Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review
All-solid-state lithium batteries (ASSLBs) with solid electrolytes have attracted great attention for the replacement of traditional lithium batteries with liquid electrolytes due to their advantages such as high safety, excellent electrochemical cycling property and long-term stability. To date, va...
Saved in:
Published in | Renewable & sustainable energy reviews Vol. 109; pp. 367 - 385 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All-solid-state lithium batteries (ASSLBs) with solid electrolytes have attracted great attention for the replacement of traditional lithium batteries with liquid electrolytes due to their advantages such as high safety, excellent electrochemical cycling property and long-term stability. To date, various solid electrolytes including oxide, sulfide and polymer and organic-inorganic hybrid electrolytes have been developed for ASSLBs. Especially, the strategies to improve electrochemical performance especially ionic conductivity and stability of solid electrolytes have been widely studied. However, nowadays, ASSLBs are still not commercialized and used in our daily life. In this article, the situations of the solid electrolytes are critically reviewed, the main challenges and future prospective for the development of solid electrolytes are given and the utmost limits of those state-of-the-art solid electrolytes are analyzed. In addition, the electrode/electrolyte interface modification techniques to make ASSLBs achieving the excellent performance are evaluated. It is expected to provide a guidance for the development of novel solid electrolytes with higher ionic conductivity and environmental stability for ASSLBs.
•State-of-the-art the solid electrolytes are critically reviewed.•Main solid electrolytes including oxide, sulfide and polymer electrolytes are introduced.•Strategies to improve ionic conductivity and stability of solid electrolytes are supposed.•Main challenges and prospects for the development of novel solid electrolytes are given.•The utmost limits of various solid electrolytes are analyzed. |
---|---|
AbstractList | All-solid-state lithium batteries (ASSLBs) with solid electrolytes have attracted great attention for the replacement of traditional lithium batteries with liquid electrolytes due to their advantages such as high safety, excellent electrochemical cycling property and long-term stability. To date, various solid electrolytes including oxide, sulfide and polymer and organic-inorganic hybrid electrolytes have been developed for ASSLBs. Especially, the strategies to improve electrochemical performance especially ionic conductivity and stability of solid electrolytes have been widely studied. However, nowadays, ASSLBs are still not commercialized and used in our daily life. In this article, the situations of the solid electrolytes are critically reviewed, the main challenges and future prospective for the development of solid electrolytes are given and the utmost limits of those state-of-the-art solid electrolytes are analyzed. In addition, the electrode/electrolyte interface modification techniques to make ASSLBs achieving the excellent performance are evaluated. It is expected to provide a guidance for the development of novel solid electrolytes with higher ionic conductivity and environmental stability for ASSLBs.
•State-of-the-art the solid electrolytes are critically reviewed.•Main solid electrolytes including oxide, sulfide and polymer electrolytes are introduced.•Strategies to improve ionic conductivity and stability of solid electrolytes are supposed.•Main challenges and prospects for the development of novel solid electrolytes are given.•The utmost limits of various solid electrolytes are analyzed. |
Author | Xie, Zhengkun Hao, Xiaogang Yoshida, Akihiro Abudula, Abuliti Guan, Guoqing Wu, Zhijun Wang, Zhongde |
Author_xml | – sequence: 1 givenname: Zhijun surname: Wu fullname: Wu, Zhijun organization: Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori, 030-0813, Japan – sequence: 2 givenname: Zhengkun surname: Xie fullname: Xie, Zhengkun organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan – sequence: 3 givenname: Akihiro surname: Yoshida fullname: Yoshida, Akihiro organization: Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori, 030-0813, Japan – sequence: 4 givenname: Zhongde surname: Wang fullname: Wang, Zhongde organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 5 givenname: Xiaogang surname: Hao fullname: Hao, Xiaogang organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 6 givenname: Abuliti surname: Abudula fullname: Abudula, Abuliti organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan – sequence: 7 givenname: Guoqing surname: Guan fullname: Guan, Guoqing email: guan@hirosaki-u.ac.jp organization: Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori, 030-0813, Japan |
BookMark | eNp9kE1LAzEQhoNUsK3-AU_5A7smu8l-iJdS_IKCl3oO2ewsTsluJImV_ntT68lDTzPDyzPwPgsym9wEhNxylnPGq7td7gP4vGC8zZnIWSkvyJw3dZuxqmWztJeVyFhZ8CuyCGHHGJdNXc6JeY-jC5FaHDEG6ga61x7dV6DBWewpWDDRO3uIEChOVFub_SZZiDpC4uIHfo200zGCRwj3dEWNx4hGW-phj_B9TS4HbQPc_M0l2T49btcv2ebt-XW92mRGMBkzMVSm6_uuLlsDghedAQ4yHY2WRSEKbirWV3LgnWSlEV1b1n1bd01hapCclUtSnN4a70LwMKhPj6P2B8WZOlpSO3W0pI6WFBMqWUpQ8w8ymIqhm6LXaM-jDycUUqfU06tgECYDPfokTfUOz-E_1ouHtQ |
CitedBy_id | crossref_primary_10_1002_batt_201900089 crossref_primary_10_3390_ijms241612905 crossref_primary_10_3390_ma14143840 crossref_primary_10_1016_j_jssc_2022_122961 crossref_primary_10_1016_j_ssi_2020_115339 crossref_primary_10_1134_S1023193521100037 crossref_primary_10_1016_j_ensm_2024_103699 crossref_primary_10_1016_j_cej_2020_124847 crossref_primary_10_1002_aenm_202404973 crossref_primary_10_1007_s11581_024_06008_z crossref_primary_10_1002_smtd_202401912 crossref_primary_10_1039_D3TA03481J crossref_primary_10_1088_2631_7990_abca84 crossref_primary_10_1002_adfm_202302055 crossref_primary_10_1002_admi_202100368 crossref_primary_10_1016_j_est_2024_114974 crossref_primary_10_1016_j_ijoes_2023_100202 crossref_primary_10_1002_adma_202206625 crossref_primary_10_1002_cssc_201902002 crossref_primary_10_1016_j_jpowsour_2023_233045 crossref_primary_10_1007_s12034_023_02897_4 crossref_primary_10_1039_D1NJ05887H crossref_primary_10_1016_j_jpowsour_2022_231300 crossref_primary_10_1016_j_memsci_2019_05_066 crossref_primary_10_1016_j_jpowsour_2022_231789 crossref_primary_10_1016_j_cej_2019_123975 crossref_primary_10_1016_j_ensm_2024_103606 crossref_primary_10_1039_D3TA05329F crossref_primary_10_3390_batteries7010018 crossref_primary_10_1016_j_jechem_2021_05_055 crossref_primary_10_1021_acsomega_0c05942 crossref_primary_10_1016_j_jeurceramsoc_2021_12_070 crossref_primary_10_1016_j_jpowsour_2023_233969 crossref_primary_10_1016_j_est_2024_111919 crossref_primary_10_1021_acsenergylett_1c01551 crossref_primary_10_1016_j_mtener_2021_100836 crossref_primary_10_1021_acssuschemeng_0c02362 crossref_primary_10_1016_j_cej_2019_122419 crossref_primary_10_1016_j_ensm_2022_10_044 crossref_primary_10_1016_j_jpowsour_2020_228489 crossref_primary_10_1002_tcr_202300166 crossref_primary_10_1073_pnas_1921132117 crossref_primary_10_1016_j_ensm_2020_07_004 crossref_primary_10_1016_j_jpowsour_2020_228929 crossref_primary_10_1007_s10008_023_05560_4 crossref_primary_10_1007_s11581_023_05028_5 crossref_primary_10_15407_spqeo23_03_260 crossref_primary_10_1149_1945_7111_ab68d3 crossref_primary_10_1039_D1TA10964B crossref_primary_10_1021_acsenergylett_1c00627 crossref_primary_10_1016_j_memsci_2019_117739 crossref_primary_10_1016_j_electacta_2022_140806 crossref_primary_10_1002_adma_202100585 crossref_primary_10_1088_2516_1083_ac78bd crossref_primary_10_1021_acsami_3c16344 crossref_primary_10_1039_D2TA09184D crossref_primary_10_2139_ssrn_4199025 crossref_primary_10_1016_j_jpowsour_2020_228114 crossref_primary_10_1016_j_apmt_2023_101770 crossref_primary_10_3390_batteries10070249 crossref_primary_10_1149_1945_7111_ac44b6 crossref_primary_10_1246_cl_200659 crossref_primary_10_1002_aenm_202002869 crossref_primary_10_1016_j_mtsust_2022_100224 crossref_primary_10_1021_acsami_1c18247 crossref_primary_10_1002_hlca_202000203 crossref_primary_10_1063_5_0237949 crossref_primary_10_1016_j_est_2023_110150 crossref_primary_10_1016_j_jmrt_2021_09_064 crossref_primary_10_1016_j_jmst_2024_04_065 crossref_primary_10_3390_met14121453 crossref_primary_10_1002_cssc_202301268 crossref_primary_10_1016_j_est_2024_112696 crossref_primary_10_1021_acsaem_0c01065 crossref_primary_10_1016_j_est_2024_112295 crossref_primary_10_1021_acsami_4c07798 crossref_primary_10_3390_batteries9020066 crossref_primary_10_1002_eem2_12753 crossref_primary_10_1016_j_electacta_2021_139438 crossref_primary_10_1016_j_jallcom_2020_157131 crossref_primary_10_2139_ssrn_4171849 crossref_primary_10_1002_aenm_202301886 crossref_primary_10_1039_D4TA05326E crossref_primary_10_1002_admi_202201806 crossref_primary_10_1016_j_partic_2021_06_011 crossref_primary_10_1021_acsenergylett_1c00401 crossref_primary_10_3390_nano11020390 crossref_primary_10_1007_s10853_021_05832_2 crossref_primary_10_1016_j_mser_2024_100921 crossref_primary_10_1002_adfm_202415303 crossref_primary_10_1016_j_jallcom_2024_173610 crossref_primary_10_3390_ma17194882 crossref_primary_10_1016_j_matlet_2021_130356 crossref_primary_10_1016_j_joule_2020_12_001 crossref_primary_10_1002_cjoc_202300232 crossref_primary_10_1007_s12274_022_4225_6 crossref_primary_10_1002_jcc_26706 crossref_primary_10_1016_j_jpowsour_2021_230964 crossref_primary_10_1021_acssuschemeng_3c00057 crossref_primary_10_1016_j_apsusc_2025_162292 crossref_primary_10_1039_D2RA03303H crossref_primary_10_1002_aenm_202003154 crossref_primary_10_1016_j_jallcom_2020_157143 crossref_primary_10_1021_acs_jpcc_2c05189 crossref_primary_10_1016_j_jallcom_2024_177160 crossref_primary_10_1515_zpch_2021_3135 crossref_primary_10_1002_celc_202100189 crossref_primary_10_1016_j_coelec_2021_100877 crossref_primary_10_1016_j_jpowsour_2023_233370 crossref_primary_10_1016_j_electacta_2020_136342 crossref_primary_10_1007_s00339_021_05219_9 crossref_primary_10_2139_ssrn_4111375 crossref_primary_10_1016_j_jallcom_2024_174299 crossref_primary_10_3390_ma14081998 crossref_primary_10_1039_D0QM00856G crossref_primary_10_1016_j_ssi_2019_115196 crossref_primary_10_1002_cey2_717 crossref_primary_10_1002_smtd_202000308 crossref_primary_10_1149_1945_7111_ac1a52 crossref_primary_10_1080_21870764_2024_2403258 crossref_primary_10_1002_batt_202300167 crossref_primary_10_1002_tcr_202200116 crossref_primary_10_1016_j_trechm_2023_03_004 crossref_primary_10_1021_acsaem_9b01949 crossref_primary_10_1149_1945_7111_ac1dcc crossref_primary_10_1039_D1NJ05489A crossref_primary_10_1007_s12274_023_6135_7 crossref_primary_10_1016_j_electacta_2024_144888 crossref_primary_10_1002_inf2_12306 crossref_primary_10_1016_j_ijhydene_2020_05_086 crossref_primary_10_1039_D3RA02488A crossref_primary_10_1016_j_cclet_2024_109938 crossref_primary_10_1515_zpch_2021_3139 crossref_primary_10_1016_j_est_2023_108123 crossref_primary_10_1016_j_jechem_2020_03_017 crossref_primary_10_1016_j_jpowsour_2022_232267 crossref_primary_10_3390_nano11030810 crossref_primary_10_1016_j_jelechem_2020_114913 crossref_primary_10_1021_acsami_9b20471 crossref_primary_10_1016_j_jechem_2021_11_015 crossref_primary_10_1016_j_est_2020_102167 crossref_primary_10_1007_s10008_023_05634_3 crossref_primary_10_1021_acsanm_1c03187 crossref_primary_10_1039_D0SE00013B crossref_primary_10_1039_D4QI01831A crossref_primary_10_1016_j_jcis_2020_01_005 crossref_primary_10_1007_s10118_020_2390_1 crossref_primary_10_1016_j_xcrp_2023_101321 crossref_primary_10_1016_j_ssi_2023_116409 crossref_primary_10_1021_acs_nanolett_4c00154 crossref_primary_10_1149_1945_7111_ad0b76 crossref_primary_10_1016_j_ensm_2022_02_018 crossref_primary_10_1016_j_cej_2020_124789 crossref_primary_10_15407_ujpe66_6_489 crossref_primary_10_1002_adfm_202211185 crossref_primary_10_1002_adsu_201900113 crossref_primary_10_1038_s41598_022_21561_1 crossref_primary_10_3390_nano10081606 crossref_primary_10_1016_j_matt_2023_04_022 crossref_primary_10_1016_j_jcis_2022_09_089 crossref_primary_10_3390_polym16010055 crossref_primary_10_3390_nano12030550 crossref_primary_10_1021_acsami_2c14067 crossref_primary_10_33609_2708_129X_89_04_2023_102_114 crossref_primary_10_1021_acsami_0c00712 crossref_primary_10_15826_chimtech_2024_11_3_07 crossref_primary_10_1016_j_susmat_2023_e00712 crossref_primary_10_1007_s12274_022_4871_x crossref_primary_10_1021_acsami_0c09074 crossref_primary_10_1016_j_ensm_2024_103742 crossref_primary_10_1002_eom2_12283 crossref_primary_10_1016_j_ensm_2024_103986 crossref_primary_10_3390_batteries7010011 crossref_primary_10_1002_adfm_202408535 crossref_primary_10_1039_D3TA06069A crossref_primary_10_1016_j_jmst_2020_10_017 crossref_primary_10_1016_j_psep_2024_09_112 crossref_primary_10_1016_j_jre_2022_11_017 crossref_primary_10_1002_adfm_202007598 crossref_primary_10_1039_D3TA01435E crossref_primary_10_1039_D0CC07296F crossref_primary_10_3390_molecules26092625 |
Cites_doi | 10.1021/nl202692y 10.1149/1.2086597 10.1021/cm3005387 10.1021/ma0349276 10.1016/0378-7753(94)02110-O 10.1002/pat.1503 10.1016/j.jpowsour.2005.03.062 10.1016/j.ssi.2013.08.014 10.1021/acs.chemrev.5b00563 10.1016/j.ssi.2008.03.006 10.1002/aenm.201602923 10.1016/0378-7753(85)88016-2 10.1016/j.jpowsour.2013.05.030 10.1016/j.electacta.2012.07.088 10.1016/j.jnoncrysol.2011.03.022 10.1016/0167-2738(90)90424-P 10.1016/j.ssi.2007.04.009 10.1002/aenm.201500353 10.1149/1.3129245 10.1007/s11581-011-0524-8 10.1016/j.ensm.2018.02.020 10.1016/0378-7753(94)02148-V 10.1016/j.electacta.2011.03.101 10.1039/C3CC49588D 10.1080/13642818908208455 10.1111/j.1151-2916.1999.tb01923.x 10.1016/S0013-4686(99)00437-5 10.1016/j.jpowsour.2013.09.051 10.1016/j.ssi.2012.05.013 10.1111/j.1151-2916.1964.tb12995.x 10.1007/s11581-006-0013-7 10.1149/1.1837443 10.1039/c3ta10247e 10.1016/0254-0584(89)90015-1 10.1016/0022-4596(82)90383-8 10.1016/j.ssi.2006.04.017 10.1016/j.electacta.2006.06.039 10.1149/2.0501412jes 10.3389/fenrg.2016.00022 10.1016/j.jpowsour.2012.12.001 10.1016/j.jpowsour.2013.03.166 10.1039/C6TA10142A 10.1016/0038-1098(93)90841-A 10.2109/jcersj.108.1254_128 10.1111/j.1151-2916.2001.tb00685.x 10.1016/j.ssi.2015.03.019 10.1021/jp4051275 10.1038/nmat3066 10.1016/S0167-2738(02)00137-6 10.1021/acsami.7b00336 10.1039/C6CS00620E 10.3389/fenrg.2014.00025 10.1021/cm3000427 10.1016/j.ssi.2013.09.023 10.1039/C7TA05787C 10.1149/1.2055043 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I 10.1016/j.jpowsour.2009.06.100 10.1039/c3cp51059j 10.1021/acsami.8b21621 10.1016/j.ssi.2007.03.001 10.1039/C3EE41655K 10.1016/0378-7753(94)02147-3 10.1007/BF03185988 10.1016/S0378-7753(99)00121-4 10.1002/adfm.201203556 10.1039/C3TA13235H 10.1039/c3cp50803j 10.1016/j.ssi.2004.02.025 10.1016/0167-2738(86)90139-6 10.1016/j.jpowsour.2010.12.020 10.1016/j.jpowsour.2010.02.042 10.1016/j.jpowsour.2015.05.093 10.1021/acs.jpclett.7b00593 10.1016/0025-5408(80)90131-2 10.1063/1.325509 10.1016/j.jpowsour.2010.12.052 10.1002/adma.200401286 10.1016/j.actamat.2012.10.034 10.1016/j.ssi.2010.10.013 10.1016/0167-2738(86)90131-1 10.1038/srep06272 10.1039/b514346b 10.1111/j.1151-2916.1998.tb02482.x 10.1016/j.ensm.2017.06.017 10.1039/C6CS00491A 10.1016/j.cplett.2004.06.054 10.1016/j.electacta.2016.09.155 10.1016/j.jpowsour.2017.01.030 10.1016/0025-5408(79)90158-2 10.1016/j.jpowsour.2012.11.049 10.1016/S0167-2738(98)00367-1 10.1016/j.jpowsour.2007.11.088 10.1016/S1452-3981(23)13102-6 10.3389/fenrg.2016.00038 10.1016/j.jpowsour.2005.03.063 10.1016/j.jeurceramsoc.2014.11.023 10.1021/ma500146v 10.1021/acs.jpclett.7b02880 10.1039/c0ee00266f 10.1002/adfm.201301345 10.1016/j.jpowsour.2015.09.111 10.1016/j.jpowsour.2017.08.020 10.1021/ja502133j 10.1021/cm203303y 10.1021/acsami.8b17656 10.1016/j.jpowsour.2015.10.040 10.1038/28818 10.1016/j.ssi.2014.09.011 10.1016/0025-5408(78)90075-2 10.1039/C7TA03699J 10.1134/S1023193509050103 10.1016/j.jpowsour.2004.09.004 10.1016/j.polymer.2014.04.051 10.1111/j.1151-2916.1963.tb19779.x 10.1016/j.jpowsour.2015.12.065 10.1039/C7EE02723K 10.1016/S0167-2738(00)00329-5 10.1016/j.matchemphys.2004.09.032 10.1039/C8CC00734A 10.1103/PhysRevLett.109.205702 10.1016/j.jallcom.2013.12.191 10.1039/c3ra40306h 10.1016/j.ssi.2018.02.040 10.1021/acsami.6b03070 10.1016/S0167-2738(96)00434-1 10.1016/j.nanoen.2016.11.045 10.1016/j.elecom.2008.09.026 10.1038/nmat3602 10.1016/S0378-7753(01)00902-8 10.1111/jace.13844 10.1006/jssc.2002.9560 10.1039/C4TA01856G 10.1111/j.1551-2916.2010.04335.x 10.1016/j.ssi.2017.12.007 10.1016/j.ssi.2010.06.018 10.1149/1.2097416 10.1016/j.ssi.2015.01.006 10.1002/adfm.200304333 10.1016/j.ssi.2010.12.010 10.1016/j.ssi.2013.10.007 10.1016/0167-2738(96)00195-6 10.1016/j.jpowsour.2007.06.168 10.1016/j.ensm.2016.07.003 10.1111/j.1151-2916.1991.tb07788.x 10.1016/0167-2738(95)00036-6 10.1149/2.0351906jes 10.1007/s10008-007-0391-4 10.1016/0022-4596(84)90122-1 10.1149/1.1809553 10.1016/S0167-2738(99)00043-0 10.1021/ja407393y 10.1016/j.nanoen.2017.01.028 10.1016/0167-2738(86)90179-7 10.1016/S0378-7753(03)00611-6 10.1016/j.elecom.2011.02.035 10.1016/j.ssi.2004.08.027 10.1002/aenm.201501082 10.1039/c2ee03025j 10.1016/j.ssc.2010.01.044 10.1016/j.ssi.2004.01.008 10.1149/1.3109645 10.1016/0022-3093(88)90203-7 10.1016/S1388-2481(02)00555-6 10.1149/2.0731504jes 10.1016/j.electacta.2008.01.071 10.1016/j.ssi.2012.01.017 10.1021/cm011149s 10.1111/j.1151-2916.1996.tb08127.x 10.1016/j.jpowsour.2005.03.142 10.1021/acs.chemmater.7b01463 10.1016/j.jpowsour.2016.02.088 10.1021/acs.nanolett.5b04117 10.1016/j.jpowsour.2014.10.078 10.1016/j.ssi.2016.08.014 10.1007/s13391-012-2038-6 10.1016/j.jpowsour.2014.07.055 10.1016/0378-7753(93)80106-Y 10.1088/1674-1056/25/1/018802 10.1016/j.jpowsour.2008.09.025 10.1016/j.jpowsour.2004.01.034 10.1016/0022-4596(84)90345-1 10.1039/C7TA08233A 10.1016/j.jpowsour.2006.04.037 10.1016/0167-2738(83)90028-0 10.1039/C7TA08715B 10.1149/2.F04083IF 10.1007/s11581-014-1176-2 10.1016/S0167-2738(98)00457-3 10.1002/anie.200701144 10.1016/0025-5408(76)90077-5 10.1038/19730 10.1016/j.eurpolymj.2012.10.033 10.1016/j.jpowsour.2006.07.029 10.1016/0167-2738(94)90383-2 10.1039/C7EE01004D 10.1021/cm0300563 10.1149/1.1391824 10.1016/j.ceramint.2018.01.065 10.1016/j.progpolymsci.2017.12.004 10.1016/0167-2738(93)90387-I 10.1039/c0jm04366d 10.1038/nmat1158 10.1007/BF02375778 10.1016/j.jpowsour.2017.04.083 10.1021/acs.jpcc.8b02556 10.1021/cm901819c 10.1016/0167-2738(96)00100-2 10.1016/j.jssc.2005.12.025 10.1149/1.2220723 10.1016/j.jpowsour.2013.03.175 10.1039/C7TA06833F 10.1016/S0167-2738(98)00070-8 10.1002/polb.1212 10.1149/1.1379028 10.1016/j.jpowsour.2015.02.160 10.1016/j.elecom.2007.05.020 10.1016/S0167-2738(00)00277-0 10.1038/natrevmats.2016.103 10.1016/j.jpowsour.2004.08.029 10.1111/jace.13800 10.1016/0167-2738(85)90064-5 10.1016/j.ceramint.2013.04.027 10.1021/acsami.6b01973 10.1021/acsami.7b07057 10.1039/c2jm16688g 10.1016/0025-5408(80)90249-4 10.1016/j.jpowsour.2016.03.093 10.1016/j.jnoncrysol.2010.04.048 10.1016/S0167-2738(98)00398-1 10.1016/j.elecom.2010.04.014 10.1039/b108289m 10.1016/0167-2738(92)90310-L 10.1016/S0013-4686(97)10011-1 10.1016/j.jpowsour.2016.01.068 10.1016/0022-3093(89)90304-9 10.1016/0032-3861(73)90146-8 10.1016/0167-2738(83)90068-1 10.1016/j.jpowsour.2017.05.112 10.1016/0025-5408(78)90223-4 10.1134/1.1541752 10.1016/0167-2738(96)00179-8 10.1016/j.jpowsour.2012.09.111 10.1016/j.jpowsour.2012.08.041 10.1039/C4TA00494A 10.1021/ic4030537 10.1002/ente.201200019 10.1038/nenergy.2016.30 10.1016/j.electacta.2009.11.003 10.1002/adma.201002584 10.1016/j.ssi.2014.08.002 10.1016/j.ssi.2012.02.034 10.1016/j.jpowsour.2005.06.026 10.1016/j.jnoncrysol.2006.04.018 10.1016/j.ssi.2012.03.003 10.1016/j.jpowsour.2005.03.028 10.1039/c2jm31413d 10.1016/j.polymer.2015.02.052 10.1016/0167-2738(91)90247-9 10.1016/0167-2738(94)90299-2 10.1016/j.electacta.2015.02.074 10.1149/1.1540792 10.1016/j.elecom.2011.08.014 10.1006/jssc.2002.9701 10.1149/1.1393554 10.1016/S0167-2738(98)00114-3 10.1149/1.2795837 10.1039/C7TA01147D 10.1016/S0378-7753(03)00187-3 10.1016/j.elecom.2008.12.030 10.1016/j.ssi.2017.01.005 10.1016/j.ceramint.2017.09.241 10.1111/j.1151-2916.2003.tb03318.x 10.1016/j.ssi.2004.04.007 10.1016/j.ssi.2004.08.024 10.2109/jcersj.101.1315 10.1002/adfm.200400044 10.1039/C0JM01090A 10.1016/j.jpowsour.2013.01.090 10.1016/S0378-7753(03)00189-7 10.1246/bcsj.65.2200 10.1016/j.polymer.2009.05.022 10.1016/j.electacta.2011.08.096 10.1016/j.jpowsour.2008.03.030 10.1016/S0167-2738(97)00117-3 10.1039/C5TA03239C 10.5796/electrochemistry.17-00055 10.1016/j.polymer.2006.05.069 10.1016/0167-2738(95)00094-M 10.1016/S0378-7753(00)00432-8 10.1039/C7TA04320A 10.1016/j.jpowsour.2017.10.093 10.1016/j.jpowsour.2009.11.050 10.1016/S0013-4686(00)00775-1 10.1021/cr3001862 10.1016/0167-2738(92)90442-R 10.1016/j.electacta.2011.04.084 10.1016/j.electacta.2018.08.089 10.1021/acsenergylett.6b00216 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rser.2019.04.035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0690 |
EndPage | 385 |
ExternalDocumentID | 10_1016_j_rser_2019_04_035 S1364032119302473 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SSZ T5K Y6R ZCA ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c405t-4f6cbddb739ce412bce1e539c8a522421c60d65f1b503c4b937d97b82c7e5103 |
IEDL.DBID | .~1 |
ISSN | 1364-0321 |
IngestDate | Tue Jul 01 03:18:01 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Fri Feb 23 02:49:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | LZP Solid electrolyte PEOMA HNT LATP LLZO PEDA Utmost limit PEO–PAN Li LGPS ASSLBs PEOEC LYZP Electrochemical performance Stability MOFs LSNZ S-MWCNT MMT P111i4FSI NASICON LAGP PEGM PTMC CPPC RT PPC ORNL PILs LTP PLD SPEs NCPE CNTs MBL thio-LISICON ETPTA SLIC-SPEs PDADMA TFSI Ionic conductivity PEGDA DR-XAS PMHS LSTZ PEC LSHT 3D PEGDE PEI LGLZO PEO PEGDM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-4f6cbddb739ce412bce1e539c8a522421c60d65f1b503c4b937d97b82c7e5103 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1016_j_rser_2019_04_035 crossref_citationtrail_10_1016_j_rser_2019_04_035 elsevier_sciencedirect_doi_10_1016_j_rser_2019_04_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Renewable & sustainable energy reviews |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hong (bib100) 1978; 13 Park, Ryu, Kim, Hur, Cho, Ahn (bib195) 2004; 10 Belous, Novitskaya, Polyanetskaya, Gornikov (bib51) 1987; 23 Murthy, Ip (bib87) 1964; 47 Bron, Johansson, Zick, Schmedt auf der Gunne, Dehnen, Roling (bib182) 2013; 135 Sun, Takeda, Imanishi, Yamamoto, Sohn (bib275) 2000; 147 Minami, Hayashi, Tatsumisago (bib160) 2011; 94 Baba, Kawamura (bib4) 2016; 4 Zhang, Kennedy (bib151) 1990; 38 Murayama (bib185) 2002; 168 Zhao, Chen, Xue, Min, Cui (bib37) 1994; 70 Fonseca, Neves (bib207) 2002; 104 Goodenough, Hong, Kafalas (bib18) 1976; 11 Murugan, Ramakumar, Janani (bib75) 2011; 13 Yamauchi, Sakuda, Hayashi, Tatsumisago (bib168) 2013; 244 Morimoto, Yamashita, Tatsumisago, Minami (bib130) 1999; 82 Kang, Lee, Suh, Lee (bib246) 2003; 119 Kanno, Hata, Kawamoto, Irie (bib184) 2000; 130 Lin, Hung, Venkateswarlu, Hwang (bib290) 2005; 146 Tatsumisago, Hirai, Minami, Takada, Kondo (bib139) 1993; 101 Murugan, Thangadurai, Weppner (bib12) 2007; 46 Tsuchida, Ohno, Tsunemi, Kobayashi (bib225) 1983; 11 Lalère, Leriche, Courty, Boulineau, Viallet, Masquelier (bib31) 2014; 247 Thangadurai, Kaack, Weppner (bib70) 2003; 86 Hayashi, Muramatsu, Ohtomo, Hama, Tatsumisago (bib163) 2014; 591 Seino, Ota, Takada, Hayashi, Tatsumisago (bib159) 2014; 7 Xi, Tang (bib268) 2004; 393 Ohtomo, Mizuno, Hayashi, Tadanaga, Tatsumisago (bib119) 2005; 146 Minami, Hayashi, Ujiie, Tatsumisago (bib164) 2011; 192 Hayashi, Muramatsu, Ohtomo, Hama, Tatsumisago (bib167) 2013; 1 Cao, Li, Feng, Long, An, Qin (bib254) 2017; 5 Sheng, Jin, Luo, Yuan, Fang, Huang (bib282) 2017; 5 Hayashi, Hama, Minami, Tatsumisago (bib157) 2003; 5 Inada, Kobayashi, Sonoyama, Yamada, Kondo, Nagao (bib122) 2009; 194 Liang, Choi, Liu, Runt, Colby (bib204) 2012; 24 Ren, Chen, Chen, Liu, Zhang, Nan (bib24) 2015; 98 Visbal, Aihara, Ito, Watanabe, Park, Doo (bib148) 2016; 314 Zeng, Ji, Tsai, Zhang, Jiang, Li (bib228) 2018; 320 Baek, Honma, Kim, Rangappa (bib273) 2017; 343 Walls, Riley, Singhal, Spontak, Fedkiw, Khan (bib283) 2003; 13 Tang, Hackenberg, Fu, Ajayan, Ardebili (bib279) 2012; 12 Hori, Suzuki, Hirayama, Kato, Kanno (bib307) 2016; 4 Ohta, Takada, Osada, Zhang, Sasaki, Watanabe (bib187) 2005; 146 Kim, Choi, Cho, Park, Cho, Lee (bib252) 2014; 2 El-Shinawi, Regoutz, Payne, Cussen, Corr (bib32) 2018; 6 Zhang, Zhao, Chen, Xie, Yao, Cui (bib305) 2017; 5 Okumura, Nakatsutsumi, Ina, Orikasa, Arai, Fukutsuka (bib302) 2011; 21 Nagao, Imade, Narisawa, Kobayashi, Watanabe, Yokoi (bib180) 2013; 222 Gerbaldi, Nair, Kulandainathan, Kumar, Ferrara, Mustarelli (bib222) 2014; 2 Latie, Villeneuve, Conte, Le Flem (bib50) 1984; 51 Nagao, Hayashi, Tatsumisago, Kanetsuku, Tsuda, Kuwabata (bib142) 2013; 15 Chiang, Davis, Harding, Takahashi (bib198) 1986; 18 Yang, Dong, Zhang, Li, Wang (bib310) 2015; 98 Nagao, Hayashi, Tatsumisago (bib141) 2013; 1 Mizuno, Hayashi, Tadanaga, Tatsumisago (bib156) 2006; 177 Duan, Yin, Zeng, Li, Shi, Shi, Sun, Mindemark, Edstrom, Brandell (bib231) 2018; 10 Gromov, Kunshina, Kuz'min, Kalinnikov (bib36) 1996; 69 Yubuchi, Teragawa, Aso, Tadanaga, Hayashi, Tatsumisago (bib175) 2015; 293 Mindemark, Lacey, Bowden, Brandell (bib229) 2018; 81 Kim, Yoon, Lee, Shin (bib158) 2011; 196 Qian, Texter, Yan (bib257) 2017; 46 Cao, Li, Wang, Zhao, Han (bib188) 2014; 2 Hayashi, Tatsumisago, Minami, Miura (bib131) 1998; 81 Kobayashi, Imade, Shishihara, Homma, Nagao, Watanabe (bib121) 2008; 182 Bachman, Muy, Grimaud, Chang, Pour, Lux (bib29) 2016; 116 Yu, Xie, Yang, Wang (bib272) 2004; 132 Zhang, Zhao, Gosselink, Chen (bib295) 2015; 21 Capiglia, Mustarelli, Quartarone, Tomasi, Magistris (bib293) 1999; 118 Xu, Wang, Wilson, Zhao, Manthiram (bib13) 2017; 29 Jalem, Nakayama, Kasuga (bib106) 2014; 2 Rajkumar, Nakayama, Nogami (bib105) 2010; 150 Deviannapoorani, Dhivya, Ramakumar, Murugan (bib80) 2013; 240 Mo, Ong, Ceder (bib189) 2011; 24 Thangadurai, Weppner (bib69) 2005; 15 Bates, Dudney, Gruzalski, Zuhr, Choudhury, Luck (bib96) 1993; 43 Lin, Liu, Liu, Lee, Hsu, Liu (bib271) 2016; 16 Sun (bib274) 1999; 146 Croce, Appetecchi, Persi, Scrosati (bib269) 1998; 394 Hu, Li, Yang, Yang, Wang (bib81) 2018; 44 Lee, Joo, Kim, Woo, Sohn, Kang (bib94) 2002; 149 Matsumura, Nakano, Kanno, Hirano, Imanishi, Takeda (bib178) 2007; 174 Liang, Wen, Liu, Zhang, Huang, Jin (bib218) 2011; 196 Yu, Du, Zou, Wen, Chen (bib64) 2016; 306 Croce, Persi, Ronci, Scrosati (bib292) 2000; 135 Kim, Hwang, Yoon, Choi, Hwang (bib93) 2011; 357 Morimoto, Yamashita, Tatsumisago, Minami (bib129) 2000; 108 Zhang, Li, Piszcz, Coya, Rojo, Rodriguez-Martinez (bib253) 2017; 46 Pradel, Ribes (bib297) 1986; 18 Kanno, Murayama, Inada, Kobayashi, Sakamoto, Sonoyama (bib177) 2004; 7 Hakari, Nagao, Hayashi, Tatsumisago (bib145) 2014; 262 Xu, Wang, Zhang, Xia, Xia, Wu (bib8) 2018; 374 Croce, Bonino, Panero, Scrosati (bib280) 1989; 59 Morata-Orrantia, García-Martín, Morán, Alario-Franco (bib296) 2002; 14 Yuan, Li, Han, Lai, Zhang, Liu (bib221) 2013; 240 Aso, Hayashi, Tatsumisago (bib1) 2012; 83 El Shinawi, Janek (bib76) 2013; 225 Xu, Xia, Yao, Wang, Gu, Tu (bib161) 2016; 219 Ujiie, Hayashi, Tatsumisago (bib174) 2012; 211 Judez, Zhang, Li, Gonzalez-Marcos, Zhou, Armand (bib226) 2017; 8 Fu, Zhao, Dong, An, Shen (bib43) 2006; 162 Kumazaki, Iriyama, Kim, Murugan, Tanabe, Yamamoto (bib74) 2011; 13 Ban, Zhang, Chen, Sun (bib202) 2018; 122 Magistris, Chiodelli, Villa (bib112) 1985; 14 Arbi, Bucheli, Jiménez, Sanz (bib41) 2015; 35 Ibrahim, Yassin, Ahmad, Johan (bib192) 2011; 17 Dudney (bib98) 2008; 17 Xu, Xia, Wang, Xia, Tu (bib170) 2017; 5 Ulissi, Agostini, Ito, Aihara, Hassoun (bib3) 2016; 296 Jung, Lee, Choi, Jang, Kim (bib27) 2015; 162 Takada, Kondo (bib117) 1998; 4 Zhang, Zhao, Yue, Wang, Chai, Liu (bib201) 2015; 5 Tanaka, Sakurai, Sekiguchi, Mori, Murayama, Ooyama (bib211) 2001; 46 Kawai, Kuwano (bib57) 1994; 141 Wang, Li, Yang (bib270) 2010; 55 Xu, Xia, Li, Zhang, Wang, Tu (bib171) 2017; 5 Porcarelli, Shaplov, Salsamendi, Nair, Vygodskii, Mecerreyes (bib206) 2016; 8 Sakuda, Kitaura, Hayashi, Tadanaga, Tatsumisago (bib102) 2008; 11 Kumar, Scanlon (bib281) 1994; 52 Porcarelli, Shaplov, Bella, Nair, Mecerreyes, Gerbaldi (bib256) 2016; 1 Lin, Li, Lai, Yuan, Cheng, Liu (bib235) 2013; 3 Aono, Sugimoto, Sadaoka, Imanaka, Adachi (bib38) 1992; 65 Yang, Wu, Hu, Peng, Cao, Du (bib300) 2019; 11 Hayashi, Minami, Ujiie, Tatsumisago (bib154) 2010; 356 Zekoll, Marriner-Edwards, Hekselman, Kasemchainan, Kuss, Armstrong (bib266) 2018; 11 Xiong, Wang, Xie, Cheng, Xia (bib214) 2006; 16 Alarco, Abu-Lebdeh, Abouimrane, Armand (bib249) 2004; 3 Yang, Zhang, Zhang, Zhang, Huang, Chen (bib200) 2013; 23 Klongkan, Pumchusak (bib288) 2015; 161 Whiteley, Woo, Hu, Nam, Lee (bib181) 2014; 161 Shimonishi, Toda, Zhang, Hirano, Imanishi, Yamamoto (bib73) 2011; 183 Yue, Ma, Zhang, Zhao, Dong, Liu (bib30) 2016; 5 Sebastian, Gopalakrishnan, Piffard (bib108) 2002; 12 Zhou, He, Liu, Liu, Du, Li (bib251) 2015; 5 Minami, Mizuno, Hayashi, Tatsumisago (bib155) 2007; 178 Chen, Xie, Liu, Mwizerwa, Zhang, Zhao (bib6) 2018; 14 Hirai, Tatsumisago, Minami (bib138) 1995; 78 Bohnke, Bohnke, Fourquet (bib53) 1996; 91 Zhao, Wu, Peng, Chen, Yao, Bai (bib26) 2016; 301 Kim, Eom, Noh, Shin (bib140) 2013; 244 Bouchet, Maria, Meziane, Aboulaich, Lienafa, Bonnet (bib255) 2013; 12 Ohtomo, Hayashi, Tatsumisago, Tsuchida, Hama, Kawamoto (bib144) 2013; 233 Chowdari, Radhakrishnan (bib111) 1989; 108 Lin, Wang, Liu, Miller (bib286) 2017; 31 Bates, Gruzalski, Dudney, Luck, Yu (bib97) 1994; 70 Kato, Hayashi, Tatsumisago (bib304) 2016; 309 Kobayashi, Plashnitsa, Doi, Okada, Yamaki (bib40) 2010; 12 Otoyama, Ito, Hayashi, Tatsumisago (bib147) 2016; 302 Kang, Lee, Suh, Lee (bib234) 2005; 146 Tatsumisago, Mizuno, Hayashi (bib120) 2006; 159 Kuwano, West (bib101) 1980; 15 Hayashi, Tatsumisago (bib19) 2012; 8 Li, Han, Wang, Xie, Goodenough (bib116) 2012; 22 Shin, Son, Han, Do Kim, Kim, Ryu (bib67) 2017; 301 Mizuno (bib126) 2004; 175 Sun, Mindemark, Edstrom, Brandell (bib232) 2014; 262 Chen, Chang (bib285) 2001; 39 Murayama, Sonoyama, Yamada, Kanno (bib118) 2004; 170 Muramatsu, Hayashi, Ohtomo, Hama, Tatsumisago (bib162) 2011; 182 Aono, Sugimoto, Sadaoka, Imanaka, Adachi (bib61) 1991; 47 Trevey, Jung, Lee (bib165) 2010; 195 Inoishi, Nishio, Yoshioka, Kitajou, Okada (bib49) 2018; 54 Manuel Stephan, Nahm (bib193) 2006; 47 Zhou, Kim (bib238) 2010; 21 Jalem, Nakayama, Kasuga (bib15) 2014; 262 MacGlashan, Andreev, Bruce (bib23) 1999; 398 Ivanov-Shitz, Kireev (bib104) 2003; 48 Mizuno, Hayashi, Tadanaga, Tatsumisago (bib20) 2005; 17 Tominaga, Yamazaki (bib233) 2014; 50 Slane, Salomon (bib262) 1995; 55 Inaguma, Katsumata, Itoh, Morii (bib54) 2002; 166 Levasseur, Calès, Réau, Hagenmuller (bib85) 1978; 13 Hayashi, Ishikawa, Hama, Minami, Tatsumisago (bib186) 2003; 6 Bernstein, Johannes, Hoang (bib79) 2012; 109 Masuda, Nakayama, Wakihara (bib215) 2007; 178 Huang, Xu, Li, Zhou, You, Zhong (bib63) 2016; 8 Aono, Sugimoto, Sadaoka, Imanaka, Adachi (bib47) 1993; 62 Ha, Kwon, Kim, Lee (bib236) 2011; 57 Kamaya, Homma, Yamakawa, Hirayama, Kanno, Yonemura (bib125) 2011; 10 Nakano, Dokko, Sugaya, Yasukawa, Matsue, Kanamura (bib216) 2007; 9 Hayashi, Araki, Komiya, Tadanaga, Tatsumisago, Minami (bib133) 1998; 113 Yang, Du, Hu, Peng, Cao, Wu (bib299) 2018; 289 Hayashi, Hama, Morimoto, Tatsumisago, Minami (bib153) 2001; 84 Kato, Hori, Saito, Suzuki, Hirayama, Mitsui (bib191) 2016; 1 Saccoccio, Yu, Lu, Kwok, Wang, Yeung (bib66) 2017; 365 Chida, Miura, Rosero-Navarro, Higuchi, Phuc, Muto (bib149) 2018; 44 Oh, Vissers, Zhang, West, Tsukamoto, Amine (bib247) 2003; 119 Park, Jung, Kim (bib265) 2018; 315 Ooura, Machida, Naito, Shigematsu (bib173) 2012; 225 Manthiram, Yu, Wang (bib7) 2017; 2 Bashiri, Nazri, Naik, Naik (bib264) 2018 Li, Liu, Liu, Wang (bib34) 2013; 240 Prasanth, Shubha, Hng, Srinivasan (bib277) 2013; 49 Masquelier, Croguennec (bib17) 2013; 113 Kwon, Kim, Shim, Lee, Baik, Lee (bib224) 2014; 55 Khurana, Schaefer, Archer, Coates (bib227) 2014; 136 Yuan, Chen, Yang, Li, Wang (bib219) 2005; 89 Ishmukhametova, Yarmolenko, Bogdanova, Rozenberg, Efimov (bib199) 2009; 45 Charles (bib82) 1963; 46 Rosciano, Pescarmona, Houthoofd, Persoons, Bottke, Wilkening (bib109) 2013; 15 Ha, Kil, Kwon, Kim, Lee, Lee (bib237) 2012; 5 Quartarone, Must Pradel (10.1016/j.rser.2019.04.035_bib297) 1986; 18 Kondo (10.1016/j.rser.2019.04.035_bib128) 1992; 53 Lalère (10.1016/j.rser.2019.04.035_bib31) 2014; 247 Yang (10.1016/j.rser.2019.04.035_bib289) 2013; 8 Kennedy (10.1016/j.rser.2019.04.035_bib127) 1989; 23 Morimoto (10.1016/j.rser.2019.04.035_bib129) 2000; 108 Lin (10.1016/j.rser.2019.04.035_bib271) 2016; 16 El-Shinawi (10.1016/j.rser.2019.04.035_bib32) 2018; 6 Berthier (10.1016/j.rser.2019.04.035_bib209) 1983; 11 Yubuchi (10.1016/j.rser.2019.04.035_bib175) 2015; 293 Xu (10.1016/j.rser.2019.04.035_bib13) 2017; 29 Seino (10.1016/j.rser.2019.04.035_bib159) 2014; 7 Mindemark (10.1016/j.rser.2019.04.035_bib245) 2015; 63 Li (10.1016/j.rser.2019.04.035_bib34) 2013; 240 Rosciano (10.1016/j.rser.2019.04.035_bib109) 2013; 15 Zhang (10.1016/j.rser.2019.04.035_bib151) 1990; 38 Porcarelli (10.1016/j.rser.2019.04.035_bib256) 2016; 1 Minami (10.1016/j.rser.2019.04.035_bib160) 2011; 94 Bron (10.1016/j.rser.2019.04.035_bib182) 2013; 135 Fu (10.1016/j.rser.2019.04.035_bib46) 2006; 52 Croce (10.1016/j.rser.2019.04.035_bib280) 1989; 59 Bruce (10.1016/j.rser.2019.04.035_bib14) 1982; 44 Inaguma (10.1016/j.rser.2019.04.035_bib114) 1993; 86 Yuan (10.1016/j.rser.2019.04.035_bib219) 2005; 89 Bernstein (10.1016/j.rser.2019.04.035_bib79) 2012; 109 Shin (10.1016/j.rser.2019.04.035_bib67) 2017; 301 Zhang (10.1016/j.rser.2019.04.035_bib248) 2004; 170 Kato (10.1016/j.rser.2019.04.035_bib150) 2018; 9 Adams (10.1016/j.rser.2019.04.035_bib190) 2012; 22 El Shinawi (10.1016/j.rser.2019.04.035_bib76) 2013; 225 Visbal (10.1016/j.rser.2019.04.035_bib148) 2016; 314 Mizuno (10.1016/j.rser.2019.04.035_bib156) 2006; 177 Marmorstein (10.1016/j.rser.2019.04.035_bib194) 2000; 89 Bakenov (10.1016/j.rser.2019.04.035_bib230) 2007; 12 Ren (10.1016/j.rser.2019.04.035_bib24) 2015; 98 Yu (10.1016/j.rser.2019.04.035_bib64) 2016; 306 Hayashi (10.1016/j.rser.2019.04.035_bib19) 2012; 8 Croce (10.1016/j.rser.2019.04.035_bib269) 1998; 394 Prasanth (10.1016/j.rser.2019.04.035_bib277) 2013; 49 Aono (10.1016/j.rser.2019.04.035_bib47) 1993; 62 MacGlashan (10.1016/j.rser.2019.04.035_bib23) 1999; 398 Kobayashi (10.1016/j.rser.2019.04.035_bib121) 2008; 182 Masquelier (10.1016/j.rser.2019.04.035_bib17) 2013; 113 Zhou (10.1016/j.rser.2019.04.035_bib238) 2010; 21 Marceau (10.1016/j.rser.2019.04.035_bib196) 2016; 319 Pradel (10.1016/j.rser.2019.04.035_bib90) 1985; 17 Jiang (10.1016/j.rser.2019.04.035_bib291) 2005; 141 Gromov (10.1016/j.rser.2019.04.035_bib36) 1996; 69 Sun (10.1016/j.rser.2019.04.035_bib274) 1999; 146 Levasseur (10.1016/j.rser.2019.04.035_bib85) 1978; 13 Hartmann (10.1016/j.rser.2019.04.035_bib39) 2013; 117 Kamaya (10.1016/j.rser.2019.04.035_bib21) 2011; 10 Zhang (10.1016/j.rser.2019.04.035_bib305) 2017; 5 Yang (10.1016/j.rser.2019.04.035_bib310) 2015; 98 Kwon (10.1016/j.rser.2019.04.035_bib224) 2014; 55 Sun (10.1016/j.rser.2019.04.035_bib2) 2017; 33 Hayashi (10.1016/j.rser.2019.04.035_bib132) 1998; 39 Wang (10.1016/j.rser.2019.04.035_bib287) 2017; 9 Dudney (10.1016/j.rser.2019.04.035_bib98) 2008; 17 Lin (10.1016/j.rser.2019.04.035_bib290) 2005; 146 Zhou (10.1016/j.rser.2019.04.035_bib251) 2015; 5 Croce (10.1016/j.rser.2019.04.035_bib292) 2000; 135 Yang (10.1016/j.rser.2019.04.035_bib200) 2013; 23 Ratner (10.1016/j.rser.2019.04.035_bib210) 1987 Shimonishi (10.1016/j.rser.2019.04.035_bib73) 2011; 183 Tanaka (10.1016/j.rser.2019.04.035_bib91) 1988; 103 Lin (10.1016/j.rser.2019.04.035_bib235) 2013; 3 Hassoun (10.1016/j.rser.2019.04.035_bib267) 2010; 22 Morata-Orrantia (10.1016/j.rser.2019.04.035_bib296) 2002; 14 Doreau (10.1016/j.rser.2019.04.035_bib86) 1980; 15 Hayashi (10.1016/j.rser.2019.04.035_bib186) 2003; 6 Sebastian (10.1016/j.rser.2019.04.035_bib108) 2002; 12 Okumura (10.1016/j.rser.2019.04.035_bib244) 2014; 267 Kawai (10.1016/j.rser.2019.04.035_bib57) 1994; 141 Cao (10.1016/j.rser.2019.04.035_bib188) 2014; 2 Kobayashi (10.1016/j.rser.2019.04.035_bib179) 2008; 53 Choi (10.1016/j.rser.2019.04.035_bib25) 2015; 274 Noh (10.1016/j.rser.2019.04.035_bib143) 2013; 39 Otto (10.1016/j.rser.2019.04.035_bib88) 1966; 7 Xiong (10.1016/j.rser.2019.04.035_bib214) 2006; 16 Lee (10.1016/j.rser.2019.04.035_bib92) 2004; 175 Jalem (10.1016/j.rser.2019.04.035_bib15) 2014; 262 Kato (10.1016/j.rser.2019.04.035_bib191) 2016; 1 Murugan (10.1016/j.rser.2019.04.035_bib75) 2011; 13 Nagao (10.1016/j.rser.2019.04.035_bib124) 2011; 56 Hao (10.1016/j.rser.2019.04.035_bib42) 2017; 9 Kim (10.1016/j.rser.2019.04.035_bib158) 2011; 196 Nagao (10.1016/j.rser.2019.04.035_bib142) 2013; 15 Ibrahim (10.1016/j.rser.2019.04.035_bib192) 2011; 17 Appetecchi (10.1016/j.rser.2019.04.035_bib197) 2003; 124 Porcarelli (10.1016/j.rser.2019.04.035_bib206) 2016; 8 Whiteley (10.1016/j.rser.2019.04.035_bib181) 2014; 161 Bouchet (10.1016/j.rser.2019.04.035_bib255) 2013; 12 Martin (10.1016/j.rser.2019.04.035_bib83) 1991; 74 Xi (10.1016/j.rser.2019.04.035_bib268) 2004; 393 Latie (10.1016/j.rser.2019.04.035_bib50) 1984; 51 Cao (10.1016/j.rser.2019.04.035_bib254) 2017; 5 Tatsumisago (10.1016/j.rser.2019.04.035_bib120) 2006; 159 Kinoshita (10.1016/j.rser.2019.04.035_bib146) 2014; 269 Ujiie (10.1016/j.rser.2019.04.035_bib174) 2012; 211 Kobayashi (10.1016/j.rser.2019.04.035_bib40) 2010; 12 Otoyama (10.1016/j.rser.2019.04.035_bib147) 2016; 302 Saccoccio (10.1016/j.rser.2019.04.035_bib66) 2017; 365 Tominaga (10.1016/j.rser.2019.04.035_bib233) 2014; 50 Wright (10.1016/j.rser.2019.04.035_bib212) 1998; 43 Tsuchida (10.1016/j.rser.2019.04.035_bib225) 1983; 11 Aono (10.1016/j.rser.2019.04.035_bib48) 1993; 140 Quartarone (10.1016/j.rser.2019.04.035_bib259) 1998; 110 Arbi (10.1016/j.rser.2019.04.035_bib41) 2015; 35 Duan (10.1016/j.rser.2019.04.035_bib231a) 2018; 10 Uno (10.1016/j.rser.2019.04.035_bib223) 2008; 178 Mizuno (10.1016/j.rser.2019.04.035_bib126) 2004; 175 Mindemark (10.1016/j.rser.2019.04.035_bib229) 2018; 81 Yang (10.1016/j.rser.2019.04.035_bib300) 2019; 11 Jalem (10.1016/j.rser.2019.04.035_bib107) 2012; 24 Zhang (10.1016/j.rser.2019.04.035_bib203) 2003; 36 Aono (10.1016/j.rser.2019.04.035_bib61) 1991; 47 Murayama (10.1016/j.rser.2019.04.035_bib118) 2004; 170 Kim (10.1016/j.rser.2019.04.035_bib252) 2014; 2 Vignarooban (10.1016/j.rser.2019.04.035_bib294) 2014; 266 Fu (10.1016/j.rser.2019.04.035_bib43) 2006; 162 Appetecchi (10.1016/j.rser.2019.04.035_bib260) 2000; 45 Tatsumisago (10.1016/j.rser.2019.04.035_bib139) 1993; 101 Hong (10.1016/j.rser.2019.04.035_bib100) 1978; 13 Baek (10.1016/j.rser.2019.04.035_bib273) 2017; 343 Bohnke (10.1016/j.rser.2019.04.035_bib53) 1996; 91 Park (10.1016/j.rser.2019.04.035_bib265) 2018; 315 Morata-Orrantia (10.1016/j.rser.2019.04.035_bib115) 2003; 15 Judez (10.1016/j.rser.2019.04.035_bib226) 2017; 8 Mo (10.1016/j.rser.2019.04.035_bib189) 2011; 24 Chiang (10.1016/j.rser.2019.04.035_bib198) 1986; 18 Zhang (10.1016/j.rser.2019.04.035_bib295) 2015; 21 Okumura (10.1016/j.rser.2019.04.035_bib302) 2011; 21 Kennedy (10.1016/j.rser.2019.04.035_bib152) 1989; 136 Matsumura (10.1016/j.rser.2019.04.035_bib178) 2007; 174 Hayashi (10.1016/j.rser.2019.04.035_bib157) 2003; 5 Matsumi (10.1016/j.rser.2019.04.035_bib243) 2010; 195 Hori (10.1016/j.rser.2019.04.035_bib307) 2016; 4 Bates (10.1016/j.rser.2019.04.035_bib95) 1992; 53 Murugan (10.1016/j.rser.2019.04.035_bib12) 2007; 46 Walls (10.1016/j.rser.2019.04.035_bib283) 2003; 13 Lu (10.1016/j.rser.2019.04.035_bib16) 2018; 11 Kobayashi (10.1016/j.rser.2019.04.035_bib60) 1999; 81 Chowdari (10.1016/j.rser.2019.04.035_bib111) 1989; 108 Choi (10.1016/j.rser.2019.04.035_bib250) 2014; 24 Moreno (10.1016/j.rser.2019.04.035_bib276) 2011; 58 Zhang (10.1016/j.rser.2019.04.035_bib253) 2017; 46 Magistris (10.1016/j.rser.2019.04.035_bib112) 1985; 14 Hakari (10.1016/j.rser.2019.04.035_bib145) 2014; 262 Morimoto (10.1016/j.rser.2019.04.035_bib130) 1999; 82 Thangadurai (10.1016/j.rser.2019.04.035_bib71) 2006; 179 Rao (10.1016/j.rser.2019.04.035_bib309) 2006; 352 Yao (10.1016/j.rser.2019.04.035_bib303) 2017; 7 Kamaya (10.1016/j.rser.2019.04.035_bib125) 2011; 10 Nakayama (10.1016/j.rser.2019.04.035_bib217) 2010; 3 Wang (10.1016/j.rser.2019.04.035_bib270) 2010; 55 Kim (10.1016/j.rser.2019.04.035_bib140) 2013; 244 Meyer (10.1016/j.rser.2019.04.035_bib22) 1998; 10 Aso (10.1016/j.rser.2019.04.035_bib1) 2012; 83 Huang (10.1016/j.rser.2019.04.035_bib63) 2016; 8 Hirai (10.1016/j.rser.2019.04.035_bib135) 1996; 79 Michael (10.1016/j.rser.2019.04.035_bib261) 1997; 98 Aono (10.1016/j.rser.2019.04.035_bib38) 1992; 65 Xu (10.1016/j.rser.2019.04.035_bib161) 2016; 219 Liu (10.1016/j.rser.2019.04.035_bib68) 2018; 6 SuzukiK (10.1016/j.rser.2019.04.035_bib183) 2018; 86 Thangadurai (10.1016/j.rser.2019.04.035_bib10) 2006; 12 Yao (10.1016/j.rser.2019.04.035_bib9) 2016; 25 Cao (10.1016/j.rser.2019.04.035_bib28) 2014; 2 Khurana (10.1016/j.rser.2019.04.035_bib227) 2014; 136 Sakuda (10.1016/j.rser.2019.04.035_bib301) 2010; 22 Hayashi (10.1016/j.rser.2019.04.035_bib5) 2008; 10 Goodenough (10.1016/j.rser.2019.04.035_bib18) 1976; 11 Yu (10.1016/j.rser.2019.04.035_bib99) 1997; 144 Hayashi (10.1016/j.rser.2019.04.035_bib163) 2014; 591 Minami (10.1016/j.rser.2019.04.035_bib164) 2011; 192 Zhang (10.1016/j.rser.2019.04.035_bib220) 2014; 4 Manthiram (10.1016/j.rser.2019.04.035_bib7) 2017; 2 Tanaka (10.1016/j.rser.2019.04.035_bib211) 2001; 46 Xu (10.1016/j.rser.2019.04.035_bib170) 2017; 5 Baba (10.1016/j.rser.2019.04.035_bib4) 2016; 4 Shin (10.1016/j.rser.2019.04.035_bib213) 2006; 156 Manuel Stephan (10.1016/j.rser.2019.04.035_bib193) 2006; 47 Inaguma (10.1016/j.rser.2019.04.035_bib54) 2002; 166 Yuan (10.1016/j.rser.2019.04.035_bib221) 2013; 240 Kim (10.1016/j.rser.2019.04.035_bib308) 2012; 225 Trevey (10.1016/j.rser.2019.04.035_bib165) 2010; 195 Kim (10.1016/j.rser.2019.04.035_bib240) 2009; 50 Harada (10.1016/j.rser.2019.04.035_bib52) 1999; 121 Bashiri (10.1016/j.rser.2019.04.035_bib264) 2018 Chida (10.1016/j.rser.2019.04.035_bib149) 2018; 44 Kuwano (10.1016/j.rser.2019.04.035_bib101) 1980; 15 Ha (10.1016/j.rser.2019.04.035_bib237) 2012; 5 Zhao (10.1016/j.rser.2019.04.035_bib26) 2016; 301 Ohtomo (10.1016/j.rser.2019.04.035_bib119) 2005; 146 Lu (10.1016/j.rser.2019.04.035_bib172) 2017; 356 Tang (10.1016/j.rser.2019.04.035_bib279) 2012; 12 Pye (10.1016 |
References_xml | – volume: 296 start-page: 13 year: 2016 end-page: 17 ident: bib3 article-title: All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte publication-title: Solid State Ionics – volume: 11 start-page: 185 year: 2018 end-page: 201 ident: bib266 article-title: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries publication-title: Energy Environ Sci – volume: 5 start-page: 23844 year: 2017 end-page: 23852 ident: bib258 article-title: Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids publication-title: J Mater Chem A – volume: 262 start-page: 589 year: 2014 end-page: 592 ident: bib15 article-title: Lithium ion conduction in tavorite-type LiMXO publication-title: Solid State Ionics – volume: 247 start-page: 975 year: 2014 end-page: 980 ident: bib31 article-title: An all-solid state NASICON sodium battery operating at 200 °C publication-title: J Power Sources – volume: 70 start-page: 144 year: 1994 end-page: 146 ident: bib37 article-title: Ionic-conductivity and luminescence of Eu publication-title: Solid State Ionics – volume: 136 start-page: 7395 year: 2014 end-page: 7402 ident: bib227 article-title: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries publication-title: J Am Chem Soc – volume: 5 start-page: 6491 year: 2012 end-page: 6499 ident: bib237 article-title: UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries publication-title: Energy Environ Sci – volume: 8 start-page: 10350 year: 2016 end-page: 10359 ident: bib206 article-title: Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries publication-title: ACS Appl Mater Interfaces – volume: 119 start-page: 442 year: 2003 end-page: 447 ident: bib247 article-title: New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery publication-title: J Power Sources – volume: 13 start-page: 509 year: 2011 end-page: 512 ident: bib74 article-title: High lithium ion conductive Li publication-title: Electrochem Commun – volume: 591 start-page: 247 year: 2014 end-page: 250 ident: bib163 article-title: Improved chemical stability and cyclability in Li publication-title: J. Alloys Compd. – volume: 3 start-page: 10722 year: 2013 end-page: 10730 ident: bib235 article-title: A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries publication-title: RSC Adv – volume: 103 start-page: 250 year: 1988 end-page: 256 ident: bib91 article-title: Structure and ionic conductivity of LiCl∙Li publication-title: J Non-Cryst Solids – volume: 148 start-page: A742 year: 2001 end-page: A746 ident: bib176 article-title: Lithium ionic conductor thio-LISICON: the Li publication-title: J Electrochem Soc – volume: 306 start-page: 623 year: 2016 end-page: 629 ident: bib64 article-title: Synthesis and characterization of perovskite-type (Li, Sr)(Zr, Nb)O publication-title: J Power Sources – volume: 146 start-page: 1672 year: 1999 end-page: 1676 ident: bib274 article-title: Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO publication-title: J Electrochem Soc – volume: 8 start-page: 10163 year: 2013 end-page: 10169 ident: bib289 article-title: Electrical properties of composite polymer electrolytes based on PEO-SN-LiCF publication-title: Int. J. Electrochem. Sci. – volume: 17 start-page: 147 year: 1985 end-page: 154 ident: bib90 article-title: Effect of rapid quenching on electrical properties of lithium conductive glasses publication-title: Solid State Ionics – volume: 116 start-page: 140 year: 2016 end-page: 162 ident: bib29 article-title: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction publication-title: Chem Rev – volume: 11 start-page: 8556 year: 2019 end-page: 8566 ident: bib300 article-title: Design and synthesis of double-functional polymer composite layer coating to enhance the electrochemical performance of the Ni-rich cathode at upper cutoff voltage publication-title: ACS Appl Mater Interfaces – volume: 183 start-page: 48 year: 2011 end-page: 53 ident: bib73 article-title: Synthesis of garnet-type Li publication-title: Solid State Ionics – volume: 365 start-page: 43 year: 2017 end-page: 52 ident: bib66 article-title: Low temperature pulsed laser deposition of garnet Li publication-title: J Power Sources – volume: 219 start-page: 235 year: 2016 end-page: 240 ident: bib161 article-title: Preparation of Li publication-title: Electrochim Acta – volume: 11 start-page: 203 year: 1976 end-page: 220 ident: bib18 article-title: Fast Na publication-title: Mater Res Bull – volume: 130 start-page: 97 year: 2000 end-page: 104 ident: bib184 article-title: Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system publication-title: Solid State Ionics – volume: 196 start-page: 3655 year: 2011 end-page: 3658 ident: bib218 article-title: Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery publication-title: J Power Sources – volume: 86 start-page: 539 year: 1996 end-page: 542 ident: bib137 article-title: Preparation of Li publication-title: Solid State Ionics – volume: 7 start-page: 1602923 year: 2017 ident: bib303 article-title: High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes publication-title: Adv. Energy Mater. – volume: 16 start-page: 175 year: 2009 end-page: 180 ident: bib72 article-title: Evaluation of electrochemical characteristics of Li publication-title: ECS Transactions – volume: 394 start-page: 456 year: 1998 ident: bib269 article-title: Nanocomposite polymer electrolytes for lithium batteries publication-title: Nature – volume: 39 start-page: 145 year: 1998 end-page: 150 ident: bib132 article-title: X-ray photoelectron spectroscopy of (100–x)(0·6Li publication-title: Phys Chem Glasses – volume: 178 start-page: 837 year: 2007 end-page: 841 ident: bib155 article-title: Lithium ion conductivity of the Li publication-title: Solid State Ionics – volume: 13 start-page: 117 year: 1978 end-page: 124 ident: bib100 article-title: Crystal structure and ionic conductivity of Li publication-title: Mater Res Bull – volume: 272 start-page: 138 year: 2015 end-page: 143 ident: bib44 article-title: Structural and electrochemical properties of Fe- and Al-doped Li publication-title: Solid State Ionics – volume: 86 start-page: 689 year: 1993 end-page: 693 ident: bib114 article-title: High ionic conductivity in lithium lanthanum titanate publication-title: Solid State Commun – volume: 21 start-page: 797 year: 2010 end-page: 801 ident: bib238 article-title: All solid polymer electrolytes based on polar side group rotation for rechargeable lithium batteries publication-title: Polym Adv Technol – volume: 110 start-page: 1 year: 1998 end-page: 14 ident: bib259 article-title: PEO-based composite polymer electrolytes publication-title: Solid State Ionics – volume: 4 start-page: 22 year: 2016 ident: bib4 article-title: Structure and ionic conductivity of Li publication-title: Frontiers in Energy Research – volume: 17 start-page: 44 year: 2008 ident: bib98 article-title: Thin film micro-batteries publication-title: Electrochem. Soc. Interface – volume: 12 start-page: 452 year: 2013 ident: bib255 article-title: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries publication-title: Nat Mater – volume: 10 start-page: 1568 year: 2017 end-page: 1575 ident: bib65 article-title: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries publication-title: Energy Environ Sci – volume: 3 start-page: 1995 year: 2010 end-page: 2002 ident: bib217 article-title: Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes publication-title: Energy Environ Sci – volume: 393 start-page: 271 year: 2004 end-page: 276 ident: bib268 article-title: Nanocomposite polymer electrolyte based on poly(ethylene oxide) and solid super acid for lithium polymer battery publication-title: Chem Phys Lett – volume: 65 start-page: 2200 year: 1992 end-page: 2204 ident: bib38 article-title: Electrical properties and sinterability for lithium germanium phosphate Li publication-title: Bull Chem Soc Jpn – volume: 79 start-page: 349 year: 1996 end-page: 352 ident: bib135 article-title: Si and publication-title: J Am Ceram Soc – volume: 3 start-page: 18636 year: 2015 end-page: 18648 ident: bib77 article-title: A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries publication-title: J Mater Chem A – volume: 53 start-page: 2310 year: 2014 end-page: 2316 ident: bib110 article-title: An unnoticed inorganic solid electrolyte: dilithium sodium phosphate with the nalipoite structure publication-title: Inorg Chem – volume: 94 start-page: 1779 year: 2011 end-page: 1783 ident: bib160 article-title: Crystallization process for superionic Li publication-title: J Am Ceram Soc – volume: 49 start-page: 307 year: 2013 end-page: 318 ident: bib277 article-title: Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries publication-title: Eur Polym J – volume: 284 start-page: 206 year: 2015 end-page: 211 ident: bib169 article-title: Li publication-title: J Power Sources – volume: 91 start-page: 21 year: 1996 end-page: 31 ident: bib53 article-title: Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate publication-title: Solid State Ionics – volume: 24 start-page: 1357 year: 2012 end-page: 1364 ident: bib107 article-title: Multivariate method-assisted Ab initio study of olivine-type LiMXO publication-title: Chem Mater – volume: 146 start-page: 391 year: 2005 end-page: 396 ident: bib234 article-title: A new polysiloxane based cross-linker for solid polymer electrolyte publication-title: J Power Sources – volume: 12 start-page: 295 year: 2007 end-page: 302 ident: bib230 article-title: Lithium AlPO publication-title: J Solid State Electrochem – volume: 44 start-page: 354 year: 1982 end-page: 365 ident: bib14 article-title: Ionic conductivity of LISICON solid solutions, Li publication-title: J Solid State Chem – volume: 44 start-page: 6614 year: 2018 end-page: 6618 ident: bib81 article-title: Structure and ionic conductivity of Li publication-title: Ceram Int – volume: 54 start-page: 3178 year: 2018 end-page: 3181 ident: bib49 article-title: Single-phase All-solid-state lithium battery based on Li publication-title: Chem Commun. – volume: 136 start-page: 2441 year: 1989 end-page: 2443 ident: bib152 article-title: Preparation and electrochemical properties of the SiS publication-title: J Electrochem Soc – volume: 146 start-page: 707 year: 2005 end-page: 710 ident: bib187 article-title: Solid electrolyte, thio-LISICON, thin film prepared by pulsed laser deposition publication-title: J Power Sources – volume: 141 start-page: L78 year: 1994 end-page: L79 ident: bib57 article-title: Lithium ion conductivity of A‐site deficient perovskite solid solution La publication-title: J Electrochem Soc – volume: 89 start-page: 219 year: 2000 end-page: 226 ident: bib194 article-title: Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes publication-title: J Power Sources – volume: 53 start-page: 647 year: 1992 end-page: 654 ident: bib95 article-title: Electrical properties of amorphous lithium electrolyte thin films publication-title: Solid State Ionics – volume: 360 start-page: 328 year: 2017 end-page: 335 ident: bib298 article-title: Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li publication-title: J Power Sources – volume: 35 start-page: 1477 year: 2015 end-page: 1484 ident: bib41 article-title: High lithium ion conducting solid electrolytes based on NASICON Li publication-title: J Eur Ceram Soc – volume: 52 start-page: 1003 year: 2006 end-page: 1008 ident: bib46 article-title: Low temperature solid-state synthesis routine and mechanism for Li publication-title: Electrochim Acta – volume: 266 start-page: 25 year: 2014 end-page: 28 ident: bib294 article-title: Effect of TiO publication-title: Solid State Ionics – volume: 8 start-page: 199 year: 2012 end-page: 207 ident: bib19 article-title: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes publication-title: Electron. Mater. Lett. – volume: 14 start-page: 58 year: 2018 end-page: 74 ident: bib6 article-title: Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application publication-title: Energ. Storage Mater – volume: 104 start-page: 85 year: 2002 end-page: 89 ident: bib207 article-title: Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide) publication-title: J Power Sources – volume: 98 start-page: 3831 year: 2015 end-page: 3835 ident: bib310 article-title: Dual doping: an effective method to enhance the electrochemical properties of Li publication-title: J Am Ceram Soc – volume: 162 start-page: A704 year: 2015 end-page: A710 ident: bib27 article-title: All-solid-state lithium batteries assembled with hybrid solid electrolytes publication-title: J Electrochem Soc – volume: 167 start-page: 263 year: 2004 end-page: 272 ident: bib62 article-title: Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system publication-title: Solid State Ionics – volume: 262 start-page: 147 year: 2014 end-page: 150 ident: bib145 article-title: Preparation of composite electrode with Li publication-title: Solid State Ionics – volume: 174 start-page: 632 year: 2007 end-page: 636 ident: bib178 article-title: Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries publication-title: J Power Sources – volume: 17 start-page: 399 year: 2011 end-page: 405 ident: bib192 article-title: Effects of various LiPF publication-title: Ionics – volume: 343 start-page: 22 year: 2017 end-page: 29 ident: bib273 article-title: Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery publication-title: J Power Sources – volume: 5 start-page: 6310 year: 2017 end-page: 6317 ident: bib171 article-title: All-solid-state lithium–sulfur batteries based on a newly designed Li publication-title: J Mater Chem A – volume: 14 start-page: 2871 year: 2002 end-page: 2875 ident: bib296 article-title: A new La publication-title: Chem Mater – volume: 86 start-page: 257 year: 1996 end-page: 260 ident: bib55 article-title: Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides publication-title: Solid State Ionics – volume: 225 start-page: 626 year: 2012 end-page: 630 ident: bib308 article-title: Characterization of amorphous and crystalline Li publication-title: Solid State Ionics – volume: 1 start-page: 6320 year: 2013 end-page: 6326 ident: bib167 article-title: Improvement of chemical stability of Li publication-title: J Mater Chem A – volume: 189 start-page: 672 year: 2009 end-page: 675 ident: bib123 article-title: Characterization of all-solid-state lithium secondary batteries using Cu publication-title: J Power Sources – volume: 81 start-page: 114 year: 2018 end-page: 143 ident: bib229 article-title: Beyond PEO-alternative host materials for Li publication-title: Prog Polym Sci – volume: 108 start-page: 128 year: 2000 end-page: 131 ident: bib129 article-title: Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li publication-title: J Ceram Soc Jpn – volume: 2 start-page: 720 year: 2014 end-page: 734 ident: bib106 article-title: An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks publication-title: J Mater Chem A – volume: 166 start-page: A975 year: 2019 end-page: A983 ident: bib263 article-title: Understanding chemical stability issues between different solid electrolytes in all-solid-state batteries publication-title: J. Electrochem. Soc. – volume: 374 start-page: 107 year: 2018 end-page: 112 ident: bib8 article-title: Rational coating of Li publication-title: J Power Sources – volume: 10 start-page: 439 year: 1998 end-page: 448 ident: bib22 article-title: Polymer electrolytes for lithium-ion batteries publication-title: Adv. Mater. – volume: 45 start-page: 558 year: 2009 end-page: 563 ident: bib199 article-title: New solid polymer electrolytes based on polyester diacrylate for lithium power sources publication-title: Russ J Electrochem – volume: 2 year: 2014 ident: bib188 article-title: Recent advances in inorganic solid electrolytes for lithium batteries publication-title: Front. Energy Res. – volume: 274 start-page: 458 year: 2015 end-page: 463 ident: bib25 article-title: Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li publication-title: J Power Sources – volume: 13 start-page: 1373 year: 2011 end-page: 1375 ident: bib75 article-title: High conductive yttrium doped Li publication-title: Electrochem Commun – volume: 47 start-page: 257 year: 1991 end-page: 264 ident: bib61 article-title: Electrical property and sinterability of LiTi publication-title: Solid State Ionics – volume: 140 start-page: 1827 year: 1993 end-page: 1833 ident: bib48 article-title: The electrical properties of ceramic electrolytes for LiM publication-title: J Electrochem Soc – volume: 240 start-page: 18 year: 2013 end-page: 25 ident: bib80 article-title: Lithium ion transport properties of high conductive tellurium substituted Li publication-title: J Power Sources – volume: 135 start-page: 15694 year: 2013 end-page: 15697 ident: bib182 article-title: Li publication-title: J Am Chem Soc – volume: 9 start-page: 607 year: 2018 end-page: 613 ident: bib150 article-title: All-solid-state batteries with thick electrode configurations publication-title: J Phys Chem Lett – volume: 43 start-page: 1137 year: 1998 end-page: 1143 ident: bib212 article-title: Polymer electrolytes-the early days publication-title: Electrochim Acta – volume: 11 start-page: A1 year: 2008 end-page: A3 ident: bib102 article-title: Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO publication-title: Electrochem Solid-State Lett – volume: 22 start-page: 949 year: 2010 end-page: 956 ident: bib301 article-title: Interfacial observation between LiCoO publication-title: Chem Mater – volume: 22 start-page: 7687 year: 2012 end-page: 7691 ident: bib190 article-title: Structural requirements for fast lithium ion migration in Li publication-title: J Mater Chem – volume: 18 start-page: 562 year: 1986 end-page: 569 ident: bib33 article-title: Lithium ion conductors in the system AB(IV) publication-title: Solid State Ionics – volume: 15 start-page: 285 year: 1980 end-page: 294 ident: bib86 article-title: Domaine vitreux, structure et conductivite electrique des verres du systeme LiCl/1bLi publication-title: Mater Res Bull – volume: 182 start-page: 116 year: 2011 end-page: 119 ident: bib162 article-title: Structural change of Li publication-title: Solid State Ionics – volume: 38 start-page: 217 year: 1990 end-page: 224 ident: bib151 article-title: Synthesis and characterization of the B publication-title: Solid State Ionics – volume: 175 start-page: 687 year: 2004 end-page: 690 ident: bib92 article-title: Li-ion conductivity in Li publication-title: Solid State Ionics – volume: 2 start-page: 9948 year: 2014 end-page: 9954 ident: bib222 article-title: Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries publication-title: J Mater Chem A – volume: 8 start-page: 1956 year: 2017 end-page: 1960 ident: bib226 article-title: Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all-solid-state Li-S cell publication-title: J Phys Chem Lett – volume: 9 start-page: 13694 year: 2017 end-page: 13702 ident: bib287 article-title: Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries publication-title: ACS Appl Mater Interfaces – volume: 6 start-page: 5296 year: 2018 end-page: 5303 ident: bib32 article-title: NASICON LiM publication-title: J Mater Chem A – volume: 50 start-page: 3822 year: 2009 end-page: 3827 ident: bib240 article-title: Transition behavior and ionic conductivity of lithium perchlorate-doped polystyrene-b-poly(2-vinylpyridine) publication-title: Polymer – volume: 162 start-page: 651 year: 2006 end-page: 657 ident: bib43 article-title: Synthesis of Li publication-title: J Power Sources – volume: 61 start-page: 759 year: 2013 end-page: 770 ident: bib59 article-title: Progress and prospective of solid-state lithium batteries publication-title: Acta Mater – volume: 177 start-page: 2721 year: 2006 end-page: 2725 ident: bib156 article-title: High lithium ion conducting glass-ceramics in the system Li publication-title: Solid State Ionics – volume: 11 start-page: 91 year: 1983 end-page: 95 ident: bib209 article-title: Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts publication-title: Solid State Ionics – volume: 192 start-page: 122 year: 2011 end-page: 125 ident: bib164 article-title: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li publication-title: Solid State Ionics – volume: 301 start-page: 47 year: 2016 end-page: 53 ident: bib26 article-title: A new solid polymer electrolyte incorporating Li publication-title: J Power Sources – volume: 4 start-page: 42 year: 1998 end-page: 47 ident: bib117 article-title: Lithium ion conductive glass and its application to solid state batteries publication-title: Ionics – volume: 179 start-page: 974 year: 2006 end-page: 984 ident: bib71 article-title: Effect of sintering on the ionic conductivity of garnet-related structure Li publication-title: J Solid State Chem – volume: 56 start-page: 6055 year: 2011 end-page: 6059 ident: bib124 article-title: Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li publication-title: Electrochim