016/j.renene.2022.08.053_bib9) 2019; 244
Yu (10.1016/j.renene.2022.08.053_bib43) 2016; 41
Wang (10.1016/j.renene.2022.08.053_bib5) 2017; 214
Oyama (10.1016/j.renene.2022.08.053_bib20) 2009; 143
Ma (10.1016/j.renene.2022.08.053_bib21) 2016; 8
References_xml – volume: 2
  start-page: 549
  year: 2018
  ident: 10.1016/j.renene.2022.08.053_bib40
  article-title: Ultrasmall CoP nanoparticles as efficient cocatalysts for photocatalytic formic acid dehydrogenation
  publication-title: Joule
  doi: 10.1016/j.joule.2018.01.007
– volume: 51
  start-page: 1338
  year: 2015
  ident: 10.1016/j.renene.2022.08.053_bib30
  article-title: Facile synthesis of monodisperse Co3O4 quantum dots with efficient oxygen evolution activity
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08179J
– volume: 382
  year: 2020
  ident: 10.1016/j.renene.2022.08.053_bib25
  article-title: Performance of ZIF-67-derived fold polyhedrons for enhanced photocatalytic hydrogen evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123051
– volume: 143
  year: 2009
  ident: 10.1016/j.renene.2022.08.053_bib20
  article-title: Transition metal phosphide hydroprocessing catalysts: a review
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2008.09.019
– volume: 11
  start-page: 1010
  year: 2016
  ident: 10.1016/j.renene.2022.08.053_bib2
  article-title: Developing a scalable artificial photosynthesis technology through nanomaterials by design
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.194
– volume: 244
  start-page: 604
  year: 2019
  ident: 10.1016/j.renene.2022.08.053_bib9
  article-title: Oriented ZnmIn2Sm+3@In2S3 heterojunction with hierarchical structure for efficient photocatalytic hydrogen evolution
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.11.088
– volume: 200
  start-page: 477
  year: 2017
  ident: 10.1016/j.renene.2022.08.053_bib37
  article-title: Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.07.046
– volume: 25
  start-page: 4986
  year: 2013
  ident: 10.1016/j.renene.2022.08.053_bib27
  article-title: 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301947
– volume: 41
  start-page: 4150
  year: 2016
  ident: 10.1016/j.renene.2022.08.053_bib43
  article-title: Electrocatalytic performance of commercial vanadium carbide for oxygen reduction reaction
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.01.008
– volume: 390
  year: 2020
  ident: 10.1016/j.renene.2022.08.053_bib4
  article-title: Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124496
– volume: 268
  year: 2020
  ident: 10.1016/j.renene.2022.08.053_bib10
  article-title: In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118439
– volume: 3
  start-page: 3665
  year: 2020
  ident: 10.1016/j.renene.2022.08.053_bib35
  article-title: NiSe/Cd0.5Zn0.5S composite nanoparticles for use in p-n heterojunction-based photocatalysts for solar energy harvesting
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00388
– volume: 428
  year: 2022
  ident: 10.1016/j.renene.2022.08.053_bib39
  article-title: Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131338
– volume: 51
  start-page: 8708
  year: 2015
  ident: 10.1016/j.renene.2022.08.053_bib26
  article-title: Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01799H
– volume: 31
  year: 2019
  ident: 10.1016/j.renene.2022.08.053_bib29
  article-title: Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804294
– volume: 2
  start-page: 57
  year: 2020
  ident: 10.1016/j.renene.2022.08.053_bib7
  article-title: Emerging photocatalysts for hydrogen evolution
  publication-title: Trends Chem
  doi: 10.1016/j.trechm.2019.06.009
– volume: 42
  start-page: 25
  year: 2021
  ident: 10.1016/j.renene.2022.08.053_bib6
  article-title: Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution, Chinese
  publication-title: J. Catal.
– volume: 255
  year: 2019
  ident: 10.1016/j.renene.2022.08.053_bib3
  article-title: Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.117770
– volume: 50
  start-page: 10501
  year: 2021
  ident: 10.1016/j.renene.2022.08.053_bib32
  article-title: Amorphous Co3O4 quantum dots hybridizing with 3D hexagonal CdS single crystals to construct a 0D/3D p-n heterojunction for a highly efficient photocatalytic H2 evolution
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT01333E
– volume: 43
  year: 2019
  ident: 10.1016/j.renene.2022.08.053_bib34
  article-title: WP modified S-scheme Zn0.5Cd0.5S/WO3 for efficient photocatalytic hydrogen production
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ04584H
– volume: 259
  year: 2019
  ident: 10.1016/j.renene.2022.08.053_bib42
  article-title: Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118029
– volume: 8
  start-page: 1532
  year: 2018
  ident: 10.1016/j.renene.2022.08.053_bib11
  article-title: NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.2S photocatalytic system via an rGO nanosheet “bridge” toward visible-light-driven hydrogen evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04228
– volume: 45
  start-page: 1529
  year: 2016
  ident: 10.1016/j.renene.2022.08.053_bib23
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– volume: 110
  start-page: 6873
  year: 2010
  ident: 10.1016/j.renene.2022.08.053_bib28
  article-title: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr900289f
– volume: 8
  start-page: 1992
  year: 2016
  ident: 10.1016/j.renene.2022.08.053_bib21
  article-title: Nickel cobalt hydroxide@reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10280
– volume: 73
  year: 2020
  ident: 10.1016/j.renene.2022.08.053_bib8
  article-title: Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104810
– volume: 29
  start-page: 5566
  year: 2017
  ident: 10.1016/j.renene.2022.08.053_bib33
  article-title: One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00867
– volume: 131
  start-page: 1680
  year: 2009
  ident: 10.1016/j.renene.2022.08.053_bib41
  article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809307s
– volume: 267
  year: 2020
  ident: 10.1016/j.renene.2022.08.053_bib14
  article-title: ZnxCd1-xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118651
– volume: 3
  start-page: 882
  year: 2013
  ident: 10.1016/j.renene.2022.08.053_bib16
  article-title: Zn1-xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity
  publication-title: ACS Catal.
  doi: 10.1021/cs4000975
– volume: 127
  start-page: 14871
  year: 2005
  ident: 10.1016/j.renene.2022.08.053_bib24
  article-title: Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0540019
– volume: 5451
  start-page: 287
  year: 2019
  ident: 10.1016/j.renene.2022.08.053_bib17
  article-title: Unique photocatalytic activities of transition metal phosphide for hydrogen evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.01.101
– volume: 131
  start-page: 180
  year: 2019
  ident: 10.1016/j.renene.2022.08.053_bib36
  article-title: Fabrication of noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple heterojunctions for efficient and robust photocatalyst hydrogen evolution under visible light irradiation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.07.028
– volume: 214
  start-page: 158
  year: 2017
  ident: 10.1016/j.renene.2022.08.053_bib5
  article-title: Synthesis of MFe2O4 (M = Ni, Co)/BiVO4 film for photoelectrochemical hydrogen production activity
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.05.044
– volume: 256
  year: 2019
  ident: 10.1016/j.renene.2022.08.053_bib31
  article-title: Towards the prominent cocatalytic effect of ultra-small CoP particles anchored on g-C3N4 nanosheets for visible light driven photocatalytic H2 production
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.117819
– volume: 5
  year: 2021
  ident: 10.1016/j.renene.2022.08.053_bib15
  article-title: Band structure-controlled Zn1-xCdxS solid solution for photocatalytic hydrogen production improvement via appropriately enhancing oxidation capacity
  publication-title: Solar RRL
  doi: 10.1002/solr.202000685
– volume: 9
  start-page: 20241
  year: 2021
  ident: 10.1016/j.renene.2022.08.053_bib18
  article-title: Metal phosphides: topical advances in the design of supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA04104E
– volume: 13
  year: 2017
  ident: 10.1016/j.renene.2022.08.053_bib19
  article-title: Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors
  publication-title: Small
  doi: 10.1002/smll.201701530
– volume: 5
  start-page: 14682
  year: 2017
  ident: 10.1016/j.renene.2022.08.053_bib12
  article-title: Dramatic enhancement of the photocatalytic activity of Cd0.5Zn0.5S nanosheets via phosphorization calcination for visible-light-driven H2 evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04589A
– volume: 46
  start-page: 6124
  year: 2017
  ident: 10.1016/j.renene.2022.08.053_bib1
  article-title: Frontiers of water oxidation: the quest for true catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00306D
– volume: 8
  start-page: 2928
  year: 2016
  ident: 10.1016/j.renene.2022.08.053_bib13
  article-title: Stabilizing and improving solar H2 generation from Zn0.5Cd0.5S nanorods@MoS2/RGO hybrids via dual charge transfer pathways
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b06009
– volume: 4
  start-page: 14915
  year: 2016
  ident: 10.1016/j.renene.2022.08.053_bib22
  article-title: Nanostructured metal phosphide-based materials for electrochemical energy storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06705K
– volume: 217
  start-page: 429
  year: 2017
  ident: 10.1016/j.renene.2022.08.053_bib38
  article-title: In-situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.06.014
SSID ssj0015874
Score 2.4698927
Snippet The design and construction of hierarchical CoP/ZnCdS/Co₃O₄ quantum dots (QDs) (800 > 40>4.5 nm) bi-heterostructure cages as an ultrahigh-performance...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 626
SubjectTerms electron transfer
hydrogen
hydrogen production
irradiation
light
nanoparticles
photocatalysis
photocatalysts
renewable energy sources
xenon
Title Fabrication of hierarchical CoP/ZnCdS/Co3O4 quantum dots (800>40>4.5 nm) bi-heterostructure cages for efficient photocatalytic hydrogen evolution
URI https://www.proquest.com/docview/2718325533
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7q-qIP4hX3ooygoJRkk8zk9iLI0rLI2hVtoe5LmJlMti02KbuNsj74F8R_7DmTiykVXIUSSpombc7HmXO-nPMdQp5jD5rDXWFpV3CLy9i1IMpwrEiCSYTgSpiu93ej4HjC3079aa_3o1O1VK6lrb79sa_kf6wK-8Cu2CX7D5ZtTwo74D3YF7ZgYdhey8ZDIS9qzs0EfXPsJjbDTZAReA8nPsuP0o-ogVuwU44dlLDELPuQiRqyFcK4F2zAzcb2-_kSOQI5t2ZYI1NU0rKlqQxDJQgjDm4UJ7B-YDUr1oUhf65Q83V2lV4U5zgy4Ev9l7th7wfwqF9Nk5Y2vYZtGZCpJfgkctmsoIbDLqvK4fw80_OWWrgspahmbI8KZDTW1cgWU_4zr1nvs7JYzMsukwFJcFMT11KSgWNBeuZueOc46q9sSLusgHU9beAFnUW7_mxrPaioiYWN8qA5qqJ6nlFsrQSKN-W3R6fJcHJykowH0_ENctODvAMdp_29rRly_aiS9W5-aNOLaQoGt6-xGetsLvUmfhnfJXfqxIO-qVB0j_R0fp_c7shRPiA_O3iiRUa7eKKAp0ODpkODJVpjiSKW6EtA0msOL9un-fIV3cYQNRiigCHaYohuYog2GKIthh6SyXAwPjq26pEdloLIf21BcqpiJjPuq9AN01S5TIWK8wACe60cT3k-46EULGMi5ZnnMsFkFPlZLHWWQnT8iOzkRa4fExpkvpNmrqMjjQ_vwWmE4DeUwpw5zmJvl7Dm5iaq1rPHsSqfk6ZwcZFUJknQJAlOW_XZLrHab60qPZe_HP-ssVsCjhefpolcF-Vl4oW4GvqQLu1d45h9cus35A_IDtx9_QTC2bV8aiD2C1XaoSY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+hierarchical+CoP%2FZnCdS%2FCo3O4+quantum+dots+%28800%3E40%3E4.5+nm%29+bi-heterostructure+cages+for+efficient+photocatalytic+hydrogen+evolution&rft.jtitle=Renewable+energy&rft.au=Li%2C+Yanbing&rft.au=Zhu%2C+Pengfei&rft.au=Tsubaki%2C+Noritatsu&rft.au=Jiang%2C+Zuojiu&rft.date=2022-10-01&rft.issn=0960-1481&rft.volume=198+p.626-636&rft.spage=626&rft.epage=636&rft_id=info:doi/10.1016%2Fj.renene.2022.08.053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon