Phenothiazine-based covalent organic frameworks with low exciton binding energies for photocatalysis
Designing delocalized excitons with low binding energy ( E b ) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by c...
Saved in:
Published in | Chemical science (Cambridge) Vol. 13; no. 29; pp. 8679 - 8685 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
29.07.2022
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing delocalized excitons with low binding energy (
E
b
) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high
E
b
of >300 meV. In this work, we report the achievement of a low
E
b
of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low
E
b
facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low
E
b
for efficient photocatalysis.
We report the construction of phenothiazine-based covalent organic frameworks, which exhibited diverse structures, the feasibility of bandgap engineering, and unprecedented ultralow exciton binding energy of ∼50 meV for photocatalytic polymerization. |
---|---|
AbstractList | Designing delocalized excitons with low binding energy (
E
b
) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high
E
b
of >300 meV. In this work, we report the achievement of a low
E
b
of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low
E
b
facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low
E
b
for efficient photocatalysis.
We report the construction of phenothiazine-based covalent organic frameworks, which exhibited diverse structures, the feasibility of bandgap engineering, and unprecedented ultralow exciton binding energy of ∼50 meV for photocatalytic polymerization. Designing delocalized excitons with low binding energy ( E b ) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low E b facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low E b for efficient photocatalysis. Designing delocalized excitons with low binding energy (E b) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low E b facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low E b for efficient photocatalysis.Designing delocalized excitons with low binding energy (E b) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low E b facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low E b for efficient photocatalysis. Designing delocalized excitons with low binding energy (Eb) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high Eb of >300 meV. In this work, we report the achievement of a low Eb of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low Eb facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low Eb for efficient photocatalysis. |
Author | Tang, Xiaohui Wang, Weitao Gu, Cheng Su, Yan Xu, Hong Wang, Haotian Huo, Jinlei Lu, Chuangye Zhang, Yujian |
AuthorAffiliation | Department of Chemistry Institute of Polymer Optoelectronic Materials and Devices Tsinghua University Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Zhejiang Normal University South China University of Technology Institute of Nuclear and New Energy Technology State Key Laboratory of Luminescent Materials and Devices |
AuthorAffiliation_xml | – name: South China University of Technology – name: Department of Chemistry – name: Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates – name: Institute of Nuclear and New Energy Technology – name: State Key Laboratory of Luminescent Materials and Devices – name: Tsinghua University – name: Institute of Polymer Optoelectronic Materials and Devices – name: Zhejiang Normal University |
Author_xml | – sequence: 1 givenname: Weitao surname: Wang fullname: Wang, Weitao – sequence: 2 givenname: Haotian surname: Wang fullname: Wang, Haotian – sequence: 3 givenname: Xiaohui surname: Tang fullname: Tang, Xiaohui – sequence: 4 givenname: Jinlei surname: Huo fullname: Huo, Jinlei – sequence: 5 givenname: Yan surname: Su fullname: Su, Yan – sequence: 6 givenname: Chuangye surname: Lu fullname: Lu, Chuangye – sequence: 7 givenname: Yujian surname: Zhang fullname: Zhang, Yujian – sequence: 8 givenname: Hong surname: Xu fullname: Xu, Hong – sequence: 9 givenname: Cheng surname: Gu fullname: Gu, Cheng |
BookMark | eNptkt9rFDEQx0Op2Fr70nch0BcRzubnbvMiyFl_QMGC-hxms7O3afeSM8n1rH-9qVdOLM1LwsxnvnxnJi_IfogBCTnh7C1n0pz1IjsmNJO4Rw4FU3zWaGn2d2_BDshxztesHim5Fu1zciC1aVWrxSHpr0YMsYwefvuAsw4y9tTFW5gwFBrTAoJ3dEiwxE1MN5lufBnpFDcUfzlfYqCdD70PC4oB08JjpkNMdDXGEh0UmO6yzy_JswGmjMcP9xH58fHi-_zz7PLrpy_z95czp5gu1axRBjsFUkA_SBhAYKcRG1Atdg2rEdRKcGfQcMM7ZRon9MDAOAVMDPKIvNvqrtbdEntXW0gw2VXyS0h3NoK3_2eCH-0i3lojZdtKXgVePwik-HONudilzw6nCQLGdbaiZVJxI4Ss6Okj9DquU6jtWdGYhkt9LlWl3mwpl2LOCYedGc7s_f7sB_Ft_nd_FxVmj-A6YSg-3pv109Mlr7YlKbud9L8vIf8ArtmqHw |
CitedBy_id | crossref_primary_10_1002_ange_202308980 crossref_primary_10_1002_anie_202306135 crossref_primary_10_1002_adfm_202307230 crossref_primary_10_1016_j_dyepig_2024_112542 crossref_primary_10_1039_D4CC03630A crossref_primary_10_1002_aenm_202402395 crossref_primary_10_1002_ange_202405476 crossref_primary_10_1002_cssc_202300872 crossref_primary_10_1021_acssuschemeng_4c00358 crossref_primary_10_1021_acscatal_4c00066 crossref_primary_10_1016_j_seppur_2024_127259 crossref_primary_10_1039_D3CC04612E crossref_primary_10_1039_D4SC01780C crossref_primary_10_1039_D4SC06633B crossref_primary_10_1002_adma_202411118 crossref_primary_10_1039_D4TA06162D crossref_primary_10_1002_anie_202420217 crossref_primary_10_1002_adma_202302512 crossref_primary_10_1039_D3SC01719B crossref_primary_10_1002_ange_202423055 crossref_primary_10_1016_j_cclet_2023_108356 crossref_primary_10_1039_D4TA03163F crossref_primary_10_1002_adma_202209129 crossref_primary_10_1016_j_jcat_2024_115745 crossref_primary_10_1039_D2TA07177K crossref_primary_10_1002_ange_202316080 crossref_primary_10_1002_adfm_202424035 crossref_primary_10_1021_acscatal_4c02738 crossref_primary_10_1039_D4EE01379D crossref_primary_10_1038_s41467_023_38884_w crossref_primary_10_1002_ange_202420217 crossref_primary_10_1002_smll_202409580 crossref_primary_10_1021_acs_chemmater_2c03555 crossref_primary_10_1039_D3QM00965C crossref_primary_10_1002_anie_202403093 crossref_primary_10_1002_anie_202405476 crossref_primary_10_1002_anie_202423055 crossref_primary_10_1021_jacs_3c14833 crossref_primary_10_1002_anie_202316080 crossref_primary_10_1002_anie_202308980 crossref_primary_10_1002_ange_202306135 crossref_primary_10_1002_marc_202200678 crossref_primary_10_1002_aenm_202303346 crossref_primary_10_1016_j_chemosphere_2024_143236 crossref_primary_10_1021_acs_inorgchem_4c01423 crossref_primary_10_1039_D4TA02824D crossref_primary_10_1002_adfm_202407721 crossref_primary_10_1016_j_cej_2024_149339 crossref_primary_10_1039_D5EE00294J crossref_primary_10_1002_ange_202403093 crossref_primary_10_1002_adma_202412708 crossref_primary_10_1088_1361_6528_ad3d63 crossref_primary_10_1016_j_cej_2024_157187 crossref_primary_10_1093_nsr_nwae177 crossref_primary_10_1002_smll_202300518 crossref_primary_10_1016_j_enchem_2023_100116 crossref_primary_10_1016_j_mtener_2023_101477 crossref_primary_10_1039_D3TC02303F crossref_primary_10_1016_j_apcatb_2022_122312 |
Cites_doi | 10.1021/jacs.8b10612 10.1021/jacs.2c01814 10.1002/pssb.201800384 10.1016/j.checat.2022.05.002 10.1016/j.mtadv.2019.100048 10.1002/adma.201907791 10.1002/pssa.200404339 10.1126/science.aar6833 10.1021/jacs.0c09727 10.1002/anie.201902543 10.1021/acsami.8b19077 10.1039/C3EE43161D 10.1103/PhysRevB.43.1546 10.1039/C9NR08007D 10.1021/jacs.0c12392 10.1021/acs.jpca.9b10400 10.1038/s41467-018-06161-w 10.1021/jacs.9b02800 10.1021/jacs.1c00584 10.1002/anie.201913091 10.1126/science.1120411 10.1002/lpor.201800204 10.1002/chem.202101135 10.1038/nphys3357 10.1021/jacs.0c07206 10.1038/s41586-020-2738-2 10.1126/science.aaf3935 10.1021/acsenergylett.0c00394 10.1002/anie.202107915 10.1002/aenm.201903659 10.1021/jacs.9b13559 10.1039/tf9646001515 10.1021/jacs.0c05970 10.1039/d2en00135g 10.1002/anie.202103992 10.1002/adma.201404412 10.1063/1.3033560 10.1039/D0CS00278J 10.1002/anie.201107070 10.1039/C4CP03663H 10.1021/jacs.6b09787 10.1002/anie.201904904 10.1002/anie.201308486 10.1038/238037a0 10.1103/PhysRevB.57.3761 10.1002/anie.202002241 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d2sc02503e |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 8685 |
ExternalDocumentID | PMC9337731 10_1039_D2SC02503E d2sc02503e |
GrantInformation_xml | – fundername: ; grantid: Unassigned – fundername: ; grantid: 21975078; 52073089; 52073161 – fundername: ; grantid: BP0618009 – fundername: ; grantid: 2019B030301003 – fundername: ; grantid: LZ20E030001 – fundername: ; grantid: 2021A1515010311 – fundername: ; grantid: 202006150059 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAJAE AAPBV ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AHGCF AKBGW APEMP CITATION HZ~ PGMZT RAOCF RNS 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c405t-65949eb4a32adf3afa2eb5ee6a47eb603afe5421c9e9191b496c25f0a9c4a02f3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:21:05 EDT 2025 Fri Jul 11 13:20:44 EDT 2025 Fri Jul 25 07:26:07 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Jul 01 01:30:41 EDT 2025 Sat Jul 30 12:57:32 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-65949eb4a32adf3afa2eb5ee6a47eb603afe5421c9e9191b496c25f0a9c4a02f3 |
Notes | Electronic supplementary information (ESI) available. See https://doi.org/10.1039/d2sc02503e ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-7918-1454 0000-0001-5259-6203 0000-0003-4638-0056 |
OpenAccessLink | http://dx.doi.org/10.1039/d2sc02503e |
PMID | 35974752 |
PQID | 2696135834 |
PQPubID | 2047492 |
PageCount | 7 |
ParticipantIDs | rsc_primary_d2sc02503e proquest_journals_2696135834 crossref_primary_10_1039_D2SC02503E proquest_miscellaneous_2703419223 crossref_citationtrail_10_1039_D2SC02503E pubmedcentral_primary_oai_pubmedcentral_nih_gov_9337731 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-29 |
PublicationDateYYYYMMDD | 2022-07-29 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Meng (D2SC02503E/cit3/1) 2020; 59 Bessinger (D2SC02503E/cit28/1) 2021; 143 Kaupmees (D2SC02503E/cit8/1) 2019; 256 Fujishima (D2SC02503E/cit1/1) 1972; 238 Dong (D2SC02503E/cit18/1) 2021; 143 Guo (D2SC02503E/cit20/1) 2020; 5 Li (D2SC02503E/cit25/1) 2020; 142 Gong (D2SC02503E/cit44/1) 2020; 142 Tao (D2SC02503E/cit15/1) 2020; 32 Lan (D2SC02503E/cit16/1) 2019; 58 Xie (D2SC02503E/cit13/1) 2020; 5 Keller (D2SC02503E/cit27/1) 2019; 11 Wang (D2SC02503E/cit14/1) 2020; 59 Zhao (D2SC02503E/cit29/1) 2021; 27 Sick (D2SC02503E/cit33/1) 2019; 141 Stevens (D2SC02503E/cit40/1) 1964; 60 Spitler (D2SC02503E/cit24/1) 2012; 51 Baranowski (D2SC02503E/cit9/1) 2020; 10 Lan (D2SC02503E/cit17/1) 2021; 60 Côté (D2SC02503E/cit21/1) 2005; 310 Arkhipov (D2SC02503E/cit10/1) 2004; 201 Yao (D2SC02503E/cit30/1) 2014; 53 Lin (D2SC02503E/cit39/1) 2008; 104 Miao (D2SC02503E/cit12/1) 2019; 13 Alemu (D2SC02503E/cit5/1) 1998; 57 Gal (D2SC02503E/cit38/1) 1990; 43 Li (D2SC02503E/cit41/1) 2022 Zhao (D2SC02503E/cit37/1) 2018; 140 Chai (D2SC02503E/cit42/1) 2022 Sun (D2SC02503E/cit6/1) 2014; 7 Geng (D2SC02503E/cit19/1) 2015; 27 Auras (D2SC02503E/cit23/1) 2016; 138 Miyata (D2SC02503E/cit7/1) 2015; 11 Lu (D2SC02503E/cit31/1) 2019; 11 Gu (D2SC02503E/cit35/1) 2019; 363 Su (D2SC02503E/cit36/1) 2020; 142 Jiang (D2SC02503E/cit2/1) 2020; 586 Wang (D2SC02503E/cit22/1) 2020; 49 Few (D2SC02503E/cit11/1) 2015; 17 Sartor (D2SC02503E/cit32/1) 2020; 124 Ascherl (D2SC02503E/cit34/1) 2018; 9 Qian (D2SC02503E/cit43/1) 2020; 142 Wang (D2SC02503E/cit4/1) 2021; 60 Chen (D2SC02503E/cit26/1) 2019; 58 Theriot (D2SC02503E/cit45/1) 2016; 352 Jati (D2SC02503E/cit46/1) 2022; 144 |
References_xml | – volume: 140 start-page: 16438 year: 2018 ident: D2SC02503E/cit37/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10612 – volume: 144 start-page: 7822 year: 2022 ident: D2SC02503E/cit46/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01814 – volume: 256 start-page: 1800384 year: 2019 ident: D2SC02503E/cit8/1 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201800384 – year: 2022 ident: D2SC02503E/cit41/1 publication-title: Chem. Catal. doi: 10.1016/j.checat.2022.05.002 – volume: 5 start-page: 100048 year: 2020 ident: D2SC02503E/cit13/1 publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2019.100048 – volume: 32 start-page: 1907791 year: 2020 ident: D2SC02503E/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.201907791 – volume: 201 start-page: 1152 year: 2004 ident: D2SC02503E/cit10/1 publication-title: Phys. Status Solidi doi: 10.1002/pssa.200404339 – volume: 363 start-page: 387 year: 2019 ident: D2SC02503E/cit35/1 publication-title: Science doi: 10.1126/science.aar6833 – volume: 142 start-page: 20763 year: 2020 ident: D2SC02503E/cit43/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09727 – volume: 58 start-page: 6430 year: 2019 ident: D2SC02503E/cit26/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902543 – volume: 11 start-page: 5046 year: 2019 ident: D2SC02503E/cit31/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19077 – volume: 7 start-page: 399 year: 2014 ident: D2SC02503E/cit6/1 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43161D – volume: 43 start-page: 1546 year: 1990 ident: D2SC02503E/cit38/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.43.1546 – volume: 11 start-page: 23338 year: 2019 ident: D2SC02503E/cit27/1 publication-title: Nanoscale doi: 10.1039/C9NR08007D – volume: 143 start-page: 7351 issue: 19 year: 2021 ident: D2SC02503E/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12392 – volume: 124 start-page: 817 year: 2020 ident: D2SC02503E/cit32/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b10400 – volume: 9 start-page: 3802 year: 2018 ident: D2SC02503E/cit34/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06161-w – volume: 141 start-page: 12570 year: 2019 ident: D2SC02503E/cit33/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02800 – volume: 143 start-page: 7599 year: 2021 ident: D2SC02503E/cit18/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00584 – volume: 59 start-page: 3624 year: 2020 ident: D2SC02503E/cit3/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913091 – volume: 310 start-page: 1166 year: 2005 ident: D2SC02503E/cit21/1 publication-title: Science doi: 10.1126/science.1120411 – volume: 13 start-page: 1800204 year: 2019 ident: D2SC02503E/cit12/1 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201800204 – volume: 27 start-page: 10781 year: 2021 ident: D2SC02503E/cit29/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202101135 – volume: 11 start-page: 582 year: 2015 ident: D2SC02503E/cit7/1 publication-title: Nat. Phys. doi: 10.1038/nphys3357 – volume: 142 start-page: 16723 year: 2020 ident: D2SC02503E/cit44/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07206 – volume: 586 start-page: 549 year: 2020 ident: D2SC02503E/cit2/1 publication-title: Nature doi: 10.1038/s41586-020-2738-2 – volume: 352 start-page: 1082 year: 2016 ident: D2SC02503E/cit45/1 publication-title: Science doi: 10.1126/science.aaf3935 – volume: 5 start-page: 1300 year: 2020 ident: D2SC02503E/cit20/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00394 – volume: 60 start-page: 19466 year: 2021 ident: D2SC02503E/cit4/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202107915 – volume: 10 start-page: 1903659 year: 2020 ident: D2SC02503E/cit9/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903659 – volume: 142 start-page: 3712 issue: 8 year: 2020 ident: D2SC02503E/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13559 – volume: 60 start-page: 1515 year: 1964 ident: D2SC02503E/cit40/1 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9646001515 – volume: 142 start-page: 13316 year: 2020 ident: D2SC02503E/cit36/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05970 – year: 2022 ident: D2SC02503E/cit42/1 publication-title: Environ. Sci.: Nano doi: 10.1039/d2en00135g – volume: 60 start-page: 16355 year: 2021 ident: D2SC02503E/cit17/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202103992 – volume: 27 start-page: 1443 year: 2015 ident: D2SC02503E/cit19/1 publication-title: Adv. Mater. doi: 10.1002/adma.201404412 – volume: 104 start-page: 114307 year: 2008 ident: D2SC02503E/cit39/1 publication-title: J. Appl. Phys. doi: 10.1063/1.3033560 – volume: 49 start-page: 4135 year: 2020 ident: D2SC02503E/cit22/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00278J – volume: 51 start-page: 2623 year: 2012 ident: D2SC02503E/cit24/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107070 – volume: 17 start-page: 2311 year: 2015 ident: D2SC02503E/cit11/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03663H – volume: 138 start-page: 16703 year: 2016 ident: D2SC02503E/cit23/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09787 – volume: 58 start-page: 10236 year: 2019 ident: D2SC02503E/cit16/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904904 – volume: 53 start-page: 2119 year: 2014 ident: D2SC02503E/cit30/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201308486 – volume: 238 start-page: 37 year: 1972 ident: D2SC02503E/cit1/1 publication-title: Nature doi: 10.1038/238037a0 – volume: 57 start-page: 3761 year: 1998 ident: D2SC02503E/cit5/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.57.3761 – volume: 59 start-page: 22828 year: 2020 ident: D2SC02503E/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202002241 |
SSID | ssj0000331527 |
Score | 2.567571 |
Snippet | Designing delocalized excitons with low binding energy (
E
b
) in organic semiconductors is urgently required for efficient photochemistry because the excitons... Designing delocalized excitons with low binding energy (Eb) in organic semiconductors is urgently required for efficient photochemistry because the excitons in... Designing delocalized excitons with low binding energy (E b) in organic semiconductors is urgently required for efficient photochemistry because the excitons... |
SourceID | pubmedcentral proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8679 |
SubjectTerms | Binding energy Chemical synthesis Chemistry Excitons Organic materials Organic semiconductors Photocatalysis Photochemistry Porous materials |
Title | Phenothiazine-based covalent organic frameworks with low exciton binding energies for photocatalysis |
URI | https://www.proquest.com/docview/2696135834 https://www.proquest.com/docview/2703419223 https://pubmed.ncbi.nlm.nih.gov/PMC9337731 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QFeELeJwJiM4AVNgcSXpH5EZahCAiFoWXmKHNdRI1XJtKUC8R_4zxw7dpJ2fRi8RJXj2knOF_vkXL6D0Ks4ISqNGQ9VQtKQGR0uj5gMx0oZdTUuiLVDfvqcTOfs44IvRqM_g6ilTZO_Ub_35pX8j1ShDeRqsmT_QbLdoNAAv0G-cAQJw_FWMv6y0hU86dJSRIdmQzI5ajCDdfDbLEt1VvjwK5fItq5_nulfqjR8GnnZJrUY7mnDF2GDDi9XdVNbs45hKxlqrx27gE8GMi5gn_Q1sClcOCP0hS4bWe-2TmXdDEA5c82LUtarTdnjrPUJldVal0PbBLFxrG4yu4SBoOMw4aT1vOhhW0th1K3BdIA1N0K7ohpCwOHunLQVfm6s_BE1xKnvybeJ0eroeb-_eZ_-zrbXBSNaNzwVWf_fA3RE4KsDls2jr9_nix-d0S6i1JUB7u7MU95S8bYfYFvJ6b9cduNuD658mRmrzszuo3vuOwS_a0H1AI109RDdmfjyf4_Qcg-4sAcXduDCPbiwARcGcGEHLuzAhT24MIALb4PrMZp_OJ9NpqEryREq0OwbuGPBhM6ZpEQuCyoLSXTOtU4kM8V1ImjRnJFYCS1iEedMJIrwIpJCMRmRgh6jw6qu9BOEKdc8FYYvjlOmijyHzhRGG6dUKUJ0gF77Z5gpx1dvyqass5sCC9DLru9ly9Kyt9eJF0Xm3uLrjCQC1iQ-pixAL7rT8KyN40xWut5AH9gWTbQEoQFKt0TYzWZY2rfPVOXKsrULStOUxgE6BmF3_ZfkWtmr0k9vde3P0N3-BTtBh83VRj8HdbjJT60Z6dRB9S-zaLng |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phenothiazine-based+covalent+organic+frameworks+with+low+exciton+binding+energies+for+photocatalysis&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wang%2C+Weitao&rft.au=Wang%2C+Haotian&rft.au=Tang%2C+Xiaohui&rft.au=Huo%2C+Jinlei&rft.date=2022-07-29&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=13&rft.issue=29&rft.spage=8679&rft.epage=8685&rft_id=info:doi/10.1039%2FD2SC02503E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2SC02503E |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |