Generation of Widely Tunable Narrow-Linewidth Photonic Microwave Signals Based on an Optoelectronic Oscillator Using an Optically Injected Semiconductor Laser as the Active Tunable Microwave Photonic Filter

In this work, a novel optoelectronic oscillator (OEO) structure is proposed for generating widely tunable photonic microwave. In this structure, an optical injection semiconductor laser (OISL) functions as an active tunable microwave photonic filter (MPF). Through controlling the injection power and...

Full description

Saved in:
Bibliographic Details
Published inIEEE photonics journal Vol. 10; no. 6; pp. 1 - 9
Main Authors Lin, Xiao-Dong, Wu, Zheng-Mao, Deng, Tao, Tang, Xi, Fan, Li, Gao, Zi-Ye, Xia, Guang-Qiong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, a novel optoelectronic oscillator (OEO) structure is proposed for generating widely tunable photonic microwave. In this structure, an optical injection semiconductor laser (OISL) functions as an active tunable microwave photonic filter (MPF). Through controlling the injection power and frequency detuning, the OISL is driven into period-one dynamics whose oscillation frequency can be widely tuned from 10.43 to 65.82 GHz. As a result, the OISL can be regarded as a widely tunable active MPF. By introducing an optical feedback loop, the filtered bandwidth of the widely tunable active MPF can be further reduced. Taking the OISL under optical feedback as a widely tunable narrow-bandwidth MPF and a seeding laser source to establish an OEO structure, widely tunable narrow-linewidth photonic microwave can be generated. The experimental results demonstrate that widely tunable photonic microwaves ranging from 10.43 to 39.10 GHz with linewidths below 0.1 MHz and phase variances below 10 -2 (rad 2 ) can be achieved.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1943-0655
1943-0647
DOI:10.1109/JPHOT.2018.2878781