Phenothiazine-based covalent organic frameworks with low exciton binding energies for photocatalysis

Designing delocalized excitons with low binding energy ( E b ) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by c...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 13; no. 29; pp. 8679 - 8685
Main Authors Wang, Weitao, Wang, Haotian, Tang, Xiaohui, Huo, Jinlei, Su, Yan, Lu, Chuangye, Zhang, Yujian, Xu, Hong, Gu, Cheng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 29.07.2022
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing delocalized excitons with low binding energy ( E b ) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low E b facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low E b for efficient photocatalysis. We report the construction of phenothiazine-based covalent organic frameworks, which exhibited diverse structures, the feasibility of bandgap engineering, and unprecedented ultralow exciton binding energy of ∼50 meV for photocatalytic polymerization.
AbstractList Designing delocalized excitons with low binding energy ( E b ) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low E b facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low E b for efficient photocatalysis. We report the construction of phenothiazine-based covalent organic frameworks, which exhibited diverse structures, the feasibility of bandgap engineering, and unprecedented ultralow exciton binding energy of ∼50 meV for photocatalytic polymerization.
Designing delocalized excitons with low binding energy ( E b ) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low E b facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low E b for efficient photocatalysis.
Designing delocalized excitons with low binding energy (E b) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low E b facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low E b for efficient photocatalysis.Designing delocalized excitons with low binding energy (E b) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low E b facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low E b for efficient photocatalysis.
Designing delocalized excitons with low binding energy (Eb) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high Eb of >300 meV. In this work, we report the achievement of a low Eb of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low Eb facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low Eb for efficient photocatalysis.
Author Tang, Xiaohui
Wang, Weitao
Gu, Cheng
Su, Yan
Xu, Hong
Wang, Haotian
Huo, Jinlei
Lu, Chuangye
Zhang, Yujian
AuthorAffiliation Department of Chemistry
Institute of Polymer Optoelectronic Materials and Devices
Tsinghua University
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
Zhejiang Normal University
South China University of Technology
Institute of Nuclear and New Energy Technology
State Key Laboratory of Luminescent Materials and Devices
AuthorAffiliation_xml – name: South China University of Technology
– name: Department of Chemistry
– name: Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
– name: Institute of Nuclear and New Energy Technology
– name: State Key Laboratory of Luminescent Materials and Devices
– name: Tsinghua University
– name: Institute of Polymer Optoelectronic Materials and Devices
– name: Zhejiang Normal University
Author_xml – sequence: 1
  givenname: Weitao
  surname: Wang
  fullname: Wang, Weitao
– sequence: 2
  givenname: Haotian
  surname: Wang
  fullname: Wang, Haotian
– sequence: 3
  givenname: Xiaohui
  surname: Tang
  fullname: Tang, Xiaohui
– sequence: 4
  givenname: Jinlei
  surname: Huo
  fullname: Huo, Jinlei
– sequence: 5
  givenname: Yan
  surname: Su
  fullname: Su, Yan
– sequence: 6
  givenname: Chuangye
  surname: Lu
  fullname: Lu, Chuangye
– sequence: 7
  givenname: Yujian
  surname: Zhang
  fullname: Zhang, Yujian
– sequence: 8
  givenname: Hong
  surname: Xu
  fullname: Xu, Hong
– sequence: 9
  givenname: Cheng
  surname: Gu
  fullname: Gu, Cheng
BookMark eNptkt9rFDEQx0Op2Fr70nch0BcRzubnbvMiyFl_QMGC-hxms7O3afeSM8n1rH-9qVdOLM1LwsxnvnxnJi_IfogBCTnh7C1n0pz1IjsmNJO4Rw4FU3zWaGn2d2_BDshxztesHim5Fu1zciC1aVWrxSHpr0YMsYwefvuAsw4y9tTFW5gwFBrTAoJ3dEiwxE1MN5lufBnpFDcUfzlfYqCdD70PC4oB08JjpkNMdDXGEh0UmO6yzy_JswGmjMcP9xH58fHi-_zz7PLrpy_z95czp5gu1axRBjsFUkA_SBhAYKcRG1Atdg2rEdRKcGfQcMM7ZRon9MDAOAVMDPKIvNvqrtbdEntXW0gw2VXyS0h3NoK3_2eCH-0i3lojZdtKXgVePwik-HONudilzw6nCQLGdbaiZVJxI4Ss6Okj9DquU6jtWdGYhkt9LlWl3mwpl2LOCYedGc7s_f7sB_Ft_nd_FxVmj-A6YSg-3pv109Mlr7YlKbud9L8vIf8ArtmqHw
CitedBy_id crossref_primary_10_1002_ange_202308980
crossref_primary_10_1002_anie_202306135
crossref_primary_10_1002_adfm_202307230
crossref_primary_10_1016_j_dyepig_2024_112542
crossref_primary_10_1039_D4CC03630A
crossref_primary_10_1002_aenm_202402395
crossref_primary_10_1002_ange_202405476
crossref_primary_10_1002_cssc_202300872
crossref_primary_10_1021_acssuschemeng_4c00358
crossref_primary_10_1021_acscatal_4c00066
crossref_primary_10_1016_j_seppur_2024_127259
crossref_primary_10_1039_D3CC04612E
crossref_primary_10_1039_D4SC01780C
crossref_primary_10_1039_D4SC06633B
crossref_primary_10_1002_adma_202411118
crossref_primary_10_1039_D4TA06162D
crossref_primary_10_1002_anie_202420217
crossref_primary_10_1002_adma_202302512
crossref_primary_10_1039_D3SC01719B
crossref_primary_10_1002_ange_202423055
crossref_primary_10_1016_j_cclet_2023_108356
crossref_primary_10_1039_D4TA03163F
crossref_primary_10_1002_adma_202209129
crossref_primary_10_1016_j_jcat_2024_115745
crossref_primary_10_1039_D2TA07177K
crossref_primary_10_1002_ange_202316080
crossref_primary_10_1002_adfm_202424035
crossref_primary_10_1021_acscatal_4c02738
crossref_primary_10_1039_D4EE01379D
crossref_primary_10_1038_s41467_023_38884_w
crossref_primary_10_1002_ange_202420217
crossref_primary_10_1002_smll_202409580
crossref_primary_10_1021_acs_chemmater_2c03555
crossref_primary_10_1039_D3QM00965C
crossref_primary_10_1002_anie_202403093
crossref_primary_10_1002_anie_202405476
crossref_primary_10_1002_anie_202423055
crossref_primary_10_1021_jacs_3c14833
crossref_primary_10_1002_anie_202316080
crossref_primary_10_1002_anie_202308980
crossref_primary_10_1002_ange_202306135
crossref_primary_10_1002_marc_202200678
crossref_primary_10_1002_aenm_202303346
crossref_primary_10_1016_j_chemosphere_2024_143236
crossref_primary_10_1021_acs_inorgchem_4c01423
crossref_primary_10_1039_D4TA02824D
crossref_primary_10_1002_adfm_202407721
crossref_primary_10_1016_j_cej_2024_149339
crossref_primary_10_1039_D5EE00294J
crossref_primary_10_1002_ange_202403093
crossref_primary_10_1002_adma_202412708
crossref_primary_10_1088_1361_6528_ad3d63
crossref_primary_10_1016_j_cej_2024_157187
crossref_primary_10_1093_nsr_nwae177
crossref_primary_10_1002_smll_202300518
crossref_primary_10_1016_j_enchem_2023_100116
crossref_primary_10_1016_j_mtener_2023_101477
crossref_primary_10_1039_D3TC02303F
crossref_primary_10_1016_j_apcatb_2022_122312
Cites_doi 10.1021/jacs.8b10612
10.1021/jacs.2c01814
10.1002/pssb.201800384
10.1016/j.checat.2022.05.002
10.1016/j.mtadv.2019.100048
10.1002/adma.201907791
10.1002/pssa.200404339
10.1126/science.aar6833
10.1021/jacs.0c09727
10.1002/anie.201902543
10.1021/acsami.8b19077
10.1039/C3EE43161D
10.1103/PhysRevB.43.1546
10.1039/C9NR08007D
10.1021/jacs.0c12392
10.1021/acs.jpca.9b10400
10.1038/s41467-018-06161-w
10.1021/jacs.9b02800
10.1021/jacs.1c00584
10.1002/anie.201913091
10.1126/science.1120411
10.1002/lpor.201800204
10.1002/chem.202101135
10.1038/nphys3357
10.1021/jacs.0c07206
10.1038/s41586-020-2738-2
10.1126/science.aaf3935
10.1021/acsenergylett.0c00394
10.1002/anie.202107915
10.1002/aenm.201903659
10.1021/jacs.9b13559
10.1039/tf9646001515
10.1021/jacs.0c05970
10.1039/d2en00135g
10.1002/anie.202103992
10.1002/adma.201404412
10.1063/1.3033560
10.1039/D0CS00278J
10.1002/anie.201107070
10.1039/C4CP03663H
10.1021/jacs.6b09787
10.1002/anie.201904904
10.1002/anie.201308486
10.1038/238037a0
10.1103/PhysRevB.57.3761
10.1002/anie.202002241
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
– notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d2sc02503e
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 8685
ExternalDocumentID PMC9337731
10_1039_D2SC02503E
d2sc02503e
GrantInformation_xml – fundername: ;
  grantid: Unassigned
– fundername: ;
  grantid: 21975078; 52073089; 52073161
– fundername: ;
  grantid: BP0618009
– fundername: ;
  grantid: 2019B030301003
– fundername: ;
  grantid: LZ20E030001
– fundername: ;
  grantid: 2021A1515010311
– fundername: ;
  grantid: 202006150059
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAJAE
AAPBV
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
HZ~
PGMZT
RAOCF
RNS
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c405t-65949eb4a32adf3afa2eb5ee6a47eb603afe5421c9e9191b496c25f0a9c4a02f3
ISSN 2041-6520
IngestDate Thu Aug 21 18:21:05 EDT 2025
Fri Jul 11 13:20:44 EDT 2025
Fri Jul 25 07:26:07 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jul 01 01:30:41 EDT 2025
Sat Jul 30 12:57:32 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-65949eb4a32adf3afa2eb5ee6a47eb603afe5421c9e9191b496c25f0a9c4a02f3
Notes Electronic supplementary information (ESI) available. See
https://doi.org/10.1039/d2sc02503e
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-7918-1454
0000-0001-5259-6203
0000-0003-4638-0056
OpenAccessLink http://dx.doi.org/10.1039/d2sc02503e
PMID 35974752
PQID 2696135834
PQPubID 2047492
PageCount 7
ParticipantIDs rsc_primary_d2sc02503e
proquest_journals_2696135834
crossref_primary_10_1039_D2SC02503E
proquest_miscellaneous_2703419223
crossref_citationtrail_10_1039_D2SC02503E
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9337731
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-29
PublicationDateYYYYMMDD 2022-07-29
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-29
  day: 29
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationYear 2022
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Meng (D2SC02503E/cit3/1) 2020; 59
Bessinger (D2SC02503E/cit28/1) 2021; 143
Kaupmees (D2SC02503E/cit8/1) 2019; 256
Fujishima (D2SC02503E/cit1/1) 1972; 238
Dong (D2SC02503E/cit18/1) 2021; 143
Guo (D2SC02503E/cit20/1) 2020; 5
Li (D2SC02503E/cit25/1) 2020; 142
Gong (D2SC02503E/cit44/1) 2020; 142
Tao (D2SC02503E/cit15/1) 2020; 32
Lan (D2SC02503E/cit16/1) 2019; 58
Xie (D2SC02503E/cit13/1) 2020; 5
Keller (D2SC02503E/cit27/1) 2019; 11
Wang (D2SC02503E/cit14/1) 2020; 59
Zhao (D2SC02503E/cit29/1) 2021; 27
Sick (D2SC02503E/cit33/1) 2019; 141
Stevens (D2SC02503E/cit40/1) 1964; 60
Spitler (D2SC02503E/cit24/1) 2012; 51
Baranowski (D2SC02503E/cit9/1) 2020; 10
Lan (D2SC02503E/cit17/1) 2021; 60
Côté (D2SC02503E/cit21/1) 2005; 310
Arkhipov (D2SC02503E/cit10/1) 2004; 201
Yao (D2SC02503E/cit30/1) 2014; 53
Lin (D2SC02503E/cit39/1) 2008; 104
Miao (D2SC02503E/cit12/1) 2019; 13
Alemu (D2SC02503E/cit5/1) 1998; 57
Gal (D2SC02503E/cit38/1) 1990; 43
Li (D2SC02503E/cit41/1) 2022
Zhao (D2SC02503E/cit37/1) 2018; 140
Chai (D2SC02503E/cit42/1) 2022
Sun (D2SC02503E/cit6/1) 2014; 7
Geng (D2SC02503E/cit19/1) 2015; 27
Auras (D2SC02503E/cit23/1) 2016; 138
Miyata (D2SC02503E/cit7/1) 2015; 11
Lu (D2SC02503E/cit31/1) 2019; 11
Gu (D2SC02503E/cit35/1) 2019; 363
Su (D2SC02503E/cit36/1) 2020; 142
Jiang (D2SC02503E/cit2/1) 2020; 586
Wang (D2SC02503E/cit22/1) 2020; 49
Few (D2SC02503E/cit11/1) 2015; 17
Sartor (D2SC02503E/cit32/1) 2020; 124
Ascherl (D2SC02503E/cit34/1) 2018; 9
Qian (D2SC02503E/cit43/1) 2020; 142
Wang (D2SC02503E/cit4/1) 2021; 60
Chen (D2SC02503E/cit26/1) 2019; 58
Theriot (D2SC02503E/cit45/1) 2016; 352
Jati (D2SC02503E/cit46/1) 2022; 144
References_xml – volume: 140
  start-page: 16438
  year: 2018
  ident: D2SC02503E/cit37/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10612
– volume: 144
  start-page: 7822
  year: 2022
  ident: D2SC02503E/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01814
– volume: 256
  start-page: 1800384
  year: 2019
  ident: D2SC02503E/cit8/1
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201800384
– year: 2022
  ident: D2SC02503E/cit41/1
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2022.05.002
– volume: 5
  start-page: 100048
  year: 2020
  ident: D2SC02503E/cit13/1
  publication-title: Mater. Today Adv.
  doi: 10.1016/j.mtadv.2019.100048
– volume: 32
  start-page: 1907791
  year: 2020
  ident: D2SC02503E/cit15/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907791
– volume: 201
  start-page: 1152
  year: 2004
  ident: D2SC02503E/cit10/1
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.200404339
– volume: 363
  start-page: 387
  year: 2019
  ident: D2SC02503E/cit35/1
  publication-title: Science
  doi: 10.1126/science.aar6833
– volume: 142
  start-page: 20763
  year: 2020
  ident: D2SC02503E/cit43/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09727
– volume: 58
  start-page: 6430
  year: 2019
  ident: D2SC02503E/cit26/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902543
– volume: 11
  start-page: 5046
  year: 2019
  ident: D2SC02503E/cit31/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19077
– volume: 7
  start-page: 399
  year: 2014
  ident: D2SC02503E/cit6/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43161D
– volume: 43
  start-page: 1546
  year: 1990
  ident: D2SC02503E/cit38/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.43.1546
– volume: 11
  start-page: 23338
  year: 2019
  ident: D2SC02503E/cit27/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR08007D
– volume: 143
  start-page: 7351
  issue: 19
  year: 2021
  ident: D2SC02503E/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12392
– volume: 124
  start-page: 817
  year: 2020
  ident: D2SC02503E/cit32/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b10400
– volume: 9
  start-page: 3802
  year: 2018
  ident: D2SC02503E/cit34/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06161-w
– volume: 141
  start-page: 12570
  year: 2019
  ident: D2SC02503E/cit33/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02800
– volume: 143
  start-page: 7599
  year: 2021
  ident: D2SC02503E/cit18/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00584
– volume: 59
  start-page: 3624
  year: 2020
  ident: D2SC02503E/cit3/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913091
– volume: 310
  start-page: 1166
  year: 2005
  ident: D2SC02503E/cit21/1
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 13
  start-page: 1800204
  year: 2019
  ident: D2SC02503E/cit12/1
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201800204
– volume: 27
  start-page: 10781
  year: 2021
  ident: D2SC02503E/cit29/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.202101135
– volume: 11
  start-page: 582
  year: 2015
  ident: D2SC02503E/cit7/1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3357
– volume: 142
  start-page: 16723
  year: 2020
  ident: D2SC02503E/cit44/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07206
– volume: 586
  start-page: 549
  year: 2020
  ident: D2SC02503E/cit2/1
  publication-title: Nature
  doi: 10.1038/s41586-020-2738-2
– volume: 352
  start-page: 1082
  year: 2016
  ident: D2SC02503E/cit45/1
  publication-title: Science
  doi: 10.1126/science.aaf3935
– volume: 5
  start-page: 1300
  year: 2020
  ident: D2SC02503E/cit20/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00394
– volume: 60
  start-page: 19466
  year: 2021
  ident: D2SC02503E/cit4/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202107915
– volume: 10
  start-page: 1903659
  year: 2020
  ident: D2SC02503E/cit9/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903659
– volume: 142
  start-page: 3712
  issue: 8
  year: 2020
  ident: D2SC02503E/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13559
– volume: 60
  start-page: 1515
  year: 1964
  ident: D2SC02503E/cit40/1
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9646001515
– volume: 142
  start-page: 13316
  year: 2020
  ident: D2SC02503E/cit36/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05970
– year: 2022
  ident: D2SC02503E/cit42/1
  publication-title: Environ. Sci.: Nano
  doi: 10.1039/d2en00135g
– volume: 60
  start-page: 16355
  year: 2021
  ident: D2SC02503E/cit17/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202103992
– volume: 27
  start-page: 1443
  year: 2015
  ident: D2SC02503E/cit19/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404412
– volume: 104
  start-page: 114307
  year: 2008
  ident: D2SC02503E/cit39/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3033560
– volume: 49
  start-page: 4135
  year: 2020
  ident: D2SC02503E/cit22/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00278J
– volume: 51
  start-page: 2623
  year: 2012
  ident: D2SC02503E/cit24/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107070
– volume: 17
  start-page: 2311
  year: 2015
  ident: D2SC02503E/cit11/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP03663H
– volume: 138
  start-page: 16703
  year: 2016
  ident: D2SC02503E/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09787
– volume: 58
  start-page: 10236
  year: 2019
  ident: D2SC02503E/cit16/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904904
– volume: 53
  start-page: 2119
  year: 2014
  ident: D2SC02503E/cit30/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201308486
– volume: 238
  start-page: 37
  year: 1972
  ident: D2SC02503E/cit1/1
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 57
  start-page: 3761
  year: 1998
  ident: D2SC02503E/cit5/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.57.3761
– volume: 59
  start-page: 22828
  year: 2020
  ident: D2SC02503E/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002241
SSID ssj0000331527
Score 2.567571
Snippet Designing delocalized excitons with low binding energy ( E b ) in organic semiconductors is urgently required for efficient photochemistry because the excitons...
Designing delocalized excitons with low binding energy (Eb) in organic semiconductors is urgently required for efficient photochemistry because the excitons in...
Designing delocalized excitons with low binding energy (E b) in organic semiconductors is urgently required for efficient photochemistry because the excitons...
SourceID pubmedcentral
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8679
SubjectTerms Binding energy
Chemical synthesis
Chemistry
Excitons
Organic materials
Organic semiconductors
Photocatalysis
Photochemistry
Porous materials
Title Phenothiazine-based covalent organic frameworks with low exciton binding energies for photocatalysis
URI https://www.proquest.com/docview/2696135834
https://www.proquest.com/docview/2703419223
https://pubmed.ncbi.nlm.nih.gov/PMC9337731
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QFeELeJwJiM4AVNgcSXpH5EZahCAiFoWXmKHNdRI1XJtKUC8R_4zxw7dpJ2fRi8RJXj2knOF_vkXL6D0Ks4ISqNGQ9VQtKQGR0uj5gMx0oZdTUuiLVDfvqcTOfs44IvRqM_g6ilTZO_Ub_35pX8j1ShDeRqsmT_QbLdoNAAv0G-cAQJw_FWMv6y0hU86dJSRIdmQzI5ajCDdfDbLEt1VvjwK5fItq5_nulfqjR8GnnZJrUY7mnDF2GDDi9XdVNbs45hKxlqrx27gE8GMi5gn_Q1sClcOCP0hS4bWe-2TmXdDEA5c82LUtarTdnjrPUJldVal0PbBLFxrG4yu4SBoOMw4aT1vOhhW0th1K3BdIA1N0K7ohpCwOHunLQVfm6s_BE1xKnvybeJ0eroeb-_eZ_-zrbXBSNaNzwVWf_fA3RE4KsDls2jr9_nix-d0S6i1JUB7u7MU95S8bYfYFvJ6b9cduNuD658mRmrzszuo3vuOwS_a0H1AI109RDdmfjyf4_Qcg-4sAcXduDCPbiwARcGcGEHLuzAhT24MIALb4PrMZp_OJ9NpqEryREq0OwbuGPBhM6ZpEQuCyoLSXTOtU4kM8V1ImjRnJFYCS1iEedMJIrwIpJCMRmRgh6jw6qu9BOEKdc8FYYvjlOmijyHzhRGG6dUKUJ0gF77Z5gpx1dvyqass5sCC9DLru9ly9Kyt9eJF0Xm3uLrjCQC1iQ-pixAL7rT8KyN40xWut5AH9gWTbQEoQFKt0TYzWZY2rfPVOXKsrULStOUxgE6BmF3_ZfkWtmr0k9vde3P0N3-BTtBh83VRj8HdbjJT60Z6dRB9S-zaLng
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phenothiazine-based+covalent+organic+frameworks+with+low+exciton+binding+energies+for+photocatalysis&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wang%2C+Weitao&rft.au=Wang%2C+Haotian&rft.au=Tang%2C+Xiaohui&rft.au=Huo%2C+Jinlei&rft.date=2022-07-29&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=13&rft.issue=29&rft.spage=8679&rft.epage=8685&rft_id=info:doi/10.1039%2FD2SC02503E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2SC02503E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon