Multivariate Analysis of BOLD Activation Patterns Recovers Graded Depth Representations in Human Visual and Parietal Cortex

Navigating through natural environments requires localizing objects along three distinct spatial axes. Information about position along the horizontal and vertical axes is available from an object’s position on the retina, while position along the depth axis must be inferred based on second-order cu...

Full description

Saved in:
Bibliographic Details
Published ineNeuro Vol. 6; no. 4; p. ENEURO.0362-18.2019
Main Authors Henderson, Margaret, Vo, Vy, Chunharas, Chaipat, Sprague, Thomas, Serences, John
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 01.07.2019
Subjects
Online AccessGet full text
ISSN2373-2822
2373-2822
DOI10.1523/ENEURO.0362-18.2019

Cover

Loading…
Abstract Navigating through natural environments requires localizing objects along three distinct spatial axes. Information about position along the horizontal and vertical axes is available from an object’s position on the retina, while position along the depth axis must be inferred based on second-order cues such as the disparity between the images cast on the two retinae. Past work has revealed that object position in two-dimensional (2D) retinotopic space is robustly represented in visual cortex and can be robustly predicted using a multivariate encoding model, in which an explicit axis is modeled for each spatial dimension. However, no study to date has used an encoding model to estimate a representation of stimulus position in depth. Here, we recorded BOLD fMRI while human subjects viewed a stereoscopic random-dot sphere at various positions along the depth ( z ) and the horizontal ( x ) axes, and the stimuli were presented across a wider range of disparities (out to ∼40 arcmin) compared to previous neuroimaging studies. In addition to performing decoding analyses for comparison to previous work, we built encoding models for depth position and for horizontal position, allowing us to directly compare encoding between these dimensions. Our results validate this method of recovering depth representations from retinotopic cortex. Furthermore, we find convergent evidence that depth is encoded most strongly in dorsal area V3A.
AbstractList Navigating through natural environments requires localizing objects along three distinct spatial axes. Information about position along the horizontal and vertical axes is available from an object's position on the retina, while position along the depth axis must be inferred based on second-order cues such as the disparity between the images cast on the two retinae. Past work has revealed that object position in two-dimensional (2D) retinotopic space is robustly represented in visual cortex and can be robustly predicted using a multivariate encoding model, in which an explicit axis is modeled for each spatial dimension. However, no study to date has used an encoding model to estimate a representation of stimulus position in depth. Here, we recorded BOLD fMRI while human subjects viewed a stereoscopic random-dot sphere at various positions along the depth ( ) and the horizontal ( ) axes, and the stimuli were presented across a wider range of disparities (out to ∼40 arcmin) compared to previous neuroimaging studies. In addition to performing decoding analyses for comparison to previous work, we built encoding models for depth position and for horizontal position, allowing us to directly compare encoding between these dimensions. Our results validate this method of recovering depth representations from retinotopic cortex. Furthermore, we find convergent evidence that depth is encoded most strongly in dorsal area V3A.
Navigating through natural environments requires localizing objects along three distinct spatial axes. Information about position along the horizontal and vertical axes is available from an object’s position on the retina, while position along the depth axis must be inferred based on second-order cues such as the disparity between the images cast on the two retinae. Past work has revealed that object position in two-dimensional (2D) retinotopic space is robustly represented in visual cortex and can be robustly predicted using a multivariate encoding model, in which an explicit axis is modeled for each spatial dimension. However, no study to date has used an encoding model to estimate a representation of stimulus position in depth. Here, we recorded BOLD fMRI while human subjects viewed a stereoscopic random-dot sphere at various positions along the depth ( z ) and the horizontal ( x ) axes, and the stimuli were presented across a wider range of disparities (out to ∼40 arcmin) compared to previous neuroimaging studies. In addition to performing decoding analyses for comparison to previous work, we built encoding models for depth position and for horizontal position, allowing us to directly compare encoding between these dimensions. Our results validate this method of recovering depth representations from retinotopic cortex. Furthermore, we find convergent evidence that depth is encoded most strongly in dorsal area V3A.
Navigating through natural environments requires localizing objects along three distinct spatial axes. Information about position along the horizontal and vertical axes is available from an object's position on the retina, while position along the depth axis must be inferred based on second-order cues such as the disparity between the images cast on the two retinae. Past work has revealed that object position in two-dimensional (2D) retinotopic space is robustly represented in visual cortex and can be robustly predicted using a multivariate encoding model, in which an explicit axis is modeled for each spatial dimension. However, no study to date has used an encoding model to estimate a representation of stimulus position in depth. Here, we recorded BOLD fMRI while human subjects viewed a stereoscopic random-dot sphere at various positions along the depth (z) and the horizontal (x) axes, and the stimuli were presented across a wider range of disparities (out to ∼40 arcmin) compared to previous neuroimaging studies. In addition to performing decoding analyses for comparison to previous work, we built encoding models for depth position and for horizontal position, allowing us to directly compare encoding between these dimensions. Our results validate this method of recovering depth representations from retinotopic cortex. Furthermore, we find convergent evidence that depth is encoded most strongly in dorsal area V3A.Navigating through natural environments requires localizing objects along three distinct spatial axes. Information about position along the horizontal and vertical axes is available from an object's position on the retina, while position along the depth axis must be inferred based on second-order cues such as the disparity between the images cast on the two retinae. Past work has revealed that object position in two-dimensional (2D) retinotopic space is robustly represented in visual cortex and can be robustly predicted using a multivariate encoding model, in which an explicit axis is modeled for each spatial dimension. However, no study to date has used an encoding model to estimate a representation of stimulus position in depth. Here, we recorded BOLD fMRI while human subjects viewed a stereoscopic random-dot sphere at various positions along the depth (z) and the horizontal (x) axes, and the stimuli were presented across a wider range of disparities (out to ∼40 arcmin) compared to previous neuroimaging studies. In addition to performing decoding analyses for comparison to previous work, we built encoding models for depth position and for horizontal position, allowing us to directly compare encoding between these dimensions. Our results validate this method of recovering depth representations from retinotopic cortex. Furthermore, we find convergent evidence that depth is encoded most strongly in dorsal area V3A.
Author Chunharas, Chaipat
Vo, Vy
Serences, John
Sprague, Thomas
Henderson, Margaret
Author_xml – sequence: 1
  givenname: Margaret
  orcidid: 0000-0001-9375-6680
  surname: Henderson
  fullname: Henderson, Margaret
– sequence: 2
  givenname: Vy
  orcidid: 0000-0001-9601-1297
  surname: Vo
  fullname: Vo, Vy
– sequence: 3
  givenname: Chaipat
  orcidid: 0000-0003-1074-0160
  surname: Chunharas
  fullname: Chunharas, Chaipat
– sequence: 4
  givenname: Thomas
  orcidid: 0000-0001-9530-2463
  surname: Sprague
  fullname: Sprague, Thomas
– sequence: 5
  givenname: John
  orcidid: 0000-0002-8551-5147
  surname: Serences
  fullname: Serences, John
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31285275$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtPGzEQtiqqQim_AAn5yGVTP3a93kulEAJUSpsKlV4tr3cWXG3sYHsjUP98nQYq6KGn8Xi-x2i-92jPeQcIHVMyoRXjH-df5zfXywnhghVUThihzRt0wHjNCyYZ23vx3kdHMf4khFDBairpO7TPKZMVq6sD9OvLOCS70cHqBHjq9PAYbcS-x2fLxTmemu0wWe_wN50SBBfxNRi_gRDxZdAddPgc1uku_64DRHDpDzpi6_DVuNIO_7Bx1APWrssSwULKzcyHBA8f0NteDxGOnuohurmYf59dFYvl5efZdFGYklSpqAyvwUjTCSMIEVR2xtRScuDCtASoZq3otGSClKzlsm4MK2XDO172Zdm0PT9En3a667FdQWfykkEPah3sSodH5bVVryfO3qlbv1GiJg2jPAucPgkEfz9CTGplo4Fh0A78GBVjVVnRvJvM0JOXXn9Nni-eAc0OYIKPMUCvjN3dLFvbQVGitgGrXcBqG7CiUm0Dzlz-D_dZ_n-s3xjhqzQ
CitedBy_id crossref_primary_10_1523_ENEURO_0411_19_2019
crossref_primary_10_7554_eLife_78712
crossref_primary_10_1016_j_visres_2022_108082
crossref_primary_10_1146_annurev_vision_111022_123857
crossref_primary_10_1016_j_nicl_2022_103005
Cites_doi 10.1152/jn.2001.86.4.2054
10.1523/JNEUROSCI.0991-07.2007
10.1163/156856897X00357
10.1038/ncomms15276
10.1214/aos/1013699998
10.1016/j.neuroimage.2009.03.023
10.1186/s12868-017-0395-7
10.1016/j.neuropsychologia.2011.07.013
10.1007/978-1-4899-4541-9
10.1523/JNEUROSCI.5292-03.2004
10.1016/j.tics.2009.08.005
10.1038/nn1461
10.1152/jn.00540.2011
10.1523/JNEUROSCI.3577-09.2009
10.1016/0042-6989(84)90107-X
10.1038/nn.3574
10.1016/j.tics.2015.02.005
10.1038/nn1641
10.1523/JNEUROSCI.08-12-04531.1988
10.1167/7.14.15
10.1016/j.jphysparis.2013.04.002
10.1097/00001756-200102120-00036
10.1152/jn.00790.2009
10.1523/JNEUROSCI.2728-08.2008
10.1016/j.neuroimage.2016.12.039
10.1016/j.tics.2015.07.005
10.1016/j.neuroimage.2014.12.083
10.1523/JNEUROSCI.3047-14.2015
10.1111/opo.12121
10.1016/j.cub.2015.06.003
10.1146/annurev-vision-111815-114605
10.1523/JNEUROSCI.4753-08.2009
10.1152/jn.01042.2003
10.1016/S0896-6273(03)00459-8
10.1523/JNEUROSCI.3484-16.2017
10.1017/S0952523815000176
10.1073/pnas.93.6.2382
10.1163/156856897X00366
10.1016/j.neuroimage.2015.03.023
10.1126/science.7754376
10.1126/science.1063695
10.1016/j.jphysparis.2004.03.004
10.1523/JNEUROSCI.07-03-00913.1987
10.1016/j.neuron.2007.10.012
10.1523/JNEUROSCI.5956-10.2011
10.1093/cercor/bht288
10.1016/j.neuron.2009.09.006
ContentType Journal Article
Copyright Copyright © 2019 Henderson et al.
Copyright © 2019 Henderson et al. 2019 Henderson et al.
Copyright_xml – notice: Copyright © 2019 Henderson et al.
– notice: Copyright © 2019 Henderson et al. 2019 Henderson et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/ENEURO.0362-18.2019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Multivariate Representations of Stimulus Depth
EISSN 2373-2822
ExternalDocumentID PMC6709213
31285275
10_1523_ENEURO_0362_18_2019
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY025872
– fundername: National Eye Institute
  grantid: F32-EY028438; R01-EY025872
– fundername: NSF GRFP
– fundername: Thai Red Cross Society
GroupedDBID 53G
5VS
AAYXX
ADBBV
ADRAZ
AKSEZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
H13
HYE
KQ8
M48
M~E
OK1
RHI
RPM
TFN
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c405t-5c37ec8cd6c600618dcc7883e36cb0e1a2b6da826042b3879c24893d34f449bf3
IEDL.DBID M48
ISSN 2373-2822
IngestDate Thu Aug 21 18:32:57 EDT 2025
Fri Jul 11 02:37:16 EDT 2025
Thu Jan 02 22:59:16 EST 2025
Tue Jul 01 03:56:34 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords intraparietal sulcus
encoding model
fMRI
vision
depth
MVPA
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2019 Henderson et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-5c37ec8cd6c600618dcc7883e36cb0e1a2b6da826042b3879c24893d34f449bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no competing financial interests.
This work was supported by National Eye Institute Grants R01-EY025872 (to J.S.) and F32-EY028438 (to T.S.), Thai Red Cross Society funding (C.C.), and the National Science Foundation Graduate Research Fellowships Program (V.V.).
M.H. and V.V. authors contributed equally to this work.
Author contributions: M.H., V.V., C.C., T.S., and J.S. designed research; M.H., V.V., C.C., and T.S. performed research; M.H. and V.V. analyzed data; M.H. and V.V. wrote the paper.
ORCID 0000-0001-9601-1297
0000-0001-9530-2463
0000-0003-1074-0160
0000-0001-9375-6680
0000-0002-8551-5147
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1523/ENEURO.0362-18.2019
PMID 31285275
PQID 2254510068
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6709213
proquest_miscellaneous_2254510068
pubmed_primary_31285275
crossref_citationtrail_10_1523_ENEURO_0362_18_2019
crossref_primary_10_1523_ENEURO_0362_18_2019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle eNeuro
PublicationTitleAlternate eNeuro
PublicationYear 2019
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041302135258000_6.4.ENEURO.0362-18.2019.8
2023041302135258000_6.4.ENEURO.0362-18.2019.7
2023041302135258000_6.4.ENEURO.0362-18.2019.6
2023041302135258000_6.4.ENEURO.0362-18.2019.29
2023041302135258000_6.4.ENEURO.0362-18.2019.5
2023041302135258000_6.4.ENEURO.0362-18.2019.4
2023041302135258000_6.4.ENEURO.0362-18.2019.3
2023041302135258000_6.4.ENEURO.0362-18.2019.2
2023041302135258000_6.4.ENEURO.0362-18.2019.1
2023041302135258000_6.4.ENEURO.0362-18.2019.23
2023041302135258000_6.4.ENEURO.0362-18.2019.45
2023041302135258000_6.4.ENEURO.0362-18.2019.24
2023041302135258000_6.4.ENEURO.0362-18.2019.46
2023041302135258000_6.4.ENEURO.0362-18.2019.21
2023041302135258000_6.4.ENEURO.0362-18.2019.43
2023041302135258000_6.4.ENEURO.0362-18.2019.22
2023041302135258000_6.4.ENEURO.0362-18.2019.44
2023041302135258000_6.4.ENEURO.0362-18.2019.27
2023041302135258000_6.4.ENEURO.0362-18.2019.28
2023041302135258000_6.4.ENEURO.0362-18.2019.25
2023041302135258000_6.4.ENEURO.0362-18.2019.47
2023041302135258000_6.4.ENEURO.0362-18.2019.9
2023041302135258000_6.4.ENEURO.0362-18.2019.26
2023041302135258000_6.4.ENEURO.0362-18.2019.48
2023041302135258000_6.4.ENEURO.0362-18.2019.30
2023041302135258000_6.4.ENEURO.0362-18.2019.31
2023041302135258000_6.4.ENEURO.0362-18.2019.18
2023041302135258000_6.4.ENEURO.0362-18.2019.19
2023041302135258000_6.4.ENEURO.0362-18.2019.12
2023041302135258000_6.4.ENEURO.0362-18.2019.34
2023041302135258000_6.4.ENEURO.0362-18.2019.13
2023041302135258000_6.4.ENEURO.0362-18.2019.35
2023041302135258000_6.4.ENEURO.0362-18.2019.10
2023041302135258000_6.4.ENEURO.0362-18.2019.32
2023041302135258000_6.4.ENEURO.0362-18.2019.11
2023041302135258000_6.4.ENEURO.0362-18.2019.33
2023041302135258000_6.4.ENEURO.0362-18.2019.16
2023041302135258000_6.4.ENEURO.0362-18.2019.38
2023041302135258000_6.4.ENEURO.0362-18.2019.17
2023041302135258000_6.4.ENEURO.0362-18.2019.39
2023041302135258000_6.4.ENEURO.0362-18.2019.14
2023041302135258000_6.4.ENEURO.0362-18.2019.36
2023041302135258000_6.4.ENEURO.0362-18.2019.15
2023041302135258000_6.4.ENEURO.0362-18.2019.37
2023041302135258000_6.4.ENEURO.0362-18.2019.41
2023041302135258000_6.4.ENEURO.0362-18.2019.20
2023041302135258000_6.4.ENEURO.0362-18.2019.42
2023041302135258000_6.4.ENEURO.0362-18.2019.40
References_xml – ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.2
  doi: 10.1152/jn.2001.86.4.2054
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.38
  doi: 10.1523/JNEUROSCI.0991-07.2007
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.5
  doi: 10.1163/156856897X00357
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.12
  doi: 10.1038/ncomms15276
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.4
  doi: 10.1214/aos/1013699998
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.10
  doi: 10.1016/j.neuroimage.2009.03.023
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.22
  doi: 10.1186/s12868-017-0395-7
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.32
  doi: 10.1016/j.neuropsychologia.2011.07.013
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.11
  doi: 10.1007/978-1-4899-4541-9
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.39
  doi: 10.1523/JNEUROSCI.5292-03.2004
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.35
  doi: 10.1016/j.tics.2009.08.005
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.46
  doi: 10.1038/nn1461
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.8
  doi: 10.1152/jn.00540.2011
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.7
  doi: 10.1523/JNEUROSCI.3577-09.2009
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.31
  doi: 10.1016/0042-6989(84)90107-X
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.36
  doi: 10.1038/nn.3574
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.37
  doi: 10.1016/j.tics.2015.02.005
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.24
  doi: 10.1038/nn1641
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.29
  doi: 10.1523/JNEUROSCI.08-12-04531.1988
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.6
  doi: 10.1167/7.14.15
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.20
  doi: 10.1016/j.jphysparis.2013.04.002
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.17
  doi: 10.1097/00001756-200102120-00036
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.23
  doi: 10.1152/jn.00790.2009
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.30
  doi: 10.1523/JNEUROSCI.2728-08.2008
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.13
  doi: 10.1016/j.neuroimage.2016.12.039
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.25
  doi: 10.1016/j.tics.2015.07.005
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.48
  doi: 10.1016/j.neuroimage.2014.12.083
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.16
  doi: 10.1523/JNEUROSCI.3047-14.2015
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.19
  doi: 10.1111/opo.12121
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.3
  doi: 10.1016/j.cub.2015.06.003
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.45
  doi: 10.1146/annurev-vision-111815-114605
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.15
  doi: 10.1523/JNEUROSCI.4753-08.2009
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.21
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.27
  doi: 10.1152/jn.01042.2003
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.41
  doi: 10.1016/S0896-6273(03)00459-8
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.43
  doi: 10.1523/JNEUROSCI.3484-16.2017
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.47
  doi: 10.1017/S0952523815000176
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.9
  doi: 10.1073/pnas.93.6.2382
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.28
  doi: 10.1163/156856897X00366
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.42
  doi: 10.1016/j.neuroimage.2015.03.023
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.33
  doi: 10.1126/science.7754376
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.34
  doi: 10.1126/science.1063695
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.40
  doi: 10.1016/j.jphysparis.2004.03.004
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.14
  doi: 10.1523/JNEUROSCI.07-03-00913.1987
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.44
  doi: 10.1016/j.neuron.2007.10.012
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.1
  doi: 10.1523/JNEUROSCI.5956-10.2011
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.18
  doi: 10.1093/cercor/bht288
– ident: 2023041302135258000_6.4.ENEURO.0362-18.2019.26
  doi: 10.1016/j.neuron.2009.09.006
SSID ssj0001627181
Score 2.1381562
Snippet Navigating through natural environments requires localizing objects along three distinct spatial axes. Information about position along the horizontal and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage ENEURO.0362-18.2019
SubjectTerms Brain Mapping
Depth Perception - physiology
Female
Humans
Magnetic Resonance Imaging
Male
Models, Neurological
Multivariate Analysis
New Research
Parietal Lobe - physiology
Photic Stimulation - methods
Support Vector Machine
Visual Cortex - physiology
Title Multivariate Analysis of BOLD Activation Patterns Recovers Graded Depth Representations in Human Visual and Parietal Cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/31285275
https://www.proquest.com/docview/2254510068
https://pubmed.ncbi.nlm.nih.gov/PMC6709213
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlRCXij6ABYqM1GNDN7HjJIcKUR5FVaE9sIhbFI8dsRLKbveBQPz5zjjJlkfLgWtiW5Y_jz2fPf4G4KNMnIqVKgOZYhkoV2aBScgek4jmVxgZlgDhaItTfdxT3y_iizlos6I2Azj-J7XjfFK90dXOze_bXTL4L3X2Hvn58JSj3nb8A6DQh2tl8_CKtibNbOyk8ff9oYuOaC0OG_Wh_9RdgkVJq3Yccezh_c3qiQf6OJDy3s50tAyvG5dS7NVz4A3MueotLJ40l-bv4M4_sr0mUkx-pWhVSMSgFF9__jgQe9hmOBO_vNhmNRZMSjleQ3wbFdZZceCGk0v6Ovz7WIlK9Svh7wDEeX88pR4UlaUmiHvTWIp9juK9eQ-9o8Oz_eOgybkQILlukyBGQg9TtBo1uzepRSSWLJ3UaLouLCKjbUGchIzdyDTJMGL5GitVqVRmSrkCC9WgcmsgwtCiTrKuLsjJ6drElGlqCoUGURuMiw5E7eDm2AiSc16Mq5yJCYGT1-DkDE4epjmD04FPs0rDWo_j-eLbLWo52Q1fhhSVG0zHOa1jitajrk47sFqjOGuwhb8DyQN8ZwVYk_vhn6p_6bW5WQ4vCuX6i2tuwBJ3vI4I3oSFyWjqPpDfMzFb_rxgy8_oP6V8ArM
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Analysis+of+BOLD+Activation+Patterns+Recovers+Graded+Depth+Representations+in+Human+Visual+and+Parietal+Cortex&rft.jtitle=eNeuro&rft.au=Henderson%2C+Margaret&rft.au=Vo%2C+Vy&rft.au=Chunharas%2C+Chaipat&rft.au=Sprague%2C+Thomas&rft.date=2019-07-01&rft.pub=Society+for+Neuroscience&rft.eissn=2373-2822&rft.volume=6&rft.issue=4&rft_id=info:doi/10.1523%2FENEURO.0362-18.2019&rft_id=info%3Apmid%2F31285275&rft.externalDocID=PMC6709213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-2822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-2822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-2822&client=summon