Acta – volume: 146 start-page: 715 year: 2005 end-page: 718 ident: bib119 article-title: Electrical and electrochemical properties of Li publication-title: J Power Sources – volume: 356 start-page: 2670 year: 2010 end-page: 2673 ident: bib154 article-title: Preparation and ionic conductivity of Li publication-title: J Non-Cryst Solids – volume: 16 start-page: 1345 year: 2006 end-page: 1349 ident: bib214 article-title: Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries publication-title: J Mater Chem – volume: 84 start-page: 477 year: 2001 end-page: 479 ident: bib153 article-title: Preparation of Li publication-title: J Am Ceram Soc – volume: 195 start-page: 6182 year: 2010 end-page: 6186 ident: bib243 article-title: Synthesis of supramolecular solid polymer electrolytes via self-assembly of diborylated ionic liquid publication-title: J Power Sources – volume: 10 start-page: 375 year: 2004 end-page: 379 ident: bib195 article-title: Effect of sulfur electrode composition on the electrochemical property of lithium/PEO/sulfur battery publication-title: Met Mater Int – volume: 9 start-page: 2013 year: 2007 end-page: 2017 ident: bib216 article-title: All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure publication-title: Electrochem Commun – volume: 98 start-page: 167 year: 1997 end-page: 174 ident: bib261 article-title: Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers publication-title: Solid State Ionics – volume: 159 start-page: 193 year: 2006 end-page: 199 ident: bib120 article-title: All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes publication-title: J Power Sources – volume: 225 start-page: 13 year: 2013 end-page: 19 ident: bib76 article-title: Stabilization of cubic lithium-stuffed garnets of the type “Li publication-title: J Power Sources – volume: 5 start-page: 2829 year: 2017 end-page: 2834 ident: bib170 article-title: Tailored Li publication-title: J Mater Chem A – volume: 156 start-page: A577 year: 2009 end-page: A583 ident: bib241 article-title: Star-Shaped polymer electrolyte with microphase separation structure for all-solid-state lithium batteries publication-title: J Electrochem Soc – volume: 15 start-page: 1661 year: 1980 end-page: 1667 ident: bib101 article-title: New Li publication-title: Mater Res Bull – volume: 122 start-page: 9852 year: 2018 end-page: 9858 ident: bib202 article-title: A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery publication-title: J Phys Chem C – volume: 15 start-page: 6107 year: 2013 end-page: 6112 ident: bib109 article-title: Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure publication-title: Phys Chem Chem Phys – volume: 262 start-page: 738 year: 2014 end-page: 742 ident: bib232 article-title: Polycarbonate-based solid polymer electrolytes for Li-ion batteries publication-title: Solid State Ionics – volume: 46 start-page: 235 year: 1963 end-page: 238 ident: bib82 article-title: Some structural and electrical properties of lithium silicate glasses publication-title: J Am Ceram Soc – volume: 44 start-page: 742 year: 2018 end-page: 746 ident: bib149 article-title: Liquid-phase synthesis of Li publication-title: Ceram Int – volume: 1 start-page: 678 year: 2016 end-page: 682 ident: bib256 article-title: Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature publication-title: Acs Energy Lett. – volume: 108 start-page: 323 year: 1989 end-page: 332 ident: bib111 article-title: Ionic conductivity studies of the vitreous Li publication-title: J Non-Cryst Solids – volume: 109 start-page: 205702 year: 2012 ident: bib79 article-title: Origin of the structural phase transition in Li publication-title: Phys Rev Lett – volume: 57 start-page: 40 year: 2011 end-page: 45 ident: bib236 article-title: A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery publication-title: Electrochim Acta – start-page: 173 year: 1987 end-page: 236 ident: bib210 article-title: Polymer electrolyte reviews – volume: 22 start-page: 5198 year: 2010 end-page: 5201 ident: bib267 article-title: Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications publication-title: Adv. Mater. – volume: 141 start-page: 143 year: 2005 end-page: 148 ident: bib291 article-title: All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO publication-title: J Power Sources – volume: 137 start-page: 1023 year: 1990 end-page: 1027 ident: bib35 article-title: Ionic conductivity of solid electrolytes based on lithium titanium phosphate publication-title: J Electrochem Soc – volume: 55 start-page: 7 year: 1995 end-page: 10 ident: bib262 article-title: Composite gel electrolyte for rechargeable lithium batteries publication-title: J Power Sources – volume: 86 start-page: 1 year: 2018 end-page: 5 ident: bib183 article-title: Composite sulfur electrode for all-solid-state lithium–sulfur battery with Li publication-title: Electrochemistry – volume: 55 start-page: 1895 year: 2010 end-page: 1899 ident: bib270 article-title: Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries publication-title: Electrochim Acta – volume: 53 start-page: 430 year: 1984 end-page: 434 ident: bib103 article-title: Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes publication-title: J Solid State Chem – volume: 36 start-page: 9176 year: 2003 end-page: 9180 ident: bib203 article-title: Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: synthesis and conductivity publication-title: Macromolecules – volume: 8 start-page: 14552 year: 2016 end-page: 14557 ident: bib63 article-title: Li-ion conduction and stability of perovskite Li publication-title: ACS Appl Mater Interfaces – volume: 70 start-page: 619 year: 1994 end-page: 628 ident: bib97 article-title: Rechargeable thin-film lithium batteries publication-title: Solid State Ionics – volume: 150 start-page: 693 year: 2010 end-page: 696 ident: bib105 article-title: Ab initio prediction for the ionic conduction of lithium in LiInSiO publication-title: Solid State Commun – volume: 47 start-page: 5952 year: 2006 end-page: 5964 ident: bib193 article-title: Review on composite polymer electrolytes for lithium batteries publication-title: Polymer – volume: 5 start-page: 111 year: 2003 end-page: 114 ident: bib157 article-title: Formation of superionic crystals from mechanically milled Li publication-title: Electrochem Commun – volume: 49 start-page: 4808 year: 1978 end-page: 4811 ident: bib113 article-title: Ionic conductivity of quenched alkali niobate and tantalate glasses publication-title: J Appl Phys – volume: 10 start-page: 682 year: 2011 end-page: 686 ident: bib125 article-title: A lithium superionic conductor publication-title: Nat Mater – volume: 23 start-page: 3353 year: 2013 end-page: 3360 ident: bib200 article-title: A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications publication-title: Adv Funct Mater – volume: 240 start-page: 653 year: 2013 end-page: 658 ident: bib221 article-title: Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework publication-title: J Power Sources – volume: 74 start-page: 1767 year: 1991 end-page: 1784 ident: bib83 article-title: Ionic conduction in phosphate glasses publication-title: J Am Ceram Soc – volume: 5 start-page: 1500353 year: 2015 ident: bib251 article-title: In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries publication-title: Adv. Energy Mater. – volume: 81 start-page: 1305 year: 1998 end-page: 1309 ident: bib131 article-title: Structural investigation of 95(0.6Li publication-title: J Am Ceram Soc – volume: 13 start-page: 710 year: 2003 end-page: 717 ident: bib283 article-title: Nanocomposite electrolytes with fumed silica and hectorite clay networks: passive versus active fillers publication-title: Adv Funct Mater – volume: 175 start-page: 699 year: 2004 end-page: 702 ident: bib126 article-title: All-solid-state lithium secondary batteries using Li publication-title: Solid State Ionics – volume: 31 start-page: 478 year: 2017 end-page: 485 ident: bib286 article-title: Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries publication-title: Nanomater Energy – volume: 146 start-page: 397 year: 2005 end-page: 401 ident: bib290 article-title: Influence of TiO publication-title: J Power Sources – volume: 53 start-page: 1183 year: 1992 end-page: 1186 ident: bib128 article-title: New lithium ion conductors based on Li publication-title: Solid State Ionics – volume: 4 start-page: 6272 year: 2014 ident: bib220 article-title: Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries publication-title: Sci Rep – volume: 24 start-page: 44 year: 2014 end-page: 52 ident: bib250 article-title: Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium‐ion batteries publication-title: Adv Funct Mater – volume: 1 start-page: 16030 year: 2016 ident: bib191 article-title: High-power all-solid-state batteries using sulfide superionic conductors publication-title: Nat. Energy – volume: 195 start-page: 4984 year: 2010 end-page: 4989 ident: bib165 article-title: Preparation of Li publication-title: J Power Sources – volume: 14 start-page: 87 year: 1985 end-page: 91 ident: bib112 article-title: Lithium borophosphate vitreous electrolytes publication-title: J Power Sources – volume: 269 start-page: 727 year: 2014 end-page: 734 ident: bib146 article-title: Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery publication-title: J Power Sources – volume: 7 start-page: A455 year: 2004 end-page: A458 ident: bib177 article-title: A self-assembled breathing interface for all-solid-state ceramic lithium batteries publication-title: Electrochem Solid-State Lett – volume: 15 start-page: 3991 year: 2003 end-page: 3995 ident: bib115 article-title: Optimization of lithium conductivity in La/Li titanates publication-title: Chem Mater – volume: 233 start-page: 231 year: 2013 end-page: 235 ident: bib144 article-title: All-solid-state lithium secondary batteries using the 75Li publication-title: J Power Sources – volume: 21 start-page: 381 year: 2015 end-page: 385 ident: bib295 article-title: Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery publication-title: Ionics – volume: 309 start-page: 27 year: 2016 end-page: 32 ident: bib304 article-title: Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films publication-title: J Power Sources – volume: 352 start-page: 3310 year: 2006 end-page: 3314 ident: bib309 article-title: Molecular dynamics simulation of ternary glasses Li publication-title: J Non-Cryst Solids – volume: 156 start-page: 560 year: 2006 end-page: 566 ident: bib213 article-title: Solid-state Li/LiFePO publication-title: J Power Sources – volume: 89 start-page: 390 year: 2005 end-page: 394 ident: bib219 article-title: PAN–PEO solid polymer electrolytes with high ionic conductivity publication-title: Mater Chem Phys – volume: 149 start-page: 59 year: 2002 end-page: 65 ident: bib94 article-title: Characterizations of a new lithium ion conducting Li publication-title: Solid State Ionics – volume: 46 start-page: 7778 year: 2007 end-page: 7781 ident: bib12 article-title: Fast lithium ion conduction in garnet-type Li publication-title: Angew Chem, Int Ed – volume: 9 start-page: 33735 year: 2017 end-page: 33739 ident: bib42 article-title: A design of solid-state Li-S cell with evaporated lithium anode to eliminate shuttle effects publication-title: ACS Appl Mater Interfaces – volume: 225 start-page: 350 year: 2012 end-page: 353 ident: bib173 article-title: Electrochemical properties of the amorphous solid electrolytes in the system Li publication-title: Solid State Ionics – volume: 12 start-page: 1152 year: 2012 end-page: 1156 ident: bib279 article-title: High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers publication-title: Nano Lett – volume: 82 start-page: 1352 year: 1999 end-page: 1354 ident: bib130 article-title: Mechanochemical synthesis of new amorphous materials of 60Li publication-title: J Am Ceram Soc – year: 2012 ident: bib84 article-title: Borate glasses: structure, properties, applications – volume: 23 start-page: 29 year: 1989 end-page: 50 ident: bib127 article-title: Ionically conductive glasses based on SiS publication-title: Mater Chem Phys – volume: 117 start-page: 21064 year: 2013 end-page: 21074 ident: bib39 article-title: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes publication-title: J Phys Chem C – volume: 319 start-page: 247 year: 2016 end-page: 254 ident: bib196 article-title: In operando scanning electron microscopy and ultraviolet–visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte publication-title: J Power Sources – volume: 267 start-page: 68 year: 2014 end-page: 73 ident: bib244 article-title: Lithium ion conductive properties of aliphatic polycarbonate publication-title: Solid State Ionics – volume: 113 start-page: 733 year: 1998 end-page: 738 ident: bib133 article-title: Thermal and electrical properties of rapidly quenched Li publication-title: Solid State Ionics – volume: 10 start-page: 85 year: 2018 end-page: 91 ident: bib231 article-title: In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries publication-title: Energ. Storage Mater – year: 2018 ident: bib264 article-title: Conformal solid state Li publication-title: Bull Am Phys Soc – volume: 18 start-page: 300 year: 1986 end-page: 305 ident: bib198 article-title: Polymeric electrolyte based on poly (ethylene imine) and lithium salts publication-title: Solid State Ionics – volume: 10 start-page: 682 year: 2011 ident: bib21 article-title: A lithium superionic conductor publication-title: Nat Mater – volume: 161 start-page: 171 year: 2015 end-page: 176 ident: bib288 article-title: Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF publication-title: Electrochim Acta – volume: 289 start-page: 149 year: 2018 end-page: 157 ident: bib299 article-title: Graphene@TiO publication-title: Electrochim Acta – volume: 240 start-page: 50 year: 2013 end-page: 53 ident: bib34 article-title: High Li publication-title: J Power Sources – volume: 48 start-page: 112 year: 2003 end-page: 115 ident: bib104 article-title: Growth and ionic conductivity of Li publication-title: Crystallogr Rep – volume: 144 start-page: 524 year: 1997 end-page: 532 ident: bib99 article-title: A stable thin-film lithium electrolyte: lithium phosphorus oxynitride publication-title: J Electrochem Soc – volume: 16 start-page: 459 year: 2016 end-page: 465 ident: bib271 article-title: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO publication-title: Nano Lett – volume: 314 start-page: 85 year: 2016 end-page: 92 ident: bib148 article-title: The effect of diamond-like carbon coating on LiNi publication-title: J Power Sources – volume: 214 start-page: 25 year: 2012 end-page: 30 ident: bib166 article-title: Li publication-title: Solid State Ionics – volume: 69 start-page: 385 year: 1996 end-page: 388 ident: bib36 article-title: Ionic conductivity of solid electrolytes based on Li publication-title: Russ J Appl Chem – volume: 46 start-page: 797 year: 2017 end-page: 815 ident: bib253 article-title: Single lithium-ion conducting solid polymer electrolytes: advances and perspectives publication-title: Chem Soc Rev – volume: 196 start-page: 6920 year: 2011 end-page: 6923 ident: bib158 article-title: Formation of the high lithium ion conducting phase from mechanically milled amorphous Li publication-title: J Power Sources – volume: 244 start-page: 476 year: 2013 end-page: 481 ident: bib140 article-title: Effect of mixing method on the properties of composite cathodes for all-solid-state lithium batteries using Li publication-title: J Power Sources – volume: 5 start-page: 16984 year: 2017 end-page: 16993 ident: bib305 article-title: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life publication-title: J Mater Chem A – volume: 168 start-page: 140 year: 2002 end-page: 148 ident: bib185 article-title: Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system publication-title: J Solid State Chem – volume: 81 start-page: 853 year: 1999 end-page: 858 ident: bib60 article-title: Densification of LiTi publication-title: J Power Sources – volume: 357 start-page: 2863 year: 2011 end-page: 2867 ident: bib93 article-title: Fabrication of a high lithium ion conducting lithium borosilicate glass publication-title: J Non-Cryst Solids – volume: 62 start-page: 309 year: 1993 end-page: 316 ident: bib47 article-title: Electrical properties and crystal structure of solid electrolyte based on lithium hafnium phosphate LiHf publication-title: Solid State Ionics – volume: 398 start-page: 792 year: 1999 ident: bib23 article-title: Structure of the polymer electrolyte poly (ethylene oxide) publication-title: Nature – volume: 86 start-page: 437 year: 2003 end-page: 440 ident: bib70 article-title: Novel fast lithium ion conduction in garnet-type Li publication-title: J Am Ceram Soc – volume: 24 start-page: 15 year: 2011 end-page: 17 ident: bib189 article-title: First principles study of the Li publication-title: Chem Mater – volume: 25 year: 2016 ident: bib9 article-title: All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science publication-title: Chin Phys B – volume: 23 start-page: 470 year: 1987 end-page: 472 ident: bib51 article-title: Investigation into complex oxides of La publication-title: Izv Akad Nauk SSSR, Neorg Mater. – volume: 55 start-page: 2799 year: 2014 end-page: 2808 ident: bib224 article-title: Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures publication-title: Polymer – volume: 59 start-page: 161 year: 1989 end-page: 168 ident: bib280 article-title: Properties of mixed polymer and crystalline ionic conductors publication-title: Philos Mag B – volume: 135 start-page: 47 year: 2000 end-page: 52 ident: bib292 article-title: Nanocomposite polymer electrolytes and their impact on the lithium battery technology publication-title: Solid State Ionics – volume: 222 start-page: 237 year: 2013 end-page: 242 ident: bib180 article-title: All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte publication-title: J Power Sources – volume: 293 start-page: 941 year: 2015 end-page: 945 ident: bib175 article-title: Preparation of high lithium-ion conducting Li publication-title: J Power Sources – volume: 22 start-page: 15357 year: 2012 end-page: 15361 ident: bib116 article-title: Optimizing Li publication-title: J Mater Chem – volume: 356 start-page: 163 year: 2017 end-page: 171 ident: bib172 article-title: Study on (100-x)(70Li publication-title: J Power Sources – volume: 14 start-page: 589 year: 1973 ident: bib208 article-title: Complexes of alkali metal ions with poly(ethylene oxide) publication-title: Polymer – volume: 3 start-page: 476 year: 2004 end-page: 481 ident: bib249 article-title: The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors publication-title: Nat Mater – volume: 5 start-page: 139 year: 2016 end-page: 164 ident: bib30 article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries publication-title: Energ. Storage Mater – volume: 98 start-page: 3603 year: 2015 end-page: 3623 ident: bib24 article-title: Oxide electrolytes for lithium batteries publication-title: J Am Ceram Soc – volume: 13 start-page: 205 year: 1978 end-page: 209 ident: bib85 article-title: Conductivite ionique du lithium dans les verres du systeme B publication-title: Mater Res Bull – volume: 43 start-page: 103 year: 1993 end-page: 110 ident: bib96 article-title: Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries publication-title: J Power Sources – volume: 47 start-page: 3145 year: 2014 end-page: 3153 ident: bib205 article-title: Influence of solvating plasticizer on ion conduction of polysiloxane single-ion conductors publication-title: Macromolecules – volume: 119 start-page: 448 year: 2003 end-page: 453 ident: bib246 article-title: Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo (ethylene oxide): ionic conductivity and electrochemical properties publication-title: J Power Sources – volume: 47 start-page: 328 year: 1964 end-page: 331 ident: bib87 article-title: Studies in germanium oxide systems: I, phase equilibria in the system Li publication-title: J Am Ceram Soc – volume: 301 start-page: 10 year: 2017 end-page: 14 ident: bib67 article-title: Sintering behavior of garnet-type Li publication-title: Solid State Ionics – volume: 39 start-page: 2407 year: 2001 end-page: 2419 ident: bib285 article-title: Interaction mechanism of a novel polymer electrolyte composed of poly (acrylonitrile), lithium triflate, and mineral clay publication-title: J Polym Sci, Part B: Polym Phys – volume: 320 start-page: 92 year: 2018 end-page: 99 ident: bib228 article-title: Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO publication-title: Solid State Ionics – volume: 12 start-page: 374 year: 2002 end-page: 377 ident: bib108 article-title: Synthesis, crystal structure and lithium ion conductivity of LiMgFSO publication-title: J Mater Chem – volume: 78 start-page: 269 year: 1995 end-page: 273 ident: bib138 article-title: Thermal and electrical properties of rapidly quenched glasses in the systems Li publication-title: Solid State Ionics – volume: 51 start-page: 293 year: 1984 end-page: 299 ident: bib50 article-title: Ionic conductivity of oxides with general formula Li publication-title: J Solid State Chem – volume: 118 start-page: 73 year: 1999 end-page: 79 ident: bib293 article-title: Effects of nanoscale SiO publication-title: Solid State Ionics – volume: 21 start-page: 10051 year: 2011 ident: bib302 article-title: Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries publication-title: J Mater Chem – volume: 4 start-page: 38 year: 2016 ident: bib307 article-title: Lithium superionic conductor Li publication-title: Frontiers in Energy Research – volume: 33 start-page: 363 year: 2017 end-page: 386 ident: bib2 article-title: Recent advances in all-solid-state rechargeable lithium batteries publication-title: Nanomater Energy – volume: 53 start-page: 5045 year: 2008 end-page: 5050 ident: bib179 article-title: Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON publication-title: Electrochim Acta – volume: 315 start-page: 65 year: 2018 end-page: 70 ident: bib265 article-title: Hybrid solid electrolytes composed of poly (1, 4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi publication-title: Solid State Ionics – volume: 140 start-page: 370 year: 2005 end-page: 375 ident: bib45 article-title: Local structure and redox energies of lithium phosphates with olivine- and Nasicon-like structures publication-title: J Power Sources – volume: 50 start-page: 4448 year: 2014 end-page: 4450 ident: bib233 article-title: Fast Li-ion conduction in poly (ethylene carbonate)-based electrolytes and composites filled with TiO publication-title: Chem. Commun – volume: 12 start-page: 81 year: 2006 end-page: 92 ident: bib10 article-title: Recent progress in solid oxide and lithium ion conducting electrolytes research publication-title: Ionics – volume: 18 start-page: 351 year: 1986 end-page: 355 ident: bib297 article-title: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching publication-title: Solid State Ionics – volume: 5 start-page: 1501082 year: 2015 ident: bib201 article-title: Safety-reinforced poly (propylene carbonate)-based All-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries publication-title: Adv. Energy Mater. – volume: 5 start-page: 12934 year: 2017 end-page: 12942 ident: bib282 article-title: Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries publication-title: J Mater Chem A – volume: 182 start-page: 621 year: 2008 end-page: 625 ident: bib121 article-title: All solid-state battery with sulfur electrode and thio-LISICON electrolyte publication-title: J Power Sources – volume: 39 start-page: 8453 year: 2013 end-page: 8458 ident: bib143 article-title: Surface modification of LiCoO publication-title: Ceram Int – volume: 11 start-page: 2042 year: 2018 end-page: 2049 ident: bib16 article-title: Effects of fluorine doping on structural and electrochemical properties of Li publication-title: ACS Appl Mater Interfaces – volume: 2 start-page: 10854 year: 2014 end-page: 10861 ident: bib252 article-title: A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries publication-title: J Mater Chem A – volume: 113 start-page: 6552 year: 2013 end-page: 6591 ident: bib17 article-title: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries publication-title: Chem Rev – volume: 178 start-page: 981 year: 2007 end-page: 986 ident: bib215 article-title: Fabrication of all solid-state lithium polymer secondary batteries using PEG-borate/aluminate ester as plasticizer for polymer electrolyte publication-title: Solid State Ionics – volume: 178 start-page: 716 year: 2008 end-page: 722 ident: bib223 article-title: Ionic conductivity and thermal property of solid hybrid polymer electrolyte composed of oligo(ethylene oxide) unit and butyrolactone unit publication-title: J Power Sources – volume: 170 start-page: 233 year: 2004 end-page: 238 ident: bib248 article-title: Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes publication-title: Solid State Ionics – volume: 121 start-page: 245 year: 1999 end-page: 251 ident: bib52 article-title: Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La publication-title: Solid State Ionics – volume: 17 start-page: 918 year: 2005 end-page: 921 ident: bib20 article-title: New, highly ion-conductive crystals precipitated from Li publication-title: Adv. Mater. – volume: 11 start-page: 481 year: 2009 end-page: 483 ident: bib242 article-title: A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium-ion batteries publication-title: Electrochem Commun – volume: 194 start-page: 1085 year: 2009 end-page: 1088 ident: bib122 article-title: All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON publication-title: J Power Sources – volume: 52 start-page: 261 year: 1994 end-page: 268 ident: bib281 article-title: Polymer-ceramic composite electrolytes publication-title: J Power Sources – volume: 161 start-page: A1812 year: 2014 end-page: A1817 ident: bib181 article-title: Empowering the lithium metal battery through a silicon-based superionic conductor publication-title: J Electrochem Soc – volume: 12 start-page: 894 year: 2010 end-page: 896 ident: bib40 article-title: Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes publication-title: Electrochem Commun – volume: 274 start-page: 100 year: 2015 end-page: 105 ident: bib78 article-title: Effects of penta-and trivalent dopants on structure and conductivity of Li publication-title: Solid State Ionics – volume: 83 start-page: 448 year: 2012 end-page: 453 ident: bib1 article-title: Synthesis of NiS–carbon fiber composites in high-boiling solvent to improve electrochemical performance in all-solid-state lithium secondary batteries publication-title: Electrochim Acta – volume: 6 start-page: A47 year: 2003 end-page: A49 ident: bib186 article-title: Fast lithium-ion conducting glass-ceramics in the system Li publication-title: Electrochem Solid-State Lett – volume: 58 start-page: 112 year: 2011 end-page: 118 ident: bib276 article-title: Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte publication-title: Electrochim Acta – volume: 10 start-page: 1860 year: 2008 end-page: 1863 ident: bib5 article-title: Novel technique to form electrode–electrolyte nanointerface in all-solid-state rechargeable lithium batteries publication-title: Electrochem Commun – volume: 113 start-page: 109 year: 1998 end-page: 115 ident: bib284 article-title: Li ion conductors based on laponite/poly(ethylene oxide) composites publication-title: Solid State Ionics – volume: 108 start-page: 407 year: 1998 end-page: 413 ident: bib11 article-title: Lithium ion conductivity of polycrystalline perovskite La publication-title: Solid State Ionics – volume: 21 start-page: 381 year: 2014 end-page: 385 ident: bib278 article-title: Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery publication-title: Ionics – volume: 86 start-page: 487 year: 1996 end-page: 490 ident: bib136 article-title: Structure and properties of lithium ion conducting oxysulfide glasses prepared by rapid quenching publication-title: Solid State Ionics – volume: 1 start-page: 186 year: 2013 end-page: 192 ident: bib141 article-title: Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature publication-title: Energy Technol – volume: 54 start-page: 397 year: 1995 end-page: 402 ident: bib58 article-title: Oxide cathode with perovskite structure for rechargeable lithium batteries publication-title: J Power Sources – volume: 15 start-page: 107 year: 2005 end-page: 112 ident: bib69 article-title: Li publication-title: Adv Funct Mater – volume: 29 start-page: 7206 year: 2017 end-page: 7212 ident: bib13 article-title: Y-doped NASICON-type LiZr publication-title: Chem Mater – volume: 302 start-page: 419 year: 2016 end-page: 425 ident: bib147 article-title: Raman imaging for LiCoO publication-title: J Power Sources – volume: 63 start-page: 91 year: 2015 end-page: 98 ident: bib245 article-title: Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries publication-title: Polymer – volume: 132 start-page: 181 year: 2004 end-page: 186 ident: bib272 article-title: All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes publication-title: J Power Sources – volume: 124 start-page: 246 year: 2003 end-page: 253 ident: bib197 article-title: Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes publication-title: J Power Sources – volume: 46 start-page: 1709 year: 2001 end-page: 1715 ident: bib211 article-title: Lithium ion conductivity in polyoxyethylene/polyethylenimine blends publication-title: Electrochim Acta – volume: 7 start-page: 627 year: 2014 end-page: 631 ident: bib159 article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries publication-title: Energy Environ Sci – volume: 179 start-page: 401 year: 2008 end-page: 408 ident: bib239 article-title: Linear poly(propylenimine)/lithium triflate as a polymer electrolyte system publication-title: Solid State Ionics – volume: 45 start-page: 2139 year: 2000 end-page: 2145 ident: bib260 article-title: PEO-carbon composite lithium polymer electrolyte publication-title: Electrochim Acta – volume: 24 start-page: 2316 year: 2012 end-page: 2323 ident: bib204 article-title: Synthesis and lithium ion conduction of polysiloxane single-ion conductors containing novel weak-binding borates publication-title: Chem Mater – volume: 14 start-page: 921 year: 1979 end-page: 927 ident: bib89 article-title: Etude comparee de la conductivite ionique du lithium dans les halogenoborates vitreux publication-title: Mater Res Bull – volume: 2 start-page: 25 year: 2014 ident: bib28 article-title: Recent advances in inorganic solid electrolytes for lithium batteries publication-title: Frontiers in Energy Research – volume: 15 start-page: 18600 year: 2013 end-page: 18606 ident: bib142 article-title: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li publication-title: Phys Chem Chem Phys – volume: 2 start-page: 16103 year: 2017 ident: bib7 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat. Rev. Mater. – volume: 79 start-page: 91 year: 1995 end-page: 97 ident: bib56 article-title: Lithium ion conductivity in the perovskite-type LiTaO publication-title: Solid State Ionics – volume: 101 start-page: 1315 year: 1993 end-page: 1317 ident: bib139 article-title: Superionic conduction in rapidly quenched Li publication-title: J Ceram Soc Jpn – volume: 7 start-page: 29 year: 1966 ident: bib88 article-title: Electrical conductivity of SiO publication-title: Phys Chem Glasses – volume: 147 start-page: 2462 year: 2000 end-page: 2467 ident: bib275 article-title: Ferroelectric materials as a ceramic filler in solid composite polyethylene Oxide-Based electrolytes publication-title: J Electrochem Soc – volume: 170 start-page: 173 year: 2004 end-page: 180 ident: bib118 article-title: Material design of new lithium ionic conductor, thio-LISICON, in the Li publication-title: Solid State Ionics – volume: 21 start-page: 118 year: 2011 end-page: 124 ident: bib306 article-title: Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes publication-title: J Mater Chem – volume: 11 start-page: 227 year: 1983 end-page: 233 ident: bib225 article-title: Lithium ionic conduction in poly(methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate publication-title: Solid State Ionics – volume: 244 start-page: 707 year: 2013 end-page: 710 ident: bib168 article-title: Preparation and ionic conductivities of (100−x)(0.75Li publication-title: J Power Sources – volume: 6 start-page: 4649 year: 2018 end-page: 4657 ident: bib68 article-title: Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification publication-title: J Mater Chem A – volume: 211 start-page: 42 year: 2012 end-page: 45 ident: bib174 article-title: Structure, ionic conductivity and electrochemical stability of Li publication-title: Solid State Ionics – volume: 166 start-page: 67 year: 2002 end-page: 72 ident: bib54 article-title: Crystal structure of a lithium ion-conducting perovskite La publication-title: J Solid State Chem – volume: 38 start-page: 63 year: 1997 end-page: 65 ident: bib134 article-title: Preparation and characterisation of superionic Li publication-title: Phys Chem Glasses – volume: 5 start-page: 22519 year: 2017 end-page: 22526 ident: bib254 article-title: A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries publication-title: J Mater Chem A – volume: 46 start-page: 1124 year: 2017 end-page: 1159 ident: bib257 article-title: Frontiers in poly(ionic liquid)s: syntheses and applications publication-title: Chem Soc Rev – volume: 12 start-page: 1152 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib279 article-title: High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers publication-title: Nano Lett doi: 10.1021/nl202692y – volume: 137 start-page: 1023 year: 1990 ident: 10.1016/j.rser.2019.04.035_bib35 article-title: Ionic conductivity of solid electrolytes based on lithium titanium phosphate publication-title: J Electrochem Soc doi: 10.1149/1.2086597 – volume: 24 start-page: 2316 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib204 article-title: Synthesis and lithium ion conduction of polysiloxane single-ion conductors containing novel weak-binding borates publication-title: Chem Mater doi: 10.1021/cm3005387 – volume: 36 start-page: 9176 year: 2003 ident: 10.1016/j.rser.2019.04.035_bib203 article-title: Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: synthesis and conductivity publication-title: Macromolecules doi: 10.1021/ma0349276 – volume: 54 start-page: 397 year: 1995 ident: 10.1016/j.rser.2019.04.035_bib58 article-title: Oxide cathode with perovskite structure for rechargeable lithium batteries publication-title: J Power Sources doi: 10.1016/0378-7753(94)02110-O – volume: 21 start-page: 797 year: 2010 ident: 10.1016/j.rser.2019.04.035_bib238 article-title: All solid polymer electrolytes based on polar side group rotation for rechargeable lithium batteries publication-title: Polym Adv Technol doi: 10.1002/pat.1503 – volume: 146 start-page: 707 year: 2005 ident: 10.1016/j.rser.2019.04.035_bib187 article-title: Solid electrolyte, thio-LISICON, thin film prepared by pulsed laser deposition publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.03.062 – volume: 262 start-page: 738 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib232 article-title: Polycarbonate-based solid polymer electrolytes for Li-ion batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2013.08.014 – volume: 116 start-page: 140 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib29 article-title: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00563 – volume: 179 start-page: 401 year: 2008 ident: 10.1016/j.rser.2019.04.035_bib239 article-title: Linear poly(propylenimine)/lithium triflate as a polymer electrolyte system publication-title: Solid State Ionics doi: 10.1016/j.ssi.2008.03.006 – volume: 7 start-page: 1602923 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib303 article-title: High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602923 – year: 2012 ident: 10.1016/j.rser.2019.04.035_bib84 – volume: 14 start-page: 87 year: 1985 ident: 10.1016/j.rser.2019.04.035_bib112 article-title: Lithium borophosphate vitreous electrolytes publication-title: J Power Sources doi: 10.1016/0378-7753(85)88016-2 – volume: 240 start-page: 653 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib221 article-title: Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.05.030 – volume: 83 start-page: 448 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib1 article-title: Synthesis of NiS–carbon fiber composites in high-boiling solvent to improve electrochemical performance in all-solid-state lithium secondary batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.07.088 – volume: 357 start-page: 2863 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib93 article-title: Fabrication of a high lithium ion conducting lithium borosilicate glass publication-title: J Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2011.03.022 – volume: 38 start-page: 217 year: 1990 ident: 10.1016/j.rser.2019.04.035_bib151 article-title: Synthesis and characterization of the B2S3·Li2S, the P2S5·Li2S and the B2S3·P2S5·Li2S glass systems publication-title: Solid State Ionics doi: 10.1016/0167-2738(90)90424-P – volume: 178 start-page: 981 year: 2007 ident: 10.1016/j.rser.2019.04.035_bib215 article-title: Fabrication of all solid-state lithium polymer secondary batteries using PEG-borate/aluminate ester as plasticizer for polymer electrolyte publication-title: Solid State Ionics doi: 10.1016/j.ssi.2007.04.009 – volume: 5 start-page: 1500353 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib251 article-title: In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500353 – volume: 156 start-page: A577 year: 2009 ident: 10.1016/j.rser.2019.04.035_bib241 article-title: Star-Shaped polymer electrolyte with microphase separation structure for all-solid-state lithium batteries publication-title: J Electrochem Soc doi: 10.1149/1.3129245 – volume: 17 start-page: 399 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib192 article-title: Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes publication-title: Ionics doi: 10.1007/s11581-011-0524-8 – volume: 14 start-page: 58 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib6 article-title: Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application publication-title: Energ. Storage Mater doi: 10.1016/j.ensm.2018.02.020 – volume: 55 start-page: 7 year: 1995 ident: 10.1016/j.rser.2019.04.035_bib262 article-title: Composite gel electrolyte for rechargeable lithium batteries publication-title: J Power Sources doi: 10.1016/0378-7753(94)02148-V – volume: 57 start-page: 40 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib236 article-title: A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.03.101 – volume: 50 start-page: 4448 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib233 article-title: Fast Li-ion conduction in poly (ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles publication-title: Chem. Commun doi: 10.1039/C3CC49588D – volume: 59 start-page: 161 year: 1989 ident: 10.1016/j.rser.2019.04.035_bib280 article-title: Properties of mixed polymer and crystalline ionic conductors publication-title: Philos Mag B doi: 10.1080/13642818908208455 – volume: 82 start-page: 1352 year: 1999 ident: 10.1016/j.rser.2019.04.035_bib130 article-title: Mechanochemical synthesis of new amorphous materials of 60Li2S·40SiS2 with high lithium ion conductivity publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1999.tb01923.x – volume: 45 start-page: 2139 year: 2000 ident: 10.1016/j.rser.2019.04.035_bib260 article-title: PEO-carbon composite lithium polymer electrolyte publication-title: Electrochim Acta doi: 10.1016/S0013-4686(99)00437-5 – volume: 247 start-page: 975 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib31 article-title: An all-solid state NASICON sodium battery operating at 200 °C publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.09.051 – volume: 225 start-page: 626 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib308 article-title: Characterization of amorphous and crystalline Li2S–P2S5–P2Se5 solid electrolytes for all-solid-state lithium ion batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2012.05.013 – volume: 47 start-page: 328 year: 1964 ident: 10.1016/j.rser.2019.04.035_bib87 article-title: Studies in germanium oxide systems: I, phase equilibria in the system Li2O-GeO2 publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1964.tb12995.x – volume: 12 start-page: 81 year: 2006 ident: 10.1016/j.rser.2019.04.035_bib10 article-title: Recent progress in solid oxide and lithium ion conducting electrolytes research publication-title: Ionics doi: 10.1007/s11581-006-0013-7 – volume: 144 start-page: 524 year: 1997 ident: 10.1016/j.rser.2019.04.035_bib99 article-title: A stable thin-film lithium electrolyte: lithium phosphorus oxynitride publication-title: J Electrochem Soc doi: 10.1149/1.1837443 – volume: 1 start-page: 6320 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib167 article-title: Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M=Fe, Zn, and Bi) nanoparticles publication-title: J Mater Chem A doi: 10.1039/c3ta10247e – volume: 23 start-page: 29 year: 1989 ident: 10.1016/j.rser.2019.04.035_bib127 article-title: Ionically conductive glasses based on SiS2 publication-title: Mater Chem Phys doi: 10.1016/0254-0584(89)90015-1 – volume: 44 start-page: 354 year: 1982 ident: 10.1016/j.rser.2019.04.035_bib14 article-title: Ionic conductivity of LISICON solid solutions, Li2+2xZn1-xGeO4 publication-title: J Solid State Chem doi: 10.1016/0022-4596(82)90383-8 – volume: 177 start-page: 2721 year: 2006 ident: 10.1016/j.rser.2019.04.035_bib156 article-title: High lithium ion conducting glass-ceramics in the system Li2S–P2S5 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2006.04.017 – volume: 52 start-page: 1003 year: 2006 ident: 10.1016/j.rser.2019.04.035_bib46 article-title: Low temperature solid-state synthesis routine and mechanism for Li3V2(PO4)3 using LiF as lithium precursor publication-title: Electrochim Acta doi: 10.1016/j.electacta.2006.06.039 – volume: 161 start-page: A1812 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib181 article-title: Empowering the lithium metal battery through a silicon-based superionic conductor publication-title: J Electrochem Soc doi: 10.1149/2.0501412jes – volume: 4 start-page: 22 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib4 article-title: Structure and ionic conductivity of Li2S–P2S5 glass electrolytes simulated with first-principles molecular dynamics publication-title: Frontiers in Energy Research doi: 10.3389/fenrg.2016.00022 – volume: 244 start-page: 707 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib168 article-title: Preparation and ionic conductivities of (100−x)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.12.001 – volume: 240 start-page: 18 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib80 article-title: Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.166 – volume: 5 start-page: 2829 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib170 article-title: Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries publication-title: J Mater Chem A doi: 10.1039/C6TA10142A – volume: 86 start-page: 689 year: 1993 ident: 10.1016/j.rser.2019.04.035_bib114 article-title: High ionic conductivity in lithium lanthanum titanate publication-title: Solid State Commun doi: 10.1016/0038-1098(93)90841-A – volume: 108 start-page: 128 year: 2000 ident: 10.1016/j.rser.2019.04.035_bib129 article-title: Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4 publication-title: J Ceram Soc Jpn doi: 10.2109/jcersj.108.1254_128 – volume: 84 start-page: 477 year: 2001 ident: 10.1016/j.rser.2019.04.035_bib153 article-title: Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.2001.tb00685.x – volume: 274 start-page: 100 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib78 article-title: Effects of penta-and trivalent dopants on structure and conductivity of Li7La3Zr2O12 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2015.03.019 – volume: 117 start-page: 21064 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib39 article-title: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes publication-title: J Phys Chem C doi: 10.1021/jp4051275 – volume: 10 start-page: 682 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib125 article-title: A lithium superionic conductor publication-title: Nat Mater doi: 10.1038/nmat3066 – volume: 149 start-page: 59 year: 2002 ident: 10.1016/j.rser.2019.04.035_bib94 article-title: Characterizations of a new lithium ion conducting Li2O–SeO2–B2O3 glass electrolyte publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00137-6 – volume: 9 start-page: 13694 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib287 article-title: Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b00336 – volume: 46 start-page: 1124 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib257 article-title: Frontiers in poly(ionic liquid)s: syntheses and applications publication-title: Chem Soc Rev doi: 10.1039/C6CS00620E – volume: 2 start-page: 25 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib28 article-title: Recent advances in inorganic solid electrolytes for lithium batteries publication-title: Frontiers in Energy Research doi: 10.3389/fenrg.2014.00025 – volume: 24 start-page: 1357 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib107 article-title: Multivariate method-assisted Ab initio study of olivine-type LiMXO4 (Main Group M2+–X5+ and M3+–X4+) compositions as potential solid electrolytes publication-title: Chem Mater doi: 10.1021/cm3000427 – volume: 262 start-page: 147 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib145 article-title: Preparation of composite electrode with Li2S–P2S5 glasses as active materials for all-solid-state lithium secondary batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2013.09.023 – volume: 5 start-page: 22519 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib254 article-title: A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries publication-title: J Mater Chem A doi: 10.1039/C7TA05787C – volume: 141 start-page: L78 year: 1994 ident: 10.1016/j.rser.2019.04.035_bib57 article-title: Lithium ion conductivity of A‐site deficient perovskite solid solution La0.67−xLi3xTiO3 publication-title: J Electrochem Soc doi: 10.1149/1.2055043 – volume: 10 start-page: 439 year: 1998 ident: 10.1016/j.rser.2019.04.035_bib22 article-title: Polymer electrolytes for lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I – volume: 194 start-page: 1085 year: 2009 ident: 10.1016/j.rser.2019.04.035_bib122 article-title: All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.06.100 – volume: 15 start-page: 18600 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib142 article-title: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte publication-title: Phys Chem Chem Phys doi: 10.1039/c3cp51059j – volume: 11 start-page: 8556 year: 2019 ident: 10.1016/j.rser.2019.04.035_bib300 article-title: Design and synthesis of double-functional polymer composite layer coating to enhance the electrochemical performance of the Ni-rich cathode at upper cutoff voltage publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b21621 – volume: 178 start-page: 837 year: 2007 ident: 10.1016/j.rser.2019.04.035_bib155 article-title: Lithium ion conductivity of the Li2S–P2S5 glass-based electrolytes prepared by the melt quenching method publication-title: Solid State Ionics doi: 10.1016/j.ssi.2007.03.001 – volume: 7 start-page: 627 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib159 article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries publication-title: Energy Environ Sci doi: 10.1039/C3EE41655K – volume: 52 start-page: 261 year: 1994 ident: 10.1016/j.rser.2019.04.035_bib281 article-title: Polymer-ceramic composite electrolytes publication-title: J Power Sources doi: 10.1016/0378-7753(94)02147-3 – volume: 10 start-page: 375 year: 2004 ident: 10.1016/j.rser.2019.04.035_bib195 article-title: Effect of sulfur electrode composition on the electrochemical property of lithium/PEO/sulfur battery publication-title: Met Mater Int doi: 10.1007/BF03185988 – volume: 81 start-page: 853 year: 1999 ident: 10.1016/j.rser.2019.04.035_bib60 article-title: Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering publication-title: J Power Sources doi: 10.1016/S0378-7753(99)00121-4 – volume: 23 start-page: 3353 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib200 article-title: A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications publication-title: Adv Funct Mater doi: 10.1002/adfm.201203556 – volume: 2 start-page: 720 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib106 article-title: An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks publication-title: J Mater Chem A doi: 10.1039/C3TA13235H – volume: 15 start-page: 6107 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib109 article-title: Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure publication-title: Phys Chem Chem Phys doi: 10.1039/c3cp50803j – volume: 170 start-page: 173 year: 2004 ident: 10.1016/j.rser.2019.04.035_bib118 article-title: Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.02.025 – volume: 18 start-page: 351 year: 1986 ident: 10.1016/j.rser.2019.04.035_bib297 article-title: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching publication-title: Solid State Ionics doi: 10.1016/0167-2738(86)90139-6 – volume: 196 start-page: 6920 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib158 article-title: Formation of the high lithium ion conducting phase from mechanically milled amorphous Li2S–P2S5 system publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.12.020 – volume: 195 start-page: 4984 year: 2010 ident: 10.1016/j.rser.2019.04.035_bib165 article-title: Preparation of Li2S–GeSe2–P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.02.042 – volume: 293 start-page: 941 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib175 article-title: Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.05.093 – volume: 8 start-page: 1956 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib226 article-title: Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all-solid-state Li-S cell publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.7b00593 – volume: 15 start-page: 285 year: 1980 ident: 10.1016/j.rser.2019.04.035_bib86 article-title: Domaine vitreux, structure et conductivite electrique des verres du systeme LiCl/1bLi2O/1bP2O5 publication-title: Mater Res Bull doi: 10.1016/0025-5408(80)90131-2 – volume: 49 start-page: 4808 year: 1978 ident: 10.1016/j.rser.2019.04.035_bib113 article-title: Ionic conductivity of quenched alkali niobate and tantalate glasses publication-title: J Appl Phys doi: 10.1063/1.325509 – volume: 196 start-page: 3655 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib218 article-title: Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.12.052 – volume: 17 start-page: 918 year: 2005 ident: 10.1016/j.rser.2019.04.035_bib20 article-title: New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses publication-title: Adv. Mater. doi: 10.1002/adma.200401286 – volume: 61 start-page: 759 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib59 article-title: Progress and prospective of solid-state lithium batteries publication-title: Acta Mater doi: 10.1016/j.actamat.2012.10.034 – volume: 182 start-page: 116 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib162 article-title: Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere publication-title: Solid State Ionics doi: 10.1016/j.ssi.2010.10.013 – volume: 18 start-page: 300 year: 1986 ident: 10.1016/j.rser.2019.04.035_bib198 article-title: Polymeric electrolyte based on poly (ethylene imine) and lithium salts publication-title: Solid State Ionics doi: 10.1016/0167-2738(86)90131-1 – volume: 4 start-page: 6272 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib220 article-title: Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries publication-title: Sci Rep doi: 10.1038/srep06272 – volume: 16 start-page: 1345 year: 2006 ident: 10.1016/j.rser.2019.04.035_bib214 article-title: Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries publication-title: J Mater Chem doi: 10.1039/b514346b – volume: 81 start-page: 1305 year: 1998 ident: 10.1016/j.rser.2019.04.035_bib131 article-title: Structural investigation of 95(0.6Li2S0.4SiS2)·5Li4SiO4 oxysulfide glass by using X-ray photoelectron spectroscopy publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1998.tb02482.x – volume: 10 start-page: 85 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib231a article-title: In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries publication-title: Energ. Storage Mater doi: 10.1016/j.ensm.2017.06.017 – volume: 46 start-page: 797 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib253 article-title: Single lithium-ion conducting solid polymer electrolytes: advances and perspectives publication-title: Chem Soc Rev doi: 10.1039/C6CS00491A – volume: 393 start-page: 271 year: 2004 ident: 10.1016/j.rser.2019.04.035_bib268 article-title: Nanocomposite polymer electrolyte based on poly(ethylene oxide) and solid super acid for lithium polymer battery publication-title: Chem Phys Lett doi: 10.1016/j.cplett.2004.06.054 – volume: 219 start-page: 235 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib161 article-title: Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.09.155 – volume: 343 start-page: 22 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib273 article-title: Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.01.030 – volume: 14 start-page: 921 year: 1979 ident: 10.1016/j.rser.2019.04.035_bib89 article-title: Etude comparee de la conductivite ionique du lithium dans les halogenoborates vitreux publication-title: Mater Res Bull doi: 10.1016/0025-5408(79)90158-2 – volume: 244 start-page: 476 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib140 article-title: Effect of mixing method on the properties of composite cathodes for all-solid-state lithium batteries using Li2S–P2S5 solid electrolytes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.11.049 – volume: 113 start-page: 109 year: 1998 ident: 10.1016/j.rser.2019.04.035_bib284 article-title: Li ion conductors based on laponite/poly(ethylene oxide) composites publication-title: Solid State Ionics doi: 10.1016/S0167-2738(98)00367-1 – volume: 178 start-page: 716 year: 2008 ident: 10.1016/j.rser.2019.04.035_bib223 article-title: Ionic conductivity and thermal property of solid hybrid polymer electrolyte composed of oligo(ethylene oxide) unit and butyrolactone unit publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.11.088 – volume: 8 start-page: 10163 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib289 article-title: Electrical properties of composite polymer electrolytes based on PEO-SN-LiCF3SO3 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)13102-6 – volume: 4 start-page: 38 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib307 article-title: Lithium superionic conductor Li9.42Si1.02P2.1S9.96O2.04 with Li10GeP2S12-type structure in the Li2S–P2S5–SiO2 pseudoternary system: synthesis, electrochemical properties, and structure–composition relationships publication-title: Frontiers in Energy Research doi: 10.3389/fenrg.2016.00038 – volume: 146 start-page: 715 year: 2005 ident: 10.1016/j.rser.2019.04.035_bib119 article-title: Electrical and electrochemical properties of Li2S–P2S5–P2O5 glass–ceramic electrolytes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.03.063 – volume: 69 start-page: 385 year: 1996 ident: 10.1016/j.rser.2019.04.035_bib36 article-title: Ionic conductivity of solid electrolytes based on Li1.3Al0.3Ti1.7(PO4)3 publication-title: Russ J Appl Chem – volume: 35 start-page: 1477 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib41 article-title: High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5) publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2014.11.023 – volume: 47 start-page: 3145 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib205 article-title: Influence of solvating plasticizer on ion conduction of polysiloxane single-ion conductors publication-title: Macromolecules doi: 10.1021/ma500146v – volume: 9 start-page: 607 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib150 article-title: All-solid-state batteries with thick electrode configurations publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.7b02880 – volume: 3 start-page: 1995 year: 2010 ident: 10.1016/j.rser.2019.04.035_bib217 article-title: Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes publication-title: Energy Environ Sci doi: 10.1039/c0ee00266f – volume: 24 start-page: 44 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib250 article-title: Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium‐ion batteries publication-title: Adv Funct Mater doi: 10.1002/adfm.201301345 – volume: 301 start-page: 47 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib26 article-title: A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.09.111 – volume: 365 start-page: 43 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib66 article-title: Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.08.020 – volume: 136 start-page: 7395 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib227 article-title: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries publication-title: J Am Chem Soc doi: 10.1021/ja502133j – volume: 24 start-page: 15 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib189 article-title: First principles study of the Li10GeP2S12 lithium super ionic conductor material publication-title: Chem Mater doi: 10.1021/cm203303y – volume: 11 start-page: 2042 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib16 article-title: Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b17656 – volume: 302 start-page: 419 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib147 article-title: Raman imaging for LiCoO2 composite positive electrodes in all-solid-state lithium batteries using Li2S–P2S5 solid electrolytes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.10.040 – volume: 394 start-page: 456 year: 1998 ident: 10.1016/j.rser.2019.04.035_bib269 article-title: Nanocomposite polymer electrolytes for lithium batteries publication-title: Nature doi: 10.1038/28818 – volume: 267 start-page: 68 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib244 article-title: Lithium ion conductive properties of aliphatic polycarbonate publication-title: Solid State Ionics doi: 10.1016/j.ssi.2014.09.011 – volume: 13 start-page: 117 year: 1978 ident: 10.1016/j.rser.2019.04.035_bib100 article-title: Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors publication-title: Mater Res Bull doi: 10.1016/0025-5408(78)90075-2 – volume: 5 start-page: 12934 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib282 article-title: Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries publication-title: J Mater Chem A doi: 10.1039/C7TA03699J – volume: 45 start-page: 558 year: 2009 ident: 10.1016/j.rser.2019.04.035_bib199 article-title: New solid polymer electrolytes based on polyester diacrylate for lithium power sources publication-title: Russ J Electrochem doi: 10.1134/S1023193509050103 – volume: 141 start-page: 143 year: 2005 ident: 10.1016/j.rser.2019.04.035_bib291 article-title: All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.09.004 – volume: 55 start-page: 2799 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib224 article-title: Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures publication-title: Polymer doi: 10.1016/j.polymer.2014.04.051 – volume: 46 start-page: 235 year: 1963 ident: 10.1016/j.rser.2019.04.035_bib82 article-title: Some structural and electrical properties of lithium silicate glasses publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1963.tb19779.x – volume: 306 start-page: 623 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib64 article-title: Synthesis and characterization of perovskite-type (Li, Sr)(Zr, Nb)O3 quaternary solid electrolyte for all-solid-state batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.12.065 – volume: 11 start-page: 185 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib266 article-title: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries publication-title: Energy Environ Sci doi: 10.1039/C7EE02723K – volume: 135 start-page: 47 year: 2000 ident: 10.1016/j.rser.2019.04.035_bib292 article-title: Nanocomposite polymer electrolytes and their impact on the lithium battery technology publication-title: Solid State Ionics doi: 10.1016/S0167-2738(00)00329-5 – volume: 89 start-page: 390 year: 2005 ident: 10.1016/j.rser.2019.04.035_bib219 article-title: PAN–PEO solid polymer electrolytes with high ionic conductivity publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2004.09.032 – volume: 54 start-page: 3178 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib49 article-title: Single-phase All-solid-state lithium battery based on Li1.5Cr0.5Ti1.5(PO4)3 for high rate capability and low temperature operation publication-title: Chem Commun. doi: 10.1039/C8CC00734A – volume: 109 start-page: 205702 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib79 article-title: Origin of the structural phase transition in Li7La3Zr2O12 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.109.205702 – volume: 591 start-page: 247 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib163 article-title: Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.12.191 – volume: 3 start-page: 10722 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib235 article-title: A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries publication-title: RSC Adv doi: 10.1039/c3ra40306h – volume: 320 start-page: 92 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib228 article-title: Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO4 composite cathode encapsulated by poly (ethylene glycol)(PEG) based polymer electrolyte publication-title: Solid State Ionics doi: 10.1016/j.ssi.2018.02.040 – volume: 8 start-page: 14552 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib63 article-title: Li-ion conduction and stability of perovskite Li3/8Sr7/16Hf1/4Ta3/4O3 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b03070 – volume: 91 start-page: 21 year: 1996 ident: 10.1016/j.rser.2019.04.035_bib53 article-title: Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate publication-title: Solid State Ionics doi: 10.1016/S0167-2738(96)00434-1 – volume: 31 start-page: 478 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib286 article-title: Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries publication-title: Nanomater Energy doi: 10.1016/j.nanoen.2016.11.045 – volume: 10 start-page: 1860 year: 2008 ident: 10.1016/j.rser.2019.04.035_bib5 article-title: Novel technique to form electrode–electrolyte nanointerface in all-solid-state rechargeable lithium batteries publication-title: Electrochem Commun doi: 10.1016/j.elecom.2008.09.026 – volume: 12 start-page: 452 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib255 article-title: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries publication-title: Nat Mater doi: 10.1038/nmat3602 – volume: 104 start-page: 85 year: 2002 ident: 10.1016/j.rser.2019.04.035_bib207 article-title: Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide) publication-title: J Power Sources doi: 10.1016/S0378-7753(01)00902-8 – volume: 98 start-page: 3603 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib24 article-title: Oxide electrolytes for lithium batteries publication-title: J Am Ceram Soc doi: 10.1111/jace.13844 – volume: 23 start-page: 470 year: 1987 ident: 10.1016/j.rser.2019.04.035_bib51 article-title: Investigation into complex oxides of La2/3-xLi3xTiO3 composition publication-title: Izv Akad Nauk SSSR, Neorg Mater. – volume: 166 start-page: 67 year: 2002 ident: 10.1016/j.rser.2019.04.035_bib54 article-title: Crystal structure of a lithium ion-conducting perovskite La2/3−xLi3xTiO3 (x= 0.05) publication-title: J Solid State Chem doi: 10.1006/jssc.2002.9560 – volume: 2 start-page: 9948 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib222 article-title: Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries publication-title: J Mater Chem A doi: 10.1039/C4TA01856G – volume: 94 start-page: 1779 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib160 article-title: Crystallization process for superionic Li7P3S11 glass–ceramic electrolytes publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2010.04335.x – volume: 315 start-page: 65 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib265 article-title: Hybrid solid electrolytes composed of poly (1, 4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells publication-title: Solid State Ionics doi: 10.1016/j.ssi.2017.12.007 – volume: 39 start-page: 145 year: 1998 ident: 10.1016/j.rser.2019.04.035_bib132 article-title: X-ray photoelectron spectroscopy of (100–x)(0·6Li2S·0.4SiS2)·xLi4SiO4 oxysulphide glasses publication-title: Phys Chem Glasses – volume: 192 start-page: 122 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib164 article-title: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2010.06.018 – volume: 136 start-page: 2441 year: 1989 ident: 10.1016/j.rser.2019.04.035_bib152 article-title: Preparation and electrochemical properties of the SiS2-P2S5-Li2S glass coformer system publication-title: J Electrochem Soc doi: 10.1149/1.2097416 – volume: 10 start-page: 682 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib21 article-title: A lithium superionic conductor publication-title: Nat Mater doi: 10.1038/nmat3066 – volume: 262 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib231b article-title: Polycarbonate-based solid polymer electrolytes for Li-ion batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2013.08.014 – volume: 272 start-page: 138 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib44 article-title: Structural and electrochemical properties of Fe- and Al-doped Li3V2(PO4)3 for all-solid-state symmetric lithium ion batteries prepared by spray-drying-assisted carbothermal method publication-title: Solid State Ionics doi: 10.1016/j.ssi.2015.01.006 – volume: 13 start-page: 710 year: 2003 ident: 10.1016/j.rser.2019.04.035_bib283 article-title: Nanocomposite electrolytes with fumed silica and hectorite clay networks: passive versus active fillers publication-title: Adv Funct Mater doi: 10.1002/adfm.200304333 – volume: 183 start-page: 48 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib73 article-title: Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions publication-title: Solid State Ionics doi: 10.1016/j.ssi.2010.12.010 – volume: 262 start-page: 589 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib15 article-title: Lithium ion conduction in tavorite-type LiMXO4F (M–X: AlP, MgS) candidate solid electrolyte materials publication-title: Solid State Ionics doi: 10.1016/j.ssi.2013.10.007 – volume: 86 start-page: 539 year: 1996 ident: 10.1016/j.rser.2019.04.035_bib137 article-title: Preparation of Li6Si2S7-Li6B4X9 (X=S, O) glasses by rapid quenching and their lithium ion conductivities publication-title: Solid State Ionics doi: 10.1016/0167-2738(96)00195-6 – volume: 174 start-page: 632 year: 2007 ident: 10.1016/j.rser.2019.04.035_bib178 article-title: Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.06.168 – volume: 5 start-page: 139 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib30 article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries publication-title: Energ. Storage Mater doi: 10.1016/j.ensm.2016.07.003 – volume: 74 start-page: 1767 year: 1991 ident: 10.1016/j.rser.2019.04.035_bib83 article-title: Ionic conduction in phosphate glasses publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1991.tb07788.x – volume: 79 start-page: 91 year: 1995 ident: 10.1016/j.rser.2019.04.035_bib56 article-title: Lithium ion conductivity in the perovskite-type LiTaO3-SrTiO3 solid solution publication-title: Solid State Ionics doi: 10.1016/0167-2738(95)00036-6 – volume: 166 start-page: A975 year: 2019 ident: 10.1016/j.rser.2019.04.035_bib263 article-title: Understanding chemical stability issues between different solid electrolytes in all-solid-state batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0351906jes – volume: 12 start-page: 295 year: 2007 ident: 10.1016/j.rser.2019.04.035_bib230 article-title: Lithium AlPO4 composite polymer battery with nanostructured LiMn2O4 cathode publication-title: J Solid State Electrochem doi: 10.1007/s10008-007-0391-4 – volume: 38 start-page: 63 year: 1997 ident: 10.1016/j.rser.2019.04.035_bib134 article-title: Preparation and characterisation of superionic Li2S- SiS2-Li4GeO4 glasses publication-title: Phys Chem Glasses – volume: 53 start-page: 430 year: 1984 ident: 10.1016/j.rser.2019.04.035_bib103 article-title: Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes publication-title: J Solid State Chem doi: 10.1016/0022-4596(84)90122-1 – volume: 7 start-page: A455 year: 2004 ident: 10.1016/j.rser.2019.04.035_bib177 article-title: A self-assembled breathing interface for all-solid-state ceramic lithium batteries publication-title: Electrochem Solid-State Lett doi: 10.1149/1.1809553 – volume: 121 start-page: 245 year: 1999 ident: 10.1016/j.rser.2019.04.035_bib52 article-title: Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67−xLi3xTiO3 (x=0.11) publication-title: Solid State Ionics doi: 10.1016/S0167-2738(99)00043-0 – volume: 135 start-page: 15694 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib182 article-title: Li10SnP2S12: an affordable lithium superionic conductor publication-title: J Am Chem Soc doi: 10.1021/ja407393y – volume: 33 start-page: 363 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib2 article-title: Recent advances in all-solid-state rechargeable lithium batteries publication-title: Nanomater Energy doi: 10.1016/j.nanoen.2017.01.028 – volume: 18 start-page: 562 year: 1986 ident: 10.1016/j.rser.2019.04.035_bib33 article-title: Lithium ion conductors in the system AB(IV)2(PO4)3 (B= Ti, Zr and Hf) publication-title: Solid State Ionics doi: 10.1016/0167-2738(86)90179-7 – volume: 124 start-page: 246 year: 2003 ident: 10.1016/j.rser.2019.04.035_bib197 article-title: Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes publication-title: J Power Sources doi: 10.1016/S0378-7753(03)00611-6 – volume: 13 start-page: 509 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib74 article-title: High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si publication-title: Electrochem Commun doi: 10.1016/j.elecom.2011.02.035 – volume: 175 start-page: 699 year: 2004 ident: 10.1016/j.rser.2019.04.035_bib126 article-title: All-solid-state lithium secondary batteries using Li2S·SiS2·Li4SiO4 glasses and Li2S·P2S5 glass ceramics as solid electrolytes publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.08.027 – volume: 5 start-page: 1501082 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib201 article-title: Safety-reinforced poly (propylene carbonate)-based All-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501082 – volume: 5 start-page: 6491 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib237 article-title: UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries publication-title: Energy Environ Sci doi: 10.1039/c2ee03025j – volume: 2 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib188 article-title: Recent advances in inorganic solid electrolytes for lithium batteries publication-title: Front. Energy Res. doi: 10.3389/fenrg.2014.00025 – volume: 150 start-page: 693 year: 2010 ident: 10.1016/j.rser.2019.04.035_bib105 article-title: Ab initio prediction for the ionic conduction of lithium in LiInSiO4 and LiInGeO4 olivine materials publication-title: Solid State Commun doi: 10.1016/j.ssc.2010.01.044 – volume: 167 start-page: 263 year: 2004 ident: 10.1016/j.rser.2019.04.035_bib62 article-title: Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.01.008 – volume: 16 start-page: 175 year: 2009 ident: 10.1016/j.rser.2019.04.035_bib72 article-title: Evaluation of electrochemical characteristics of Li7La3Zr2O12 solid electrolyte publication-title: ECS Transactions doi: 10.1149/1.3109645 – volume: 103 start-page: 250 year: 1988 ident: 10.1016/j.rser.2019.04.035_bib91 article-title: Structure and ionic conductivity of LiCl∙Li2O∙TeO2 glasses publication-title: J Non-Cryst Solids doi: 10.1016/0022-3093(88)90203-7 – volume: 5 start-page: 111 year: 2003 ident: 10.1016/j.rser.2019.04.035_bib157 article-title: Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses publication-title: Electrochem Commun doi: 10.1016/S1388-2481(02)00555-6 – volume: 162 start-page: A704 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib27 article-title: All-solid-state lithium batteries assembled with hybrid solid electrolytes publication-title: J Electrochem Soc doi: 10.1149/2.0731504jes – volume: 53 start-page: 5045 year: 2008 ident: 10.1016/j.rser.2019.04.035_bib179 article-title: Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON publication-title: Electrochim Acta doi: 10.1016/j.electacta.2008.01.071 – volume: 211 start-page: 42 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib174 article-title: Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–LiI glass and glass–ceramic electrolytes publication-title: Solid State Ionics doi: 10.1016/j.ssi.2012.01.017 – volume: 14 start-page: 2871 year: 2002 ident: 10.1016/j.rser.2019.04.035_bib296 article-title: A new La2/3LixTi1-xAlxO3 solid solution: structure, microstructure, and Li+ conductivity publication-title: Chem Mater doi: 10.1021/cm011149s – volume: 79 start-page: 349 year: 1996 ident: 10.1016/j.rser.2019.04.035_bib135 article-title: 29Si and 31P MAS-NMR spectra of Li2S-SiS2-Li3PO4 rapidly quenched glasses publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1996.tb08127.x – volume: 146 start-page: 391 year: 2005 ident: 10.1016/j.rser.2019.04.035_bib234 article-title: A new polysiloxane based cross-linker for solid polymer electrolyte publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.03.142 – volume: 29 start-page: 7206 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib13 article-title: Y-doped NASICON-type LiZr2(PO4)3 solid electrolytes for lithium-metal batteries publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b01463 – volume: 314 start-page: 85 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib148 article-title: The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.02.088 – volume: 16 start-page: 459 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib271 article-title: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide) publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b04117 – volume: 274 start-page: 458 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib25 article-title: Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.10.078 – volume: 296 start-page: 13 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib3 article-title: All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte publication-title: Solid State Ionics doi: 10.1016/j.ssi.2016.08.014 – volume: 8 start-page: 199 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib19 article-title: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-012-2038-6 – volume: 269 start-page: 727 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib146 article-title: Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.07.055 – volume: 43 start-page: 103 year: 1993 ident: 10.1016/j.rser.2019.04.035_bib96 article-title: Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries publication-title: J Power Sources doi: 10.1016/0378-7753(93)80106-Y – volume: 25 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib9 article-title: All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science publication-title: Chin Phys B doi: 10.1088/1674-1056/25/1/018802 – volume: 189 start-page: 672 year: 2009 ident: 10.1016/j.rser.2019.04.035_bib123 article-title: Characterization of all-solid-state lithium secondary batteries using CuxMo6S8−y electrode and Li2S–P2S5 solid electrolyte publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.09.025 – volume: 132 start-page: 181 year: 2004 ident: 10.1016/j.rser.2019.04.035_bib272 article-title: All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.01.034 – volume: 51 start-page: 293 year: 1984 ident: 10.1016/j.rser.2019.04.035_bib50 article-title: Ionic conductivity of oxides with general formula LixLn1/3Nb1−xTixO3 (Ln= La, Nd) publication-title: J Solid State Chem doi: 10.1016/0022-4596(84)90345-1 – volume: 5 start-page: 23844 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib258 article-title: Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids publication-title: J Mater Chem A doi: 10.1039/C7TA08233A – volume: 159 start-page: 193 year: 2006 ident: 10.1016/j.rser.2019.04.035_bib120 article-title: All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.04.037 – volume: 11 start-page: 227 year: 1983 ident: 10.1016/j.rser.2019.04.035_bib225 article-title: Lithium ionic conduction in poly(methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate publication-title: Solid State Ionics doi: 10.1016/0167-2738(83)90028-0 – volume: 6 start-page: 5296 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib32 article-title: NASICON LiM2(PO4)3 electrolyte (M=Zr) and electrode (M=Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance publication-title: J Mater Chem A doi: 10.1039/C7TA08715B – volume: 17 start-page: 44 year: 2008 ident: 10.1016/j.rser.2019.04.035_bib98 article-title: Thin film micro-batteries publication-title: Electrochem. Soc. Interface doi: 10.1149/2.F04083IF – volume: 21 start-page: 381 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib278 article-title: Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery publication-title: Ionics doi: 10.1007/s11581-014-1176-2 – volume: 118 start-page: 73 year: 1999 ident: 10.1016/j.rser.2019.04.035_bib293 article-title: Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes publication-title: Solid State Ionics doi: 10.1016/S0167-2738(98)00457-3 – volume: 46 start-page: 7778 year: 2007 ident: 10.1016/j.rser.2019.04.035_bib12 article-title: Fast lithium ion conduction in garnet-type Li7La3Zr2O12 publication-title: Angew Chem, Int Ed doi: 10.1002/anie.200701144 – volume: 11 start-page: 203 year: 1976 ident: 10.1016/j.rser.2019.04.035_bib18 article-title: Fast Na+-ion transport in skeleton structures publication-title: Mater Res Bull doi: 10.1016/0025-5408(76)90077-5 – volume: 398 start-page: 792 year: 1999 ident: 10.1016/j.rser.2019.04.035_bib23 article-title: Structure of the polymer electrolyte poly (ethylene oxide)6: LiAsF6 publication-title: Nature doi: 10.1038/19730 – volume: 49 start-page: 307 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib277 article-title: Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2012.10.033 – volume: 162 start-page: 651 year: 2006 ident: 10.1016/j.rser.2019.04.035_bib43 article-title: Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.07.029 – volume: 70 start-page: 619 year: 1994 ident: 10.1016/j.rser.2019.04.035_bib97 article-title: Rechargeable thin-film lithium batteries publication-title: Solid State Ionics doi: 10.1016/0167-2738(94)90383-2 – volume: 10 start-page: 1568 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib65 article-title: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries publication-title: Energy Environ Sci doi: 10.1039/C7EE01004D – volume: 15 start-page: 3991 year: 2003 ident: 10.1016/j.rser.2019.04.035_bib115 article-title: Optimization of lithium conductivity in La/Li titanates publication-title: Chem Mater doi: 10.1021/cm0300563 – volume: 21 start-page: 381 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib295 article-title: Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery publication-title: Ionics doi: 10.1007/s11581-014-1176-2 – volume: 146 start-page: 1672 year: 1999 ident: 10.1016/j.rser.2019.04.035_bib274 article-title: Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO3 publication-title: J Electrochem Soc doi: 10.1149/1.1391824 – volume: 44 start-page: 6614 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib81 article-title: Structure and ionic conductivity of Li7La3Zr2−xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries publication-title: Ceram Int doi: 10.1016/j.ceramint.2018.01.065 – volume: 81 start-page: 114 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib229 article-title: Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2017.12.004 – volume: 62 start-page: 309 year: 1993 ident: 10.1016/j.rser.2019.04.035_bib47 article-title: Electrical properties and crystal structure of solid electrolyte based on lithium hafnium phosphate LiHf2(PO4)3 publication-title: Solid State Ionics doi: 10.1016/0167-2738(93)90387-I – volume: 21 start-page: 10051 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib302 article-title: Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries publication-title: J Mater Chem doi: 10.1039/c0jm04366d – volume: 3 start-page: 476 year: 2004 ident: 10.1016/j.rser.2019.04.035_bib249 article-title: The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors publication-title: Nat Mater doi: 10.1038/nmat1158 – volume: 4 start-page: 42 year: 1998 ident: 10.1016/j.rser.2019.04.035_bib117 article-title: Lithium ion conductive glass and its application to solid state batteries publication-title: Ionics doi: 10.1007/BF02375778 – volume: 356 start-page: 163 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib172 article-title: Study on (100-x)(70Li2S-30P2S5)-xLi2ZrO3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.04.083 – volume: 122 start-page: 9852 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib202 article-title: A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.8b02556 – volume: 22 start-page: 949 year: 2010 ident: 10.1016/j.rser.2019.04.035_bib301 article-title: Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy† publication-title: Chem Mater doi: 10.1021/cm901819c – volume: 86 start-page: 257 year: 1996 ident: 10.1016/j.rser.2019.04.035_bib55 article-title: Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides publication-title: Solid State Ionics doi: 10.1016/0167-2738(96)00100-2 – volume: 179 start-page: 974 year: 2006 ident: 10.1016/j.rser.2019.04.035_bib71 article-title: Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12 publication-title: J Solid State Chem doi: 10.1016/j.jssc.2005.12.025 – volume: 140 start-page: 1827 year: 1993 ident: 10.1016/j.rser.2019.04.035_bib48 article-title: The electrical properties of ceramic electrolytes for LiMxTi2−x(PO4)3+yLi2O, M= Ge, Sn, Hf, and Zr systems publication-title: J Electrochem Soc doi: 10.1149/1.2220723 – volume: 240 start-page: 50 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib34 article-title: High Li+ conduction in NASICON-type Li1+xYxZr2−x(PO4)3 at room temperature publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.175 – volume: 6 start-page: 4649 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib68 article-title: Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification publication-title: J Mater Chem A doi: 10.1039/C7TA06833F – volume: 108 start-page: 407 year: 1998 ident: 10.1016/j.rser.2019.04.035_bib11 article-title: Lithium ion conductivity of polycrystalline perovskite La0.67-xLi3xTiO3 with ordered and disordered arrangements of the A-site ions publication-title: Solid State Ionics doi: 10.1016/S0167-2738(98)00070-8 – volume: 39 start-page: 2407 year: 2001 ident: 10.1016/j.rser.2019.04.035_bib285 article-title: Interaction mechanism of a novel polymer electrolyte composed of poly (acrylonitrile), lithium triflate, and mineral clay publication-title: J Polym Sci, Part B: Polym Phys doi: 10.1002/polb.1212 – volume: 148 start-page: A742 year: 2001 ident: 10.1016/j.rser.2019.04.035_bib176 article-title: Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system publication-title: J Electrochem Soc doi: 10.1149/1.1379028 – volume: 284 start-page: 206 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib169 article-title: Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.02.160 – volume: 9 start-page: 2013 year: 2007 ident: 10.1016/j.rser.2019.04.035_bib216 article-title: All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure publication-title: Electrochem Commun doi: 10.1016/j.elecom.2007.05.020 – volume: 130 start-page: 97 year: 2000 ident: 10.1016/j.rser.2019.04.035_bib184 article-title: Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system publication-title: Solid State Ionics doi: 10.1016/S0167-2738(00)00277-0 – volume: 2 start-page: 16103 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib7 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.103 – volume: 140 start-page: 370 year: 2005 ident: 10.1016/j.rser.2019.04.035_bib45 article-title: Local structure and redox energies of lithium phosphates with olivine- and Nasicon-like structures publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.08.029 – volume: 98 start-page: 3831 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib310 article-title: Dual doping: an effective method to enhance the electrochemical properties of Li10GeP2S12-based solid electrolytes publication-title: J Am Ceram Soc doi: 10.1111/jace.13800 – volume: 17 start-page: 147 year: 1985 ident: 10.1016/j.rser.2019.04.035_bib90 article-title: Effect of rapid quenching on electrical properties of lithium conductive glasses publication-title: Solid State Ionics doi: 10.1016/0167-2738(85)90064-5 – volume: 39 start-page: 8453 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib143 article-title: Surface modification of LiCoO2 with Li3xLa2/3−xTiO3 for all-solid-state lithium ion batteries using Li2S–P2S5 glass–ceramic publication-title: Ceram Int doi: 10.1016/j.ceramint.2013.04.027 – volume: 8 start-page: 10350 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib206 article-title: Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b01973 – volume: 9 start-page: 33735 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib42 article-title: A design of solid-state Li-S cell with evaporated lithium anode to eliminate shuttle effects publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b07057 – volume: 22 start-page: 7687 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib190 article-title: Structural requirements for fast lithium ion migration in Li10GeP2S12 publication-title: J Mater Chem doi: 10.1039/c2jm16688g – volume: 15 start-page: 1661 year: 1980 ident: 10.1016/j.rser.2019.04.035_bib101 article-title: New Li+ ion conductors in the system, Li4GeO4-Li3VO4 publication-title: Mater Res Bull doi: 10.1016/0025-5408(80)90249-4 – volume: 319 start-page: 247 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib196 article-title: In operando scanning electron microscopy and ultraviolet–visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.03.093 – volume: 356 start-page: 2670 year: 2010 ident: 10.1016/j.rser.2019.04.035_bib154 article-title: Preparation and ionic conductivity of Li7P3S11 glass-ceramic electrolytes publication-title: J Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2010.04.048 – volume: 113 start-page: 733 year: 1998 ident: 10.1016/j.rser.2019.04.035_bib133 article-title: Thermal and electrical properties of rapidly quenched Li2S-SiS2-Li2O-P2O5 oxysulfide glasses publication-title: Solid State Ionics doi: 10.1016/S0167-2738(98)00398-1 – volume: 12 start-page: 894 year: 2010 ident: 10.1016/j.rser.2019.04.035_bib40 article-title: Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes publication-title: Electrochem Commun doi: 10.1016/j.elecom.2010.04.014 – volume: 12 start-page: 374 year: 2002 ident: 10.1016/j.rser.2019.04.035_bib108 article-title: Synthesis, crystal structure and lithium ion conductivity of LiMgFSO4 publication-title: J Mater Chem doi: 10.1039/b108289m – volume: 53 start-page: 1183 year: 1992 ident: 10.1016/j.rser.2019.04.035_bib128 article-title: New lithium ion conductors based on Li2S-SiS2 system publication-title: Solid State Ionics doi: 10.1016/0167-2738(92)90310-L – volume: 43 start-page: 1137 year: 1998 ident: 10.1016/j.rser.2019.04.035_bib212 article-title: Polymer electrolytes-the early days publication-title: Electrochim Acta doi: 10.1016/S0013-4686(97)10011-1 – volume: 309 start-page: 27 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib304 article-title: Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.01.068 – volume: 108 start-page: 323 year: 1989 ident: 10.1016/j.rser.2019.04.035_bib111 article-title: Ionic conductivity studies of the vitreous Li2O: P2O5: Ta2O5 system publication-title: J Non-Cryst Solids doi: 10.1016/0022-3093(89)90304-9 – volume: 14 start-page: 589 year: 1973 ident: 10.1016/j.rser.2019.04.035_bib208 article-title: Complexes of alkali metal ions with poly(ethylene oxide) publication-title: Polymer doi: 10.1016/0032-3861(73)90146-8 – volume: 11 start-page: 91 year: 1983 ident: 10.1016/j.rser.2019.04.035_bib209 article-title: Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts publication-title: Solid State Ionics doi: 10.1016/0167-2738(83)90068-1 – year: 2018 ident: 10.1016/j.rser.2019.04.035_bib264 article-title: Conformal solid state Li7La3Zr2O12–PEO-LiClO4 composite electrolyte for advanced lithium batteries publication-title: Bull Am Phys Soc – volume: 360 start-page: 328 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib298 article-title: Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.05.112 – volume: 13 start-page: 205 year: 1978 ident: 10.1016/j.rser.2019.04.035_bib85 article-title: Conductivite ionique du lithium dans les verres du systeme B2O3∙Li2O∙LiCl publication-title: Mater Res Bull doi: 10.1016/0025-5408(78)90223-4 – volume: 48 start-page: 112 year: 2003 ident: 10.1016/j.rser.2019.04.035_bib104 article-title: Growth and ionic conductivity of Li3+xP1−xGexO4 (x=0.34) single crystals publication-title: Crystallogr Rep doi: 10.1134/1.1541752 – volume: 86 start-page: 487 year: 1996 ident: 10.1016/j.rser.2019.04.035_bib136 article-title: Structure and properties of lithium ion conducting oxysulfide glasses prepared by rapid quenching publication-title: Solid State Ionics doi: 10.1016/0167-2738(96)00179-8 – volume: 225 start-page: 13 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib76 article-title: Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.09.111 – volume: 222 start-page: 237 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib180 article-title: All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.08.041 – volume: 2 start-page: 10854 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib252 article-title: A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries publication-title: J Mater Chem A doi: 10.1039/C4TA00494A – volume: 53 start-page: 2310 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib110 article-title: An unnoticed inorganic solid electrolyte: dilithium sodium phosphate with the nalipoite structure publication-title: Inorg Chem doi: 10.1021/ic4030537 – volume: 1 start-page: 186 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib141 article-title: Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature publication-title: Energy Technol doi: 10.1002/ente.201200019 – volume: 1 start-page: 16030 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib191 article-title: High-power all-solid-state batteries using sulfide superionic conductors publication-title: Nat. Energy doi: 10.1038/nenergy.2016.30 – volume: 55 start-page: 1895 year: 2010 ident: 10.1016/j.rser.2019.04.035_bib270 article-title: Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2009.11.003 – volume: 22 start-page: 5198 year: 2010 ident: 10.1016/j.rser.2019.04.035_bib267 article-title: Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications publication-title: Adv. Mater. doi: 10.1002/adma.201002584 – volume: 266 start-page: 25 year: 2014 ident: 10.1016/j.rser.2019.04.035_bib294 article-title: Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes publication-title: Solid State Ionics doi: 10.1016/j.ssi.2014.08.002 – volume: 214 start-page: 25 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib166 article-title: Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2012.02.034 – volume: 156 start-page: 560 year: 2006 ident: 10.1016/j.rser.2019.04.035_bib213 article-title: Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40°C publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.06.026 – volume: 352 start-page: 3310 year: 2006 ident: 10.1016/j.rser.2019.04.035_bib309 article-title: Molecular dynamics simulation of ternary glasses Li2S–P2S5–LiI publication-title: J Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2006.04.018 – volume: 225 start-page: 350 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib173 article-title: Electrochemical properties of the amorphous solid electrolytes in the system Li2S–Al2S3–P2S5 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2012.03.003 – volume: 146 start-page: 397 year: 2005 ident: 10.1016/j.rser.2019.04.035_bib290 article-title: Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.03.028 – volume: 22 start-page: 15357 year: 2012 ident: 10.1016/j.rser.2019.04.035_bib116 article-title: Optimizing Li+ conductivity in a garnet framework publication-title: J Mater Chem doi: 10.1039/c2jm31413d – volume: 63 start-page: 91 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib245 article-title: Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries publication-title: Polymer doi: 10.1016/j.polymer.2015.02.052 – volume: 47 start-page: 257 year: 1991 ident: 10.1016/j.rser.2019.04.035_bib61 article-title: Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3) publication-title: Solid State Ionics doi: 10.1016/0167-2738(91)90247-9 – volume: 70 start-page: 144 year: 1994 ident: 10.1016/j.rser.2019.04.035_bib37 article-title: Ionic-conductivity and luminescence of Eu3+-doped LiTi2(PO4)3 publication-title: Solid State Ionics doi: 10.1016/0167-2738(94)90299-2 – volume: 161 start-page: 171 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib288 article-title: Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.02.074 – volume: 6 start-page: A47 year: 2003 ident: 10.1016/j.rser.2019.04.035_bib186 article-title: Fast lithium-ion conducting glass-ceramics in the system Li2S-SiS2-P2S5 publication-title: Electrochem Solid-State Lett doi: 10.1149/1.1540792 – volume: 13 start-page: 1373 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib75 article-title: High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet publication-title: Electrochem Commun doi: 10.1016/j.elecom.2011.08.014 – volume: 168 start-page: 140 year: 2002 ident: 10.1016/j.rser.2019.04.035_bib185 article-title: Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system publication-title: J Solid State Chem doi: 10.1006/jssc.2002.9701 – volume: 147 start-page: 2462 year: 2000 ident: 10.1016/j.rser.2019.04.035_bib275 article-title: Ferroelectric materials as a ceramic filler in solid composite polyethylene Oxide-Based electrolytes publication-title: J Electrochem Soc doi: 10.1149/1.1393554 – volume: 110 start-page: 1 year: 1998 ident: 10.1016/j.rser.2019.04.035_bib259 article-title: PEO-based composite polymer electrolytes publication-title: Solid State Ionics doi: 10.1016/S0167-2738(98)00114-3 – volume: 11 start-page: A1 year: 2008 ident: 10.1016/j.rser.2019.04.035_bib102 article-title: Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses publication-title: Electrochem Solid-State Lett doi: 10.1149/1.2795837 – volume: 5 start-page: 6310 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib171 article-title: All-solid-state lithium–sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor publication-title: J Mater Chem A doi: 10.1039/C7TA01147D – volume: 119 start-page: 442 year: 2003 ident: 10.1016/j.rser.2019.04.035_bib247 article-title: New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery publication-title: J Power Sources doi: 10.1016/S0378-7753(03)00187-3 – volume: 11 start-page: 481 year: 2009 ident: 10.1016/j.rser.2019.04.035_bib242 article-title: A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium-ion batteries publication-title: Electrochem Commun doi: 10.1016/j.elecom.2008.12.030 – volume: 301 start-page: 10 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib67 article-title: Sintering behavior of garnet-type Li7La3Zr2O12-Li3BO3 composite solid electrolytes for all-solid-state lithium batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2017.01.005 – volume: 44 start-page: 742 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib149 article-title: Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries publication-title: Ceram Int doi: 10.1016/j.ceramint.2017.09.241 – volume: 86 start-page: 437 year: 2003 ident: 10.1016/j.rser.2019.04.035_bib70 article-title: Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M= Nb, Ta) publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.2003.tb03318.x – volume: 170 start-page: 233 year: 2004 ident: 10.1016/j.rser.2019.04.035_bib248 article-title: Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.04.007 – volume: 175 start-page: 687 year: 2004 ident: 10.1016/j.rser.2019.04.035_bib92 article-title: Li-ion conductivity in Li2O–B2O3–V2O5 glass system publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.08.024 – volume: 101 start-page: 1315 year: 1993 ident: 10.1016/j.rser.2019.04.035_bib139 article-title: Superionic conduction in rapidly quenched Li2S-SiS2-Li3PO4 glasses publication-title: J Ceram Soc Jpn doi: 10.2109/jcersj.101.1315 – volume: 15 start-page: 107 year: 2005 ident: 10.1016/j.rser.2019.04.035_bib69 article-title: Li6ALa2Ta2O12 (A= Sr, Ba): novel garnet-like oxides for fast lithium ion conduction publication-title: Adv Funct Mater doi: 10.1002/adfm.200400044 – volume: 21 start-page: 118 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib306 article-title: Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes publication-title: J Mater Chem doi: 10.1039/C0JM01090A – volume: 233 start-page: 231 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib144 article-title: All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass–ceramic as solid electrolytes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.01.090 – volume: 119 start-page: 448 year: 2003 ident: 10.1016/j.rser.2019.04.035_bib246 article-title: Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo (ethylene oxide): ionic conductivity and electrochemical properties publication-title: J Power Sources doi: 10.1016/S0378-7753(03)00189-7 – volume: 65 start-page: 2200 year: 1992 ident: 10.1016/j.rser.2019.04.035_bib38 article-title: Electrical properties and sinterability for lithium germanium phosphate Li1+xMxGe2−x(PO4)3, M=Al, Cr, Ga, Fe, Sc, and in systems publication-title: Bull Chem Soc Jpn doi: 10.1246/bcsj.65.2200 – volume: 50 start-page: 3822 year: 2009 ident: 10.1016/j.rser.2019.04.035_bib240 article-title: Transition behavior and ionic conductivity of lithium perchlorate-doped polystyrene-b-poly(2-vinylpyridine) publication-title: Polymer doi: 10.1016/j.polymer.2009.05.022 – volume: 58 start-page: 112 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib276 article-title: Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.08.096 – volume: 182 start-page: 621 year: 2008 ident: 10.1016/j.rser.2019.04.035_bib121 article-title: All solid-state battery with sulfur electrode and thio-LISICON electrolyte publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.03.030 – volume: 98 start-page: 167 year: 1997 ident: 10.1016/j.rser.2019.04.035_bib261 article-title: Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers publication-title: Solid State Ionics doi: 10.1016/S0167-2738(97)00117-3 – volume: 3 start-page: 18636 year: 2015 ident: 10.1016/j.rser.2019.04.035_bib77 article-title: A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries publication-title: J Mater Chem A doi: 10.1039/C5TA03239C – volume: 86 start-page: 1 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib183 article-title: Composite sulfur electrode for all-solid-state lithium–sulfur battery with Li2S–GeS2–P2S5-based Thio-LISICON solid electrolyte publication-title: Electrochemistry doi: 10.5796/electrochemistry.17-00055 – volume: 47 start-page: 5952 year: 2006 ident: 10.1016/j.rser.2019.04.035_bib193 article-title: Review on composite polymer electrolytes for lithium batteries publication-title: Polymer doi: 10.1016/j.polymer.2006.05.069 – volume: 78 start-page: 269 year: 1995 ident: 10.1016/j.rser.2019.04.035_bib138 article-title: Thermal and electrical properties of rapidly quenched glasses in the systems Li2S·SiS2·LixMOy (LixMOy=Li4SiO4, Li2SO4) publication-title: Solid State Ionics doi: 10.1016/0167-2738(95)00094-M – volume: 89 start-page: 219 year: 2000 ident: 10.1016/j.rser.2019.04.035_bib194 article-title: Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes publication-title: J Power Sources doi: 10.1016/S0378-7753(00)00432-8 – volume: 5 start-page: 16984 year: 2017 ident: 10.1016/j.rser.2019.04.035_bib305 article-title: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life publication-title: J Mater Chem A doi: 10.1039/C7TA04320A – volume: 7 start-page: 29 year: 1966 ident: 10.1016/j.rser.2019.04.035_bib88 article-title: Electrical conductivity of SiO2-B2O3 glasses containing lithium or sodium publication-title: Phys Chem Glasses – volume: 374 start-page: 107 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib8 article-title: Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.10.093 – volume: 195 start-page: 6182 year: 2010 ident: 10.1016/j.rser.2019.04.035_bib243 article-title: Synthesis of supramolecular solid polymer electrolytes via self-assembly of diborylated ionic liquid publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.11.050 – start-page: 173 year: 1987 ident: 10.1016/j.rser.2019.04.035_bib210 – volume: 46 start-page: 1709 year: 2001 ident: 10.1016/j.rser.2019.04.035_bib211 article-title: Lithium ion conductivity in polyoxyethylene/polyethylenimine blends publication-title: Electrochim Acta doi: 10.1016/S0013-4686(00)00775-1 – volume: 113 start-page: 6552 year: 2013 ident: 10.1016/j.rser.2019.04.035_bib17 article-title: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries publication-title: Chem Rev doi: 10.1021/cr3001862 – volume: 53 start-page: 647 year: 1992 ident: 10.1016/j.rser.2019.04.035_bib95 article-title: Electrical properties of amorphous lithium electrolyte thin films publication-title: Solid State Ionics doi: 10.1016/0167-2738(92)90442-R – volume: 56 start-page: 6055 year: 2011 ident: 10.1016/j.rser.2019.04.035_bib124 article-title: Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.04.084 – volume: 289 start-page: 149 year: 2018 ident: 10.1016/j.rser.2019.04.035_bib299 article-title: Graphene@TiO2 co-modified LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced electrochemical performance under harsh conditions publication-title: Electrochim Acta doi: 10.1016/j.electacta.2018.08.089 – volume: 1 start-page: 678 year: 2016 ident: 10.1016/j.rser.2019.04.035_bib256 article-title: Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature publication-title: Acs Energy Lett. doi: 10.1021/acsenergylett.6b00216 |
SSID | ssj0015873 |
Score | 2.6367505 |
SecondaryResourceType | review_article |
Snippet | All-solid-state lithium batteries (ASSLBs) with solid electrolytes have attracted great attention for the replacement of traditional lithium batteries with... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 367 |
SubjectTerms | Electrochemical performance Ionic conductivity Solid electrolyte Stability Utmost limit |
Title | Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review |
URI | https://dx.doi.org/10.1016/j.rser.2019.04.035 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eJLZpkn14K8VSX0W0hd6WJpviynZb2q3gxd_uJJuVCtKDpyW7M2yYDPMgM98gdBlwqgNfKhKGvibc9zQJgZRQaS6pDJiORed_6nu9Ib8fiVEFdcpeGFNW6Wx_YdOttXZvGk6ajXmSNF4p83iTGYQyBo7GN4ifHH4GOn399VPmQUVgb5kNMTHUrnGmqPFawDGb8q7Qwp3akW9_OKc1h9PdQ7suUsTtYjP7qKKzA7Szhh94iNQwn86WOU5Nl9ISzyb4A1JfyOUxaFQSYzfjJv2EeBInGR6nKbFfiO0jAr78LVlNsbQgm5Az3-A2Vm74AS66Wo7QoHs76PSIm5pAFARfOeETT8k4lj4Llea0JZWmWsAiGEOsxVtUec3YExMqRZMpLiE-iUNfBi3lawOvd4yq2SzTJwgzT2gPfKjwQwVZnJQSgjMmGWXGLChVQ7SUVqQcorgZbJFGZenYe2QkHBkJR00egYRr6OqHZ17gaWykFuUhRL-0IgKDv4Hv9J98Z2jbrIpy3HNUzRcrfQFBRy7rVqvqaKvdeXl8Ns-7h17_Gx142NY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60PagH8Yn1mYM3CW2aZB_eSrG0Vnuxhd5Ck01xZW1Ft4L_3sluWhSkB4-bzMAyCTPfkJlvAK4jwWwUakPjOLRUhIGlMYpSpt0jlSPTKdj5HwdBdyTux3K8Ae1lL4wrq_S-v_Tphbf2K3VvzfpbmtafGA9EgzuGMo6BJuSbUHXsVLIC1Vav3x2sHhNkVDw0O3nqFHzvTFnm9Y4n7Sq84oLxtJj69kd8-hFzOnuw68EiaZX_sw8bdnYAOz8oBA_BjPLX-UdOMteo9EHmU_KJ2S-m8wQvVZoQP-Ym-0JISdIZmWQZLXZo0UqEevlzungluuDZxLT5lrSI8fMPSNnYcgTDzt2w3aV-cAI1iL9yKqaB0UmiQx4bK1hTG8usxI9ognBLNJkJGkkgp0zLBjdCI0RJ4lBHTRNax7B3DJXZfGZPgPBA2gDDqAxjg4mc1hrxGdeccecZjKkBW1pLGU8q7mZbZGpZPfainIWVs7BqCIUWrsHNSuetpNRYKy2Xh6B-XQyFPn-N3uk_9a5gqzt8fFAPvUH_DLbdTlmdew6V_H1hLxCD5PrS37FvyAPZ8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utmost+limits+of+various+solid+electrolytes+in+all-solid-state+lithium+batteries%3A+A+critical+review&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Wu%2C+Zhijun&rft.au=Xie%2C+Zhengkun&rft.au=Yoshida%2C+Akihiro&rft.au=Wang%2C+Zhongde&rft.date=2019-07-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=109&rft.spage=367&rft.epage=385&rft_id=info:doi/10.1016%2Fj.rser.2019.04.035&rft.externalDocID=S1364032119302473 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |