Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas
We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected whi...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 26; no. 11; pp. 1562 - 1575 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected white matter anatomy such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, and corona radiata. The white matter clusters are augmented with expert anatomical labels and stored in a new type of atlas that we call a high-dimensional white matter atlas. We then show how to perform automatic segmentation of tractography from novel subjects by extending the spectral clustering solution, stored in the atlas, using the Nystrom method. We present results regarding the stability of our method and parameter choices. Finally we give results from an atlas creation and automatic segmentation experiment. We demonstrate that our automatic tractography segmentation identifies corresponding white matter regions across hemispheres and across subjects, enabling group comparison of white matter anatomy. |
---|---|
AbstractList | We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected white matter anatomy such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, and corona radiata. The white matter clusters are augmented with expert anatomical labels and stored in a new type of atlas that we call a high-dimensional white matter atlas. We then show how to perform automatic segmentation of tractography from novel subjects by extending the spectral clustering solution, stored in the atlas, using the Nystrom method. We present results regarding the stability of our method and parameter choices. Finally we give results from an atlas creation and automatic segmentation experiment. We demonstrate that our automatic tractography segmentation identifies corresponding white matter regions across hemispheres and across subjects, enabling group comparison of white matter anatomy. We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected white matter anatomy such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, and corona radiata. The white matter clusters are augmented with expert anatomical labels and stored in a new type of atlas that we call a high-dimensional white matter atlas. We then show how to perform automatic segmentation of tractography from novel subjects by extending the spectral clustering solution, stored in the atlas, using the Nystrom method. We present results regarding the stability of our method and parameter choices. Finally we give results from an atlas creation and automatic segmentation experiment. We demonstrate that our automatic tractography segmentation identifies corresponding white matter regions across hemispheres and across subjects, enabling group comparison of white matter anatomy.We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected white matter anatomy such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, and corona radiata. The white matter clusters are augmented with expert anatomical labels and stored in a new type of atlas that we call a high-dimensional white matter atlas. We then show how to perform automatic segmentation of tractography from novel subjects by extending the spectral clustering solution, stored in the atlas, using the Nystrom method. We present results regarding the stability of our method and parameter choices. Finally we give results from an atlas creation and automatic segmentation experiment. We demonstrate that our automatic tractography segmentation identifies corresponding white matter regions across hemispheres and across subjects, enabling group comparison of white matter anatomy. [...] we give results from an atlas creation and automatic segmentation experiment. |
Author | Westin, Carl-Fredrik O'Donnell, Lauren J. |
Author_xml | – sequence: 1 givenname: Lauren J. surname: O'Donnell fullname: O'Donnell, Lauren J. email: lauren@csail.mit.edu organization: Harvard Med. Sch., Boston – sequence: 2 givenname: Carl-Fredrik surname: Westin fullname: Westin, Carl-Fredrik |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18041271$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1PHDEQxa0IFA6SOkWkaJWCVHvMeO1db3kiJCCBKHIo6Syvb-7OaD8utrfgv49PCxRIgWokz-_NjN87Zgf90BNjnxDmiFCfLW-u5hygmtdQVkq-YzOUUuVcij8HbAa8UjlAyY_YcQj3ACgk1O_ZESoQyCucsdvFGIfORGezpTc2DhtvdtuH7BdtOupjagx9dhdcv8lMduk22_y7S42Qnk2b_d66SNmNiZF8toitCR_Y4dq0gT4-1hN29-NieX6ZX9_-vDpfXOdWgIx5SQoaVUkDaiWVFaZE4lwp2Si-4muFwgok1XBjoRAC5YokCUWmQShKsMUJ-zbN3fnh70gh6s4FS21rehrGoFUlUBUVlIk8fZUslSyqAvibINYC6wL34NcX4P0w-uRHWlum75WVxAR9eYTGpqOV3nnXGf-gn6xPgJwA64cQPK21dZPf0RvXagS9j1iniPU-Yj1FnHRnL3TPo_-r-DwpHBE906KQdbq1-AcXzq48 |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2020_108626 crossref_primary_10_1016_j_media_2020_101686 crossref_primary_10_1200_CCI_19_00141 crossref_primary_10_1093_brain_awq040 crossref_primary_10_1214_12_AOAS573 crossref_primary_10_1227_NEU_0b013e318258e9ff crossref_primary_10_1016_j_neuroimage_2020_116923 crossref_primary_10_1016_j_neuroimage_2021_118706 crossref_primary_10_4236_ojmi_2012_24025 crossref_primary_10_3390_jimaging4010008 crossref_primary_10_1016_j_media_2021_102094 crossref_primary_10_3389_fneur_2018_00948 crossref_primary_10_1002_hbm_24579 crossref_primary_10_1002_hbm_24217 crossref_primary_10_1109_TMI_2010_2067222 crossref_primary_10_1109_TVCG_2015_2403323 crossref_primary_10_3389_fnins_2024_1333243 crossref_primary_10_1016_j_media_2023_102893 crossref_primary_10_1016_j_neuroimage_2020_117063 crossref_primary_10_3389_fninf_2017_00073 crossref_primary_10_1371_journal_pone_0072332 crossref_primary_10_1016_j_neuroimage_2018_07_070 crossref_primary_10_1016_j_neuroimage_2023_120362 crossref_primary_10_1016_j_neuroimage_2023_120086 crossref_primary_10_1186_s12938_020_00786_z crossref_primary_10_3389_fnins_2016_00554 crossref_primary_10_3389_fpain_2022_840328 crossref_primary_10_3390_info15010066 crossref_primary_10_4018_jkdb_2010100101 crossref_primary_10_1002_ima_22126 crossref_primary_10_1109_TVCG_2009_141 crossref_primary_10_1007_s12021_023_09636_4 crossref_primary_10_1109_TBME_2015_2391913 crossref_primary_10_1002_nbm_4607 crossref_primary_10_1016_j_media_2025_103476 crossref_primary_10_1111_j_1467_8659_2008_01242_x crossref_primary_10_1016_j_neuroimage_2017_07_015 crossref_primary_10_3389_fninf_2014_00087 crossref_primary_10_1016_j_media_2019_101559 crossref_primary_10_1016_j_nec_2010_12_004 crossref_primary_10_1109_TMI_2011_2167629 crossref_primary_10_1002_nbm_1579 crossref_primary_10_1177_1073858418759489 crossref_primary_10_1002_hbm_25779 crossref_primary_10_1007_s12021_020_09488_2 crossref_primary_10_1016_j_neuroimage_2017_10_029 crossref_primary_10_1016_j_neuroimage_2011_06_020 crossref_primary_10_1016_j_media_2019_01_001 crossref_primary_10_1109_TMI_2018_2876796 crossref_primary_10_1007_s12021_016_9316_7 crossref_primary_10_1016_j_neuroimage_2014_04_048 crossref_primary_10_1002_hbm_23399 crossref_primary_10_1007_s00429_013_0516_8 crossref_primary_10_1016_j_biopsych_2010_06_021 crossref_primary_10_1016_j_neuroimage_2008_12_028 crossref_primary_10_3390_jcm12052079 crossref_primary_10_1002_jmri_27774 crossref_primary_10_1016_j_neuroimage_2018_06_019 crossref_primary_10_1016_j_neuroimage_2008_12_023 crossref_primary_10_1016_j_neuroimage_2008_01_013 crossref_primary_10_1016_j_neuroimage_2008_10_060 crossref_primary_10_1016_j_neuroimage_2015_11_005 crossref_primary_10_1007_s12021_012_9148_z crossref_primary_10_1016_j_media_2024_103165 crossref_primary_10_1016_j_neuroimage_2012_02_071 crossref_primary_10_1002_nbm_3902 crossref_primary_10_1038_s41386_021_01199_9 crossref_primary_10_1016_j_neuroimage_2015_10_032 crossref_primary_10_1007_s00429_015_1179_4 crossref_primary_10_1016_j_neuroimage_2010_07_050 crossref_primary_10_1016_j_neuroimage_2015_05_016 crossref_primary_10_1016_j_neuroimage_2020_116993 crossref_primary_10_1038_s41598_024_84901_3 crossref_primary_10_1016_j_neuroimage_2021_118651 crossref_primary_10_1016_j_nicl_2016_11_023 crossref_primary_10_1016_j_neuroimage_2014_08_021 crossref_primary_10_1002_hbm_22854 crossref_primary_10_1089_brain_2011_0033 crossref_primary_10_1002_hbm_22051 crossref_primary_10_1016_j_media_2021_102126 crossref_primary_10_1016_j_neuroimage_2018_01_006 crossref_primary_10_1016_j_media_2014_06_013 crossref_primary_10_1016_j_neuroimage_2018_06_027 crossref_primary_10_1007_s12021_015_9264_7 crossref_primary_10_1007_s12021_011_9118_x crossref_primary_10_1016_j_neuroimage_2009_10_073 crossref_primary_10_1016_j_neuroimage_2008_07_006 crossref_primary_10_1109_TMI_2016_2591080 crossref_primary_10_1016_j_media_2017_04_013 crossref_primary_10_1016_j_neuroimage_2017_06_083 crossref_primary_10_1109_TMI_2009_2029097 crossref_primary_10_1016_j_neuroimage_2013_04_096 crossref_primary_10_1016_j_neuroimage_2020_117273 crossref_primary_10_1109_TCDS_2020_2968116 crossref_primary_10_1016_j_neurobiolaging_2010_02_009 crossref_primary_10_1016_j_neuroimage_2008_11_001 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_1016_j_neuroimage_2010_10_028 crossref_primary_10_3389_fnins_2017_00754 crossref_primary_10_1016_j_neuroimage_2018_08_006 crossref_primary_10_3389_fpsyt_2021_686967 crossref_primary_10_1016_j_neuroimage_2010_07_038 crossref_primary_10_3389_fninf_2021_727859 crossref_primary_10_1016_j_nicl_2019_101883 crossref_primary_10_1109_TMI_2019_2902073 crossref_primary_10_1109_TVCG_2009_112 crossref_primary_10_3389_fnins_2024_1376570 crossref_primary_10_1371_journal_pone_0197056 crossref_primary_10_1007_s11263_009_0217_1 crossref_primary_10_1111_cgf_13688 crossref_primary_10_1016_j_biopsych_2023_05_018 crossref_primary_10_1016_j_dcn_2017_12_002 crossref_primary_10_1016_j_neuroimage_2011_11_014 crossref_primary_10_1002_hbm_20619 crossref_primary_10_1016_j_media_2017_06_011 crossref_primary_10_1016_j_neuroimage_2020_117147 crossref_primary_10_1016_j_media_2022_102454 crossref_primary_10_1016_j_mri_2021_10_017 crossref_primary_10_1002_hbm_25623 crossref_primary_10_1038_mp_2017_92 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1371_journal_pone_0133337 crossref_primary_10_1016_j_media_2020_101761 crossref_primary_10_1016_j_neuroimage_2013_04_066 crossref_primary_10_1016_j_neuroimage_2017_10_058 crossref_primary_10_1109_TVCG_2013_2297914 crossref_primary_10_1016_j_neuroimage_2014_08_001 crossref_primary_10_1007_s12021_022_09590_7 crossref_primary_10_1109_TMI_2008_2004403 crossref_primary_10_1016_j_neuroimage_2022_119550 crossref_primary_10_1016_j_compbiomed_2024_108750 crossref_primary_10_1002_mp_15495 crossref_primary_10_1016_j_neuroimage_2023_120288 crossref_primary_10_1038_s41597_024_03624_2 crossref_primary_10_1371_journal_pone_0083847 crossref_primary_10_1109_TCDS_2023_3304529 crossref_primary_10_1016_j_neuroimage_2018_05_044 crossref_primary_10_1016_j_bbr_2020_112805 crossref_primary_10_1089_neu_2022_0111 crossref_primary_10_1016_j_media_2014_04_005 crossref_primary_10_1038_s41597_024_03058_w crossref_primary_10_1016_j_schres_2011_07_010 crossref_primary_10_1227_NEU_0000000000001183 crossref_primary_10_1155_2015_879675 crossref_primary_10_1016_j_bandc_2010_03_004 crossref_primary_10_3389_fninf_2022_777853 crossref_primary_10_1016_j_neurobiolaging_2022_08_010 crossref_primary_10_1016_j_neuroscience_2020_03_049 crossref_primary_10_1016_j_mri_2010_06_027 crossref_primary_10_1016_j_media_2011_01_003 crossref_primary_10_1016_j_media_2023_102759 crossref_primary_10_1016_j_neulet_2021_136424 crossref_primary_10_1007_s00429_015_1001_3 crossref_primary_10_3389_fradi_2022_866974 crossref_primary_10_1016_j_schres_2014_09_007 crossref_primary_10_1016_j_neuroimage_2017_05_012 crossref_primary_10_1109_TVCG_2016_2582158 crossref_primary_10_1016_j_neuroimage_2019_05_051 crossref_primary_10_1016_j_neuroimage_2020_116703 crossref_primary_10_1016_j_neuroimage_2022_118934 crossref_primary_10_1016_j_media_2024_103120 crossref_primary_10_1016_j_media_2018_02_008 crossref_primary_10_1016_j_ins_2015_04_045 crossref_primary_10_1007_s10916_019_1431_1 crossref_primary_10_1002_nbm_4756 crossref_primary_10_1016_j_neuroimage_2020_117483 crossref_primary_10_1016_j_neuroimage_2021_118451 crossref_primary_10_1016_j_pediatrneurol_2023_03_005 crossref_primary_10_1109_TMI_2021_3139507 crossref_primary_10_1016_j_media_2017_03_007 crossref_primary_10_1016_j_neuroimage_2020_117070 crossref_primary_10_1002_hbm_26578 crossref_primary_10_1002_hbm_23465 crossref_primary_10_1016_j_jpeds_2024_114372 crossref_primary_10_1097_WCO_0b013e32832d954b crossref_primary_10_1002_jnr_25179 crossref_primary_10_1088_1361_6560_ab2f47 crossref_primary_10_3389_fnins_2024_1394681 crossref_primary_10_1016_j_neuroimage_2021_118739 crossref_primary_10_1109_TMI_2011_2154385 crossref_primary_10_1002_hbm_70008 crossref_primary_10_1002_nbm_3778 crossref_primary_10_1038_s41593_020_00711_6 crossref_primary_10_1016_j_neuroimage_2011_11_043 crossref_primary_10_1016_j_patcog_2019_06_002 crossref_primary_10_1016_j_neuroimage_2023_120214 crossref_primary_10_3390_diagnostics13050911 crossref_primary_10_1016_j_neuroimage_2009_08_017 |
Cites_doi | 10.1006/nimg.2002.1136 10.1007/10704282_48 10.1006/jmrb.1996.0086 10.1109/VISUAL.2005.1532779 10.1073/pnas.0403743101 10.1002/mrm.20741 10.1109/VISUAL.1992.235193 10.1038/nrn1119 10.1002/mrm.10609 10.1002/ana.20334 10.1109/ISBI.2004.1398545 10.1073/pnas.0500003102 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1016/S0197-4580(97)00014-6 10.1148/radiology.201.3.8939209 10.1109/ISBI.2006.1624850 10.1002/jmri.20410 10.1109/34.868688 10.1016/S0006-3495(94)80775-1 10.1002/hbm.20179 10.1109/TPAMI.2004.1262185 10.1002/mrm.10415 10.1109/TMI.2006.877093 10.1109/IEMBS.2004.1404229 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1109/ICCV.1999.790354 10.1007/11566489_94 10.1016/j.neuroimage.2005.01.019 10.1016/S1361-8415(02)00053-1 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2007.906785 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE Materials Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 1575 |
ExternalDocumentID | 2333379971 18041271 10_1109_TMI_2007_906785 4359056 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01-MH074794 – fundername: NCRR NIH HHS grantid: U24 RR021382 – fundername: NCRR NIH HHS grantid: P41-RR15241 – fundername: NIMH NIH HHS grantid: R01 MH074794 – fundername: NCRR NIH HHS grantid: U41 RR019703 – fundername: NCRR NIH HHS grantid: U24-RR021382 – fundername: NCRR NIH HHS grantid: P41-RR13218 – fundername: NIA NIH HHS grantid: R01-AG20012 – fundername: NCRR NIH HHS grantid: P41 RR013218 – fundername: NCRR NIH HHS grantid: U41-RR019703 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c405t-6e80b875a08d58c4a61e22885b82d2f814c41e8b2ac034415de5e48eab10360c3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 |
IngestDate | Fri Jul 11 03:51:07 EDT 2025 Fri Jul 11 04:40:28 EDT 2025 Fri Jul 11 11:11:02 EDT 2025 Mon Jun 30 06:23:38 EDT 2025 Tue Apr 08 01:21:21 EDT 2025 Tue Jul 01 05:15:05 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Wed Aug 27 02:04:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | diffusion MRI white matter tractography clustering atlas |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-6e80b875a08d58c4a61e22885b82d2f814c41e8b2ac034415de5e48eab10360c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 18041271 |
PQID | 864056751 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_18041271 proquest_miscellaneous_19419312 proquest_miscellaneous_68537302 proquest_journals_864056751 crossref_citationtrail_10_1109_TMI_2007_906785 ieee_primary_4359056 proquest_miscellaneous_874183706 crossref_primary_10_1109_TMI_2007_906785 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-11-01 |
PublicationDateYYYYMMDD | 2007-11-01 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2007 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref15 ref14 ref52 ref10 xia (ref30) 2005 ref17 bengio (ref43) 2004; 16 ref19 ref18 kouby (ref41) 2005 salat (ref36) 2005 brun (ref27) 2003 ref51 jonasson (ref24) 2005 westin (ref5) 1999 ref48 ref47 ref44 williams (ref45) 2001; 13 zollei (ref46) 2005 ref49 johansen-berg (ref28) 2004; 101 ref8 ref4 ref6 kandel (ref13) 2000 ref40 conturo (ref3) 1999; 96 ref35 ref34 bjrnemo (ref7) 2002 ref37 ref31 ref2 press (ref11) 1992 ref1 ref38 maddah (ref33) 2005 pierpaoli (ref12) 1996; 201 tuch (ref9) 2002 mori (ref16) 2005 ref20 ref21 o'donnell (ref26) 2006; 27 o'donnell (ref25) 2005 cook (ref39) 2005 brun (ref23) 2004 ref29 ng (ref50) 2002; 14 zhang (ref22) 2005 o'donnell (ref42) 2006 wang (ref32) 2006 |
References_xml | – ident: ref15 doi: 10.1006/nimg.2002.1136 – volume: 96 start-page: 10422 year: 1999 ident: ref3 article-title: tracking neuronal fiber pathways in the living human brain publication-title: Neurobiology – start-page: 441 year: 1999 ident: ref5 article-title: image processing for diffusion tensor magnetic resonance imaging publication-title: Med Image Comput Computer-Assisted Intervention doi: 10.1007/10704282_48 – start-page: 1310 year: 2005 ident: ref24 article-title: fiber tracts of high angular resolution diffusion mri are easily segmented with spectral clustering publication-title: Int Soc Mag Reson Med – ident: ref48 doi: 10.1006/jmrb.1996.0086 – ident: ref31 doi: 10.1109/VISUAL.2005.1532779 – volume: 101 start-page: 13335 year: 2004 ident: ref28 article-title: changes in connectivity profiles define functionally distinct regions in human medial frontal cortex publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.0403743101 – volume: 13 year: 2001 ident: ref45 article-title: using the nystrom method to speed up kernel machines publication-title: Adv Neural Inf Process Syst – year: 2000 ident: ref13 publication-title: Principles of Neural Science – ident: ref49 doi: 10.1002/mrm.20741 – ident: ref1 doi: 10.1109/VISUAL.1992.235193 – start-page: 140 year: 2005 ident: ref25 article-title: white matter tract clustering and correspondence in populations publication-title: Int Conf Med Image Comput Computer Assisted Intervention – ident: ref14 doi: 10.1038/nrn1119 – start-page: 164 year: 2005 ident: ref39 article-title: an automated approach to connectivity-based partitioning of brain structures publication-title: Int Conf Med Image Comput Computer Assisted Intervention – start-page: 205 year: 2005 ident: ref30 article-title: knowledge-based classification of neuronal fibers in entire brain publication-title: Int Conf Med Image Comput Computer Assisted Intervention – year: 2005 ident: ref36 article-title: white matter changes in ad measured with diffusion tensor imaging publication-title: 11th Annu Meeting Organization for Human Brain Mapp – start-page: 368 year: 2004 ident: ref23 article-title: clustering fiber traces using normalized cuts publication-title: Int Conf Med Image Comput Computer Assisted Intervention – start-page: 435 year: 2002 ident: ref7 article-title: regularized stochastic white matter tractography using diffusion tensor mri publication-title: Int Conf Med Image Comput Computer Assisted Intervention – ident: ref6 doi: 10.1002/mrm.10609 – ident: ref17 doi: 10.1002/ana.20334 – volume: 14 year: 2002 ident: ref50 article-title: on spectral clustering: analysis and an algorithm publication-title: Adv Neural Inf Process Syst – ident: ref20 doi: 10.1109/ISBI.2004.1398545 – start-page: 291 year: 2005 ident: ref46 article-title: efficient population registration of 3-d data publication-title: IEEE Int Conf Comput Vision Computer Vision Biomed Image Appl – year: 2002 ident: ref9 publication-title: Diffusion MRI of complex tissue structure – ident: ref40 doi: 10.1073/pnas.0500003102 – ident: ref4 doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – ident: ref35 doi: 10.1016/S0197-4580(97)00014-6 – volume: 201 start-page: 637 year: 1996 ident: ref12 article-title: diffusion tensor mr imaging of the human brain publication-title: Radiology doi: 10.1148/radiology.201.3.8939209 – volume: 16 year: 2004 ident: ref43 article-title: out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering publication-title: Adv Neural Inf Process Syst – start-page: 188 year: 2005 ident: ref33 article-title: automated atlas-based clustering of white matter fiber tracts from dtmri publication-title: Int Conf Med Image Comput Computer Assisted Intervention – ident: ref34 doi: 10.1109/ISBI.2006.1624850 – year: 2005 ident: ref22 article-title: dti fiber clustering and cross-subject cluster analysis publication-title: Int Soc Magn Reson Med – volume: 27 start-page: 1032 year: 2006 ident: ref26 article-title: a method for clustering white matter fiber tracts publication-title: Amer J Neuroradiol – start-page: 196 year: 2005 ident: ref41 article-title: mr diffusion-based inference of a fiber bundle model from a population of subjects publication-title: International Conf Med Image Comput Computer Assisted Intervention – ident: ref19 doi: 10.1002/jmri.20410 – ident: ref51 doi: 10.1109/34.868688 – ident: ref10 doi: 10.1016/S0006-3495(94)80775-1 – ident: ref18 doi: 10.1002/hbm.20179 – start-page: 110 year: 2006 ident: ref32 article-title: learning semantic scene models by trajectory analysis publication-title: Eur Conf Computer Vision – year: 1992 ident: ref11 publication-title: Numerical Recipes in C The Art of Scientific Computing – ident: ref44 doi: 10.1109/TPAMI.2004.1262185 – ident: ref29 doi: 10.1002/mrm.10415 – year: 2005 ident: ref16 publication-title: MRI Atlas of Human White Matter – ident: ref8 doi: 10.1109/TMI.2006.877093 – ident: ref21 doi: 10.1109/IEMBS.2004.1404229 – ident: ref2 doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – ident: ref52 doi: 10.1109/ICCV.1999.790354 – start-page: 243 year: 2006 ident: ref42 article-title: high-dimensional white matter atlas generation and group analysis publication-title: Int Conf Med Image Comput Computer Assisted Intervention – ident: ref38 doi: 10.1007/11566489_94 – ident: ref37 doi: 10.1016/j.neuroimage.2005.01.019 – start-page: 564 year: 2003 ident: ref27 article-title: coloring of dt-mri fiber traces using laplacian eigenmaps publication-title: Euro Conf Computer Aided Syst Theory – ident: ref47 doi: 10.1016/S1361-8415(02)00053-1 |
SSID | ssj0014509 |
Score | 2.4088757 |
Snippet | We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate... [...] we give results from an atlas creation and automatic segmentation experiment. |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1562 |
SubjectTerms | Algorithms Anatomy Artificial Intelligence Biomedical imaging Brain clustering Computer Simulation Corona Corpus Callosum - anatomy & histology diffusion magnetic resonance imaging (MRI) Diffusion Magnetic Resonance Imaging - methods Diffusion tensor imaging Hospitals Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image segmentation Imaging, Three-Dimensional - methods Magnetic resonance imaging Models, Anatomic Models, Neurological Nerve fibers Nerve Fibers, Myelinated - ultrastructure Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Stability Subtraction Technique Tensile stress tractography white matter |
Title | Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas |
URI | https://ieeexplore.ieee.org/document/4359056 https://www.ncbi.nlm.nih.gov/pubmed/18041271 https://www.proquest.com/docview/864056751 https://www.proquest.com/docview/19419312 https://www.proquest.com/docview/68537302 https://www.proquest.com/docview/874183706 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5LKXFBw4cyDZ2HMc5rgpVQQoc2Eq9RbE92wOQrdrkwq9n_NhQECtxi5RJZHtszzf2zDcAb7jsXG0LnqEQmElymLMaFbkqghu7slXRFT45ufmszi_kp8vycgfeTbkwiBiCz3DuH8Ndvlvb0R-VnZBpr8lg78IuOW4xV2u6MZBlDOcQnjE2VyLR-PC8Plk2HyNXYe235lCrxrPuiIr_YYxCdZXtQDMYnLNH0GyaGuNMvs3Hwcztz79YHP-3L4_hYUKebBGnyhPYwX4fHtzhI9yHe026aT-AL4txWAc6V7b0iVSJ2Zp9xasfKV2pZyHegHXMB4tk732dgMjxwULZPdYE7k62GAihP4WLsw_L0_MsFV_ILGG4IVOoc0POTJdrV2orO8VJnVqXRgsnVppLKzlqIzrrWQN56bBEqbEznIxibotnsNeve3wBDJUyuSukq6xHX65WHf3SGYJqcrXi5QzmGy20NjGT-wIZ39vgoeR1Sxr09TKrNmpwBm-nD64jKcd20QM_9pNYGvYZHG7U3KZFe9tqRT0nB4rP4PX0llabv0LpelyPty2vJSFeLrZLKMI_tGuSBNsioT1hUFHl1IjncYL97kSaly__3epDuB-OlkMq5CvYG25GPCJMNJjjsBh-AV_9BKA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgE98GgpXQrUBw4cyDZ2HMc5roBqC005sJV6i_xaDtAsosmlv77jx4aHWIlbpEwi22N7vrFnvgF4TbmytSlo5hhzGUeHOaudQFeFUW2WpipU4ZOTm3Mxv-AfL8vLLXg75sI450LwmZv6x3CXb1dm8Edlx2jaazTYd-Au2v2Sxmyt8c6AlzGgg3nO2FywRORD8_p40ZxGtsLab86hWo3n3WEV_cMchfoqm6FmMDknj6BZNzZGmnybDr2empu_eBz_tzeP4WHCnmQWJ8sT2HLdLuz8xki4C_eadNe-B59nQ78KhK5k4VOpErc1-eK-XqWEpY6EiAOiiA8Xyd77SgGR5YOEwnukCeydZNYjRn8KFycfFu_mWSq_kBlEcX0mnMw1ujMql7aUhitBUaFSlloyy5aScsOpk5op43kDaWld6bh0SlM0i7kp9mG7W3XuAIgTQue24LYyHn_ZWij8pdUI1vhyScsJTNdaaE3iJvclMr63wUfJ6xY16CtmVm3U4ATejB_8iLQcm0X3_NiPYmnYJ3C4VnOblu11KwX2HF0oOoGj8S2uN3-Jojq3Gq5bWnPEvJRtlhCIgHDfRAmyQUJ6yqCiyrERz-IE-9WJNC-f_7vVR3B_vmjO2rPT80-H8CAcNIfEyBew3f8c3EtESL1-FRbGLRq6B-k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Tractography+Segmentation+Using+a+High-Dimensional+White+Matter+Atlas&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=O%27Donnell%2C+L.J&rft.au=Westin%2C+C.-F&rft.date=2007-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=26&rft.issue=11&rft.spage=1562&rft_id=info:doi/10.1109%2FTMI.2007.906785&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2333379971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |