Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas

We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected whi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 26; no. 11; pp. 1562 - 1575
Main Authors O'Donnell, Lauren J., Westin, Carl-Fredrik
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected white matter anatomy such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, and corona radiata. The white matter clusters are augmented with expert anatomical labels and stored in a new type of atlas that we call a high-dimensional white matter atlas. We then show how to perform automatic segmentation of tractography from novel subjects by extending the spectral clustering solution, stored in the atlas, using the Nystrom method. We present results regarding the stability of our method and parameter choices. Finally we give results from an atlas creation and automatic segmentation experiment. We demonstrate that our automatic tractography segmentation identifies corresponding white matter regions across hemispheres and across subjects, enabling group comparison of white matter anatomy.
AbstractList We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected white matter anatomy such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, and corona radiata. The white matter clusters are augmented with expert anatomical labels and stored in a new type of atlas that we call a high-dimensional white matter atlas. We then show how to perform automatic segmentation of tractography from novel subjects by extending the spectral clustering solution, stored in the atlas, using the Nystrom method. We present results regarding the stability of our method and parameter choices. Finally we give results from an atlas creation and automatic segmentation experiment. We demonstrate that our automatic tractography segmentation identifies corresponding white matter regions across hemispheres and across subjects, enabling group comparison of white matter anatomy.
We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected white matter anatomy such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, and corona radiata. The white matter clusters are augmented with expert anatomical labels and stored in a new type of atlas that we call a high-dimensional white matter atlas. We then show how to perform automatic segmentation of tractography from novel subjects by extending the spectral clustering solution, stored in the atlas, using the Nystrom method. We present results regarding the stability of our method and parameter choices. Finally we give results from an atlas creation and automatic segmentation experiment. We demonstrate that our automatic tractography segmentation identifies corresponding white matter regions across hemispheres and across subjects, enabling group comparison of white matter anatomy.We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected white matter anatomy such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, and corona radiata. The white matter clusters are augmented with expert anatomical labels and stored in a new type of atlas that we call a high-dimensional white matter atlas. We then show how to perform automatic segmentation of tractography from novel subjects by extending the spectral clustering solution, stored in the atlas, using the Nystrom method. We present results regarding the stability of our method and parameter choices. Finally we give results from an atlas creation and automatic segmentation experiment. We demonstrate that our automatic tractography segmentation identifies corresponding white matter regions across hemispheres and across subjects, enabling group comparison of white matter anatomy.
[...] we give results from an atlas creation and automatic segmentation experiment.
Author Westin, Carl-Fredrik
O'Donnell, Lauren J.
Author_xml – sequence: 1
  givenname: Lauren J.
  surname: O'Donnell
  fullname: O'Donnell, Lauren J.
  email: lauren@csail.mit.edu
  organization: Harvard Med. Sch., Boston
– sequence: 2
  givenname: Carl-Fredrik
  surname: Westin
  fullname: Westin, Carl-Fredrik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18041271$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1PHDEQxa0IFA6SOkWkaJWCVHvMeO1db3kiJCCBKHIo6Syvb-7OaD8utrfgv49PCxRIgWokz-_NjN87Zgf90BNjnxDmiFCfLW-u5hygmtdQVkq-YzOUUuVcij8HbAa8UjlAyY_YcQj3ACgk1O_ZESoQyCucsdvFGIfORGezpTc2DhtvdtuH7BdtOupjagx9dhdcv8lMduk22_y7S42Qnk2b_d66SNmNiZF8toitCR_Y4dq0gT4-1hN29-NieX6ZX9_-vDpfXOdWgIx5SQoaVUkDaiWVFaZE4lwp2Si-4muFwgok1XBjoRAC5YokCUWmQShKsMUJ-zbN3fnh70gh6s4FS21rehrGoFUlUBUVlIk8fZUslSyqAvibINYC6wL34NcX4P0w-uRHWlum75WVxAR9eYTGpqOV3nnXGf-gn6xPgJwA64cQPK21dZPf0RvXagS9j1iniPU-Yj1FnHRnL3TPo_-r-DwpHBE906KQdbq1-AcXzq48
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_jneumeth_2020_108626
crossref_primary_10_1016_j_media_2020_101686
crossref_primary_10_1200_CCI_19_00141
crossref_primary_10_1093_brain_awq040
crossref_primary_10_1214_12_AOAS573
crossref_primary_10_1227_NEU_0b013e318258e9ff
crossref_primary_10_1016_j_neuroimage_2020_116923
crossref_primary_10_1016_j_neuroimage_2021_118706
crossref_primary_10_4236_ojmi_2012_24025
crossref_primary_10_3390_jimaging4010008
crossref_primary_10_1016_j_media_2021_102094
crossref_primary_10_3389_fneur_2018_00948
crossref_primary_10_1002_hbm_24579
crossref_primary_10_1002_hbm_24217
crossref_primary_10_1109_TMI_2010_2067222
crossref_primary_10_1109_TVCG_2015_2403323
crossref_primary_10_3389_fnins_2024_1333243
crossref_primary_10_1016_j_media_2023_102893
crossref_primary_10_1016_j_neuroimage_2020_117063
crossref_primary_10_3389_fninf_2017_00073
crossref_primary_10_1371_journal_pone_0072332
crossref_primary_10_1016_j_neuroimage_2018_07_070
crossref_primary_10_1016_j_neuroimage_2023_120362
crossref_primary_10_1016_j_neuroimage_2023_120086
crossref_primary_10_1186_s12938_020_00786_z
crossref_primary_10_3389_fnins_2016_00554
crossref_primary_10_3389_fpain_2022_840328
crossref_primary_10_3390_info15010066
crossref_primary_10_4018_jkdb_2010100101
crossref_primary_10_1002_ima_22126
crossref_primary_10_1109_TVCG_2009_141
crossref_primary_10_1007_s12021_023_09636_4
crossref_primary_10_1109_TBME_2015_2391913
crossref_primary_10_1002_nbm_4607
crossref_primary_10_1016_j_media_2025_103476
crossref_primary_10_1111_j_1467_8659_2008_01242_x
crossref_primary_10_1016_j_neuroimage_2017_07_015
crossref_primary_10_3389_fninf_2014_00087
crossref_primary_10_1016_j_media_2019_101559
crossref_primary_10_1016_j_nec_2010_12_004
crossref_primary_10_1109_TMI_2011_2167629
crossref_primary_10_1002_nbm_1579
crossref_primary_10_1177_1073858418759489
crossref_primary_10_1002_hbm_25779
crossref_primary_10_1007_s12021_020_09488_2
crossref_primary_10_1016_j_neuroimage_2017_10_029
crossref_primary_10_1016_j_neuroimage_2011_06_020
crossref_primary_10_1016_j_media_2019_01_001
crossref_primary_10_1109_TMI_2018_2876796
crossref_primary_10_1007_s12021_016_9316_7
crossref_primary_10_1016_j_neuroimage_2014_04_048
crossref_primary_10_1002_hbm_23399
crossref_primary_10_1007_s00429_013_0516_8
crossref_primary_10_1016_j_biopsych_2010_06_021
crossref_primary_10_1016_j_neuroimage_2008_12_028
crossref_primary_10_3390_jcm12052079
crossref_primary_10_1002_jmri_27774
crossref_primary_10_1016_j_neuroimage_2018_06_019
crossref_primary_10_1016_j_neuroimage_2008_12_023
crossref_primary_10_1016_j_neuroimage_2008_01_013
crossref_primary_10_1016_j_neuroimage_2008_10_060
crossref_primary_10_1016_j_neuroimage_2015_11_005
crossref_primary_10_1007_s12021_012_9148_z
crossref_primary_10_1016_j_media_2024_103165
crossref_primary_10_1016_j_neuroimage_2012_02_071
crossref_primary_10_1002_nbm_3902
crossref_primary_10_1038_s41386_021_01199_9
crossref_primary_10_1016_j_neuroimage_2015_10_032
crossref_primary_10_1007_s00429_015_1179_4
crossref_primary_10_1016_j_neuroimage_2010_07_050
crossref_primary_10_1016_j_neuroimage_2015_05_016
crossref_primary_10_1016_j_neuroimage_2020_116993
crossref_primary_10_1038_s41598_024_84901_3
crossref_primary_10_1016_j_neuroimage_2021_118651
crossref_primary_10_1016_j_nicl_2016_11_023
crossref_primary_10_1016_j_neuroimage_2014_08_021
crossref_primary_10_1002_hbm_22854
crossref_primary_10_1089_brain_2011_0033
crossref_primary_10_1002_hbm_22051
crossref_primary_10_1016_j_media_2021_102126
crossref_primary_10_1016_j_neuroimage_2018_01_006
crossref_primary_10_1016_j_media_2014_06_013
crossref_primary_10_1016_j_neuroimage_2018_06_027
crossref_primary_10_1007_s12021_015_9264_7
crossref_primary_10_1007_s12021_011_9118_x
crossref_primary_10_1016_j_neuroimage_2009_10_073
crossref_primary_10_1016_j_neuroimage_2008_07_006
crossref_primary_10_1109_TMI_2016_2591080
crossref_primary_10_1016_j_media_2017_04_013
crossref_primary_10_1016_j_neuroimage_2017_06_083
crossref_primary_10_1109_TMI_2009_2029097
crossref_primary_10_1016_j_neuroimage_2013_04_096
crossref_primary_10_1016_j_neuroimage_2020_117273
crossref_primary_10_1109_TCDS_2020_2968116
crossref_primary_10_1016_j_neurobiolaging_2010_02_009
crossref_primary_10_1016_j_neuroimage_2008_11_001
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_1016_j_neuroimage_2010_10_028
crossref_primary_10_3389_fnins_2017_00754
crossref_primary_10_1016_j_neuroimage_2018_08_006
crossref_primary_10_3389_fpsyt_2021_686967
crossref_primary_10_1016_j_neuroimage_2010_07_038
crossref_primary_10_3389_fninf_2021_727859
crossref_primary_10_1016_j_nicl_2019_101883
crossref_primary_10_1109_TMI_2019_2902073
crossref_primary_10_1109_TVCG_2009_112
crossref_primary_10_3389_fnins_2024_1376570
crossref_primary_10_1371_journal_pone_0197056
crossref_primary_10_1007_s11263_009_0217_1
crossref_primary_10_1111_cgf_13688
crossref_primary_10_1016_j_biopsych_2023_05_018
crossref_primary_10_1016_j_dcn_2017_12_002
crossref_primary_10_1016_j_neuroimage_2011_11_014
crossref_primary_10_1002_hbm_20619
crossref_primary_10_1016_j_media_2017_06_011
crossref_primary_10_1016_j_neuroimage_2020_117147
crossref_primary_10_1016_j_media_2022_102454
crossref_primary_10_1016_j_mri_2021_10_017
crossref_primary_10_1002_hbm_25623
crossref_primary_10_1038_mp_2017_92
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1371_journal_pone_0133337
crossref_primary_10_1016_j_media_2020_101761
crossref_primary_10_1016_j_neuroimage_2013_04_066
crossref_primary_10_1016_j_neuroimage_2017_10_058
crossref_primary_10_1109_TVCG_2013_2297914
crossref_primary_10_1016_j_neuroimage_2014_08_001
crossref_primary_10_1007_s12021_022_09590_7
crossref_primary_10_1109_TMI_2008_2004403
crossref_primary_10_1016_j_neuroimage_2022_119550
crossref_primary_10_1016_j_compbiomed_2024_108750
crossref_primary_10_1002_mp_15495
crossref_primary_10_1016_j_neuroimage_2023_120288
crossref_primary_10_1038_s41597_024_03624_2
crossref_primary_10_1371_journal_pone_0083847
crossref_primary_10_1109_TCDS_2023_3304529
crossref_primary_10_1016_j_neuroimage_2018_05_044
crossref_primary_10_1016_j_bbr_2020_112805
crossref_primary_10_1089_neu_2022_0111
crossref_primary_10_1016_j_media_2014_04_005
crossref_primary_10_1038_s41597_024_03058_w
crossref_primary_10_1016_j_schres_2011_07_010
crossref_primary_10_1227_NEU_0000000000001183
crossref_primary_10_1155_2015_879675
crossref_primary_10_1016_j_bandc_2010_03_004
crossref_primary_10_3389_fninf_2022_777853
crossref_primary_10_1016_j_neurobiolaging_2022_08_010
crossref_primary_10_1016_j_neuroscience_2020_03_049
crossref_primary_10_1016_j_mri_2010_06_027
crossref_primary_10_1016_j_media_2011_01_003
crossref_primary_10_1016_j_media_2023_102759
crossref_primary_10_1016_j_neulet_2021_136424
crossref_primary_10_1007_s00429_015_1001_3
crossref_primary_10_3389_fradi_2022_866974
crossref_primary_10_1016_j_schres_2014_09_007
crossref_primary_10_1016_j_neuroimage_2017_05_012
crossref_primary_10_1109_TVCG_2016_2582158
crossref_primary_10_1016_j_neuroimage_2019_05_051
crossref_primary_10_1016_j_neuroimage_2020_116703
crossref_primary_10_1016_j_neuroimage_2022_118934
crossref_primary_10_1016_j_media_2024_103120
crossref_primary_10_1016_j_media_2018_02_008
crossref_primary_10_1016_j_ins_2015_04_045
crossref_primary_10_1007_s10916_019_1431_1
crossref_primary_10_1002_nbm_4756
crossref_primary_10_1016_j_neuroimage_2020_117483
crossref_primary_10_1016_j_neuroimage_2021_118451
crossref_primary_10_1016_j_pediatrneurol_2023_03_005
crossref_primary_10_1109_TMI_2021_3139507
crossref_primary_10_1016_j_media_2017_03_007
crossref_primary_10_1016_j_neuroimage_2020_117070
crossref_primary_10_1002_hbm_26578
crossref_primary_10_1002_hbm_23465
crossref_primary_10_1016_j_jpeds_2024_114372
crossref_primary_10_1097_WCO_0b013e32832d954b
crossref_primary_10_1002_jnr_25179
crossref_primary_10_1088_1361_6560_ab2f47
crossref_primary_10_3389_fnins_2024_1394681
crossref_primary_10_1016_j_neuroimage_2021_118739
crossref_primary_10_1109_TMI_2011_2154385
crossref_primary_10_1002_hbm_70008
crossref_primary_10_1002_nbm_3778
crossref_primary_10_1038_s41593_020_00711_6
crossref_primary_10_1016_j_neuroimage_2011_11_043
crossref_primary_10_1016_j_patcog_2019_06_002
crossref_primary_10_1016_j_neuroimage_2023_120214
crossref_primary_10_3390_diagnostics13050911
crossref_primary_10_1016_j_neuroimage_2009_08_017
Cites_doi 10.1006/nimg.2002.1136
10.1007/10704282_48
10.1006/jmrb.1996.0086
10.1109/VISUAL.2005.1532779
10.1073/pnas.0403743101
10.1002/mrm.20741
10.1109/VISUAL.1992.235193
10.1038/nrn1119
10.1002/mrm.10609
10.1002/ana.20334
10.1109/ISBI.2004.1398545
10.1073/pnas.0500003102
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1016/S0197-4580(97)00014-6
10.1148/radiology.201.3.8939209
10.1109/ISBI.2006.1624850
10.1002/jmri.20410
10.1109/34.868688
10.1016/S0006-3495(94)80775-1
10.1002/hbm.20179
10.1109/TPAMI.2004.1262185
10.1002/mrm.10415
10.1109/TMI.2006.877093
10.1109/IEMBS.2004.1404229
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1109/ICCV.1999.790354
10.1007/11566489_94
10.1016/j.neuroimage.2005.01.019
10.1016/S1361-8415(02)00053-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2007.906785
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic

MEDLINE
Materials Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1575
ExternalDocumentID 2333379971
18041271
10_1109_TMI_2007_906785
4359056
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01-MH074794
– fundername: NCRR NIH HHS
  grantid: U24 RR021382
– fundername: NCRR NIH HHS
  grantid: P41-RR15241
– fundername: NIMH NIH HHS
  grantid: R01 MH074794
– fundername: NCRR NIH HHS
  grantid: U41 RR019703
– fundername: NCRR NIH HHS
  grantid: U24-RR021382
– fundername: NCRR NIH HHS
  grantid: P41-RR13218
– fundername: NIA NIH HHS
  grantid: R01-AG20012
– fundername: NCRR NIH HHS
  grantid: P41 RR013218
– fundername: NCRR NIH HHS
  grantid: U41-RR019703
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c405t-6e80b875a08d58c4a61e22885b82d2f814c41e8b2ac034415de5e48eab10360c3
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Fri Jul 11 03:51:07 EDT 2025
Fri Jul 11 04:40:28 EDT 2025
Fri Jul 11 11:11:02 EDT 2025
Mon Jun 30 06:23:38 EDT 2025
Tue Apr 08 01:21:21 EDT 2025
Tue Jul 01 05:15:05 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Wed Aug 27 02:04:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords diffusion MRI
white matter
tractography
clustering
atlas
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-6e80b875a08d58c4a61e22885b82d2f814c41e8b2ac034415de5e48eab10360c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 18041271
PQID 864056751
PQPubID 23462
PageCount 14
ParticipantIDs pubmed_primary_18041271
proquest_miscellaneous_19419312
proquest_miscellaneous_68537302
proquest_journals_864056751
crossref_citationtrail_10_1109_TMI_2007_906785
ieee_primary_4359056
proquest_miscellaneous_874183706
crossref_primary_10_1109_TMI_2007_906785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2007
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
ref52
ref10
xia (ref30) 2005
ref17
bengio (ref43) 2004; 16
ref19
ref18
kouby (ref41) 2005
salat (ref36) 2005
brun (ref27) 2003
ref51
jonasson (ref24) 2005
westin (ref5) 1999
ref48
ref47
ref44
williams (ref45) 2001; 13
zollei (ref46) 2005
ref49
johansen-berg (ref28) 2004; 101
ref8
ref4
ref6
kandel (ref13) 2000
ref40
conturo (ref3) 1999; 96
ref35
ref34
bjrnemo (ref7) 2002
ref37
ref31
ref2
press (ref11) 1992
ref1
ref38
maddah (ref33) 2005
pierpaoli (ref12) 1996; 201
tuch (ref9) 2002
mori (ref16) 2005
ref20
ref21
o'donnell (ref26) 2006; 27
o'donnell (ref25) 2005
cook (ref39) 2005
brun (ref23) 2004
ref29
ng (ref50) 2002; 14
zhang (ref22) 2005
o'donnell (ref42) 2006
wang (ref32) 2006
References_xml – ident: ref15
  doi: 10.1006/nimg.2002.1136
– volume: 96
  start-page: 10422
  year: 1999
  ident: ref3
  article-title: tracking neuronal fiber pathways in the living human brain
  publication-title: Neurobiology
– start-page: 441
  year: 1999
  ident: ref5
  article-title: image processing for diffusion tensor magnetic resonance imaging
  publication-title: Med Image Comput Computer-Assisted Intervention
  doi: 10.1007/10704282_48
– start-page: 1310
  year: 2005
  ident: ref24
  article-title: fiber tracts of high angular resolution diffusion mri are easily segmented with spectral clustering
  publication-title: Int Soc Mag Reson Med
– ident: ref48
  doi: 10.1006/jmrb.1996.0086
– ident: ref31
  doi: 10.1109/VISUAL.2005.1532779
– volume: 101
  start-page: 13335
  year: 2004
  ident: ref28
  article-title: changes in connectivity profiles define functionally distinct regions in human medial frontal cortex
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.0403743101
– volume: 13
  year: 2001
  ident: ref45
  article-title: using the nystrom method to speed up kernel machines
  publication-title: Adv Neural Inf Process Syst
– year: 2000
  ident: ref13
  publication-title: Principles of Neural Science
– ident: ref49
  doi: 10.1002/mrm.20741
– ident: ref1
  doi: 10.1109/VISUAL.1992.235193
– start-page: 140
  year: 2005
  ident: ref25
  article-title: white matter tract clustering and correspondence in populations
  publication-title: Int Conf Med Image Comput Computer Assisted Intervention
– ident: ref14
  doi: 10.1038/nrn1119
– start-page: 164
  year: 2005
  ident: ref39
  article-title: an automated approach to connectivity-based partitioning of brain structures
  publication-title: Int Conf Med Image Comput Computer Assisted Intervention
– start-page: 205
  year: 2005
  ident: ref30
  article-title: knowledge-based classification of neuronal fibers in entire brain
  publication-title: Int Conf Med Image Comput Computer Assisted Intervention
– year: 2005
  ident: ref36
  article-title: white matter changes in ad measured with diffusion tensor imaging
  publication-title: 11th Annu Meeting Organization for Human Brain Mapp
– start-page: 368
  year: 2004
  ident: ref23
  article-title: clustering fiber traces using normalized cuts
  publication-title: Int Conf Med Image Comput Computer Assisted Intervention
– start-page: 435
  year: 2002
  ident: ref7
  article-title: regularized stochastic white matter tractography using diffusion tensor mri
  publication-title: Int Conf Med Image Comput Computer Assisted Intervention
– ident: ref6
  doi: 10.1002/mrm.10609
– ident: ref17
  doi: 10.1002/ana.20334
– volume: 14
  year: 2002
  ident: ref50
  article-title: on spectral clustering: analysis and an algorithm
  publication-title: Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1109/ISBI.2004.1398545
– start-page: 291
  year: 2005
  ident: ref46
  article-title: efficient population registration of 3-d data
  publication-title: IEEE Int Conf Comput Vision Computer Vision Biomed Image Appl
– year: 2002
  ident: ref9
  publication-title: Diffusion MRI of complex tissue structure
– ident: ref40
  doi: 10.1073/pnas.0500003102
– ident: ref4
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– ident: ref35
  doi: 10.1016/S0197-4580(97)00014-6
– volume: 201
  start-page: 637
  year: 1996
  ident: ref12
  article-title: diffusion tensor mr imaging of the human brain
  publication-title: Radiology
  doi: 10.1148/radiology.201.3.8939209
– volume: 16
  year: 2004
  ident: ref43
  article-title: out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering
  publication-title: Adv Neural Inf Process Syst
– start-page: 188
  year: 2005
  ident: ref33
  article-title: automated atlas-based clustering of white matter fiber tracts from dtmri
  publication-title: Int Conf Med Image Comput Computer Assisted Intervention
– ident: ref34
  doi: 10.1109/ISBI.2006.1624850
– year: 2005
  ident: ref22
  article-title: dti fiber clustering and cross-subject cluster analysis
  publication-title: Int Soc Magn Reson Med
– volume: 27
  start-page: 1032
  year: 2006
  ident: ref26
  article-title: a method for clustering white matter fiber tracts
  publication-title: Amer J Neuroradiol
– start-page: 196
  year: 2005
  ident: ref41
  article-title: mr diffusion-based inference of a fiber bundle model from a population of subjects
  publication-title: International Conf Med Image Comput Computer Assisted Intervention
– ident: ref19
  doi: 10.1002/jmri.20410
– ident: ref51
  doi: 10.1109/34.868688
– ident: ref10
  doi: 10.1016/S0006-3495(94)80775-1
– ident: ref18
  doi: 10.1002/hbm.20179
– start-page: 110
  year: 2006
  ident: ref32
  article-title: learning semantic scene models by trajectory analysis
  publication-title: Eur Conf Computer Vision
– year: 1992
  ident: ref11
  publication-title: Numerical Recipes in C The Art of Scientific Computing
– ident: ref44
  doi: 10.1109/TPAMI.2004.1262185
– ident: ref29
  doi: 10.1002/mrm.10415
– year: 2005
  ident: ref16
  publication-title: MRI Atlas of Human White Matter
– ident: ref8
  doi: 10.1109/TMI.2006.877093
– ident: ref21
  doi: 10.1109/IEMBS.2004.1404229
– ident: ref2
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– ident: ref52
  doi: 10.1109/ICCV.1999.790354
– start-page: 243
  year: 2006
  ident: ref42
  article-title: high-dimensional white matter atlas generation and group analysis
  publication-title: Int Conf Med Image Comput Computer Assisted Intervention
– ident: ref38
  doi: 10.1007/11566489_94
– ident: ref37
  doi: 10.1016/j.neuroimage.2005.01.019
– start-page: 564
  year: 2003
  ident: ref27
  article-title: coloring of dt-mri fiber traces using laplacian eigenmaps
  publication-title: Euro Conf Computer Aided Syst Theory
– ident: ref47
  doi: 10.1016/S1361-8415(02)00053-1
SSID ssj0014509
Score 2.4088757
Snippet We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate...
[...] we give results from an atlas creation and automatic segmentation experiment.
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1562
SubjectTerms Algorithms
Anatomy
Artificial Intelligence
Biomedical imaging
Brain
clustering
Computer Simulation
Corona
Corpus Callosum - anatomy & histology
diffusion magnetic resonance imaging (MRI)
Diffusion Magnetic Resonance Imaging - methods
Diffusion tensor imaging
Hospitals
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
Imaging, Three-Dimensional - methods
Magnetic resonance imaging
Models, Anatomic
Models, Neurological
Nerve fibers
Nerve Fibers, Myelinated - ultrastructure
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Stability
Subtraction Technique
Tensile stress
tractography
white matter
Title Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas
URI https://ieeexplore.ieee.org/document/4359056
https://www.ncbi.nlm.nih.gov/pubmed/18041271
https://www.proquest.com/docview/864056751
https://www.proquest.com/docview/19419312
https://www.proquest.com/docview/68537302
https://www.proquest.com/docview/874183706
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5LKXFBw4cyDZ2HMc5rgpVQQoc2Eq9RbE92wOQrdrkwq9n_NhQECtxi5RJZHtszzf2zDcAb7jsXG0LnqEQmElymLMaFbkqghu7slXRFT45ufmszi_kp8vycgfeTbkwiBiCz3DuH8Ndvlvb0R-VnZBpr8lg78IuOW4xV2u6MZBlDOcQnjE2VyLR-PC8Plk2HyNXYe235lCrxrPuiIr_YYxCdZXtQDMYnLNH0GyaGuNMvs3Hwcztz79YHP-3L4_hYUKebBGnyhPYwX4fHtzhI9yHe026aT-AL4txWAc6V7b0iVSJ2Zp9xasfKV2pZyHegHXMB4tk732dgMjxwULZPdYE7k62GAihP4WLsw_L0_MsFV_ILGG4IVOoc0POTJdrV2orO8VJnVqXRgsnVppLKzlqIzrrWQN56bBEqbEznIxibotnsNeve3wBDJUyuSukq6xHX65WHf3SGYJqcrXi5QzmGy20NjGT-wIZ39vgoeR1Sxr09TKrNmpwBm-nD64jKcd20QM_9pNYGvYZHG7U3KZFe9tqRT0nB4rP4PX0llabv0LpelyPty2vJSFeLrZLKMI_tGuSBNsioT1hUFHl1IjncYL97kSaly__3epDuB-OlkMq5CvYG25GPCJMNJjjsBh-AV_9BKA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgE98GgpXQrUBw4cyDZ2HMc5roBqC005sJV6i_xaDtAsosmlv77jx4aHWIlbpEwi22N7vrFnvgF4TbmytSlo5hhzGUeHOaudQFeFUW2WpipU4ZOTm3Mxv-AfL8vLLXg75sI450LwmZv6x3CXb1dm8Edlx2jaazTYd-Au2v2Sxmyt8c6AlzGgg3nO2FywRORD8_p40ZxGtsLab86hWo3n3WEV_cMchfoqm6FmMDknj6BZNzZGmnybDr2empu_eBz_tzeP4WHCnmQWJ8sT2HLdLuz8xki4C_eadNe-B59nQ78KhK5k4VOpErc1-eK-XqWEpY6EiAOiiA8Xyd77SgGR5YOEwnukCeydZNYjRn8KFycfFu_mWSq_kBlEcX0mnMw1ujMql7aUhitBUaFSlloyy5aScsOpk5op43kDaWld6bh0SlM0i7kp9mG7W3XuAIgTQue24LYyHn_ZWij8pdUI1vhyScsJTNdaaE3iJvclMr63wUfJ6xY16CtmVm3U4ATejB_8iLQcm0X3_NiPYmnYJ3C4VnOblu11KwX2HF0oOoGj8S2uN3-Jojq3Gq5bWnPEvJRtlhCIgHDfRAmyQUJ6yqCiyrERz-IE-9WJNC-f_7vVR3B_vmjO2rPT80-H8CAcNIfEyBew3f8c3EtESL1-FRbGLRq6B-k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Tractography+Segmentation+Using+a+High-Dimensional+White+Matter+Atlas&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=O%27Donnell%2C+L.J&rft.au=Westin%2C+C.-F&rft.date=2007-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=26&rft.issue=11&rft.spage=1562&rft_id=info:doi/10.1109%2FTMI.2007.906785&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2333379971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon