The power performance of an offshore floating wind turbine in platform pitching motion
The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact the power performance of the OFWT. In this paper, the power performance of an OFWT in platform pitching motion is investigated using the Free V...
Saved in:
Published in | Energy (Oxford) Vol. 154; pp. 508 - 521 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact the power performance of the OFWT. In this paper, the power performance of an OFWT in platform pitching motion is investigated using the Free Vortex Method (FVM). Firstly, the pitching and non-pitching cases are compared. Then, the power performance of the OFWT in pitching motions with different amplitudes and frequencies is investigated at the design point (tip speed ratio λ = 7). Afterwards, the reduced frequency k is proposed to integrate the influences of the platform pitching amplitude and frequency. The power performance curves of the pitching OFWT are derived as functions of λ and k in the whole operating region. Results show that as k increases, the mean power output decreases at low λ but increases at high λ. The mean power coefficient declines with the increase of k. The power variation increases with the increases of λ and k. To make up the loss of the mean power coefficient and to mitigate the side effects resulted from the power variation, advanced control strategies and platforms with good motion performances should be developed for OFWTs.
•The Free Vortex Method is used to study the power performance of a pitching OFWT.•The reduced frequency is introduced as an independent variable of power performance.•Impact of the reduced frequency on mean power output varies with the tip speed ratio.•The power variation increases with the tip speed ratio and the reduced frequency.•Novel controllers and more stabilized platforms should be developed for OFWTs. |
---|---|
AbstractList | The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact the power performance of the OFWT. In this paper, the power performance of an OFWT in platform pitching motion is investigated using the Free Vortex Method (FVM). Firstly, the pitching and non-pitching cases are compared. Then, the power performance of the OFWT in pitching motions with different amplitudes and frequencies is investigated at the design point (tip speed ratio λ = 7). Afterwards, the reduced frequency k is proposed to integrate the influences of the platform pitching amplitude and frequency. The power performance curves of the pitching OFWT are derived as functions of λ and k in the whole operating region. Results show that as k increases, the mean power output decreases at low λ but increases at high λ. The mean power coefficient declines with the increase of k. The power variation increases with the increases of λ and k. To make up the loss of the mean power coefficient and to mitigate the side effects resulted from the power variation, advanced control strategies and platforms with good motion performances should be developed for OFWTs. The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact the power performance of the OFWT. In this paper, the power performance of an OFWT in platform pitching motion is investigated using the Free Vortex Method (FVM). Firstly, the pitching and non-pitching cases are compared. Then, the power performance of the OFWT in pitching motions with different amplitudes and frequencies is investigated at the design point (tip speed ratio λ = 7). Afterwards, the reduced frequency k is proposed to integrate the influences of the platform pitching amplitude and frequency. The power performance curves of the pitching OFWT are derived as functions of λ and k in the whole operating region. Results show that as k increases, the mean power output decreases at low λ but increases at high λ. The mean power coefficient declines with the increase of k. The power variation increases with the increases of λ and k. To make up the loss of the mean power coefficient and to mitigate the side effects resulted from the power variation, advanced control strategies and platforms with good motion performances should be developed for OFWTs. •The Free Vortex Method is used to study the power performance of a pitching OFWT.•The reduced frequency is introduced as an independent variable of power performance.•Impact of the reduced frequency on mean power output varies with the tip speed ratio.•The power variation increases with the tip speed ratio and the reduced frequency.•Novel controllers and more stabilized platforms should be developed for OFWTs. |
Author | Dong, Xingjian Wei, Kexiang Zhang, Wenming Wen, Binrong Tian, Xinliang Peng, Zhike |
Author_xml | – sequence: 1 givenname: Binrong surname: Wen fullname: Wen, Binrong email: wenbinrong@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 2 givenname: Xingjian orcidid: 0000-0003-1246-7604 surname: Dong fullname: Dong, Xingjian email: donxij@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 3 givenname: Xinliang orcidid: 0000-0002-5261-0084 surname: Tian fullname: Tian, Xinliang email: tianxinliang@sjtu.edu.cn organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 4 givenname: Zhike surname: Peng fullname: Peng, Zhike email: z.peng@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 5 givenname: Wenming surname: Zhang fullname: Zhang, Wenming email: wenmingz@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 6 givenname: Kexiang surname: Wei fullname: Wei, Kexiang email: kxwei@hnie.edu.cn organization: Hunan Institute of Engineering, Xiangtan, 411104, China |
BookMark | eNqFkDtPwzAUhT0UiRb4BwweWRJsx3kxIKGKl1SJpbBarnPdukrsYLtU_fckChMDLPcs5zu6-hZoZp0FhK4pSSmhxe0-BQt-e0oZoVVKeEo5maE5yQqS5Jyzc7QIYU8Iyau6nqOP9Q5w747gcQ9eO99JqwA7jaUdrg475wHr1slo7BYfjW1wPPiNsYCNxX0r4wjh3kS1Gxudi8bZS3SmZRvg6icv0PvT43r5kqzenl-XD6tEcZLHJK-kaiilGZecZ9DQTCsNzYYWVcF0LfO6alROZFXSDZSSDRSpWSF5JVlRlCq7QDfTbu_d5wFCFJ0JCtpWWnCHIBhjlGS8LMuhejdVlXcheNBCmSjHZ6OXphWUiFGg2ItJoBgFCsLFIHCA-S-496aT_vQfdj9hMDj4MuBFUAYGwY3xoKJonPl74BvoqpIA |
CitedBy_id | crossref_primary_10_1016_j_renene_2018_12_034 crossref_primary_10_1016_j_rser_2024_115295 crossref_primary_10_1016_j_renene_2019_10_147 crossref_primary_10_1007_s11804_024_00473_8 crossref_primary_10_3390_jmse9070699 crossref_primary_10_3390_en15020579 crossref_primary_10_1016_j_oceaneng_2020_106945 crossref_primary_10_1016_j_renene_2025_122861 crossref_primary_10_1016_j_rser_2021_111696 crossref_primary_10_1016_j_seta_2024_103931 crossref_primary_10_1016_j_renene_2023_01_040 crossref_primary_10_1016_j_oceaneng_2021_109109 crossref_primary_10_1016_j_energy_2023_127679 crossref_primary_10_1016_j_apenergy_2024_124767 crossref_primary_10_1016_j_renene_2022_06_108 crossref_primary_10_1016_j_energy_2021_120202 crossref_primary_10_1016_j_renene_2021_10_003 crossref_primary_10_1016_j_renene_2023_119255 crossref_primary_10_1016_j_apenergy_2022_119320 crossref_primary_10_1016_j_renene_2020_10_096 crossref_primary_10_1016_j_rser_2022_113144 crossref_primary_10_1007_s13344_020_0010_z crossref_primary_10_1016_j_enconman_2022_116560 crossref_primary_10_1016_j_oceaneng_2021_109070 crossref_primary_10_1016_j_apenergy_2020_115459 crossref_primary_10_1016_j_oceaneng_2023_115556 crossref_primary_10_1063_5_0130881 crossref_primary_10_1016_j_marstruc_2020_102729 crossref_primary_10_1016_j_oceaneng_2023_115351 crossref_primary_10_1115_1_4048776 crossref_primary_10_3390_su12010246 crossref_primary_10_1063_5_0231937 crossref_primary_10_1016_j_energy_2024_130769 crossref_primary_10_1016_j_energy_2024_132945 crossref_primary_10_1063_5_0148352 crossref_primary_10_1088_1742_6596_1618_5_052066 crossref_primary_10_1063_5_0161759 crossref_primary_10_5194_wes_9_1827_2024 crossref_primary_10_1063_5_0076029 crossref_primary_10_1016_j_energy_2018_11_082 crossref_primary_10_1016_j_oceaneng_2024_118837 crossref_primary_10_2478_amns_2024_0534 crossref_primary_10_1016_j_oceaneng_2023_115629 crossref_primary_10_3389_fmars_2022_1063120 crossref_primary_10_1016_j_renene_2020_04_071 crossref_primary_10_1016_j_taml_2021_100294 crossref_primary_10_1002_we_2608 crossref_primary_10_1016_j_jweia_2020_104390 crossref_primary_10_1016_j_enconman_2024_119402 crossref_primary_10_1016_j_oceaneng_2019_106712 crossref_primary_10_1016_j_oceaneng_2023_114951 crossref_primary_10_3390_su16135324 crossref_primary_10_1016_j_oceaneng_2023_115401 crossref_primary_10_1016_j_energy_2024_131845 crossref_primary_10_1007_s12206_023_0821_y crossref_primary_10_1016_j_renene_2021_07_087 crossref_primary_10_1016_j_renene_2018_12_096 crossref_primary_10_1002_we_2482 crossref_primary_10_1016_j_mechmachtheory_2024_105794 crossref_primary_10_1016_j_enconman_2020_113268 crossref_primary_10_1007_s11804_024_00465_8 crossref_primary_10_1016_j_joes_2024_06_002 crossref_primary_10_1007_s40722_022_00227_0 crossref_primary_10_1016_j_oceaneng_2020_107061 crossref_primary_10_1016_j_oceaneng_2023_115579 crossref_primary_10_1016_j_renene_2023_04_144 crossref_primary_10_1016_j_oceaneng_2022_112088 crossref_primary_10_3390_pr9061047 crossref_primary_10_1016_j_oceaneng_2024_117734 crossref_primary_10_1017_jfm_2024_999 crossref_primary_10_3390_en12071246 crossref_primary_10_1080_14786451_2023_2189490 crossref_primary_10_3390_en12163124 crossref_primary_10_1063_5_0154097 crossref_primary_10_1088_1742_6596_1618_5_052045 crossref_primary_10_1016_j_enconman_2022_115769 crossref_primary_10_1016_j_energy_2023_129271 crossref_primary_10_1115_1_4046772 crossref_primary_10_3390_pr9020290 crossref_primary_10_1016_j_energy_2019_116621 crossref_primary_10_1002_we_2670 crossref_primary_10_1016_j_marstruc_2022_103362 crossref_primary_10_1016_j_oceaneng_2024_119303 crossref_primary_10_1088_1742_6596_2362_1_012010 crossref_primary_10_1007_s13344_020_0055_z crossref_primary_10_1016_j_psep_2020_10_016 crossref_primary_10_1016_j_renene_2019_06_116 |
Cites_doi | 10.1016/j.renene.2014.03.071 10.1016/j.renene.2016.02.021 10.1002/we.76 10.1016/j.renene.2015.08.063 10.1016/j.energy.2016.12.086 10.1007/s12206-015-0115-0 10.1002/we.1500 10.1016/j.renene.2015.01.013 10.1002/we.464 10.1016/j.energy.2017.11.090 10.1115/1.4036497 10.1115/1.4031872 10.3390/en7041954 10.1002/we.545 10.3390/en7085011 10.1016/j.renene.2015.05.016 10.1016/j.renene.2012.03.033 10.1002/we.1730 10.1016/j.energy.2011.01.028 10.1016/j.jweia.2015.03.009 10.3390/en5040968 10.1002/we.274 10.1029/2004JD005462 10.1016/j.oceaneng.2016.09.045 10.1002/fld.2400 10.1016/j.energy.2012.02.054 10.1016/j.renene.2015.07.012 10.1016/j.renene.2013.09.009 10.1002/we.1639 10.1002/fld.2454 10.1016/j.renene.2011.01.002 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.energy.2018.04.140 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EndPage | 521 |
ExternalDocumentID | 10_1016_j_energy_2018_04_140 S0360544218307564 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c405t-58acd11134a443ed13fcfedb16862f9a598dc50a871be7a2c400926a48a2667c3 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Fri Jul 11 15:40:36 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Tue Jul 01 00:53:17 EDT 2025 Fri Feb 23 02:49:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pitch Power performance Offshore floating wind turbine Reduced frequency Free vortex method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-58acd11134a443ed13fcfedb16862f9a598dc50a871be7a2c400926a48a2667c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1246-7604 0000-0002-5261-0084 |
PQID | 2221034777 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2221034777 crossref_citationtrail_10_1016_j_energy_2018_04_140 crossref_primary_10_1016_j_energy_2018_04_140 elsevier_sciencedirect_doi_10_1016_j_energy_2018_04_140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 2018-07-00 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gupta, Leishman (bib29) 2005 Jiang, Karimirad, Moan (bib6) 2014; 17 Goupee, Koo, Kimball, Lambrakos, Dagher (bib47) 2014; 136 Marten, Wendler (bib32) 2013 Okulov, Sørensen (bib44) 2008; 11 Sebastian, Lackner (bib10) 2012; 5 Wen, Wei, Wei, Yang, Peng, Chu (bib42) 2012; 12 Wu, Ding, He, Zhao (bib11) 2015 Xu, Wang, Yuan, Cao (bib37) 2015; 373 Qiu, Wang, Kang, Zhao, Liang (bib39) 2014; 70 Tran, Kim (bib21) 2015; 29 Farrugia, Sant, Micallef (bib40) 2016; 86 Jiang, Karimirad, Moan (bib3) 2013; 23 Tran, Kim (bib22) 2016; 92 Jonkman, Butterfield, Musial, Scott (bib26) 2009 Marten, Lennie, Pechlivanoglou, Nayeri, Paschereit (bib34) 2015; 138 Lei, Zhou, Lu, Chen, Han, Bao (bib23) 2017; 119 Sebastian (bib8) 2012 Hu, Khosravi, Sarkar (bib18) 2016 Okulov, van Kuik (bib43) 2012; 15 Rockel, Peinke, Hölling, Cal (bib17) 2016; 85 Sebastian, Lackner (bib13) 2012; 46 Burton, Sharpe, Jenkins, Bossanyi (bib27) 2001 Bayati, Belloli, Bernini, Zasso (bib25) 2016; 753 Sun, Huang, Wu (bib1) 2012; 41 Lackner (bib52) 2013; 16 Salehyar, Zhu (bib50) 2015; 78 Bazilevs, Hsu, Kiendl, Wüchner, Bletzinger (bib31) 2011; 65 Kaldellis, Zafirakis (bib5) 2011; 36 Bazilevs, Hsu, Akkerman, Wright, Takizawa, Henicke, Spielman, Tezduyar (bib30) 2011; 65 Birjandi, Bibeau (bib53) 2016; 127 Lennie, Marten, Pechlivanoglou, Nayeri, Paschereit (bib35) 2016; 753 Sant, Bonnici, Farrugia, Micallef (bib51) 2015; 18 Wen, Tian, Dong, Peng, Zhang (bib12) 2017; 141 Leble, Barakos (bib9) 2017; 139 Sebastian, Lackner (bib14) 2013; 16 Wu, Nguyen (bib24) 2016; 20 Shen, Zhu, Du (bib46) 2011; 36 Archer, Jacobson (bib2) 2005; 110 Rockel, Camp, Schmidt, Peinke, Cal, Hölling (bib16) 2014; 7 Zambrano, MacCready, Kiceniuk, Roddier, Cermelli (bib54) 2006 Gupta (bib36) 2006 Jonkman, Buhl (bib48) 2007 Jiang, Moan, Gao (bib7) 2014; 137 Tran, Kim (bib19) 2015; 142 Jonkman (bib49) 2008 Wendler, Marten, Pechlivanoglou, Nayeri, Paschereit (bib33) 2016 Sant (bib38) 2007 Bossanyi (bib45) 2003; 6 Jeon, Lee, Lee (bib15) 2014; 65 Micallef, Sant (bib41) 2015; 83 Butterfield, Musial, Jonkman (bib4) 2007 Tran, Kim, Song (bib20) 2014; 7 Moriarty, Hansen (bib28) 2005 Jonkman (10.1016/j.energy.2018.04.140_bib48) 2007 Jeon (10.1016/j.energy.2018.04.140_bib15) 2014; 65 Okulov (10.1016/j.energy.2018.04.140_bib43) 2012; 15 Zambrano (10.1016/j.energy.2018.04.140_bib54) 2006 Wen (10.1016/j.energy.2018.04.140_bib12) 2017; 141 Xu (10.1016/j.energy.2018.04.140_bib37) 2015; 373 Tran (10.1016/j.energy.2018.04.140_bib19) 2015; 142 Wu (10.1016/j.energy.2018.04.140_bib11) 2015 Bazilevs (10.1016/j.energy.2018.04.140_bib30) 2011; 65 Jiang (10.1016/j.energy.2018.04.140_bib7) 2014; 137 Tran (10.1016/j.energy.2018.04.140_bib22) 2016; 92 Micallef (10.1016/j.energy.2018.04.140_bib41) 2015; 83 Jiang (10.1016/j.energy.2018.04.140_bib3) 2013; 23 Bayati (10.1016/j.energy.2018.04.140_bib25) 2016; 753 Qiu (10.1016/j.energy.2018.04.140_bib39) 2014; 70 Butterfield (10.1016/j.energy.2018.04.140_bib4) 2007 Okulov (10.1016/j.energy.2018.04.140_bib44) 2008; 11 Jonkman (10.1016/j.energy.2018.04.140_bib49) 2008 Jonkman (10.1016/j.energy.2018.04.140_bib26) 2009 Hu (10.1016/j.energy.2018.04.140_bib18) 2016 Sant (10.1016/j.energy.2018.04.140_bib51) 2015; 18 Birjandi (10.1016/j.energy.2018.04.140_bib53) 2016; 127 Rockel (10.1016/j.energy.2018.04.140_bib17) 2016; 85 Gupta (10.1016/j.energy.2018.04.140_bib29) 2005 Sun (10.1016/j.energy.2018.04.140_bib1) 2012; 41 Sebastian (10.1016/j.energy.2018.04.140_bib8) 2012 Bazilevs (10.1016/j.energy.2018.04.140_bib31) 2011; 65 Burton (10.1016/j.energy.2018.04.140_bib27) 2001 Lennie (10.1016/j.energy.2018.04.140_bib35) 2016; 753 Bossanyi (10.1016/j.energy.2018.04.140_bib45) 2003; 6 Rockel (10.1016/j.energy.2018.04.140_bib16) 2014; 7 Tran (10.1016/j.energy.2018.04.140_bib21) 2015; 29 Moriarty (10.1016/j.energy.2018.04.140_bib28) 2005 Sebastian (10.1016/j.energy.2018.04.140_bib14) 2013; 16 Salehyar (10.1016/j.energy.2018.04.140_bib50) 2015; 78 Sebastian (10.1016/j.energy.2018.04.140_bib10) 2012; 5 Tran (10.1016/j.energy.2018.04.140_bib20) 2014; 7 Sebastian (10.1016/j.energy.2018.04.140_bib13) 2012; 46 Sant (10.1016/j.energy.2018.04.140_bib38) 2007 Lei (10.1016/j.energy.2018.04.140_bib23) 2017; 119 Wu (10.1016/j.energy.2018.04.140_bib24) 2016; 20 Wen (10.1016/j.energy.2018.04.140_bib42) 2012; 12 Marten (10.1016/j.energy.2018.04.140_bib34) 2015; 138 Jiang (10.1016/j.energy.2018.04.140_bib6) 2014; 17 Farrugia (10.1016/j.energy.2018.04.140_bib40) 2016; 86 Shen (10.1016/j.energy.2018.04.140_bib46) 2011; 36 Kaldellis (10.1016/j.energy.2018.04.140_bib5) 2011; 36 Gupta (10.1016/j.energy.2018.04.140_bib36) 2006 Marten (10.1016/j.energy.2018.04.140_bib32) 2013 Archer (10.1016/j.energy.2018.04.140_bib2) 2005; 110 Leble (10.1016/j.energy.2018.04.140_bib9) 2017; 139 Goupee (10.1016/j.energy.2018.04.140_bib47) 2014; 136 Lackner (10.1016/j.energy.2018.04.140_bib52) 2013; 16 Wendler (10.1016/j.energy.2018.04.140_bib33) 2016 |
References_xml | – volume: 138 year: 2015 ident: bib34 article-title: Implementation, optimization, and validation of a nonlinear lifting line-free vortex wake module within the wind turbine smulation code QBlade publication-title: J Eng Gas Turbines Power – volume: 141 start-page: 2054 year: 2017 end-page: 2068 ident: bib12 article-title: Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine publication-title: Energy – volume: 85 start-page: 666 year: 2016 end-page: 676 ident: bib17 article-title: Wake to wake interaction of floating wind turbine models in free pitch motion: an eddy viscosity and mixing length approach publication-title: Renew Energy – year: 2016 ident: bib18 article-title: An experimental investigation on the aeromechanic performance and wake characteristics of a wind turbine model subjected to pitch motions publication-title: 34th Wind Energy Symposium. San Diego, California, USA – year: 2007 ident: bib48 article-title: Loads analysis of a floating offshore wind turbine using fully coupled simulation publication-title: Conference Paper NREL/CP-500–41714 National Renewable Energy Laboratory: Golden, CO, USA – volume: 11 start-page: 415 year: 2008 end-page: 426 ident: bib44 article-title: Refined Betz limit for rotors with a finite number of blades publication-title: Wind Energy – volume: 110 year: 2005 ident: bib2 article-title: Evaluation of global wind power publication-title: J Geophys Res – volume: 12 start-page: 1 year: 2012 end-page: 12 ident: bib42 article-title: Power fluctuation and power loss of wind turbines due to wind shear and tower shadow publication-title: Front Mech Eng – volume: 41 start-page: 298 year: 2012 end-page: 312 ident: bib1 article-title: The current state of offshore wind energy technology development publication-title: Energy – volume: 18 start-page: 811 year: 2015 end-page: 834 ident: bib51 article-title: Measurements and modelling of the power performance of a model floating wind turbine under controlled conditions publication-title: Wind Energy – year: 2008 ident: bib49 article-title: Influence of control on the pitch damping of a floating wind turbine publication-title: 46th AIAA Aerospace sciences meeting and exhibit. Reno, Nevada, USA – volume: 7 start-page: 5011 year: 2014 end-page: 5026 ident: bib20 article-title: Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion publication-title: Energies – volume: 136 year: 2014 ident: bib47 article-title: Experimental comparison of three floating wind turbine concepts publication-title: J Offshore Mech Arctic Eng – volume: 92 start-page: 244 year: 2016 end-page: 261 ident: bib22 article-title: Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach publication-title: Renew Energy – volume: 36 start-page: 1424 year: 2011 end-page: 1434 ident: bib46 article-title: Wind turbine aerodynamics and loads control in wind shear flow publication-title: Energy – volume: 23 start-page: 120 year: 2013 end-page: 128 ident: bib3 article-title: Response analysis of parked Spar-type wind turbine considering blade-pitch mechanism fault publication-title: Int J Offshore Polar Eng – volume: 137 year: 2014 ident: bib7 article-title: A comparative study of shutdown procedures on the dynamic responses of wind turbines publication-title: J Offshore Mech Arctic Eng – year: 2007 ident: bib38 article-title: Improving BEM-based aerodynamic models in wind turbine design codes – volume: 65 start-page: 207 year: 2014 end-page: 212 ident: bib15 article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method publication-title: Renew Energy – volume: 70 start-page: 93 year: 2014 end-page: 106 ident: bib39 article-title: Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method publication-title: Renew Energy – volume: 29 start-page: 549 year: 2015 end-page: 561 ident: bib21 article-title: The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions publication-title: J Mech Sci Technol – volume: 373 year: 2015 ident: bib37 article-title: Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions publication-title: Phil Trans – volume: 20 year: 2016 ident: bib24 article-title: Aerodynamic simulations of offshore floating wind turbine in platform-induced pitching motion publication-title: Wind Energy – volume: 16 start-page: 519 year: 2013 end-page: 528 ident: bib52 article-title: An investigation of variable power collective pitch control for load mitigation of floating offshore wind turbines publication-title: Wind Energy – volume: 127 start-page: 325 year: 2016 end-page: 334 ident: bib53 article-title: Frequency analysis of the power output for a vertical axis marine turbine operating in the wake publication-title: Ocean Eng – volume: 83 start-page: 737 year: 2015 end-page: 748 ident: bib41 article-title: Loading effects on floating offshore horizontal axis wind turbines in surge motion publication-title: Renew Energy – year: 2001 ident: bib27 article-title: Wind energy handbook – volume: 17 start-page: 1385 year: 2014 end-page: 1409 ident: bib6 article-title: Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events publication-title: Wind Energy – volume: 5 start-page: 968 year: 2012 end-page: 1000 ident: bib10 article-title: Analysis of the induction and wake evolution of an offshore floating wind turbine publication-title: Energies – year: 2006 ident: bib36 article-title: Development of a time-accurate viscous Lagrangian vortex wake model for wind turbine applications – start-page: 641 year: 2016 end-page: 651 ident: bib33 article-title: An unsteady aerodynamics model for lifting line free vortex wake simulations of HQWT and VAWT in QBlade publication-title: Proceedings of the ASME Turbo Expo – volume: 142 start-page: 65 year: 2015 end-page: 81 ident: bib19 article-title: The platform pitching motion of floating offshore wind turbine: a preliminary unsteady aerodynamic analysis publication-title: J Wind Eng Ind Aerod – volume: 753 year: 2016 ident: bib35 article-title: Modern methods for investigating the stability of a pitching floating platform wind turbine publication-title: J Phys Conf – volume: 119 start-page: 369 year: 2017 end-page: 383 ident: bib23 article-title: The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine publication-title: Energy – volume: 65 start-page: 236 year: 2011 end-page: 253 ident: bib31 article-title: 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades publication-title: Int J Numer Meth Fluid – volume: 753 year: 2016 ident: bib25 article-title: Wind tunnel validation of AeroDyn within LIFES50+ project: imposed surge and pitch tests publication-title: J Phys Conf – volume: 65 start-page: 207 year: 2011 end-page: 235 ident: bib30 article-title: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics publication-title: Int J Numer Meth Fluid – year: 2009 ident: bib26 article-title: Definition of a 5-MW reference wind turbine for offshore system development – year: 2012 ident: bib8 article-title: The aerodynamics and near wake of an offshore floating horizontal axis wind turbine – year: 2005 ident: bib28 article-title: AeroDyn theory manual – volume: 6 start-page: 119 year: 2003 end-page: 128 ident: bib45 article-title: Individual blade pitch pontrol for load reduction publication-title: Wind Energy – year: 2013 ident: bib32 article-title: QBlade guidelines v0. 6 – year: 2007 ident: bib4 article-title: Engineering challenges for floating offshore wind turbines publication-title: Conference Paper NREL/CP-500–387760 – volume: 139 year: 2017 ident: bib9 article-title: 10-MW wind turbine performance under pitching and yawing motion publication-title: J Sol Energy Eng – volume: 46 start-page: 269 year: 2012 end-page: 275 ident: bib13 article-title: Development of a free vortex wake method code for offshore floating wind turbines publication-title: Renew Energy – volume: 7 start-page: 1954 year: 2014 end-page: 1985 ident: bib16 article-title: Experimental study on influence of pitch motion on the wake of a floating wind turbine model publication-title: Energies – volume: 16 start-page: 339 year: 2013 end-page: 352 ident: bib14 article-title: Characterization of the unsteady aerodynamics of offshore floating wind turbines publication-title: Wind Energy – year: 2015 ident: bib11 article-title: Study on unsteady aerodynamic performance of floating offshore wind turbine by CFD method publication-title: The 25th international ocean and polar engineering conference. Hawaii, USA – year: 2005 ident: bib29 article-title: Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines publication-title: 43rd AIAA Aerospace Sciences Meeting and Exhibit. Nevada, USA – start-page: 629 year: 2006 end-page: 634 ident: bib54 article-title: Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions publication-title: 25th International conference on offshore mechanics and arctic engineering – volume: 86 start-page: 770 year: 2016 end-page: 784 ident: bib40 article-title: A study on the aerodynamics of a floating wind turbine rotor publication-title: Renew Energy – volume: 36 start-page: 1887 year: 2011 end-page: 1901 ident: bib5 article-title: The wind energy (r)evolution: a short review of a long history publication-title: Renew Energy – volume: 15 start-page: 335 year: 2012 end-page: 344 ident: bib43 article-title: The Betz-Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools publication-title: Wind Energy – volume: 78 start-page: 119 year: 2015 end-page: 127 ident: bib50 article-title: Aerodynamic dissipation effects on the rotating blades of floating wind turbines publication-title: Renew Energy – volume: 70 start-page: 93 year: 2014 ident: 10.1016/j.energy.2018.04.140_bib39 article-title: Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method publication-title: Renew Energy doi: 10.1016/j.renene.2014.03.071 – volume: 92 start-page: 244 year: 2016 ident: 10.1016/j.energy.2018.04.140_bib22 article-title: Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach publication-title: Renew Energy doi: 10.1016/j.renene.2016.02.021 – volume: 6 start-page: 119 issue: 2 year: 2003 ident: 10.1016/j.energy.2018.04.140_bib45 article-title: Individual blade pitch pontrol for load reduction publication-title: Wind Energy doi: 10.1002/we.76 – volume: 137 issue: 1 year: 2014 ident: 10.1016/j.energy.2018.04.140_bib7 article-title: A comparative study of shutdown procedures on the dynamic responses of wind turbines publication-title: J Offshore Mech Arctic Eng – volume: 86 start-page: 770 year: 2016 ident: 10.1016/j.energy.2018.04.140_bib40 article-title: A study on the aerodynamics of a floating wind turbine rotor publication-title: Renew Energy doi: 10.1016/j.renene.2015.08.063 – volume: 12 start-page: 1 issue: 3 year: 2012 ident: 10.1016/j.energy.2018.04.140_bib42 article-title: Power fluctuation and power loss of wind turbines due to wind shear and tower shadow publication-title: Front Mech Eng – year: 2016 ident: 10.1016/j.energy.2018.04.140_bib18 article-title: An experimental investigation on the aeromechanic performance and wake characteristics of a wind turbine model subjected to pitch motions – volume: 119 start-page: 369 year: 2017 ident: 10.1016/j.energy.2018.04.140_bib23 article-title: The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine publication-title: Energy doi: 10.1016/j.energy.2016.12.086 – volume: 29 start-page: 549 issue: 2 year: 2015 ident: 10.1016/j.energy.2018.04.140_bib21 article-title: The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions publication-title: J Mech Sci Technol doi: 10.1007/s12206-015-0115-0 – volume: 16 start-page: 519 issue: 4 year: 2013 ident: 10.1016/j.energy.2018.04.140_bib52 article-title: An investigation of variable power collective pitch control for load mitigation of floating offshore wind turbines publication-title: Wind Energy doi: 10.1002/we.1500 – volume: 78 start-page: 119 year: 2015 ident: 10.1016/j.energy.2018.04.140_bib50 article-title: Aerodynamic dissipation effects on the rotating blades of floating wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2015.01.013 – year: 2005 ident: 10.1016/j.energy.2018.04.140_bib28 – volume: 15 start-page: 335 issue: 2 year: 2012 ident: 10.1016/j.energy.2018.04.140_bib43 article-title: The Betz-Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools publication-title: Wind Energy doi: 10.1002/we.464 – volume: 141 start-page: 2054 year: 2017 ident: 10.1016/j.energy.2018.04.140_bib12 article-title: Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine publication-title: Energy doi: 10.1016/j.energy.2017.11.090 – volume: 23 start-page: 120 issue: 2 year: 2013 ident: 10.1016/j.energy.2018.04.140_bib3 article-title: Response analysis of parked Spar-type wind turbine considering blade-pitch mechanism fault publication-title: Int J Offshore Polar Eng – volume: 20 year: 2016 ident: 10.1016/j.energy.2018.04.140_bib24 article-title: Aerodynamic simulations of offshore floating wind turbine in platform-induced pitching motion publication-title: Wind Energy – year: 2008 ident: 10.1016/j.energy.2018.04.140_bib49 article-title: Influence of control on the pitch damping of a floating wind turbine – year: 2005 ident: 10.1016/j.energy.2018.04.140_bib29 article-title: Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines – volume: 139 issue: 4 year: 2017 ident: 10.1016/j.energy.2018.04.140_bib9 article-title: 10-MW wind turbine performance under pitching and yawing motion publication-title: J Sol Energy Eng doi: 10.1115/1.4036497 – start-page: 641 year: 2016 ident: 10.1016/j.energy.2018.04.140_bib33 article-title: An unsteady aerodynamics model for lifting line free vortex wake simulations of HQWT and VAWT in QBlade – volume: 138 issue: 7 year: 2015 ident: 10.1016/j.energy.2018.04.140_bib34 article-title: Implementation, optimization, and validation of a nonlinear lifting line-free vortex wake module within the wind turbine smulation code QBlade publication-title: J Eng Gas Turbines Power doi: 10.1115/1.4031872 – volume: 7 start-page: 1954 issue: 4 year: 2014 ident: 10.1016/j.energy.2018.04.140_bib16 article-title: Experimental study on influence of pitch motion on the wake of a floating wind turbine model publication-title: Energies doi: 10.3390/en7041954 – volume: 16 start-page: 339 issue: 3 year: 2013 ident: 10.1016/j.energy.2018.04.140_bib14 article-title: Characterization of the unsteady aerodynamics of offshore floating wind turbines publication-title: Wind Energy doi: 10.1002/we.545 – volume: 7 start-page: 5011 issue: 8 year: 2014 ident: 10.1016/j.energy.2018.04.140_bib20 article-title: Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion publication-title: Energies doi: 10.3390/en7085011 – year: 2009 ident: 10.1016/j.energy.2018.04.140_bib26 – year: 2007 ident: 10.1016/j.energy.2018.04.140_bib48 article-title: Loads analysis of a floating offshore wind turbine using fully coupled simulation – volume: 83 start-page: 737 year: 2015 ident: 10.1016/j.energy.2018.04.140_bib41 article-title: Loading effects on floating offshore horizontal axis wind turbines in surge motion publication-title: Renew Energy doi: 10.1016/j.renene.2015.05.016 – volume: 46 start-page: 269 year: 2012 ident: 10.1016/j.energy.2018.04.140_bib13 article-title: Development of a free vortex wake method code for offshore floating wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2012.03.033 – volume: 18 start-page: 811 issue: 5 year: 2015 ident: 10.1016/j.energy.2018.04.140_bib51 article-title: Measurements and modelling of the power performance of a model floating wind turbine under controlled conditions publication-title: Wind Energy doi: 10.1002/we.1730 – volume: 36 start-page: 1424 issue: 3 year: 2011 ident: 10.1016/j.energy.2018.04.140_bib46 article-title: Wind turbine aerodynamics and loads control in wind shear flow publication-title: Energy doi: 10.1016/j.energy.2011.01.028 – start-page: 629 year: 2006 ident: 10.1016/j.energy.2018.04.140_bib54 article-title: Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions – volume: 142 start-page: 65 year: 2015 ident: 10.1016/j.energy.2018.04.140_bib19 article-title: The platform pitching motion of floating offshore wind turbine: a preliminary unsteady aerodynamic analysis publication-title: J Wind Eng Ind Aerod doi: 10.1016/j.jweia.2015.03.009 – volume: 5 start-page: 968 issue: 4 year: 2012 ident: 10.1016/j.energy.2018.04.140_bib10 article-title: Analysis of the induction and wake evolution of an offshore floating wind turbine publication-title: Energies doi: 10.3390/en5040968 – year: 2015 ident: 10.1016/j.energy.2018.04.140_bib11 article-title: Study on unsteady aerodynamic performance of floating offshore wind turbine by CFD method – volume: 11 start-page: 415 year: 2008 ident: 10.1016/j.energy.2018.04.140_bib44 article-title: Refined Betz limit for rotors with a finite number of blades publication-title: Wind Energy doi: 10.1002/we.274 – year: 2012 ident: 10.1016/j.energy.2018.04.140_bib8 – volume: 110 issue: D12 year: 2005 ident: 10.1016/j.energy.2018.04.140_bib2 article-title: Evaluation of global wind power publication-title: J Geophys Res doi: 10.1029/2004JD005462 – year: 2001 ident: 10.1016/j.energy.2018.04.140_bib27 – year: 2006 ident: 10.1016/j.energy.2018.04.140_bib36 – volume: 127 start-page: 325 year: 2016 ident: 10.1016/j.energy.2018.04.140_bib53 article-title: Frequency analysis of the power output for a vertical axis marine turbine operating in the wake publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2016.09.045 – volume: 753 year: 2016 ident: 10.1016/j.energy.2018.04.140_bib35 article-title: Modern methods for investigating the stability of a pitching floating platform wind turbine publication-title: J Phys Conf – volume: 753 year: 2016 ident: 10.1016/j.energy.2018.04.140_bib25 article-title: Wind tunnel validation of AeroDyn within LIFES50+ project: imposed surge and pitch tests publication-title: J Phys Conf – volume: 65 start-page: 207 issue: 1–3 year: 2011 ident: 10.1016/j.energy.2018.04.140_bib30 article-title: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics publication-title: Int J Numer Meth Fluid doi: 10.1002/fld.2400 – volume: 41 start-page: 298 issue: 1 year: 2012 ident: 10.1016/j.energy.2018.04.140_bib1 article-title: The current state of offshore wind energy technology development publication-title: Energy doi: 10.1016/j.energy.2012.02.054 – year: 2013 ident: 10.1016/j.energy.2018.04.140_bib32 – volume: 136 issue: 2 year: 2014 ident: 10.1016/j.energy.2018.04.140_bib47 article-title: Experimental comparison of three floating wind turbine concepts publication-title: J Offshore Mech Arctic Eng – volume: 85 start-page: 666 year: 2016 ident: 10.1016/j.energy.2018.04.140_bib17 article-title: Wake to wake interaction of floating wind turbine models in free pitch motion: an eddy viscosity and mixing length approach publication-title: Renew Energy doi: 10.1016/j.renene.2015.07.012 – volume: 65 start-page: 207 year: 2014 ident: 10.1016/j.energy.2018.04.140_bib15 article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method publication-title: Renew Energy doi: 10.1016/j.renene.2013.09.009 – volume: 17 start-page: 1385 year: 2014 ident: 10.1016/j.energy.2018.04.140_bib6 article-title: Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events publication-title: Wind Energy doi: 10.1002/we.1639 – volume: 65 start-page: 236 year: 2011 ident: 10.1016/j.energy.2018.04.140_bib31 article-title: 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades publication-title: Int J Numer Meth Fluid doi: 10.1002/fld.2454 – volume: 373 issue: 2035 year: 2015 ident: 10.1016/j.energy.2018.04.140_bib37 article-title: Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions publication-title: Phil Trans – volume: 36 start-page: 1887 issue: 7 year: 2011 ident: 10.1016/j.energy.2018.04.140_bib5 article-title: The wind energy (r)evolution: a short review of a long history publication-title: Renew Energy doi: 10.1016/j.renene.2011.01.002 – year: 2007 ident: 10.1016/j.energy.2018.04.140_bib38 – year: 2007 ident: 10.1016/j.energy.2018.04.140_bib4 article-title: Engineering challenges for floating offshore wind turbines |
SSID | ssj0005899 |
Score | 2.5379717 |
Snippet | The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 508 |
SubjectTerms | equipment performance Free vortex method Offshore floating wind turbine Pitch Power performance Reduced frequency water waves wind wind power wind turbines |
Title | The power performance of an offshore floating wind turbine in platform pitching motion |
URI | https://dx.doi.org/10.1016/j.energy.2018.04.140 https://www.proquest.com/docview/2221034777 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPehFtFqsj7KC19iku3kdS2mpir1opbdls7vBSklCm-LN3-5MHlZFKHgJJMyEsDvP7DczhNy4DI-bmG0FCpScQ8xqhZpJK1SGOZ6nHCfCRPFx6k1m_H7uzhtkWNfCIKyysv2lTS-sdfWkV61mL1ssek9geyHe4Ojjwe952BOUcx-l_PbjG8wjKGZIIrGF1HX5XIHxMkV9HQK8Amx46uAvkL_d0y9DXXif8RE5rMJGOii_7Jg0TNIi-3VV8bpF2qNtxRoQViq7PiEvIAg0w1loNNsWCdA0pjKBa7x-TVeGxstUIgCavkOOTsENQcJs6CKh2VLmyESzRV7ALmk59-eUzMaj5-HEqoYpWApistxyA6k0zpXnknNmtMNiFRsdOVgiEofSDQOtXFtCAhUZX_aByw77nuSBBB_uK9YmzSRNzBmhLI7gbVpr1zXc2KHUoMWo_FHAlZFOh7B6DYWqOo3jwIulqCFlb6JceYErL2wOCYjdIdYXV1Z22thB79fbI35IjABnsIPzut5NAcqEJyQyMelmLSBYcmzGfd8___fbL8gB3pWQ3kvSzFcbcwWBSx51C8nskr3B3cNk-gnOPu42 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5UAvqLzUhZYaCY5hk7XzOnBABbSUx4WHuLmO7YigVRKRoBUX_lT_YGfygLaqhITEJYfEY1lje76Z-BsPwLbP6biJu06kcZML9Fmd2HDlxNpyLwi05yUUKJ6dB5Mr8ePGv5mDX30uDNEqO9vf2vTGWndvRp02R2WWjS7Q9qK_IQjjEfcC0TErT-zjDOO2au_4ACd5Zzw-Orz8PnG60gKORg-ldvxIaUNV1oUSglvj8VSn1iQeJUyksfLjyGjfVRhOJDZUY5Ry43GgRKQQ0ULNsd8PMC_QXFDZhN2nP3glUVO0kkbn0PD6fL2GVGabhD5ilEV0w6pH_1z-j4f_IEMDd0efYLHzU9l-q4olmLP5Miz0aczVMqwdvqTIYcPORlQrcI0rj5VUfI2VL1kJrEiZyvGZVrfFvWXptFDEuGazLDcMcQ8jdMuynJVTVZMQK7O64XmyttDQKly9i4rXYJAXuf0MjKcJ9maM8X0rrBsrg2aDrE0SCW2VNwTe61Dq7mpzqrAxlT2H7U62mpekeekKjHjcITjPUmV7tccr7cN-euRfS1Qi-rwiudXPpsTdS0cyKrfFQyXRO_NcLsIwXH9z799gYXJ5dipPj89PNuAjfWn5xF9gUN8_2K_oNdXJZrNKGfx8723xG3hyKZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+power+performance+of+an+offshore+floating+wind+turbine+in+platform+pitching+motion&rft.jtitle=Energy+%28Oxford%29&rft.au=Wen%2C+Binrong&rft.au=Dong%2C+Xingjian&rft.au=Tian%2C+Xinliang&rft.au=Peng%2C+Zhike&rft.date=2018-07-01&rft.issn=0360-5442&rft.volume=154+p.508-521&rft.spage=508&rft.epage=521&rft_id=info:doi/10.1016%2Fj.energy.2018.04.140&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |