The power performance of an offshore floating wind turbine in platform pitching motion

The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact the power performance of the OFWT. In this paper, the power performance of an OFWT in platform pitching motion is investigated using the Free V...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 154; pp. 508 - 521
Main Authors Wen, Binrong, Dong, Xingjian, Tian, Xinliang, Peng, Zhike, Zhang, Wenming, Wei, Kexiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact the power performance of the OFWT. In this paper, the power performance of an OFWT in platform pitching motion is investigated using the Free Vortex Method (FVM). Firstly, the pitching and non-pitching cases are compared. Then, the power performance of the OFWT in pitching motions with different amplitudes and frequencies is investigated at the design point (tip speed ratio λ = 7). Afterwards, the reduced frequency k is proposed to integrate the influences of the platform pitching amplitude and frequency. The power performance curves of the pitching OFWT are derived as functions of λ and k in the whole operating region. Results show that as k increases, the mean power output decreases at low λ but increases at high λ. The mean power coefficient declines with the increase of k. The power variation increases with the increases of λ and k. To make up the loss of the mean power coefficient and to mitigate the side effects resulted from the power variation, advanced control strategies and platforms with good motion performances should be developed for OFWTs. •The Free Vortex Method is used to study the power performance of a pitching OFWT.•The reduced frequency is introduced as an independent variable of power performance.•Impact of the reduced frequency on mean power output varies with the tip speed ratio.•The power variation increases with the tip speed ratio and the reduced frequency.•Novel controllers and more stabilized platforms should be developed for OFWTs.
AbstractList The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact the power performance of the OFWT. In this paper, the power performance of an OFWT in platform pitching motion is investigated using the Free Vortex Method (FVM). Firstly, the pitching and non-pitching cases are compared. Then, the power performance of the OFWT in pitching motions with different amplitudes and frequencies is investigated at the design point (tip speed ratio λ = 7). Afterwards, the reduced frequency k is proposed to integrate the influences of the platform pitching amplitude and frequency. The power performance curves of the pitching OFWT are derived as functions of λ and k in the whole operating region. Results show that as k increases, the mean power output decreases at low λ but increases at high λ. The mean power coefficient declines with the increase of k. The power variation increases with the increases of λ and k. To make up the loss of the mean power coefficient and to mitigate the side effects resulted from the power variation, advanced control strategies and platforms with good motion performances should be developed for OFWTs.
The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact the power performance of the OFWT. In this paper, the power performance of an OFWT in platform pitching motion is investigated using the Free Vortex Method (FVM). Firstly, the pitching and non-pitching cases are compared. Then, the power performance of the OFWT in pitching motions with different amplitudes and frequencies is investigated at the design point (tip speed ratio λ = 7). Afterwards, the reduced frequency k is proposed to integrate the influences of the platform pitching amplitude and frequency. The power performance curves of the pitching OFWT are derived as functions of λ and k in the whole operating region. Results show that as k increases, the mean power output decreases at low λ but increases at high λ. The mean power coefficient declines with the increase of k. The power variation increases with the increases of λ and k. To make up the loss of the mean power coefficient and to mitigate the side effects resulted from the power variation, advanced control strategies and platforms with good motion performances should be developed for OFWTs. •The Free Vortex Method is used to study the power performance of a pitching OFWT.•The reduced frequency is introduced as an independent variable of power performance.•Impact of the reduced frequency on mean power output varies with the tip speed ratio.•The power variation increases with the tip speed ratio and the reduced frequency.•Novel controllers and more stabilized platforms should be developed for OFWTs.
Author Dong, Xingjian
Wei, Kexiang
Zhang, Wenming
Wen, Binrong
Tian, Xinliang
Peng, Zhike
Author_xml – sequence: 1
  givenname: Binrong
  surname: Wen
  fullname: Wen, Binrong
  email: wenbinrong@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 2
  givenname: Xingjian
  orcidid: 0000-0003-1246-7604
  surname: Dong
  fullname: Dong, Xingjian
  email: donxij@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 3
  givenname: Xinliang
  orcidid: 0000-0002-5261-0084
  surname: Tian
  fullname: Tian, Xinliang
  email: tianxinliang@sjtu.edu.cn
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 4
  givenname: Zhike
  surname: Peng
  fullname: Peng, Zhike
  email: z.peng@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 5
  givenname: Wenming
  surname: Zhang
  fullname: Zhang, Wenming
  email: wenmingz@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 6
  givenname: Kexiang
  surname: Wei
  fullname: Wei, Kexiang
  email: kxwei@hnie.edu.cn
  organization: Hunan Institute of Engineering, Xiangtan, 411104, China
BookMark eNqFkDtPwzAUhT0UiRb4BwweWRJsx3kxIKGKl1SJpbBarnPdukrsYLtU_fckChMDLPcs5zu6-hZoZp0FhK4pSSmhxe0-BQt-e0oZoVVKeEo5maE5yQqS5Jyzc7QIYU8Iyau6nqOP9Q5w747gcQ9eO99JqwA7jaUdrg475wHr1slo7BYfjW1wPPiNsYCNxX0r4wjh3kS1Gxudi8bZS3SmZRvg6icv0PvT43r5kqzenl-XD6tEcZLHJK-kaiilGZecZ9DQTCsNzYYWVcF0LfO6alROZFXSDZSSDRSpWSF5JVlRlCq7QDfTbu_d5wFCFJ0JCtpWWnCHIBhjlGS8LMuhejdVlXcheNBCmSjHZ6OXphWUiFGg2ItJoBgFCsLFIHCA-S-496aT_vQfdj9hMDj4MuBFUAYGwY3xoKJonPl74BvoqpIA
CitedBy_id crossref_primary_10_1016_j_renene_2018_12_034
crossref_primary_10_1016_j_rser_2024_115295
crossref_primary_10_1016_j_renene_2019_10_147
crossref_primary_10_1007_s11804_024_00473_8
crossref_primary_10_3390_jmse9070699
crossref_primary_10_3390_en15020579
crossref_primary_10_1016_j_oceaneng_2020_106945
crossref_primary_10_1016_j_renene_2025_122861
crossref_primary_10_1016_j_rser_2021_111696
crossref_primary_10_1016_j_seta_2024_103931
crossref_primary_10_1016_j_renene_2023_01_040
crossref_primary_10_1016_j_oceaneng_2021_109109
crossref_primary_10_1016_j_energy_2023_127679
crossref_primary_10_1016_j_apenergy_2024_124767
crossref_primary_10_1016_j_renene_2022_06_108
crossref_primary_10_1016_j_energy_2021_120202
crossref_primary_10_1016_j_renene_2021_10_003
crossref_primary_10_1016_j_renene_2023_119255
crossref_primary_10_1016_j_apenergy_2022_119320
crossref_primary_10_1016_j_renene_2020_10_096
crossref_primary_10_1016_j_rser_2022_113144
crossref_primary_10_1007_s13344_020_0010_z
crossref_primary_10_1016_j_enconman_2022_116560
crossref_primary_10_1016_j_oceaneng_2021_109070
crossref_primary_10_1016_j_apenergy_2020_115459
crossref_primary_10_1016_j_oceaneng_2023_115556
crossref_primary_10_1063_5_0130881
crossref_primary_10_1016_j_marstruc_2020_102729
crossref_primary_10_1016_j_oceaneng_2023_115351
crossref_primary_10_1115_1_4048776
crossref_primary_10_3390_su12010246
crossref_primary_10_1063_5_0231937
crossref_primary_10_1016_j_energy_2024_130769
crossref_primary_10_1016_j_energy_2024_132945
crossref_primary_10_1063_5_0148352
crossref_primary_10_1088_1742_6596_1618_5_052066
crossref_primary_10_1063_5_0161759
crossref_primary_10_5194_wes_9_1827_2024
crossref_primary_10_1063_5_0076029
crossref_primary_10_1016_j_energy_2018_11_082
crossref_primary_10_1016_j_oceaneng_2024_118837
crossref_primary_10_2478_amns_2024_0534
crossref_primary_10_1016_j_oceaneng_2023_115629
crossref_primary_10_3389_fmars_2022_1063120
crossref_primary_10_1016_j_renene_2020_04_071
crossref_primary_10_1016_j_taml_2021_100294
crossref_primary_10_1002_we_2608
crossref_primary_10_1016_j_jweia_2020_104390
crossref_primary_10_1016_j_enconman_2024_119402
crossref_primary_10_1016_j_oceaneng_2019_106712
crossref_primary_10_1016_j_oceaneng_2023_114951
crossref_primary_10_3390_su16135324
crossref_primary_10_1016_j_oceaneng_2023_115401
crossref_primary_10_1016_j_energy_2024_131845
crossref_primary_10_1007_s12206_023_0821_y
crossref_primary_10_1016_j_renene_2021_07_087
crossref_primary_10_1016_j_renene_2018_12_096
crossref_primary_10_1002_we_2482
crossref_primary_10_1016_j_mechmachtheory_2024_105794
crossref_primary_10_1016_j_enconman_2020_113268
crossref_primary_10_1007_s11804_024_00465_8
crossref_primary_10_1016_j_joes_2024_06_002
crossref_primary_10_1007_s40722_022_00227_0
crossref_primary_10_1016_j_oceaneng_2020_107061
crossref_primary_10_1016_j_oceaneng_2023_115579
crossref_primary_10_1016_j_renene_2023_04_144
crossref_primary_10_1016_j_oceaneng_2022_112088
crossref_primary_10_3390_pr9061047
crossref_primary_10_1016_j_oceaneng_2024_117734
crossref_primary_10_1017_jfm_2024_999
crossref_primary_10_3390_en12071246
crossref_primary_10_1080_14786451_2023_2189490
crossref_primary_10_3390_en12163124
crossref_primary_10_1063_5_0154097
crossref_primary_10_1088_1742_6596_1618_5_052045
crossref_primary_10_1016_j_enconman_2022_115769
crossref_primary_10_1016_j_energy_2023_129271
crossref_primary_10_1115_1_4046772
crossref_primary_10_3390_pr9020290
crossref_primary_10_1016_j_energy_2019_116621
crossref_primary_10_1002_we_2670
crossref_primary_10_1016_j_marstruc_2022_103362
crossref_primary_10_1016_j_oceaneng_2024_119303
crossref_primary_10_1088_1742_6596_2362_1_012010
crossref_primary_10_1007_s13344_020_0055_z
crossref_primary_10_1016_j_psep_2020_10_016
crossref_primary_10_1016_j_renene_2019_06_116
Cites_doi 10.1016/j.renene.2014.03.071
10.1016/j.renene.2016.02.021
10.1002/we.76
10.1016/j.renene.2015.08.063
10.1016/j.energy.2016.12.086
10.1007/s12206-015-0115-0
10.1002/we.1500
10.1016/j.renene.2015.01.013
10.1002/we.464
10.1016/j.energy.2017.11.090
10.1115/1.4036497
10.1115/1.4031872
10.3390/en7041954
10.1002/we.545
10.3390/en7085011
10.1016/j.renene.2015.05.016
10.1016/j.renene.2012.03.033
10.1002/we.1730
10.1016/j.energy.2011.01.028
10.1016/j.jweia.2015.03.009
10.3390/en5040968
10.1002/we.274
10.1029/2004JD005462
10.1016/j.oceaneng.2016.09.045
10.1002/fld.2400
10.1016/j.energy.2012.02.054
10.1016/j.renene.2015.07.012
10.1016/j.renene.2013.09.009
10.1002/we.1639
10.1002/fld.2454
10.1016/j.renene.2011.01.002
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2018.04.140
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 521
ExternalDocumentID 10_1016_j_energy_2018_04_140
S0360544218307564
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7S9
L.6
ID FETCH-LOGICAL-c405t-58acd11134a443ed13fcfedb16862f9a598dc50a871be7a2c400926a48a2667c3
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Fri Jul 11 15:40:36 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
Tue Jul 01 00:53:17 EDT 2025
Fri Feb 23 02:49:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pitch
Power performance
Offshore floating wind turbine
Reduced frequency
Free vortex method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-58acd11134a443ed13fcfedb16862f9a598dc50a871be7a2c400926a48a2667c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1246-7604
0000-0002-5261-0084
PQID 2221034777
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2221034777
crossref_citationtrail_10_1016_j_energy_2018_04_140
crossref_primary_10_1016_j_energy_2018_04_140
elsevier_sciencedirect_doi_10_1016_j_energy_2018_04_140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gupta, Leishman (bib29) 2005
Jiang, Karimirad, Moan (bib6) 2014; 17
Goupee, Koo, Kimball, Lambrakos, Dagher (bib47) 2014; 136
Marten, Wendler (bib32) 2013
Okulov, Sørensen (bib44) 2008; 11
Sebastian, Lackner (bib10) 2012; 5
Wen, Wei, Wei, Yang, Peng, Chu (bib42) 2012; 12
Wu, Ding, He, Zhao (bib11) 2015
Xu, Wang, Yuan, Cao (bib37) 2015; 373
Qiu, Wang, Kang, Zhao, Liang (bib39) 2014; 70
Tran, Kim (bib21) 2015; 29
Farrugia, Sant, Micallef (bib40) 2016; 86
Jiang, Karimirad, Moan (bib3) 2013; 23
Tran, Kim (bib22) 2016; 92
Jonkman, Butterfield, Musial, Scott (bib26) 2009
Marten, Lennie, Pechlivanoglou, Nayeri, Paschereit (bib34) 2015; 138
Lei, Zhou, Lu, Chen, Han, Bao (bib23) 2017; 119
Sebastian (bib8) 2012
Hu, Khosravi, Sarkar (bib18) 2016
Okulov, van Kuik (bib43) 2012; 15
Rockel, Peinke, Hölling, Cal (bib17) 2016; 85
Sebastian, Lackner (bib13) 2012; 46
Burton, Sharpe, Jenkins, Bossanyi (bib27) 2001
Bayati, Belloli, Bernini, Zasso (bib25) 2016; 753
Sun, Huang, Wu (bib1) 2012; 41
Lackner (bib52) 2013; 16
Salehyar, Zhu (bib50) 2015; 78
Bazilevs, Hsu, Kiendl, Wüchner, Bletzinger (bib31) 2011; 65
Kaldellis, Zafirakis (bib5) 2011; 36
Bazilevs, Hsu, Akkerman, Wright, Takizawa, Henicke, Spielman, Tezduyar (bib30) 2011; 65
Birjandi, Bibeau (bib53) 2016; 127
Lennie, Marten, Pechlivanoglou, Nayeri, Paschereit (bib35) 2016; 753
Sant, Bonnici, Farrugia, Micallef (bib51) 2015; 18
Wen, Tian, Dong, Peng, Zhang (bib12) 2017; 141
Leble, Barakos (bib9) 2017; 139
Sebastian, Lackner (bib14) 2013; 16
Wu, Nguyen (bib24) 2016; 20
Shen, Zhu, Du (bib46) 2011; 36
Archer, Jacobson (bib2) 2005; 110
Rockel, Camp, Schmidt, Peinke, Cal, Hölling (bib16) 2014; 7
Zambrano, MacCready, Kiceniuk, Roddier, Cermelli (bib54) 2006
Gupta (bib36) 2006
Jonkman, Buhl (bib48) 2007
Jiang, Moan, Gao (bib7) 2014; 137
Tran, Kim (bib19) 2015; 142
Jonkman (bib49) 2008
Wendler, Marten, Pechlivanoglou, Nayeri, Paschereit (bib33) 2016
Sant (bib38) 2007
Bossanyi (bib45) 2003; 6
Jeon, Lee, Lee (bib15) 2014; 65
Micallef, Sant (bib41) 2015; 83
Butterfield, Musial, Jonkman (bib4) 2007
Tran, Kim, Song (bib20) 2014; 7
Moriarty, Hansen (bib28) 2005
Jonkman (10.1016/j.energy.2018.04.140_bib48) 2007
Jeon (10.1016/j.energy.2018.04.140_bib15) 2014; 65
Okulov (10.1016/j.energy.2018.04.140_bib43) 2012; 15
Zambrano (10.1016/j.energy.2018.04.140_bib54) 2006
Wen (10.1016/j.energy.2018.04.140_bib12) 2017; 141
Xu (10.1016/j.energy.2018.04.140_bib37) 2015; 373
Tran (10.1016/j.energy.2018.04.140_bib19) 2015; 142
Wu (10.1016/j.energy.2018.04.140_bib11) 2015
Bazilevs (10.1016/j.energy.2018.04.140_bib30) 2011; 65
Jiang (10.1016/j.energy.2018.04.140_bib7) 2014; 137
Tran (10.1016/j.energy.2018.04.140_bib22) 2016; 92
Micallef (10.1016/j.energy.2018.04.140_bib41) 2015; 83
Jiang (10.1016/j.energy.2018.04.140_bib3) 2013; 23
Bayati (10.1016/j.energy.2018.04.140_bib25) 2016; 753
Qiu (10.1016/j.energy.2018.04.140_bib39) 2014; 70
Butterfield (10.1016/j.energy.2018.04.140_bib4) 2007
Okulov (10.1016/j.energy.2018.04.140_bib44) 2008; 11
Jonkman (10.1016/j.energy.2018.04.140_bib49) 2008
Jonkman (10.1016/j.energy.2018.04.140_bib26) 2009
Hu (10.1016/j.energy.2018.04.140_bib18) 2016
Sant (10.1016/j.energy.2018.04.140_bib51) 2015; 18
Birjandi (10.1016/j.energy.2018.04.140_bib53) 2016; 127
Rockel (10.1016/j.energy.2018.04.140_bib17) 2016; 85
Gupta (10.1016/j.energy.2018.04.140_bib29) 2005
Sun (10.1016/j.energy.2018.04.140_bib1) 2012; 41
Sebastian (10.1016/j.energy.2018.04.140_bib8) 2012
Bazilevs (10.1016/j.energy.2018.04.140_bib31) 2011; 65
Burton (10.1016/j.energy.2018.04.140_bib27) 2001
Lennie (10.1016/j.energy.2018.04.140_bib35) 2016; 753
Bossanyi (10.1016/j.energy.2018.04.140_bib45) 2003; 6
Rockel (10.1016/j.energy.2018.04.140_bib16) 2014; 7
Tran (10.1016/j.energy.2018.04.140_bib21) 2015; 29
Moriarty (10.1016/j.energy.2018.04.140_bib28) 2005
Sebastian (10.1016/j.energy.2018.04.140_bib14) 2013; 16
Salehyar (10.1016/j.energy.2018.04.140_bib50) 2015; 78
Sebastian (10.1016/j.energy.2018.04.140_bib10) 2012; 5
Tran (10.1016/j.energy.2018.04.140_bib20) 2014; 7
Sebastian (10.1016/j.energy.2018.04.140_bib13) 2012; 46
Sant (10.1016/j.energy.2018.04.140_bib38) 2007
Lei (10.1016/j.energy.2018.04.140_bib23) 2017; 119
Wu (10.1016/j.energy.2018.04.140_bib24) 2016; 20
Wen (10.1016/j.energy.2018.04.140_bib42) 2012; 12
Marten (10.1016/j.energy.2018.04.140_bib34) 2015; 138
Jiang (10.1016/j.energy.2018.04.140_bib6) 2014; 17
Farrugia (10.1016/j.energy.2018.04.140_bib40) 2016; 86
Shen (10.1016/j.energy.2018.04.140_bib46) 2011; 36
Kaldellis (10.1016/j.energy.2018.04.140_bib5) 2011; 36
Gupta (10.1016/j.energy.2018.04.140_bib36) 2006
Marten (10.1016/j.energy.2018.04.140_bib32) 2013
Archer (10.1016/j.energy.2018.04.140_bib2) 2005; 110
Leble (10.1016/j.energy.2018.04.140_bib9) 2017; 139
Goupee (10.1016/j.energy.2018.04.140_bib47) 2014; 136
Lackner (10.1016/j.energy.2018.04.140_bib52) 2013; 16
Wendler (10.1016/j.energy.2018.04.140_bib33) 2016
References_xml – volume: 138
  year: 2015
  ident: bib34
  article-title: Implementation, optimization, and validation of a nonlinear lifting line-free vortex wake module within the wind turbine smulation code QBlade
  publication-title: J Eng Gas Turbines Power
– volume: 141
  start-page: 2054
  year: 2017
  end-page: 2068
  ident: bib12
  article-title: Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine
  publication-title: Energy
– volume: 85
  start-page: 666
  year: 2016
  end-page: 676
  ident: bib17
  article-title: Wake to wake interaction of floating wind turbine models in free pitch motion: an eddy viscosity and mixing length approach
  publication-title: Renew Energy
– year: 2016
  ident: bib18
  article-title: An experimental investigation on the aeromechanic performance and wake characteristics of a wind turbine model subjected to pitch motions
  publication-title: 34th Wind Energy Symposium. San Diego, California, USA
– year: 2007
  ident: bib48
  article-title: Loads analysis of a floating offshore wind turbine using fully coupled simulation
  publication-title: Conference Paper NREL/CP-500–41714 National Renewable Energy Laboratory: Golden, CO, USA
– volume: 11
  start-page: 415
  year: 2008
  end-page: 426
  ident: bib44
  article-title: Refined Betz limit for rotors with a finite number of blades
  publication-title: Wind Energy
– volume: 110
  year: 2005
  ident: bib2
  article-title: Evaluation of global wind power
  publication-title: J Geophys Res
– volume: 12
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib42
  article-title: Power fluctuation and power loss of wind turbines due to wind shear and tower shadow
  publication-title: Front Mech Eng
– volume: 41
  start-page: 298
  year: 2012
  end-page: 312
  ident: bib1
  article-title: The current state of offshore wind energy technology development
  publication-title: Energy
– volume: 18
  start-page: 811
  year: 2015
  end-page: 834
  ident: bib51
  article-title: Measurements and modelling of the power performance of a model floating wind turbine under controlled conditions
  publication-title: Wind Energy
– year: 2008
  ident: bib49
  article-title: Influence of control on the pitch damping of a floating wind turbine
  publication-title: 46th AIAA Aerospace sciences meeting and exhibit. Reno, Nevada, USA
– volume: 7
  start-page: 5011
  year: 2014
  end-page: 5026
  ident: bib20
  article-title: Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion
  publication-title: Energies
– volume: 136
  year: 2014
  ident: bib47
  article-title: Experimental comparison of three floating wind turbine concepts
  publication-title: J Offshore Mech Arctic Eng
– volume: 92
  start-page: 244
  year: 2016
  end-page: 261
  ident: bib22
  article-title: Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach
  publication-title: Renew Energy
– volume: 36
  start-page: 1424
  year: 2011
  end-page: 1434
  ident: bib46
  article-title: Wind turbine aerodynamics and loads control in wind shear flow
  publication-title: Energy
– volume: 23
  start-page: 120
  year: 2013
  end-page: 128
  ident: bib3
  article-title: Response analysis of parked Spar-type wind turbine considering blade-pitch mechanism fault
  publication-title: Int J Offshore Polar Eng
– volume: 137
  year: 2014
  ident: bib7
  article-title: A comparative study of shutdown procedures on the dynamic responses of wind turbines
  publication-title: J Offshore Mech Arctic Eng
– year: 2007
  ident: bib38
  article-title: Improving BEM-based aerodynamic models in wind turbine design codes
– volume: 65
  start-page: 207
  year: 2014
  end-page: 212
  ident: bib15
  article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method
  publication-title: Renew Energy
– volume: 70
  start-page: 93
  year: 2014
  end-page: 106
  ident: bib39
  article-title: Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method
  publication-title: Renew Energy
– volume: 29
  start-page: 549
  year: 2015
  end-page: 561
  ident: bib21
  article-title: The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions
  publication-title: J Mech Sci Technol
– volume: 373
  year: 2015
  ident: bib37
  article-title: Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions
  publication-title: Phil Trans
– volume: 20
  year: 2016
  ident: bib24
  article-title: Aerodynamic simulations of offshore floating wind turbine in platform-induced pitching motion
  publication-title: Wind Energy
– volume: 16
  start-page: 519
  year: 2013
  end-page: 528
  ident: bib52
  article-title: An investigation of variable power collective pitch control for load mitigation of floating offshore wind turbines
  publication-title: Wind Energy
– volume: 127
  start-page: 325
  year: 2016
  end-page: 334
  ident: bib53
  article-title: Frequency analysis of the power output for a vertical axis marine turbine operating in the wake
  publication-title: Ocean Eng
– volume: 83
  start-page: 737
  year: 2015
  end-page: 748
  ident: bib41
  article-title: Loading effects on floating offshore horizontal axis wind turbines in surge motion
  publication-title: Renew Energy
– year: 2001
  ident: bib27
  article-title: Wind energy handbook
– volume: 17
  start-page: 1385
  year: 2014
  end-page: 1409
  ident: bib6
  article-title: Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events
  publication-title: Wind Energy
– volume: 5
  start-page: 968
  year: 2012
  end-page: 1000
  ident: bib10
  article-title: Analysis of the induction and wake evolution of an offshore floating wind turbine
  publication-title: Energies
– year: 2006
  ident: bib36
  article-title: Development of a time-accurate viscous Lagrangian vortex wake model for wind turbine applications
– start-page: 641
  year: 2016
  end-page: 651
  ident: bib33
  article-title: An unsteady aerodynamics model for lifting line free vortex wake simulations of HQWT and VAWT in QBlade
  publication-title: Proceedings of the ASME Turbo Expo
– volume: 142
  start-page: 65
  year: 2015
  end-page: 81
  ident: bib19
  article-title: The platform pitching motion of floating offshore wind turbine: a preliminary unsteady aerodynamic analysis
  publication-title: J Wind Eng Ind Aerod
– volume: 753
  year: 2016
  ident: bib35
  article-title: Modern methods for investigating the stability of a pitching floating platform wind turbine
  publication-title: J Phys Conf
– volume: 119
  start-page: 369
  year: 2017
  end-page: 383
  ident: bib23
  article-title: The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine
  publication-title: Energy
– volume: 65
  start-page: 236
  year: 2011
  end-page: 253
  ident: bib31
  article-title: 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades
  publication-title: Int J Numer Meth Fluid
– volume: 753
  year: 2016
  ident: bib25
  article-title: Wind tunnel validation of AeroDyn within LIFES50+ project: imposed surge and pitch tests
  publication-title: J Phys Conf
– volume: 65
  start-page: 207
  year: 2011
  end-page: 235
  ident: bib30
  article-title: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics
  publication-title: Int J Numer Meth Fluid
– year: 2009
  ident: bib26
  article-title: Definition of a 5-MW reference wind turbine for offshore system development
– year: 2012
  ident: bib8
  article-title: The aerodynamics and near wake of an offshore floating horizontal axis wind turbine
– year: 2005
  ident: bib28
  article-title: AeroDyn theory manual
– volume: 6
  start-page: 119
  year: 2003
  end-page: 128
  ident: bib45
  article-title: Individual blade pitch pontrol for load reduction
  publication-title: Wind Energy
– year: 2013
  ident: bib32
  article-title: QBlade guidelines v0. 6
– year: 2007
  ident: bib4
  article-title: Engineering challenges for floating offshore wind turbines
  publication-title: Conference Paper NREL/CP-500–387760
– volume: 139
  year: 2017
  ident: bib9
  article-title: 10-MW wind turbine performance under pitching and yawing motion
  publication-title: J Sol Energy Eng
– volume: 46
  start-page: 269
  year: 2012
  end-page: 275
  ident: bib13
  article-title: Development of a free vortex wake method code for offshore floating wind turbines
  publication-title: Renew Energy
– volume: 7
  start-page: 1954
  year: 2014
  end-page: 1985
  ident: bib16
  article-title: Experimental study on influence of pitch motion on the wake of a floating wind turbine model
  publication-title: Energies
– volume: 16
  start-page: 339
  year: 2013
  end-page: 352
  ident: bib14
  article-title: Characterization of the unsteady aerodynamics of offshore floating wind turbines
  publication-title: Wind Energy
– year: 2015
  ident: bib11
  article-title: Study on unsteady aerodynamic performance of floating offshore wind turbine by CFD method
  publication-title: The 25th international ocean and polar engineering conference. Hawaii, USA
– year: 2005
  ident: bib29
  article-title: Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines
  publication-title: 43rd AIAA Aerospace Sciences Meeting and Exhibit. Nevada, USA
– start-page: 629
  year: 2006
  end-page: 634
  ident: bib54
  article-title: Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions
  publication-title: 25th International conference on offshore mechanics and arctic engineering
– volume: 86
  start-page: 770
  year: 2016
  end-page: 784
  ident: bib40
  article-title: A study on the aerodynamics of a floating wind turbine rotor
  publication-title: Renew Energy
– volume: 36
  start-page: 1887
  year: 2011
  end-page: 1901
  ident: bib5
  article-title: The wind energy (r)evolution: a short review of a long history
  publication-title: Renew Energy
– volume: 15
  start-page: 335
  year: 2012
  end-page: 344
  ident: bib43
  article-title: The Betz-Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools
  publication-title: Wind Energy
– volume: 78
  start-page: 119
  year: 2015
  end-page: 127
  ident: bib50
  article-title: Aerodynamic dissipation effects on the rotating blades of floating wind turbines
  publication-title: Renew Energy
– volume: 70
  start-page: 93
  year: 2014
  ident: 10.1016/j.energy.2018.04.140_bib39
  article-title: Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.03.071
– volume: 92
  start-page: 244
  year: 2016
  ident: 10.1016/j.energy.2018.04.140_bib22
  article-title: Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.02.021
– volume: 6
  start-page: 119
  issue: 2
  year: 2003
  ident: 10.1016/j.energy.2018.04.140_bib45
  article-title: Individual blade pitch pontrol for load reduction
  publication-title: Wind Energy
  doi: 10.1002/we.76
– volume: 137
  issue: 1
  year: 2014
  ident: 10.1016/j.energy.2018.04.140_bib7
  article-title: A comparative study of shutdown procedures on the dynamic responses of wind turbines
  publication-title: J Offshore Mech Arctic Eng
– volume: 86
  start-page: 770
  year: 2016
  ident: 10.1016/j.energy.2018.04.140_bib40
  article-title: A study on the aerodynamics of a floating wind turbine rotor
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.08.063
– volume: 12
  start-page: 1
  issue: 3
  year: 2012
  ident: 10.1016/j.energy.2018.04.140_bib42
  article-title: Power fluctuation and power loss of wind turbines due to wind shear and tower shadow
  publication-title: Front Mech Eng
– year: 2016
  ident: 10.1016/j.energy.2018.04.140_bib18
  article-title: An experimental investigation on the aeromechanic performance and wake characteristics of a wind turbine model subjected to pitch motions
– volume: 119
  start-page: 369
  year: 2017
  ident: 10.1016/j.energy.2018.04.140_bib23
  article-title: The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.086
– volume: 29
  start-page: 549
  issue: 2
  year: 2015
  ident: 10.1016/j.energy.2018.04.140_bib21
  article-title: The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-015-0115-0
– volume: 16
  start-page: 519
  issue: 4
  year: 2013
  ident: 10.1016/j.energy.2018.04.140_bib52
  article-title: An investigation of variable power collective pitch control for load mitigation of floating offshore wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.1500
– volume: 78
  start-page: 119
  year: 2015
  ident: 10.1016/j.energy.2018.04.140_bib50
  article-title: Aerodynamic dissipation effects on the rotating blades of floating wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.01.013
– year: 2005
  ident: 10.1016/j.energy.2018.04.140_bib28
– volume: 15
  start-page: 335
  issue: 2
  year: 2012
  ident: 10.1016/j.energy.2018.04.140_bib43
  article-title: The Betz-Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools
  publication-title: Wind Energy
  doi: 10.1002/we.464
– volume: 141
  start-page: 2054
  year: 2017
  ident: 10.1016/j.energy.2018.04.140_bib12
  article-title: Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine
  publication-title: Energy
  doi: 10.1016/j.energy.2017.11.090
– volume: 23
  start-page: 120
  issue: 2
  year: 2013
  ident: 10.1016/j.energy.2018.04.140_bib3
  article-title: Response analysis of parked Spar-type wind turbine considering blade-pitch mechanism fault
  publication-title: Int J Offshore Polar Eng
– volume: 20
  year: 2016
  ident: 10.1016/j.energy.2018.04.140_bib24
  article-title: Aerodynamic simulations of offshore floating wind turbine in platform-induced pitching motion
  publication-title: Wind Energy
– year: 2008
  ident: 10.1016/j.energy.2018.04.140_bib49
  article-title: Influence of control on the pitch damping of a floating wind turbine
– year: 2005
  ident: 10.1016/j.energy.2018.04.140_bib29
  article-title: Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines
– volume: 139
  issue: 4
  year: 2017
  ident: 10.1016/j.energy.2018.04.140_bib9
  article-title: 10-MW wind turbine performance under pitching and yawing motion
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.4036497
– start-page: 641
  year: 2016
  ident: 10.1016/j.energy.2018.04.140_bib33
  article-title: An unsteady aerodynamics model for lifting line free vortex wake simulations of HQWT and VAWT in QBlade
– volume: 138
  issue: 7
  year: 2015
  ident: 10.1016/j.energy.2018.04.140_bib34
  article-title: Implementation, optimization, and validation of a nonlinear lifting line-free vortex wake module within the wind turbine smulation code QBlade
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.4031872
– volume: 7
  start-page: 1954
  issue: 4
  year: 2014
  ident: 10.1016/j.energy.2018.04.140_bib16
  article-title: Experimental study on influence of pitch motion on the wake of a floating wind turbine model
  publication-title: Energies
  doi: 10.3390/en7041954
– volume: 16
  start-page: 339
  issue: 3
  year: 2013
  ident: 10.1016/j.energy.2018.04.140_bib14
  article-title: Characterization of the unsteady aerodynamics of offshore floating wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.545
– volume: 7
  start-page: 5011
  issue: 8
  year: 2014
  ident: 10.1016/j.energy.2018.04.140_bib20
  article-title: Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion
  publication-title: Energies
  doi: 10.3390/en7085011
– year: 2009
  ident: 10.1016/j.energy.2018.04.140_bib26
– year: 2007
  ident: 10.1016/j.energy.2018.04.140_bib48
  article-title: Loads analysis of a floating offshore wind turbine using fully coupled simulation
– volume: 83
  start-page: 737
  year: 2015
  ident: 10.1016/j.energy.2018.04.140_bib41
  article-title: Loading effects on floating offshore horizontal axis wind turbines in surge motion
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.05.016
– volume: 46
  start-page: 269
  year: 2012
  ident: 10.1016/j.energy.2018.04.140_bib13
  article-title: Development of a free vortex wake method code for offshore floating wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.03.033
– volume: 18
  start-page: 811
  issue: 5
  year: 2015
  ident: 10.1016/j.energy.2018.04.140_bib51
  article-title: Measurements and modelling of the power performance of a model floating wind turbine under controlled conditions
  publication-title: Wind Energy
  doi: 10.1002/we.1730
– volume: 36
  start-page: 1424
  issue: 3
  year: 2011
  ident: 10.1016/j.energy.2018.04.140_bib46
  article-title: Wind turbine aerodynamics and loads control in wind shear flow
  publication-title: Energy
  doi: 10.1016/j.energy.2011.01.028
– start-page: 629
  year: 2006
  ident: 10.1016/j.energy.2018.04.140_bib54
  article-title: Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions
– volume: 142
  start-page: 65
  year: 2015
  ident: 10.1016/j.energy.2018.04.140_bib19
  article-title: The platform pitching motion of floating offshore wind turbine: a preliminary unsteady aerodynamic analysis
  publication-title: J Wind Eng Ind Aerod
  doi: 10.1016/j.jweia.2015.03.009
– volume: 5
  start-page: 968
  issue: 4
  year: 2012
  ident: 10.1016/j.energy.2018.04.140_bib10
  article-title: Analysis of the induction and wake evolution of an offshore floating wind turbine
  publication-title: Energies
  doi: 10.3390/en5040968
– year: 2015
  ident: 10.1016/j.energy.2018.04.140_bib11
  article-title: Study on unsteady aerodynamic performance of floating offshore wind turbine by CFD method
– volume: 11
  start-page: 415
  year: 2008
  ident: 10.1016/j.energy.2018.04.140_bib44
  article-title: Refined Betz limit for rotors with a finite number of blades
  publication-title: Wind Energy
  doi: 10.1002/we.274
– year: 2012
  ident: 10.1016/j.energy.2018.04.140_bib8
– volume: 110
  issue: D12
  year: 2005
  ident: 10.1016/j.energy.2018.04.140_bib2
  article-title: Evaluation of global wind power
  publication-title: J Geophys Res
  doi: 10.1029/2004JD005462
– year: 2001
  ident: 10.1016/j.energy.2018.04.140_bib27
– year: 2006
  ident: 10.1016/j.energy.2018.04.140_bib36
– volume: 127
  start-page: 325
  year: 2016
  ident: 10.1016/j.energy.2018.04.140_bib53
  article-title: Frequency analysis of the power output for a vertical axis marine turbine operating in the wake
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2016.09.045
– volume: 753
  year: 2016
  ident: 10.1016/j.energy.2018.04.140_bib35
  article-title: Modern methods for investigating the stability of a pitching floating platform wind turbine
  publication-title: J Phys Conf
– volume: 753
  year: 2016
  ident: 10.1016/j.energy.2018.04.140_bib25
  article-title: Wind tunnel validation of AeroDyn within LIFES50+ project: imposed surge and pitch tests
  publication-title: J Phys Conf
– volume: 65
  start-page: 207
  issue: 1–3
  year: 2011
  ident: 10.1016/j.energy.2018.04.140_bib30
  article-title: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics
  publication-title: Int J Numer Meth Fluid
  doi: 10.1002/fld.2400
– volume: 41
  start-page: 298
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2018.04.140_bib1
  article-title: The current state of offshore wind energy technology development
  publication-title: Energy
  doi: 10.1016/j.energy.2012.02.054
– year: 2013
  ident: 10.1016/j.energy.2018.04.140_bib32
– volume: 136
  issue: 2
  year: 2014
  ident: 10.1016/j.energy.2018.04.140_bib47
  article-title: Experimental comparison of three floating wind turbine concepts
  publication-title: J Offshore Mech Arctic Eng
– volume: 85
  start-page: 666
  year: 2016
  ident: 10.1016/j.energy.2018.04.140_bib17
  article-title: Wake to wake interaction of floating wind turbine models in free pitch motion: an eddy viscosity and mixing length approach
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.07.012
– volume: 65
  start-page: 207
  year: 2014
  ident: 10.1016/j.energy.2018.04.140_bib15
  article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.09.009
– volume: 17
  start-page: 1385
  year: 2014
  ident: 10.1016/j.energy.2018.04.140_bib6
  article-title: Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events
  publication-title: Wind Energy
  doi: 10.1002/we.1639
– volume: 65
  start-page: 236
  year: 2011
  ident: 10.1016/j.energy.2018.04.140_bib31
  article-title: 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades
  publication-title: Int J Numer Meth Fluid
  doi: 10.1002/fld.2454
– volume: 373
  issue: 2035
  year: 2015
  ident: 10.1016/j.energy.2018.04.140_bib37
  article-title: Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions
  publication-title: Phil Trans
– volume: 36
  start-page: 1887
  issue: 7
  year: 2011
  ident: 10.1016/j.energy.2018.04.140_bib5
  article-title: The wind energy (r)evolution: a short review of a long history
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.01.002
– year: 2007
  ident: 10.1016/j.energy.2018.04.140_bib38
– year: 2007
  ident: 10.1016/j.energy.2018.04.140_bib4
  article-title: Engineering challenges for floating offshore wind turbines
SSID ssj0005899
Score 2.5379717
Snippet The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 508
SubjectTerms equipment performance
Free vortex method
Offshore floating wind turbine
Pitch
Power performance
Reduced frequency
water waves
wind
wind power
wind turbines
Title The power performance of an offshore floating wind turbine in platform pitching motion
URI https://dx.doi.org/10.1016/j.energy.2018.04.140
https://www.proquest.com/docview/2221034777
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPehFtFqsj7KC19iku3kdS2mpir1opbdls7vBSklCm-LN3-5MHlZFKHgJJMyEsDvP7DczhNy4DI-bmG0FCpScQ8xqhZpJK1SGOZ6nHCfCRPFx6k1m_H7uzhtkWNfCIKyysv2lTS-sdfWkV61mL1ssek9geyHe4Ojjwe952BOUcx-l_PbjG8wjKGZIIrGF1HX5XIHxMkV9HQK8Amx46uAvkL_d0y9DXXif8RE5rMJGOii_7Jg0TNIi-3VV8bpF2qNtxRoQViq7PiEvIAg0w1loNNsWCdA0pjKBa7x-TVeGxstUIgCavkOOTsENQcJs6CKh2VLmyESzRV7ALmk59-eUzMaj5-HEqoYpWApistxyA6k0zpXnknNmtMNiFRsdOVgiEofSDQOtXFtCAhUZX_aByw77nuSBBB_uK9YmzSRNzBmhLI7gbVpr1zXc2KHUoMWo_FHAlZFOh7B6DYWqOo3jwIulqCFlb6JceYErL2wOCYjdIdYXV1Z22thB79fbI35IjABnsIPzut5NAcqEJyQyMelmLSBYcmzGfd8___fbL8gB3pWQ3kvSzFcbcwWBSx51C8nskr3B3cNk-gnOPu42
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5UAvqLzUhZYaCY5hk7XzOnBABbSUx4WHuLmO7YigVRKRoBUX_lT_YGfygLaqhITEJYfEY1lje76Z-BsPwLbP6biJu06kcZML9Fmd2HDlxNpyLwi05yUUKJ6dB5Mr8ePGv5mDX30uDNEqO9vf2vTGWndvRp02R2WWjS7Q9qK_IQjjEfcC0TErT-zjDOO2au_4ACd5Zzw-Orz8PnG60gKORg-ldvxIaUNV1oUSglvj8VSn1iQeJUyksfLjyGjfVRhOJDZUY5Ry43GgRKQQ0ULNsd8PMC_QXFDZhN2nP3glUVO0kkbn0PD6fL2GVGabhD5ilEV0w6pH_1z-j4f_IEMDd0efYLHzU9l-q4olmLP5Miz0aczVMqwdvqTIYcPORlQrcI0rj5VUfI2VL1kJrEiZyvGZVrfFvWXptFDEuGazLDcMcQ8jdMuynJVTVZMQK7O64XmyttDQKly9i4rXYJAXuf0MjKcJ9maM8X0rrBsrg2aDrE0SCW2VNwTe61Dq7mpzqrAxlT2H7U62mpekeekKjHjcITjPUmV7tccr7cN-euRfS1Qi-rwiudXPpsTdS0cyKrfFQyXRO_NcLsIwXH9z799gYXJ5dipPj89PNuAjfWn5xF9gUN8_2K_oNdXJZrNKGfx8723xG3hyKZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+power+performance+of+an+offshore+floating+wind+turbine+in+platform+pitching+motion&rft.jtitle=Energy+%28Oxford%29&rft.au=Wen%2C+Binrong&rft.au=Dong%2C+Xingjian&rft.au=Tian%2C+Xinliang&rft.au=Peng%2C+Zhike&rft.date=2018-07-01&rft.issn=0360-5442&rft.volume=154+p.508-521&rft.spage=508&rft.epage=521&rft_id=info:doi/10.1016%2Fj.energy.2018.04.140&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon