Glutamine deficiency drives transforming growth factor‐β signaling activation that gives rise to myofibroblastic carcinoma‐associated fibroblasts
Tumor‐promoting carcinoma‐associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor‐β (TGF‐β)‐Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in t...
Saved in:
Published in | Cancer science Vol. 114; no. 11; pp. 4376 - 4387 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
John Wiley & Sons, Inc
01.11.2023
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor‐promoting carcinoma‐associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor‐β (TGF‐β)‐Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln‐starved medium. Global histone deacetylation and TGF‐β‐Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln‐starved HMFs, and mTORC1 inhibition in Gln‐supplemented HMFs with rapamycin treatment boosts TGF‐β‐Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF‐β‐Smad2/3 signaling activation in Gln‐starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high‐dose Gln supplementation significantly attenuates TGF‐β‐Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF‐β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion. |
---|---|
AbstractList | Tumor‐promoting carcinoma‐associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor‐β (TGF‐β)‐Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln‐starved medium. Global histone deacetylation and TGF‐β‐Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln‐starved HMFs, and mTORC1 inhibition in Gln‐supplemented HMFs with rapamycin treatment boosts TGF‐β‐Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF‐β‐Smad2/3 signaling activation in Gln‐starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high‐dose Gln supplementation significantly attenuates TGF‐β‐Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF‐β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion. Tumor-promoting carcinoma-associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor-β (TGF-β)-Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln-starved medium. Global histone deacetylation and TGF-β-Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln-starved HMFs, and mTORC1 inhibition in Gln-supplemented HMFs with rapamycin treatment boosts TGF-β-Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF-β-Smad2/3 signaling activation in Gln-starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high-dose Gln supplementation significantly attenuates TGF-β-Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF-β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion.Tumor-promoting carcinoma-associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor-β (TGF-β)-Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln-starved medium. Global histone deacetylation and TGF-β-Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln-starved HMFs, and mTORC1 inhibition in Gln-supplemented HMFs with rapamycin treatment boosts TGF-β-Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF-β-Smad2/3 signaling activation in Gln-starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high-dose Gln supplementation significantly attenuates TGF-β-Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF-β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion. Tumor‐promoting carcinoma‐associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor‐β (TGF‐β)‐Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln‐starved medium. Global histone deacetylation and TGF‐β‐Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln‐starved HMFs, and mTORC1 inhibition in Gln‐supplemented HMFs with rapamycin treatment boosts TGF‐β‐Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF‐β‐Smad2/3 signaling activation in Gln‐starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high‐dose Gln supplementation significantly attenuates TGF‐β‐Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF‐β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion. We show that Gln starvation triggers TGF‐β‐Smad2/3 signaling activation via class I HDAC activity and mTORC1 suppression in human mammary fibroblasts (HMFs), presumably inducing their phenotypic conversion to myofibroblastic CAFs (myCAFs) during tumor progression. |
Author | Daigo, Yataro Seimiya, Hiroyuki Orimo, Akira Wang, Tingwei Miyagi, Yohei Maruyama, Reo Mezawa, Yoshihiro Takano, Atsushi Yang, Liying Yokose, Tomoyuki Yamashita, Toshinari |
AuthorAffiliation | 5 Department of Pathology Kanagawa Cancer Center Yokohama Japan 4 Molecular Pathology and Genetics Division Kanagawa Cancer Center Research Institute Yokohama Japan 6 Department of Breast Surgery and Oncology Kanagawa Cancer Center Yokohama Japan 8 Division of Molecular Biotherapy, Cancer Chemotherapy Center Japanese Foundation for Cancer Research Tokyo Japan 1 Department of Molecular Pathogenesis, Graduate School of Medicine Juntendo University Tokyo Japan 7 Project for Cancer Epigenomics Cancer Institute, Japanese Foundation for Cancer Research Tokyo Japan 2 Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science The University of Tokyo Tokyo Japan 3 Department of Medical Oncology and Cancer Center; Center for Advanced Medicine against Cancer Shiga University of Medical Science Otsu Japan |
AuthorAffiliation_xml | – name: 1 Department of Molecular Pathogenesis, Graduate School of Medicine Juntendo University Tokyo Japan – name: 4 Molecular Pathology and Genetics Division Kanagawa Cancer Center Research Institute Yokohama Japan – name: 3 Department of Medical Oncology and Cancer Center; Center for Advanced Medicine against Cancer Shiga University of Medical Science Otsu Japan – name: 5 Department of Pathology Kanagawa Cancer Center Yokohama Japan – name: 7 Project for Cancer Epigenomics Cancer Institute, Japanese Foundation for Cancer Research Tokyo Japan – name: 8 Division of Molecular Biotherapy, Cancer Chemotherapy Center Japanese Foundation for Cancer Research Tokyo Japan – name: 2 Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science The University of Tokyo Tokyo Japan – name: 6 Department of Breast Surgery and Oncology Kanagawa Cancer Center Yokohama Japan |
Author_xml | – sequence: 1 givenname: Yoshihiro orcidid: 0000-0002-2095-3867 surname: Mezawa fullname: Mezawa, Yoshihiro organization: Department of Molecular Pathogenesis, Graduate School of Medicine Juntendo University Tokyo Japan – sequence: 2 givenname: Tingwei surname: Wang fullname: Wang, Tingwei organization: Department of Molecular Pathogenesis, Graduate School of Medicine Juntendo University Tokyo Japan – sequence: 3 givenname: Yataro surname: Daigo fullname: Daigo, Yataro organization: Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science The University of Tokyo Tokyo Japan, Department of Medical Oncology and Cancer Center; Center for Advanced Medicine against Cancer Shiga University of Medical Science Otsu Japan – sequence: 4 givenname: Atsushi surname: Takano fullname: Takano, Atsushi organization: Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science The University of Tokyo Tokyo Japan, Department of Medical Oncology and Cancer Center; Center for Advanced Medicine against Cancer Shiga University of Medical Science Otsu Japan – sequence: 5 givenname: Yohei surname: Miyagi fullname: Miyagi, Yohei organization: Molecular Pathology and Genetics Division Kanagawa Cancer Center Research Institute Yokohama Japan – sequence: 6 givenname: Tomoyuki surname: Yokose fullname: Yokose, Tomoyuki organization: Department of Pathology Kanagawa Cancer Center Yokohama Japan – sequence: 7 givenname: Toshinari surname: Yamashita fullname: Yamashita, Toshinari organization: Department of Breast Surgery and Oncology Kanagawa Cancer Center Yokohama Japan – sequence: 8 givenname: Liying surname: Yang fullname: Yang, Liying organization: Project for Cancer Epigenomics Cancer Institute, Japanese Foundation for Cancer Research Tokyo Japan – sequence: 9 givenname: Reo surname: Maruyama fullname: Maruyama, Reo organization: Project for Cancer Epigenomics Cancer Institute, Japanese Foundation for Cancer Research Tokyo Japan – sequence: 10 givenname: Hiroyuki orcidid: 0000-0003-3314-9736 surname: Seimiya fullname: Seimiya, Hiroyuki organization: Division of Molecular Biotherapy, Cancer Chemotherapy Center Japanese Foundation for Cancer Research Tokyo Japan – sequence: 11 givenname: Akira surname: Orimo fullname: Orimo, Akira organization: Department of Molecular Pathogenesis, Graduate School of Medicine Juntendo University Tokyo Japan |
BookMark | eNptkU1u1TAUhS1URH9gwA4sMYFBWjuO43iEUAUFqRITGFs3jp3nKrGL7bzqzVgCoy6kC2ERrAS_tAJR4Ymte757dH3PMTrwwRuEXlJySss505BOKZecP0FHlDWyEoS0B-tbVJKw-hAdp3RFCGsb2TxDh0wI0jIujtDtxbRkmJ03eDDWaWe83uEhuq1JOEfwyYZY5BGPMdzkDbagc4i_vv_4eYeTGz1Me7EU3RayCx7nDWQ8rv3RJYNzwPMuWNfH0E-QstNYQ9TOhxmKDaQUtINsBvyXSc_RUwtTMi8e7hP09cP7L-cfq8vPF5_O311WuiE8V62hnHbadoMREgwXA5UWgNeD7I2ksja6GxjpKfSS91YKNvTWEF7XrKtFQ9kJenvve730sxm08eXPk7qOboa4UwGc-lfxbqPGsFW07E8Q3hWH1w8OMXxbTMpqdkmbaQJvwpJU3bVNJ1uxoq8eoVdhiWWDe6oTkknWkEK9uad0DClFY_9MQ4nax61K3GqNu7Bnj1jt8hpDGdZN_-n4DT3ktiQ |
CitedBy_id | crossref_primary_10_1080_09553002_2024_2327395 crossref_primary_10_3389_fphar_2024_1491400 crossref_primary_10_1007_s00262_024_03675_9 crossref_primary_10_1080_08820139_2024_2395874 |
Cites_doi | 10.1016/j.molcel.2012.05.043 10.1074/jbc.M113.490706 10.1016/j.ccr.2014.05.004 10.1016/j.molcel.2012.10.025 10.1073/pnas.1013805107 10.1158/2159-8290.CD-19-0094 10.1016/j.cell.2011.02.013 10.1038/nm0901-987 10.1038/ncb3410 10.1038/s41573-018-0004-1 10.1016/j.cell.2005.02.034 10.1074/jbc.M409197200 10.1016/j.molcel.2021.12.004 10.1074/jbc.M503134200 10.1016/j.tcb.2014.03.003 10.1038/s41416-018-0072-3 10.1155/2011/690848 10.1172/JCI92893 10.3390/ijms20061329 10.1158/2159-8290.CD-19-0644 10.1136/gutjnl-2018-317645 10.1002/art.22759 10.1002/hep.510290328 10.1038/s41568-018-0074-8 10.26508/lsa.201900425 10.1038/s41467-018-07582-3 10.1158/0008-5472.CAN-14-2211 10.1158/0008-5472.CAN-08-3907 10.1016/j.molcel.2009.09.043 10.1093/jnci/92.14.1185a 10.1084/jem.20170724 10.18632/oncotarget.11129 10.1038/46794 10.1038/onc.2015.381 10.1016/j.ccell.2018.01.011 10.1097/00000658-199312000-00004 10.1038/ncomms10204 10.1038/nrc.2016.71 10.1158/1078-0432.Ccr-08-2319 10.1016/j.devcel.2020.05.001 10.1126/science.1164097 10.1111/febs.15851 10.1186/bcr2222 10.1172/JCI99397 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.1111/cas.15955 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Mezawa et al |
EISSN | 1349-7006 |
EndPage | 4387 |
ExternalDocumentID | PMC10637058 10_1111_cas_15955 |
GrantInformation_xml | – fundername: JSPS KAKENHI grantid: 18K07207; 20J15495; 22K20837 – fundername: JSPS KAKENHI (CoBiA) grantid: JP16H06277 – fundername: JSPS KAKENHI (AdAMS) grantid: JP16H06276 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 36B 3O- 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 8FE 8FH 8FI 8FJ 8UM 930 A01 A03 AAFWJ AAHHS AAYXX AAZKR ABCQN ABEML ABUWG ACCFJ ACCMX ACSCC ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFEBI AFFNX AFKRA AFPKN AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU CITATION COF CS3 D-6 D-7 D-E D-F DR2 DU5 E3Z EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ FYUFA GODZA GROUPED_DOAJ HCIFZ HF~ HMCUK HOLLA HYE HZI HZ~ IAO IHR ITC IX1 J0M K.9 K48 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M1P M7P MK4 N04 N05 N9A O9- OIG OK1 OVD P2P P2X P2Z P4B P4D PHGZM PHGZT PIMPY PROAC PSQYO Q11 ROL RPM RX1 SJN SUPJJ SV3 TEORI UB1 UKHRP W8V WOW WQJ WXI X7M XG1 ZXP ~IA ~WT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI WIN 7X8 5PM |
ID | FETCH-LOGICAL-c405t-6e1518cf8de79ae57d19faa52d9be9192ec8d30b1ab95bf973dbfe05223827413 |
IEDL.DBID | 7X7 |
ISSN | 1347-9032 1349-7006 |
IngestDate | Thu Aug 21 18:36:15 EDT 2025 Thu Jul 10 18:38:26 EDT 2025 Wed Aug 13 04:47:06 EDT 2025 Tue Jul 01 01:31:17 EDT 2025 Thu Apr 24 22:52:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-6e1518cf8de79ae57d19faa52d9be9192ec8d30b1ab95bf973dbfe05223827413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3314-9736 0000-0002-2095-3867 |
OpenAccessLink | https://www.proquest.com/docview/2887939340?pq-origsite=%requestingapplication% |
PMID | 37706357 |
PQID | 2887939340 |
PQPubID | 4378882 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10637058 proquest_miscellaneous_2864896758 proquest_journals_2887939340 crossref_primary_10_1111_cas_15955 crossref_citationtrail_10_1111_cas_15955 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo – name: Hoboken |
PublicationTitle | Cancer science |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
References_xml | – ident: e_1_2_11_31_1 doi: 10.1016/j.molcel.2012.05.043 – ident: e_1_2_11_36_1 doi: 10.1074/jbc.M113.490706 – ident: e_1_2_11_45_1 doi: 10.1016/j.ccr.2014.05.004 – ident: e_1_2_11_22_1 doi: 10.1016/j.molcel.2012.10.025 – ident: e_1_2_11_10_1 doi: 10.1073/pnas.1013805107 – ident: e_1_2_11_8_1 doi: 10.1158/2159-8290.CD-19-0094 – ident: e_1_2_11_2_1 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_2_11_27_1 doi: 10.1038/nm0901-987 – ident: e_1_2_11_29_1 doi: 10.1038/ncb3410 – ident: e_1_2_11_5_1 doi: 10.1038/s41573-018-0004-1 – ident: e_1_2_11_3_1 doi: 10.1016/j.cell.2005.02.034 – ident: e_1_2_11_38_1 doi: 10.1074/jbc.M409197200 – ident: e_1_2_11_20_1 doi: 10.1016/j.molcel.2021.12.004 – ident: e_1_2_11_43_1 doi: 10.1074/jbc.M503134200 – ident: e_1_2_11_30_1 doi: 10.1016/j.tcb.2014.03.003 – ident: e_1_2_11_17_1 doi: 10.1038/s41416-018-0072-3 – ident: e_1_2_11_42_1 doi: 10.1155/2011/690848 – ident: e_1_2_11_44_1 doi: 10.1172/JCI92893 – ident: e_1_2_11_19_1 doi: 10.3390/ijms20061329 – ident: e_1_2_11_7_1 doi: 10.1158/2159-8290.CD-19-0644 – ident: e_1_2_11_11_1 doi: 10.1136/gutjnl-2018-317645 – ident: e_1_2_11_16_1 doi: 10.1002/art.22759 – ident: e_1_2_11_18_1 doi: 10.1002/hep.510290328 – ident: e_1_2_11_32_1 doi: 10.1038/s41568-018-0074-8 – ident: e_1_2_11_37_1 doi: 10.26508/lsa.201900425 – ident: e_1_2_11_9_1 doi: 10.1038/s41467-018-07582-3 – ident: e_1_2_11_28_1 doi: 10.1158/0008-5472.CAN-14-2211 – ident: e_1_2_11_33_1 doi: 10.1158/0008-5472.CAN-08-3907 – ident: e_1_2_11_39_1 doi: 10.1016/j.molcel.2009.09.043 – ident: e_1_2_11_35_1 doi: 10.1093/jnci/92.14.1185a – ident: e_1_2_11_13_1 doi: 10.1084/jem.20170724 – ident: e_1_2_11_15_1 doi: 10.18632/oncotarget.11129 – ident: e_1_2_11_40_1 doi: 10.1038/46794 – ident: e_1_2_11_26_1 doi: 10.1038/onc.2015.381 – ident: e_1_2_11_6_1 doi: 10.1016/j.ccell.2018.01.011 – ident: e_1_2_11_25_1 doi: 10.1097/00000658-199312000-00004 – ident: e_1_2_11_14_1 doi: 10.1038/ncomms10204 – ident: e_1_2_11_24_1 doi: 10.1038/nrc.2016.71 – ident: e_1_2_11_34_1 doi: 10.1158/1078-0432.Ccr-08-2319 – ident: e_1_2_11_21_1 doi: 10.1016/j.devcel.2020.05.001 – ident: e_1_2_11_23_1 doi: 10.1126/science.1164097 – ident: e_1_2_11_4_1 doi: 10.1111/febs.15851 – ident: e_1_2_11_41_1 doi: 10.1186/bcr2222 – ident: e_1_2_11_12_1 doi: 10.1172/JCI99397 |
SSID | ssj0036494 |
Score | 2.4431336 |
Snippet | Tumor‐promoting carcinoma‐associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor‐β... Tumor-promoting carcinoma-associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor-β... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4376 |
SubjectTerms | Antibodies Antigens Breast cancer Carcinoma Cell culture Deacetylation DNA methylation Epigenetics Fibroblasts Glutamine Growth factors Histone deacetylase Kinases Mammary gland Medical prognosis Original ORIGINAL ARTICLES Phenotypes Phosphorylation Rapamycin Regression analysis Smad2 protein Smooth muscle TOR protein Transforming growth factor-b Tumor microenvironment Tumors |
Title | Glutamine deficiency drives transforming growth factor‐β signaling activation that gives rise to myofibroblastic carcinoma‐associated fibroblasts |
URI | https://www.proquest.com/docview/2887939340 https://www.proquest.com/docview/2864896758 https://pubmed.ncbi.nlm.nih.gov/PMC10637058 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELYoSFUviNJW3RZWLuqBi9Xgn8Q-VVBBUSUQQiDtLbJjm63UTSgbDrxGH4UH4Zk6kzi7rFT1EkWKIyuZGc-MPfN9hHyO2kKSYBXzMSpIUJRiTtrIXPQ6ijxGbvFE9-w8P72WPyZqkjbc5qmsclgTu4XaNxXukX_hYA1GGCGzr7e_GbJG4elqotB4QTYQugxLuorJIuESuTQ9qa0smMkET8hCWMmDhGLgybHD77k_WgaZqyWSz3zOyRbZTMEiPeyl-5qshXqbvDxLx-FvyJ_voDd2BvfUB4SCwD5K6u8QSpa2Q0gKzoneQLbdTmnPrsOeHinWbVhsRafY2dDvy9J2alt6070Nth9o29DZA2ifQ9YZi4jOtELuobqZWWaTYIOnyxHzt-T65Pjq2ylLJAusAsm0LA_g83UVtQ-FsUEV_sBEaxX3xgUD8V-otBeZO7DOKBdNIbyLIYOwTWiEvhHvyHrd1OE9oc57xyGcdEJqCZ-tJecGAcNExYXN3YjsD7-6rBICORJh_CqHTASkUnZSGZG9xdDbHnbjX4N2BnmVyfLm5VJPRuTT4jHYDB6E2Do09zgml9pgqjQiekXOi8kQdXv1Sf1z2qFvQw4tikzpD_-f_SN5hcz0fdviDllv7-7DLsQvrRt3SjomG0fH5xeX424XAK-X_C8VJful |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEL9ioYBBIHGx2NpOYh8Q4qdlS7srhFqpt9SO7S4Sm5RuKtTX4EE48CA8EzObZLcrIW69RbITJ5mx_Y3t-T6A51FbDBJswn2MCQYoScKdspG76HWUaYzC0o7uaJwOD9Snw-RwDX51uTB0rLIbE-cDta8KWiN_JbA3GGmkGrw5-c5JNYp2VzsJjcYtdsP5DwzZZq93PqB9XwixvbX_fshbVQFe4KvUPA04yekiah8yY0OS-U0TrU2ENy4YBDyh0F4O3KZ1JnHRZNK7GAaIU6QmrheJz70C60piKNOD9Xdb489furFfpso0Mroq42YgRctlRGeHSMIMsQPlFF6cAZewdvVQ5oVZbvsm3GjhKXvb-NMtWAvlbbg6ajfg78DPj-ipdorXzAcin6DMTeZPibyW1R0IxumQHWN8X09Yo-fD__xmdFLEUvI7o1yKZiWY1RNbs-P53TjaBFZXbHqO_u5I58YShzQrSO2orKaW29aVgmfLGrO7cHApBrgHvbIqw31gznsnEMA6qbTCz9ZKCEMUZbIQ0qauDy-7X50XLec5SW98y7vYB62Sz63Sh2eLqicN0ce_Km109srbvj7Ll57Zh6eLYuyltPViy1CdUZ1UaUPBWR_0ip0XjRHP92pJ-XUy5_vGqF1mg0Q_-H_rT-DacH-0l-_tjHcfwnWBaKxJmtyAXn16Fh4heqrd49ZlGRxddi_5C1_KNxs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVcEL9ioYBBIHGxumvHiX1AFaIsLaUVByrtLdix3a3EJqWbCvU1eBSOPESfiZn87HYlxK23SPFufmbG_iae-T6AV1FbTBKs4j5GhQmKUtwlNnIXvY4yjVFY2tE9OEx3j5JPEzVZgz99LwyVVfZzYjNR-6qgb-RbAqPBSCOT4VbsyiK-7Iy3T39wUpCindZeTqN1kf1w8RPTt_nbvR209Wshxh--vt_lncIAL_C2ap4GXPB0EbUPmbFBZX5korVKeOOCQfATCu3l0I2sM8pFk0nvYhgiZpGaeF8k_u8NuJlJNaIYyyaLZE-miWkFdZOMm6EUHasRVRGRmBmiCOouvLoWLgHuannmlfVufAdud0CVvWs96y6shfIebBx0W_H34ddH9Fk7w2PmA9FQUA8n82dEY8vqHg7jwsiOMdOvp6xV9uGXvxnVjFhqg2fUVdF-E2b11NbsuPk1zjuB1RWbXaDnO1K8scQmzQrSPSqrmeW2c6rg2XLE_AEcXcvrfwjrZVWGR8Cc904glHUy0Qk-tk6EMERWJgshbeoG8KZ_1XnRsZ-TCMf3vM-C0Cp5Y5UBvFwMPW0pP_41aLO3V95F_Txf-ugAXixOY7zSJowtQ3VOY9JEG0rTBqBX7Ly4GDF-r54pT6YN8zfm7zIbKv34_1d_DhsYG_nnvcP9J3BLICxruyc3Yb0-Ow9PEUbV7lnjrwy-XXeA_AUCNznr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutamine+deficiency+drives+transforming+growth+factor-%CE%B2+signaling+activation+that+gives+rise+to+myofibroblastic+carcinoma-associated+fibroblasts&rft.jtitle=Cancer+science&rft.au=Mezawa%2C+Yoshihiro&rft.au=Wang%2C+Tingwei&rft.au=Yataro+Daigo&rft.au=Takano%2C+Atsushi&rft.date=2023-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1347-9032&rft.eissn=1349-7006&rft.volume=114&rft.issue=11&rft.spage=4376&rft.epage=4387&rft_id=info:doi/10.1111%2Fcas.15955&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon |