Glutamine deficiency drives transforming growth factor‐β signaling activation that gives rise to myofibroblastic carcinoma‐associated fibroblasts

Tumor‐promoting carcinoma‐associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor‐β (TGF‐β)‐Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in t...

Full description

Saved in:
Bibliographic Details
Published inCancer science Vol. 114; no. 11; pp. 4376 - 4387
Main Authors Mezawa, Yoshihiro, Wang, Tingwei, Daigo, Yataro, Takano, Atsushi, Miyagi, Yohei, Yokose, Tomoyuki, Yamashita, Toshinari, Yang, Liying, Maruyama, Reo, Seimiya, Hiroyuki, Orimo, Akira
Format Journal Article
LanguageEnglish
Published Tokyo John Wiley & Sons, Inc 01.11.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumor‐promoting carcinoma‐associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor‐β (TGF‐β)‐Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln‐starved medium. Global histone deacetylation and TGF‐β‐Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln‐starved HMFs, and mTORC1 inhibition in Gln‐supplemented HMFs with rapamycin treatment boosts TGF‐β‐Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF‐β‐Smad2/3 signaling activation in Gln‐starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high‐dose Gln supplementation significantly attenuates TGF‐β‐Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF‐β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion.
AbstractList Tumor‐promoting carcinoma‐associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor‐β (TGF‐β)‐Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln‐starved medium. Global histone deacetylation and TGF‐β‐Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln‐starved HMFs, and mTORC1 inhibition in Gln‐supplemented HMFs with rapamycin treatment boosts TGF‐β‐Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF‐β‐Smad2/3 signaling activation in Gln‐starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high‐dose Gln supplementation significantly attenuates TGF‐β‐Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF‐β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion.
Tumor-promoting carcinoma-associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor-β (TGF-β)-Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln-starved medium. Global histone deacetylation and TGF-β-Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln-starved HMFs, and mTORC1 inhibition in Gln-supplemented HMFs with rapamycin treatment boosts TGF-β-Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF-β-Smad2/3 signaling activation in Gln-starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high-dose Gln supplementation significantly attenuates TGF-β-Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF-β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion.Tumor-promoting carcinoma-associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor-β (TGF-β)-Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln-starved medium. Global histone deacetylation and TGF-β-Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln-starved HMFs, and mTORC1 inhibition in Gln-supplemented HMFs with rapamycin treatment boosts TGF-β-Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF-β-Smad2/3 signaling activation in Gln-starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high-dose Gln supplementation significantly attenuates TGF-β-Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF-β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion.
Tumor‐promoting carcinoma‐associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor‐β (TGF‐β)‐Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln‐starved medium. Global histone deacetylation and TGF‐β‐Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln‐starved HMFs, and mTORC1 inhibition in Gln‐supplemented HMFs with rapamycin treatment boosts TGF‐β‐Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF‐β‐Smad2/3 signaling activation in Gln‐starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high‐dose Gln supplementation significantly attenuates TGF‐β‐Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF‐β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion. We show that Gln starvation triggers TGF‐β‐Smad2/3 signaling activation via class I HDAC activity and mTORC1 suppression in human mammary fibroblasts (HMFs), presumably inducing their phenotypic conversion to myofibroblastic CAFs (myCAFs) during tumor progression.
Author Daigo, Yataro
Seimiya, Hiroyuki
Orimo, Akira
Wang, Tingwei
Miyagi, Yohei
Maruyama, Reo
Mezawa, Yoshihiro
Takano, Atsushi
Yang, Liying
Yokose, Tomoyuki
Yamashita, Toshinari
AuthorAffiliation 5 Department of Pathology Kanagawa Cancer Center Yokohama Japan
4 Molecular Pathology and Genetics Division Kanagawa Cancer Center Research Institute Yokohama Japan
6 Department of Breast Surgery and Oncology Kanagawa Cancer Center Yokohama Japan
8 Division of Molecular Biotherapy, Cancer Chemotherapy Center Japanese Foundation for Cancer Research Tokyo Japan
1 Department of Molecular Pathogenesis, Graduate School of Medicine Juntendo University Tokyo Japan
7 Project for Cancer Epigenomics Cancer Institute, Japanese Foundation for Cancer Research Tokyo Japan
2 Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science The University of Tokyo Tokyo Japan
3 Department of Medical Oncology and Cancer Center; Center for Advanced Medicine against Cancer Shiga University of Medical Science Otsu Japan
AuthorAffiliation_xml – name: 1 Department of Molecular Pathogenesis, Graduate School of Medicine Juntendo University Tokyo Japan
– name: 4 Molecular Pathology and Genetics Division Kanagawa Cancer Center Research Institute Yokohama Japan
– name: 3 Department of Medical Oncology and Cancer Center; Center for Advanced Medicine against Cancer Shiga University of Medical Science Otsu Japan
– name: 5 Department of Pathology Kanagawa Cancer Center Yokohama Japan
– name: 7 Project for Cancer Epigenomics Cancer Institute, Japanese Foundation for Cancer Research Tokyo Japan
– name: 8 Division of Molecular Biotherapy, Cancer Chemotherapy Center Japanese Foundation for Cancer Research Tokyo Japan
– name: 2 Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science The University of Tokyo Tokyo Japan
– name: 6 Department of Breast Surgery and Oncology Kanagawa Cancer Center Yokohama Japan
Author_xml – sequence: 1
  givenname: Yoshihiro
  orcidid: 0000-0002-2095-3867
  surname: Mezawa
  fullname: Mezawa, Yoshihiro
  organization: Department of Molecular Pathogenesis, Graduate School of Medicine Juntendo University Tokyo Japan
– sequence: 2
  givenname: Tingwei
  surname: Wang
  fullname: Wang, Tingwei
  organization: Department of Molecular Pathogenesis, Graduate School of Medicine Juntendo University Tokyo Japan
– sequence: 3
  givenname: Yataro
  surname: Daigo
  fullname: Daigo, Yataro
  organization: Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science The University of Tokyo Tokyo Japan, Department of Medical Oncology and Cancer Center; Center for Advanced Medicine against Cancer Shiga University of Medical Science Otsu Japan
– sequence: 4
  givenname: Atsushi
  surname: Takano
  fullname: Takano, Atsushi
  organization: Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science The University of Tokyo Tokyo Japan, Department of Medical Oncology and Cancer Center; Center for Advanced Medicine against Cancer Shiga University of Medical Science Otsu Japan
– sequence: 5
  givenname: Yohei
  surname: Miyagi
  fullname: Miyagi, Yohei
  organization: Molecular Pathology and Genetics Division Kanagawa Cancer Center Research Institute Yokohama Japan
– sequence: 6
  givenname: Tomoyuki
  surname: Yokose
  fullname: Yokose, Tomoyuki
  organization: Department of Pathology Kanagawa Cancer Center Yokohama Japan
– sequence: 7
  givenname: Toshinari
  surname: Yamashita
  fullname: Yamashita, Toshinari
  organization: Department of Breast Surgery and Oncology Kanagawa Cancer Center Yokohama Japan
– sequence: 8
  givenname: Liying
  surname: Yang
  fullname: Yang, Liying
  organization: Project for Cancer Epigenomics Cancer Institute, Japanese Foundation for Cancer Research Tokyo Japan
– sequence: 9
  givenname: Reo
  surname: Maruyama
  fullname: Maruyama, Reo
  organization: Project for Cancer Epigenomics Cancer Institute, Japanese Foundation for Cancer Research Tokyo Japan
– sequence: 10
  givenname: Hiroyuki
  orcidid: 0000-0003-3314-9736
  surname: Seimiya
  fullname: Seimiya, Hiroyuki
  organization: Division of Molecular Biotherapy, Cancer Chemotherapy Center Japanese Foundation for Cancer Research Tokyo Japan
– sequence: 11
  givenname: Akira
  surname: Orimo
  fullname: Orimo, Akira
  organization: Department of Molecular Pathogenesis, Graduate School of Medicine Juntendo University Tokyo Japan
BookMark eNptkU1u1TAUhS1URH9gwA4sMYFBWjuO43iEUAUFqRITGFs3jp3nKrGL7bzqzVgCoy6kC2ERrAS_tAJR4Ymte757dH3PMTrwwRuEXlJySss505BOKZecP0FHlDWyEoS0B-tbVJKw-hAdp3RFCGsb2TxDh0wI0jIujtDtxbRkmJ03eDDWaWe83uEhuq1JOEfwyYZY5BGPMdzkDbagc4i_vv_4eYeTGz1Me7EU3RayCx7nDWQ8rv3RJYNzwPMuWNfH0E-QstNYQ9TOhxmKDaQUtINsBvyXSc_RUwtTMi8e7hP09cP7L-cfq8vPF5_O311WuiE8V62hnHbadoMREgwXA5UWgNeD7I2ksja6GxjpKfSS91YKNvTWEF7XrKtFQ9kJenvve730sxm08eXPk7qOboa4UwGc-lfxbqPGsFW07E8Q3hWH1w8OMXxbTMpqdkmbaQJvwpJU3bVNJ1uxoq8eoVdhiWWDe6oTkknWkEK9uad0DClFY_9MQ4nax61K3GqNu7Bnj1jt8hpDGdZN_-n4DT3ktiQ
CitedBy_id crossref_primary_10_1080_09553002_2024_2327395
crossref_primary_10_3389_fphar_2024_1491400
crossref_primary_10_1007_s00262_024_03675_9
crossref_primary_10_1080_08820139_2024_2395874
Cites_doi 10.1016/j.molcel.2012.05.043
10.1074/jbc.M113.490706
10.1016/j.ccr.2014.05.004
10.1016/j.molcel.2012.10.025
10.1073/pnas.1013805107
10.1158/2159-8290.CD-19-0094
10.1016/j.cell.2011.02.013
10.1038/nm0901-987
10.1038/ncb3410
10.1038/s41573-018-0004-1
10.1016/j.cell.2005.02.034
10.1074/jbc.M409197200
10.1016/j.molcel.2021.12.004
10.1074/jbc.M503134200
10.1016/j.tcb.2014.03.003
10.1038/s41416-018-0072-3
10.1155/2011/690848
10.1172/JCI92893
10.3390/ijms20061329
10.1158/2159-8290.CD-19-0644
10.1136/gutjnl-2018-317645
10.1002/art.22759
10.1002/hep.510290328
10.1038/s41568-018-0074-8
10.26508/lsa.201900425
10.1038/s41467-018-07582-3
10.1158/0008-5472.CAN-14-2211
10.1158/0008-5472.CAN-08-3907
10.1016/j.molcel.2009.09.043
10.1093/jnci/92.14.1185a
10.1084/jem.20170724
10.18632/oncotarget.11129
10.1038/46794
10.1038/onc.2015.381
10.1016/j.ccell.2018.01.011
10.1097/00000658-199312000-00004
10.1038/ncomms10204
10.1038/nrc.2016.71
10.1158/1078-0432.Ccr-08-2319
10.1016/j.devcel.2020.05.001
10.1126/science.1164097
10.1111/febs.15851
10.1186/bcr2222
10.1172/JCI99397
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1111/cas.15955
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Mezawa et al
EISSN 1349-7006
EndPage 4387
ExternalDocumentID PMC10637058
10_1111_cas_15955
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 18K07207; 20J15495; 22K20837
– fundername: JSPS KAKENHI (CoBiA)
  grantid: JP16H06277
– fundername: JSPS KAKENHI (AdAMS)
  grantid: JP16H06276
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29B
2WC
31~
36B
3O-
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
8FE
8FH
8FI
8FJ
8UM
930
A01
A03
AAFWJ
AAHHS
AAYXX
AAZKR
ABCQN
ABEML
ABUWG
ACCFJ
ACCMX
ACSCC
ACXQS
ADBBV
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFEBI
AFFNX
AFKRA
AFPKN
AFZJQ
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
CITATION
COF
CS3
D-6
D-7
D-E
D-F
DR2
DU5
E3Z
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FYUFA
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HMCUK
HOLLA
HYE
HZI
HZ~
IAO
IHR
ITC
IX1
J0M
K.9
K48
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M1P
M7P
MK4
N04
N05
N9A
O9-
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PHGZM
PHGZT
PIMPY
PROAC
PSQYO
Q11
ROL
RPM
RX1
SJN
SUPJJ
SV3
TEORI
UB1
UKHRP
W8V
WOW
WQJ
WXI
X7M
XG1
ZXP
~IA
~WT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
WIN
7X8
5PM
ID FETCH-LOGICAL-c405t-6e1518cf8de79ae57d19faa52d9be9192ec8d30b1ab95bf973dbfe05223827413
IEDL.DBID 7X7
ISSN 1347-9032
1349-7006
IngestDate Thu Aug 21 18:36:15 EDT 2025
Thu Jul 10 18:38:26 EDT 2025
Wed Aug 13 04:47:06 EDT 2025
Tue Jul 01 01:31:17 EDT 2025
Thu Apr 24 22:52:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-6e1518cf8de79ae57d19faa52d9be9192ec8d30b1ab95bf973dbfe05223827413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3314-9736
0000-0002-2095-3867
OpenAccessLink https://www.proquest.com/docview/2887939340?pq-origsite=%requestingapplication%
PMID 37706357
PQID 2887939340
PQPubID 4378882
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10637058
proquest_miscellaneous_2864896758
proquest_journals_2887939340
crossref_primary_10_1111_cas_15955
crossref_citationtrail_10_1111_cas_15955
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: Hoboken
PublicationTitle Cancer science
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – ident: e_1_2_11_31_1
  doi: 10.1016/j.molcel.2012.05.043
– ident: e_1_2_11_36_1
  doi: 10.1074/jbc.M113.490706
– ident: e_1_2_11_45_1
  doi: 10.1016/j.ccr.2014.05.004
– ident: e_1_2_11_22_1
  doi: 10.1016/j.molcel.2012.10.025
– ident: e_1_2_11_10_1
  doi: 10.1073/pnas.1013805107
– ident: e_1_2_11_8_1
  doi: 10.1158/2159-8290.CD-19-0094
– ident: e_1_2_11_2_1
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_2_11_27_1
  doi: 10.1038/nm0901-987
– ident: e_1_2_11_29_1
  doi: 10.1038/ncb3410
– ident: e_1_2_11_5_1
  doi: 10.1038/s41573-018-0004-1
– ident: e_1_2_11_3_1
  doi: 10.1016/j.cell.2005.02.034
– ident: e_1_2_11_38_1
  doi: 10.1074/jbc.M409197200
– ident: e_1_2_11_20_1
  doi: 10.1016/j.molcel.2021.12.004
– ident: e_1_2_11_43_1
  doi: 10.1074/jbc.M503134200
– ident: e_1_2_11_30_1
  doi: 10.1016/j.tcb.2014.03.003
– ident: e_1_2_11_17_1
  doi: 10.1038/s41416-018-0072-3
– ident: e_1_2_11_42_1
  doi: 10.1155/2011/690848
– ident: e_1_2_11_44_1
  doi: 10.1172/JCI92893
– ident: e_1_2_11_19_1
  doi: 10.3390/ijms20061329
– ident: e_1_2_11_7_1
  doi: 10.1158/2159-8290.CD-19-0644
– ident: e_1_2_11_11_1
  doi: 10.1136/gutjnl-2018-317645
– ident: e_1_2_11_16_1
  doi: 10.1002/art.22759
– ident: e_1_2_11_18_1
  doi: 10.1002/hep.510290328
– ident: e_1_2_11_32_1
  doi: 10.1038/s41568-018-0074-8
– ident: e_1_2_11_37_1
  doi: 10.26508/lsa.201900425
– ident: e_1_2_11_9_1
  doi: 10.1038/s41467-018-07582-3
– ident: e_1_2_11_28_1
  doi: 10.1158/0008-5472.CAN-14-2211
– ident: e_1_2_11_33_1
  doi: 10.1158/0008-5472.CAN-08-3907
– ident: e_1_2_11_39_1
  doi: 10.1016/j.molcel.2009.09.043
– ident: e_1_2_11_35_1
  doi: 10.1093/jnci/92.14.1185a
– ident: e_1_2_11_13_1
  doi: 10.1084/jem.20170724
– ident: e_1_2_11_15_1
  doi: 10.18632/oncotarget.11129
– ident: e_1_2_11_40_1
  doi: 10.1038/46794
– ident: e_1_2_11_26_1
  doi: 10.1038/onc.2015.381
– ident: e_1_2_11_6_1
  doi: 10.1016/j.ccell.2018.01.011
– ident: e_1_2_11_25_1
  doi: 10.1097/00000658-199312000-00004
– ident: e_1_2_11_14_1
  doi: 10.1038/ncomms10204
– ident: e_1_2_11_24_1
  doi: 10.1038/nrc.2016.71
– ident: e_1_2_11_34_1
  doi: 10.1158/1078-0432.Ccr-08-2319
– ident: e_1_2_11_21_1
  doi: 10.1016/j.devcel.2020.05.001
– ident: e_1_2_11_23_1
  doi: 10.1126/science.1164097
– ident: e_1_2_11_4_1
  doi: 10.1111/febs.15851
– ident: e_1_2_11_41_1
  doi: 10.1186/bcr2222
– ident: e_1_2_11_12_1
  doi: 10.1172/JCI99397
SSID ssj0036494
Score 2.4431336
Snippet Tumor‐promoting carcinoma‐associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor‐β...
Tumor-promoting carcinoma-associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor-β...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4376
SubjectTerms Antibodies
Antigens
Breast cancer
Carcinoma
Cell culture
Deacetylation
DNA methylation
Epigenetics
Fibroblasts
Glutamine
Growth factors
Histone deacetylase
Kinases
Mammary gland
Medical prognosis
Original
ORIGINAL ARTICLES
Phenotypes
Phosphorylation
Rapamycin
Regression analysis
Smad2 protein
Smooth muscle
TOR protein
Transforming growth factor-b
Tumor microenvironment
Tumors
Title Glutamine deficiency drives transforming growth factor‐β signaling activation that gives rise to myofibroblastic carcinoma‐associated fibroblasts
URI https://www.proquest.com/docview/2887939340
https://www.proquest.com/docview/2864896758
https://pubmed.ncbi.nlm.nih.gov/PMC10637058
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELYoSFUviNJW3RZWLuqBi9Xgn8Q-VVBBUSUQQiDtLbJjm63UTSgbDrxGH4UH4Zk6kzi7rFT1EkWKIyuZGc-MPfN9hHyO2kKSYBXzMSpIUJRiTtrIXPQ6ijxGbvFE9-w8P72WPyZqkjbc5qmsclgTu4XaNxXukX_hYA1GGCGzr7e_GbJG4elqotB4QTYQugxLuorJIuESuTQ9qa0smMkET8hCWMmDhGLgybHD77k_WgaZqyWSz3zOyRbZTMEiPeyl-5qshXqbvDxLx-FvyJ_voDd2BvfUB4SCwD5K6u8QSpa2Q0gKzoneQLbdTmnPrsOeHinWbVhsRafY2dDvy9J2alt6070Nth9o29DZA2ifQ9YZi4jOtELuobqZWWaTYIOnyxHzt-T65Pjq2ylLJAusAsm0LA_g83UVtQ-FsUEV_sBEaxX3xgUD8V-otBeZO7DOKBdNIbyLIYOwTWiEvhHvyHrd1OE9oc57xyGcdEJqCZ-tJecGAcNExYXN3YjsD7-6rBICORJh_CqHTASkUnZSGZG9xdDbHnbjX4N2BnmVyfLm5VJPRuTT4jHYDB6E2Do09zgml9pgqjQiekXOi8kQdXv1Sf1z2qFvQw4tikzpD_-f_SN5hcz0fdviDllv7-7DLsQvrRt3SjomG0fH5xeX424XAK-X_C8VJful
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEL9ioYBBIHGx2NpOYh8Q4qdlS7srhFqpt9SO7S4Sm5RuKtTX4EE48CA8EzObZLcrIW69RbITJ5mx_Y3t-T6A51FbDBJswn2MCQYoScKdspG76HWUaYzC0o7uaJwOD9Snw-RwDX51uTB0rLIbE-cDta8KWiN_JbA3GGmkGrw5-c5JNYp2VzsJjcYtdsP5DwzZZq93PqB9XwixvbX_fshbVQFe4KvUPA04yekiah8yY0OS-U0TrU2ENy4YBDyh0F4O3KZ1JnHRZNK7GAaIU6QmrheJz70C60piKNOD9Xdb489furFfpso0Mroq42YgRctlRGeHSMIMsQPlFF6cAZewdvVQ5oVZbvsm3GjhKXvb-NMtWAvlbbg6ajfg78DPj-ipdorXzAcin6DMTeZPibyW1R0IxumQHWN8X09Yo-fD__xmdFLEUvI7o1yKZiWY1RNbs-P53TjaBFZXbHqO_u5I58YShzQrSO2orKaW29aVgmfLGrO7cHApBrgHvbIqw31gznsnEMA6qbTCz9ZKCEMUZbIQ0qauDy-7X50XLec5SW98y7vYB62Sz63Sh2eLqicN0ce_Km109srbvj7Ll57Zh6eLYuyltPViy1CdUZ1UaUPBWR_0ip0XjRHP92pJ-XUy5_vGqF1mg0Q_-H_rT-DacH-0l-_tjHcfwnWBaKxJmtyAXn16Fh4heqrd49ZlGRxddi_5C1_KNxs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVcEL9ioYBBIHGxumvHiX1AFaIsLaUVByrtLdix3a3EJqWbCvU1eBSOPESfiZn87HYlxK23SPFufmbG_iae-T6AV1FbTBKs4j5GhQmKUtwlNnIXvY4yjVFY2tE9OEx3j5JPEzVZgz99LwyVVfZzYjNR-6qgb-RbAqPBSCOT4VbsyiK-7Iy3T39wUpCindZeTqN1kf1w8RPTt_nbvR209Wshxh--vt_lncIAL_C2ap4GXPB0EbUPmbFBZX5korVKeOOCQfATCu3l0I2sM8pFk0nvYhgiZpGaeF8k_u8NuJlJNaIYyyaLZE-miWkFdZOMm6EUHasRVRGRmBmiCOouvLoWLgHuannmlfVufAdud0CVvWs96y6shfIebBx0W_H34ddH9Fk7w2PmA9FQUA8n82dEY8vqHg7jwsiOMdOvp6xV9uGXvxnVjFhqg2fUVdF-E2b11NbsuPk1zjuB1RWbXaDnO1K8scQmzQrSPSqrmeW2c6rg2XLE_AEcXcvrfwjrZVWGR8Cc904glHUy0Qk-tk6EMERWJgshbeoG8KZ_1XnRsZ-TCMf3vM-C0Cp5Y5UBvFwMPW0pP_41aLO3V95F_Txf-ugAXixOY7zSJowtQ3VOY9JEG0rTBqBX7Ly4GDF-r54pT6YN8zfm7zIbKv34_1d_DhsYG_nnvcP9J3BLICxruyc3Yb0-Ow9PEUbV7lnjrwy-XXeA_AUCNznr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutamine+deficiency+drives+transforming+growth+factor-%CE%B2+signaling+activation+that+gives+rise+to+myofibroblastic+carcinoma-associated+fibroblasts&rft.jtitle=Cancer+science&rft.au=Mezawa%2C+Yoshihiro&rft.au=Wang%2C+Tingwei&rft.au=Yataro+Daigo&rft.au=Takano%2C+Atsushi&rft.date=2023-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1347-9032&rft.eissn=1349-7006&rft.volume=114&rft.issue=11&rft.spage=4376&rft.epage=4387&rft_id=info:doi/10.1111%2Fcas.15955&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon