Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review

All-solid-state lithium batteries (ASSLBs) with solid electrolytes have attracted great attention for the replacement of traditional lithium batteries with liquid electrolytes due to their advantages such as high safety, excellent electrochemical cycling property and long-term stability. To date, va...

Full description

Saved in:
Bibliographic Details
Published inRenewable & sustainable energy reviews Vol. 109; pp. 367 - 385
Main Authors Wu, Zhijun, Xie, Zhengkun, Yoshida, Akihiro, Wang, Zhongde, Hao, Xiaogang, Abudula, Abuliti, Guan, Guoqing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All-solid-state lithium batteries (ASSLBs) with solid electrolytes have attracted great attention for the replacement of traditional lithium batteries with liquid electrolytes due to their advantages such as high safety, excellent electrochemical cycling property and long-term stability. To date, various solid electrolytes including oxide, sulfide and polymer and organic-inorganic hybrid electrolytes have been developed for ASSLBs. Especially, the strategies to improve electrochemical performance especially ionic conductivity and stability of solid electrolytes have been widely studied. However, nowadays, ASSLBs are still not commercialized and used in our daily life. In this article, the situations of the solid electrolytes are critically reviewed, the main challenges and future prospective for the development of solid electrolytes are given and the utmost limits of those state-of-the-art solid electrolytes are analyzed. In addition, the electrode/electrolyte interface modification techniques to make ASSLBs achieving the excellent performance are evaluated. It is expected to provide a guidance for the development of novel solid electrolytes with higher ionic conductivity and environmental stability for ASSLBs. •State-of-the-art the solid electrolytes are critically reviewed.•Main solid electrolytes including oxide, sulfide and polymer electrolytes are introduced.•Strategies to improve ionic conductivity and stability of solid electrolytes are supposed.•Main challenges and prospects for the development of novel solid electrolytes are given.•The utmost limits of various solid electrolytes are analyzed.
AbstractList All-solid-state lithium batteries (ASSLBs) with solid electrolytes have attracted great attention for the replacement of traditional lithium batteries with liquid electrolytes due to their advantages such as high safety, excellent electrochemical cycling property and long-term stability. To date, various solid electrolytes including oxide, sulfide and polymer and organic-inorganic hybrid electrolytes have been developed for ASSLBs. Especially, the strategies to improve electrochemical performance especially ionic conductivity and stability of solid electrolytes have been widely studied. However, nowadays, ASSLBs are still not commercialized and used in our daily life. In this article, the situations of the solid electrolytes are critically reviewed, the main challenges and future prospective for the development of solid electrolytes are given and the utmost limits of those state-of-the-art solid electrolytes are analyzed. In addition, the electrode/electrolyte interface modification techniques to make ASSLBs achieving the excellent performance are evaluated. It is expected to provide a guidance for the development of novel solid electrolytes with higher ionic conductivity and environmental stability for ASSLBs. •State-of-the-art the solid electrolytes are critically reviewed.•Main solid electrolytes including oxide, sulfide and polymer electrolytes are introduced.•Strategies to improve ionic conductivity and stability of solid electrolytes are supposed.•Main challenges and prospects for the development of novel solid electrolytes are given.•The utmost limits of various solid electrolytes are analyzed.
Author Xie, Zhengkun
Hao, Xiaogang
Yoshida, Akihiro
Abudula, Abuliti
Guan, Guoqing
Wu, Zhijun
Wang, Zhongde
Author_xml – sequence: 1
  givenname: Zhijun
  surname: Wu
  fullname: Wu, Zhijun
  organization: Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori, 030-0813, Japan
– sequence: 2
  givenname: Zhengkun
  surname: Xie
  fullname: Xie, Zhengkun
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
– sequence: 3
  givenname: Akihiro
  surname: Yoshida
  fullname: Yoshida, Akihiro
  organization: Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori, 030-0813, Japan
– sequence: 4
  givenname: Zhongde
  surname: Wang
  fullname: Wang, Zhongde
  organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
– sequence: 5
  givenname: Xiaogang
  surname: Hao
  fullname: Hao, Xiaogang
  organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
– sequence: 6
  givenname: Abuliti
  surname: Abudula
  fullname: Abudula, Abuliti
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
– sequence: 7
  givenname: Guoqing
  surname: Guan
  fullname: Guan, Guoqing
  email: guan@hirosaki-u.ac.jp
  organization: Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori, 030-0813, Japan
BookMark eNp9kE1LAzEQhoNUsK3-AU_5A7smu8l-iJdS_IKCl3oO2ewsTsluJImV_ntT68lDTzPDyzPwPgsym9wEhNxylnPGq7td7gP4vGC8zZnIWSkvyJw3dZuxqmWztJeVyFhZ8CuyCGHHGJdNXc6JeY-jC5FaHDEG6ga61x7dV6DBWewpWDDRO3uIEChOVFub_SZZiDpC4uIHfo200zGCRwj3dEWNx4hGW-phj_B9TS4HbQPc_M0l2T49btcv2ebt-XW92mRGMBkzMVSm6_uuLlsDghedAQ4yHY2WRSEKbirWV3LgnWSlEV1b1n1bd01hapCclUtSnN4a70LwMKhPj6P2B8WZOlpSO3W0pI6WFBMqWUpQ8w8ymIqhm6LXaM-jDycUUqfU06tgECYDPfokTfUOz-E_1ouHtQ
CitedBy_id crossref_primary_10_1002_batt_201900089
crossref_primary_10_3390_ijms241612905
crossref_primary_10_3390_ma14143840
crossref_primary_10_1016_j_jssc_2022_122961
crossref_primary_10_1016_j_ssi_2020_115339
crossref_primary_10_1134_S1023193521100037
crossref_primary_10_1016_j_ensm_2024_103699
crossref_primary_10_1016_j_cej_2020_124847
crossref_primary_10_1002_aenm_202404973
crossref_primary_10_1007_s11581_024_06008_z
crossref_primary_10_1002_smtd_202401912
crossref_primary_10_1039_D3TA03481J
crossref_primary_10_1088_2631_7990_abca84
crossref_primary_10_1002_adfm_202302055
crossref_primary_10_1002_admi_202100368
crossref_primary_10_1016_j_est_2024_114974
crossref_primary_10_1016_j_ijoes_2023_100202
crossref_primary_10_1002_adma_202206625
crossref_primary_10_1002_cssc_201902002
crossref_primary_10_1016_j_jpowsour_2023_233045
crossref_primary_10_1007_s12034_023_02897_4
crossref_primary_10_1039_D1NJ05887H
crossref_primary_10_1016_j_jpowsour_2022_231300
crossref_primary_10_1016_j_memsci_2019_05_066
crossref_primary_10_1016_j_jpowsour_2022_231789
crossref_primary_10_1016_j_cej_2019_123975
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1039_D3TA05329F
crossref_primary_10_3390_batteries7010018
crossref_primary_10_1016_j_jechem_2021_05_055
crossref_primary_10_1021_acsomega_0c05942
crossref_primary_10_1016_j_jeurceramsoc_2021_12_070
crossref_primary_10_1016_j_jpowsour_2023_233969
crossref_primary_10_1016_j_est_2024_111919
crossref_primary_10_1021_acsenergylett_1c01551
crossref_primary_10_1016_j_mtener_2021_100836
crossref_primary_10_1021_acssuschemeng_0c02362
crossref_primary_10_1016_j_cej_2019_122419
crossref_primary_10_1016_j_ensm_2022_10_044
crossref_primary_10_1016_j_jpowsour_2020_228489
crossref_primary_10_1002_tcr_202300166
crossref_primary_10_1073_pnas_1921132117
crossref_primary_10_1016_j_ensm_2020_07_004
crossref_primary_10_1016_j_jpowsour_2020_228929
crossref_primary_10_1007_s10008_023_05560_4
crossref_primary_10_1007_s11581_023_05028_5
crossref_primary_10_15407_spqeo23_03_260
crossref_primary_10_1149_1945_7111_ab68d3
crossref_primary_10_1039_D1TA10964B
crossref_primary_10_1021_acsenergylett_1c00627
crossref_primary_10_1016_j_memsci_2019_117739
crossref_primary_10_1016_j_electacta_2022_140806
crossref_primary_10_1002_adma_202100585
crossref_primary_10_1088_2516_1083_ac78bd
crossref_primary_10_1021_acsami_3c16344
crossref_primary_10_1039_D2TA09184D
crossref_primary_10_2139_ssrn_4199025
crossref_primary_10_1016_j_jpowsour_2020_228114
crossref_primary_10_1016_j_apmt_2023_101770
crossref_primary_10_3390_batteries10070249
crossref_primary_10_1149_1945_7111_ac44b6
crossref_primary_10_1246_cl_200659
crossref_primary_10_1002_aenm_202002869
crossref_primary_10_1016_j_mtsust_2022_100224
crossref_primary_10_1021_acsami_1c18247
crossref_primary_10_1002_hlca_202000203
crossref_primary_10_1063_5_0237949
crossref_primary_10_1016_j_est_2023_110150
crossref_primary_10_1016_j_jmrt_2021_09_064
crossref_primary_10_1016_j_jmst_2024_04_065
crossref_primary_10_3390_met14121453
crossref_primary_10_1002_cssc_202301268
crossref_primary_10_1016_j_est_2024_112696
crossref_primary_10_1021_acsaem_0c01065
crossref_primary_10_1016_j_est_2024_112295
crossref_primary_10_1021_acsami_4c07798
crossref_primary_10_3390_batteries9020066
crossref_primary_10_1002_eem2_12753
crossref_primary_10_1016_j_electacta_2021_139438
crossref_primary_10_1016_j_jallcom_2020_157131
crossref_primary_10_2139_ssrn_4171849
crossref_primary_10_1002_aenm_202301886
crossref_primary_10_1039_D4TA05326E
crossref_primary_10_1002_admi_202201806
crossref_primary_10_1016_j_partic_2021_06_011
crossref_primary_10_1021_acsenergylett_1c00401
crossref_primary_10_3390_nano11020390
crossref_primary_10_1007_s10853_021_05832_2
crossref_primary_10_1016_j_mser_2024_100921
crossref_primary_10_1002_adfm_202415303
crossref_primary_10_1016_j_jallcom_2024_173610
crossref_primary_10_3390_ma17194882
crossref_primary_10_1016_j_matlet_2021_130356
crossref_primary_10_1016_j_joule_2020_12_001
crossref_primary_10_1002_cjoc_202300232
crossref_primary_10_1007_s12274_022_4225_6
crossref_primary_10_1002_jcc_26706
crossref_primary_10_1016_j_jpowsour_2021_230964
crossref_primary_10_1021_acssuschemeng_3c00057
crossref_primary_10_1016_j_apsusc_2025_162292
crossref_primary_10_1039_D2RA03303H
crossref_primary_10_1002_aenm_202003154
crossref_primary_10_1016_j_jallcom_2020_157143
crossref_primary_10_1021_acs_jpcc_2c05189
crossref_primary_10_1016_j_jallcom_2024_177160
crossref_primary_10_1515_zpch_2021_3135
crossref_primary_10_1002_celc_202100189
crossref_primary_10_1016_j_coelec_2021_100877
crossref_primary_10_1016_j_jpowsour_2023_233370
crossref_primary_10_1016_j_electacta_2020_136342
crossref_primary_10_1007_s00339_021_05219_9
crossref_primary_10_2139_ssrn_4111375
crossref_primary_10_1016_j_jallcom_2024_174299
crossref_primary_10_3390_ma14081998
crossref_primary_10_1039_D0QM00856G
crossref_primary_10_1016_j_ssi_2019_115196
crossref_primary_10_1002_cey2_717
crossref_primary_10_1002_smtd_202000308
crossref_primary_10_1149_1945_7111_ac1a52
crossref_primary_10_1080_21870764_2024_2403258
crossref_primary_10_1002_batt_202300167
crossref_primary_10_1002_tcr_202200116
crossref_primary_10_1016_j_trechm_2023_03_004
crossref_primary_10_1021_acsaem_9b01949
crossref_primary_10_1149_1945_7111_ac1dcc
crossref_primary_10_1039_D1NJ05489A
crossref_primary_10_1007_s12274_023_6135_7
crossref_primary_10_1016_j_electacta_2024_144888
crossref_primary_10_1002_inf2_12306
crossref_primary_10_1016_j_ijhydene_2020_05_086
crossref_primary_10_1039_D3RA02488A
crossref_primary_10_1016_j_cclet_2024_109938
crossref_primary_10_1515_zpch_2021_3139
crossref_primary_10_1016_j_est_2023_108123
crossref_primary_10_1016_j_jechem_2020_03_017
crossref_primary_10_1016_j_jpowsour_2022_232267
crossref_primary_10_3390_nano11030810
crossref_primary_10_1016_j_jelechem_2020_114913
crossref_primary_10_1021_acsami_9b20471
crossref_primary_10_1016_j_jechem_2021_11_015
crossref_primary_10_1016_j_est_2020_102167
crossref_primary_10_1007_s10008_023_05634_3
crossref_primary_10_1021_acsanm_1c03187
crossref_primary_10_1039_D0SE00013B
crossref_primary_10_1039_D4QI01831A
crossref_primary_10_1016_j_jcis_2020_01_005
crossref_primary_10_1007_s10118_020_2390_1
crossref_primary_10_1016_j_xcrp_2023_101321
crossref_primary_10_1016_j_ssi_2023_116409
crossref_primary_10_1021_acs_nanolett_4c00154
crossref_primary_10_1149_1945_7111_ad0b76
crossref_primary_10_1016_j_ensm_2022_02_018
crossref_primary_10_1016_j_cej_2020_124789
crossref_primary_10_15407_ujpe66_6_489
crossref_primary_10_1002_adfm_202211185
crossref_primary_10_1002_adsu_201900113
crossref_primary_10_1038_s41598_022_21561_1
crossref_primary_10_3390_nano10081606
crossref_primary_10_1016_j_matt_2023_04_022
crossref_primary_10_1016_j_jcis_2022_09_089
crossref_primary_10_3390_polym16010055
crossref_primary_10_3390_nano12030550
crossref_primary_10_1021_acsami_2c14067
crossref_primary_10_33609_2708_129X_89_04_2023_102_114
crossref_primary_10_1021_acsami_0c00712
crossref_primary_10_15826_chimtech_2024_11_3_07
crossref_primary_10_1016_j_susmat_2023_e00712
crossref_primary_10_1007_s12274_022_4871_x
crossref_primary_10_1021_acsami_0c09074
crossref_primary_10_1016_j_ensm_2024_103742
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1016_j_ensm_2024_103986
crossref_primary_10_3390_batteries7010011
crossref_primary_10_1002_adfm_202408535
crossref_primary_10_1039_D3TA06069A
crossref_primary_10_1016_j_jmst_2020_10_017
crossref_primary_10_1016_j_psep_2024_09_112
crossref_primary_10_1016_j_jre_2022_11_017
crossref_primary_10_1002_adfm_202007598
crossref_primary_10_1039_D3TA01435E
crossref_primary_10_1039_D0CC07296F
crossref_primary_10_3390_molecules26092625
Cites_doi 10.1021/nl202692y
10.1149/1.2086597
10.1021/cm3005387
10.1021/ma0349276
10.1016/0378-7753(94)02110-O
10.1002/pat.1503
10.1016/j.jpowsour.2005.03.062
10.1016/j.ssi.2013.08.014
10.1021/acs.chemrev.5b00563
10.1016/j.ssi.2008.03.006
10.1002/aenm.201602923
10.1016/0378-7753(85)88016-2
10.1016/j.jpowsour.2013.05.030
10.1016/j.electacta.2012.07.088
10.1016/j.jnoncrysol.2011.03.022
10.1016/0167-2738(90)90424-P
10.1016/j.ssi.2007.04.009
10.1002/aenm.201500353
10.1149/1.3129245
10.1007/s11581-011-0524-8
10.1016/j.ensm.2018.02.020
10.1016/0378-7753(94)02148-V
10.1016/j.electacta.2011.03.101
10.1039/C3CC49588D
10.1080/13642818908208455
10.1111/j.1151-2916.1999.tb01923.x
10.1016/S0013-4686(99)00437-5
10.1016/j.jpowsour.2013.09.051
10.1016/j.ssi.2012.05.013
10.1111/j.1151-2916.1964.tb12995.x
10.1007/s11581-006-0013-7
10.1149/1.1837443
10.1039/c3ta10247e
10.1016/0254-0584(89)90015-1
10.1016/0022-4596(82)90383-8
10.1016/j.ssi.2006.04.017
10.1016/j.electacta.2006.06.039
10.1149/2.0501412jes
10.3389/fenrg.2016.00022
10.1016/j.jpowsour.2012.12.001
10.1016/j.jpowsour.2013.03.166
10.1039/C6TA10142A
10.1016/0038-1098(93)90841-A
10.2109/jcersj.108.1254_128
10.1111/j.1151-2916.2001.tb00685.x
10.1016/j.ssi.2015.03.019
10.1021/jp4051275
10.1038/nmat3066
10.1016/S0167-2738(02)00137-6
10.1021/acsami.7b00336
10.1039/C6CS00620E
10.3389/fenrg.2014.00025
10.1021/cm3000427
10.1016/j.ssi.2013.09.023
10.1039/C7TA05787C
10.1149/1.2055043
10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
10.1016/j.jpowsour.2009.06.100
10.1039/c3cp51059j
10.1021/acsami.8b21621
10.1016/j.ssi.2007.03.001
10.1039/C3EE41655K
10.1016/0378-7753(94)02147-3
10.1007/BF03185988
10.1016/S0378-7753(99)00121-4
10.1002/adfm.201203556
10.1039/C3TA13235H
10.1039/c3cp50803j
10.1016/j.ssi.2004.02.025
10.1016/0167-2738(86)90139-6
10.1016/j.jpowsour.2010.12.020
10.1016/j.jpowsour.2010.02.042
10.1016/j.jpowsour.2015.05.093
10.1021/acs.jpclett.7b00593
10.1016/0025-5408(80)90131-2
10.1063/1.325509
10.1016/j.jpowsour.2010.12.052
10.1002/adma.200401286
10.1016/j.actamat.2012.10.034
10.1016/j.ssi.2010.10.013
10.1016/0167-2738(86)90131-1
10.1038/srep06272
10.1039/b514346b
10.1111/j.1151-2916.1998.tb02482.x
10.1016/j.ensm.2017.06.017
10.1039/C6CS00491A
10.1016/j.cplett.2004.06.054
10.1016/j.electacta.2016.09.155
10.1016/j.jpowsour.2017.01.030
10.1016/0025-5408(79)90158-2
10.1016/j.jpowsour.2012.11.049
10.1016/S0167-2738(98)00367-1
10.1016/j.jpowsour.2007.11.088
10.1016/S1452-3981(23)13102-6
10.3389/fenrg.2016.00038
10.1016/j.jpowsour.2005.03.063
10.1016/j.jeurceramsoc.2014.11.023
10.1021/ma500146v
10.1021/acs.jpclett.7b02880
10.1039/c0ee00266f
10.1002/adfm.201301345
10.1016/j.jpowsour.2015.09.111
10.1016/j.jpowsour.2017.08.020
10.1021/ja502133j
10.1021/cm203303y
10.1021/acsami.8b17656
10.1016/j.jpowsour.2015.10.040
10.1038/28818
10.1016/j.ssi.2014.09.011
10.1016/0025-5408(78)90075-2
10.1039/C7TA03699J
10.1134/S1023193509050103
10.1016/j.jpowsour.2004.09.004
10.1016/j.polymer.2014.04.051
10.1111/j.1151-2916.1963.tb19779.x
10.1016/j.jpowsour.2015.12.065
10.1039/C7EE02723K
10.1016/S0167-2738(00)00329-5
10.1016/j.matchemphys.2004.09.032
10.1039/C8CC00734A
10.1103/PhysRevLett.109.205702
10.1016/j.jallcom.2013.12.191
10.1039/c3ra40306h
10.1016/j.ssi.2018.02.040
10.1021/acsami.6b03070
10.1016/S0167-2738(96)00434-1
10.1016/j.nanoen.2016.11.045
10.1016/j.elecom.2008.09.026
10.1038/nmat3602
10.1016/S0378-7753(01)00902-8
10.1111/jace.13844
10.1006/jssc.2002.9560
10.1039/C4TA01856G
10.1111/j.1551-2916.2010.04335.x
10.1016/j.ssi.2017.12.007
10.1016/j.ssi.2010.06.018
10.1149/1.2097416
10.1016/j.ssi.2015.01.006
10.1002/adfm.200304333
10.1016/j.ssi.2010.12.010
10.1016/j.ssi.2013.10.007
10.1016/0167-2738(96)00195-6
10.1016/j.jpowsour.2007.06.168
10.1016/j.ensm.2016.07.003
10.1111/j.1151-2916.1991.tb07788.x
10.1016/0167-2738(95)00036-6
10.1149/2.0351906jes
10.1007/s10008-007-0391-4
10.1016/0022-4596(84)90122-1
10.1149/1.1809553
10.1016/S0167-2738(99)00043-0
10.1021/ja407393y
10.1016/j.nanoen.2017.01.028
10.1016/0167-2738(86)90179-7
10.1016/S0378-7753(03)00611-6
10.1016/j.elecom.2011.02.035
10.1016/j.ssi.2004.08.027
10.1002/aenm.201501082
10.1039/c2ee03025j
10.1016/j.ssc.2010.01.044
10.1016/j.ssi.2004.01.008
10.1149/1.3109645
10.1016/0022-3093(88)90203-7
10.1016/S1388-2481(02)00555-6
10.1149/2.0731504jes
10.1016/j.electacta.2008.01.071
10.1016/j.ssi.2012.01.017
10.1021/cm011149s
10.1111/j.1151-2916.1996.tb08127.x
10.1016/j.jpowsour.2005.03.142
10.1021/acs.chemmater.7b01463
10.1016/j.jpowsour.2016.02.088
10.1021/acs.nanolett.5b04117
10.1016/j.jpowsour.2014.10.078
10.1016/j.ssi.2016.08.014
10.1007/s13391-012-2038-6
10.1016/j.jpowsour.2014.07.055
10.1016/0378-7753(93)80106-Y
10.1088/1674-1056/25/1/018802
10.1016/j.jpowsour.2008.09.025
10.1016/j.jpowsour.2004.01.034
10.1016/0022-4596(84)90345-1
10.1039/C7TA08233A
10.1016/j.jpowsour.2006.04.037
10.1016/0167-2738(83)90028-0
10.1039/C7TA08715B
10.1149/2.F04083IF
10.1007/s11581-014-1176-2
10.1016/S0167-2738(98)00457-3
10.1002/anie.200701144
10.1016/0025-5408(76)90077-5
10.1038/19730
10.1016/j.eurpolymj.2012.10.033
10.1016/j.jpowsour.2006.07.029
10.1016/0167-2738(94)90383-2
10.1039/C7EE01004D
10.1021/cm0300563
10.1149/1.1391824
10.1016/j.ceramint.2018.01.065
10.1016/j.progpolymsci.2017.12.004
10.1016/0167-2738(93)90387-I
10.1039/c0jm04366d
10.1038/nmat1158
10.1007/BF02375778
10.1016/j.jpowsour.2017.04.083
10.1021/acs.jpcc.8b02556
10.1021/cm901819c
10.1016/0167-2738(96)00100-2
10.1016/j.jssc.2005.12.025
10.1149/1.2220723
10.1016/j.jpowsour.2013.03.175
10.1039/C7TA06833F
10.1016/S0167-2738(98)00070-8
10.1002/polb.1212
10.1149/1.1379028
10.1016/j.jpowsour.2015.02.160
10.1016/j.elecom.2007.05.020
10.1016/S0167-2738(00)00277-0
10.1038/natrevmats.2016.103
10.1016/j.jpowsour.2004.08.029
10.1111/jace.13800
10.1016/0167-2738(85)90064-5
10.1016/j.ceramint.2013.04.027
10.1021/acsami.6b01973
10.1021/acsami.7b07057
10.1039/c2jm16688g
10.1016/0025-5408(80)90249-4
10.1016/j.jpowsour.2016.03.093
10.1016/j.jnoncrysol.2010.04.048
10.1016/S0167-2738(98)00398-1
10.1016/j.elecom.2010.04.014
10.1039/b108289m
10.1016/0167-2738(92)90310-L
10.1016/S0013-4686(97)10011-1
10.1016/j.jpowsour.2016.01.068
10.1016/0022-3093(89)90304-9
10.1016/0032-3861(73)90146-8
10.1016/0167-2738(83)90068-1
10.1016/j.jpowsour.2017.05.112
10.1016/0025-5408(78)90223-4
10.1134/1.1541752
10.1016/0167-2738(96)00179-8
10.1016/j.jpowsour.2012.09.111
10.1016/j.jpowsour.2012.08.041
10.1039/C4TA00494A
10.1021/ic4030537
10.1002/ente.201200019
10.1038/nenergy.2016.30
10.1016/j.electacta.2009.11.003
10.1002/adma.201002584
10.1016/j.ssi.2014.08.002
10.1016/j.ssi.2012.02.034
10.1016/j.jpowsour.2005.06.026
10.1016/j.jnoncrysol.2006.04.018
10.1016/j.ssi.2012.03.003
10.1016/j.jpowsour.2005.03.028
10.1039/c2jm31413d
10.1016/j.polymer.2015.02.052
10.1016/0167-2738(91)90247-9
10.1016/0167-2738(94)90299-2
10.1016/j.electacta.2015.02.074
10.1149/1.1540792
10.1016/j.elecom.2011.08.014
10.1006/jssc.2002.9701
10.1149/1.1393554
10.1016/S0167-2738(98)00114-3
10.1149/1.2795837
10.1039/C7TA01147D
10.1016/S0378-7753(03)00187-3
10.1016/j.elecom.2008.12.030
10.1016/j.ssi.2017.01.005
10.1016/j.ceramint.2017.09.241
10.1111/j.1151-2916.2003.tb03318.x
10.1016/j.ssi.2004.04.007
10.1016/j.ssi.2004.08.024
10.2109/jcersj.101.1315
10.1002/adfm.200400044
10.1039/C0JM01090A
10.1016/j.jpowsour.2013.01.090
10.1016/S0378-7753(03)00189-7
10.1246/bcsj.65.2200
10.1016/j.polymer.2009.05.022
10.1016/j.electacta.2011.08.096
10.1016/j.jpowsour.2008.03.030
10.1016/S0167-2738(97)00117-3
10.1039/C5TA03239C
10.5796/electrochemistry.17-00055
10.1016/j.polymer.2006.05.069
10.1016/0167-2738(95)00094-M
10.1016/S0378-7753(00)00432-8
10.1039/C7TA04320A
10.1016/j.jpowsour.2017.10.093
10.1016/j.jpowsour.2009.11.050
10.1016/S0013-4686(00)00775-1
10.1021/cr3001862
10.1016/0167-2738(92)90442-R
10.1016/j.electacta.2011.04.084
10.1016/j.electacta.2018.08.089
10.1021/acsenergylett.6b00216
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rser.2019.04.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0690
EndPage 385
ExternalDocumentID 10_1016_j_rser_2019_04_035
S1364032119302473
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
Y6R
ZCA
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c405t-4f6cbddb739ce412bce1e539c8a522421c60d65f1b503c4b937d97b82c7e5103
IEDL.DBID .~1
ISSN 1364-0321
IngestDate Tue Jul 01 03:18:01 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Fri Feb 23 02:49:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LZP
Solid electrolyte
PEOMA
HNT
LATP
LLZO
PEDA
Utmost limit
PEO–PAN
Li
LGPS
ASSLBs
PEOEC
LYZP
Electrochemical performance
Stability
MOFs
LSNZ
S-MWCNT
MMT
P111i4FSI
NASICON
LAGP
PEGM
PTMC
CPPC
RT
PPC
ORNL
PILs
LTP
PLD
SPEs
NCPE
CNTs
MBL
thio-LISICON
ETPTA
SLIC-SPEs
PDADMA TFSI
Ionic conductivity
PEGDA
DR-XAS
PMHS
LSTZ
PEC
LSHT
3D
PEGDE
PEI
LGLZO
PEO
PEGDM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-4f6cbddb739ce412bce1e539c8a522421c60d65f1b503c4b937d97b82c7e5103
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_rser_2019_04_035
crossref_citationtrail_10_1016_j_rser_2019_04_035
elsevier_sciencedirect_doi_10_1016_j_rser_2019_04_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hong (bib100) 1978; 13
Park, Ryu, Kim, Hur, Cho, Ahn (bib195) 2004; 10
Belous, Novitskaya, Polyanetskaya, Gornikov (bib51) 1987; 23
Murthy, Ip (bib87) 1964; 47
Bron, Johansson, Zick, Schmedt auf der Gunne, Dehnen, Roling (bib182) 2013; 135
Sun, Takeda, Imanishi, Yamamoto, Sohn (bib275) 2000; 147
Minami, Hayashi, Tatsumisago (bib160) 2011; 94
Baba, Kawamura (bib4) 2016; 4
Zhang, Kennedy (bib151) 1990; 38
Murayama (bib185) 2002; 168
Zhao, Chen, Xue, Min, Cui (bib37) 1994; 70
Fonseca, Neves (bib207) 2002; 104
Goodenough, Hong, Kafalas (bib18) 1976; 11
Murugan, Ramakumar, Janani (bib75) 2011; 13
Yamauchi, Sakuda, Hayashi, Tatsumisago (bib168) 2013; 244
Morimoto, Yamashita, Tatsumisago, Minami (bib130) 1999; 82
Kang, Lee, Suh, Lee (bib246) 2003; 119
Kanno, Hata, Kawamoto, Irie (bib184) 2000; 130
Lin, Hung, Venkateswarlu, Hwang (bib290) 2005; 146
Tatsumisago, Hirai, Minami, Takada, Kondo (bib139) 1993; 101
Murugan, Thangadurai, Weppner (bib12) 2007; 46
Tsuchida, Ohno, Tsunemi, Kobayashi (bib225) 1983; 11
Lalère, Leriche, Courty, Boulineau, Viallet, Masquelier (bib31) 2014; 247
Thangadurai, Kaack, Weppner (bib70) 2003; 86
Hayashi, Muramatsu, Ohtomo, Hama, Tatsumisago (bib163) 2014; 591
Seino, Ota, Takada, Hayashi, Tatsumisago (bib159) 2014; 7
Xi, Tang (bib268) 2004; 393
Ohtomo, Mizuno, Hayashi, Tadanaga, Tatsumisago (bib119) 2005; 146
Minami, Hayashi, Ujiie, Tatsumisago (bib164) 2011; 192
Hayashi, Muramatsu, Ohtomo, Hama, Tatsumisago (bib167) 2013; 1
Cao, Li, Feng, Long, An, Qin (bib254) 2017; 5
Sheng, Jin, Luo, Yuan, Fang, Huang (bib282) 2017; 5
Hayashi, Hama, Minami, Tatsumisago (bib157) 2003; 5
Inada, Kobayashi, Sonoyama, Yamada, Kondo, Nagao (bib122) 2009; 194
Liang, Choi, Liu, Runt, Colby (bib204) 2012; 24
Ren, Chen, Chen, Liu, Zhang, Nan (bib24) 2015; 98
Visbal, Aihara, Ito, Watanabe, Park, Doo (bib148) 2016; 314
Zeng, Ji, Tsai, Zhang, Jiang, Li (bib228) 2018; 320
Baek, Honma, Kim, Rangappa (bib273) 2017; 343
Walls, Riley, Singhal, Spontak, Fedkiw, Khan (bib283) 2003; 13
Tang, Hackenberg, Fu, Ajayan, Ardebili (bib279) 2012; 12
Hori, Suzuki, Hirayama, Kato, Kanno (bib307) 2016; 4
Ohta, Takada, Osada, Zhang, Sasaki, Watanabe (bib187) 2005; 146
Kim, Choi, Cho, Park, Cho, Lee (bib252) 2014; 2
El-Shinawi, Regoutz, Payne, Cussen, Corr (bib32) 2018; 6
Zhang, Zhao, Chen, Xie, Yao, Cui (bib305) 2017; 5
Okumura, Nakatsutsumi, Ina, Orikasa, Arai, Fukutsuka (bib302) 2011; 21
Nagao, Imade, Narisawa, Kobayashi, Watanabe, Yokoi (bib180) 2013; 222
Gerbaldi, Nair, Kulandainathan, Kumar, Ferrara, Mustarelli (bib222) 2014; 2
Latie, Villeneuve, Conte, Le Flem (bib50) 1984; 51
Nagao, Hayashi, Tatsumisago, Kanetsuku, Tsuda, Kuwabata (bib142) 2013; 15
Chiang, Davis, Harding, Takahashi (bib198) 1986; 18
Yang, Dong, Zhang, Li, Wang (bib310) 2015; 98
Nagao, Hayashi, Tatsumisago (bib141) 2013; 1
Mizuno, Hayashi, Tadanaga, Tatsumisago (bib156) 2006; 177
Duan, Yin, Zeng, Li, Shi, Shi, Sun, Mindemark, Edstrom, Brandell (bib231) 2018; 10
Gromov, Kunshina, Kuz'min, Kalinnikov (bib36) 1996; 69
Yubuchi, Teragawa, Aso, Tadanaga, Hayashi, Tatsumisago (bib175) 2015; 293
Mindemark, Lacey, Bowden, Brandell (bib229) 2018; 81
Kim, Yoon, Lee, Shin (bib158) 2011; 196
Qian, Texter, Yan (bib257) 2017; 46
Cao, Li, Wang, Zhao, Han (bib188) 2014; 2
Hayashi, Tatsumisago, Minami, Miura (bib131) 1998; 81
Kobayashi, Imade, Shishihara, Homma, Nagao, Watanabe (bib121) 2008; 182
Bachman, Muy, Grimaud, Chang, Pour, Lux (bib29) 2016; 116
Yu, Xie, Yang, Wang (bib272) 2004; 132
Zhang, Zhao, Gosselink, Chen (bib295) 2015; 21
Capiglia, Mustarelli, Quartarone, Tomasi, Magistris (bib293) 1999; 118
Xu, Wang, Wilson, Zhao, Manthiram (bib13) 2017; 29
Jalem, Nakayama, Kasuga (bib106) 2014; 2
Rajkumar, Nakayama, Nogami (bib105) 2010; 150
Deviannapoorani, Dhivya, Ramakumar, Murugan (bib80) 2013; 240
Mo, Ong, Ceder (bib189) 2011; 24
Thangadurai, Weppner (bib69) 2005; 15
Bates, Dudney, Gruzalski, Zuhr, Choudhury, Luck (bib96) 1993; 43
Lin, Liu, Liu, Lee, Hsu, Liu (bib271) 2016; 16
Sun (bib274) 1999; 146
Croce, Appetecchi, Persi, Scrosati (bib269) 1998; 394
Hu, Li, Yang, Yang, Wang (bib81) 2018; 44
Lee, Joo, Kim, Woo, Sohn, Kang (bib94) 2002; 149
Matsumura, Nakano, Kanno, Hirano, Imanishi, Takeda (bib178) 2007; 174
Liang, Wen, Liu, Zhang, Huang, Jin (bib218) 2011; 196
Yu, Du, Zou, Wen, Chen (bib64) 2016; 306
Croce, Persi, Ronci, Scrosati (bib292) 2000; 135
Kim, Hwang, Yoon, Choi, Hwang (bib93) 2011; 357
Morimoto, Yamashita, Tatsumisago, Minami (bib129) 2000; 108
Zhang, Li, Piszcz, Coya, Rojo, Rodriguez-Martinez (bib253) 2017; 46
Pradel, Ribes (bib297) 1986; 18
Kanno, Murayama, Inada, Kobayashi, Sakamoto, Sonoyama (bib177) 2004; 7
Hakari, Nagao, Hayashi, Tatsumisago (bib145) 2014; 262
Xu, Wang, Zhang, Xia, Xia, Wu (bib8) 2018; 374
Croce, Bonino, Panero, Scrosati (bib280) 1989; 59
Morata-Orrantia, García-Martín, Morán, Alario-Franco (bib296) 2002; 14
Yuan, Li, Han, Lai, Zhang, Liu (bib221) 2013; 240
Aso, Hayashi, Tatsumisago (bib1) 2012; 83
El Shinawi, Janek (bib76) 2013; 225
Xu, Xia, Yao, Wang, Gu, Tu (bib161) 2016; 219
Ujiie, Hayashi, Tatsumisago (bib174) 2012; 211
Judez, Zhang, Li, Gonzalez-Marcos, Zhou, Armand (bib226) 2017; 8
Fu, Zhao, Dong, An, Shen (bib43) 2006; 162
Kumazaki, Iriyama, Kim, Murugan, Tanabe, Yamamoto (bib74) 2011; 13
Ban, Zhang, Chen, Sun (bib202) 2018; 122
Magistris, Chiodelli, Villa (bib112) 1985; 14
Arbi, Bucheli, Jiménez, Sanz (bib41) 2015; 35
Ibrahim, Yassin, Ahmad, Johan (bib192) 2011; 17
Dudney (bib98) 2008; 17
Xu, Xia, Wang, Xia, Tu (bib170) 2017; 5
Ulissi, Agostini, Ito, Aihara, Hassoun (bib3) 2016; 296
Jung, Lee, Choi, Jang, Kim (bib27) 2015; 162
Takada, Kondo (bib117) 1998; 4
Zhang, Zhao, Yue, Wang, Chai, Liu (bib201) 2015; 5
Tanaka, Sakurai, Sekiguchi, Mori, Murayama, Ooyama (bib211) 2001; 46
Kawai, Kuwano (bib57) 1994; 141
Wang, Li, Yang (bib270) 2010; 55
Xu, Xia, Li, Zhang, Wang, Tu (bib171) 2017; 5
Porcarelli, Shaplov, Salsamendi, Nair, Vygodskii, Mecerreyes (bib206) 2016; 8
Sakuda, Kitaura, Hayashi, Tadanaga, Tatsumisago (bib102) 2008; 11
Kumar, Scanlon (bib281) 1994; 52
Porcarelli, Shaplov, Bella, Nair, Mecerreyes, Gerbaldi (bib256) 2016; 1
Lin, Li, Lai, Yuan, Cheng, Liu (bib235) 2013; 3
Aono, Sugimoto, Sadaoka, Imanaka, Adachi (bib38) 1992; 65
Yang, Wu, Hu, Peng, Cao, Du (bib300) 2019; 11
Hayashi, Minami, Ujiie, Tatsumisago (bib154) 2010; 356
Zekoll, Marriner-Edwards, Hekselman, Kasemchainan, Kuss, Armstrong (bib266) 2018; 11
Xiong, Wang, Xie, Cheng, Xia (bib214) 2006; 16
Alarco, Abu-Lebdeh, Abouimrane, Armand (bib249) 2004; 3
Yang, Zhang, Zhang, Zhang, Huang, Chen (bib200) 2013; 23
Klongkan, Pumchusak (bib288) 2015; 161
Whiteley, Woo, Hu, Nam, Lee (bib181) 2014; 161
Shimonishi, Toda, Zhang, Hirano, Imanishi, Yamamoto (bib73) 2011; 183
Yue, Ma, Zhang, Zhao, Dong, Liu (bib30) 2016; 5
Sebastian, Gopalakrishnan, Piffard (bib108) 2002; 12
Zhou, He, Liu, Liu, Du, Li (bib251) 2015; 5
Minami, Mizuno, Hayashi, Tatsumisago (bib155) 2007; 178
Chen, Xie, Liu, Mwizerwa, Zhang, Zhao (bib6) 2018; 14
Hirai, Tatsumisago, Minami (bib138) 1995; 78
Bohnke, Bohnke, Fourquet (bib53) 1996; 91
Zhao, Wu, Peng, Chen, Yao, Bai (bib26) 2016; 301
Kim, Eom, Noh, Shin (bib140) 2013; 244
Bouchet, Maria, Meziane, Aboulaich, Lienafa, Bonnet (bib255) 2013; 12
Ohtomo, Hayashi, Tatsumisago, Tsuchida, Hama, Kawamoto (bib144) 2013; 233
Chowdari, Radhakrishnan (bib111) 1989; 108
Lin, Wang, Liu, Miller (bib286) 2017; 31
Bates, Gruzalski, Dudney, Luck, Yu (bib97) 1994; 70
Kato, Hayashi, Tatsumisago (bib304) 2016; 309
Kobayashi, Plashnitsa, Doi, Okada, Yamaki (bib40) 2010; 12
Otoyama, Ito, Hayashi, Tatsumisago (bib147) 2016; 302
Kang, Lee, Suh, Lee (bib234) 2005; 146
Tatsumisago, Mizuno, Hayashi (bib120) 2006; 159
Kuwano, West (bib101) 1980; 15
Hayashi, Tatsumisago (bib19) 2012; 8
Li, Han, Wang, Xie, Goodenough (bib116) 2012; 22
Shin, Son, Han, Do Kim, Kim, Ryu (bib67) 2017; 301
Mizuno (bib126) 2004; 175
Sun, Mindemark, Edstrom, Brandell (bib232) 2014; 262
Chen, Chang (bib285) 2001; 39
Murayama, Sonoyama, Yamada, Kanno (bib118) 2004; 170
Muramatsu, Hayashi, Ohtomo, Hama, Tatsumisago (bib162) 2011; 182
Aono, Sugimoto, Sadaoka, Imanaka, Adachi (bib61) 1991; 47
Trevey, Jung, Lee (bib165) 2010; 195
Inoishi, Nishio, Yoshioka, Kitajou, Okada (bib49) 2018; 54
Manuel Stephan, Nahm (bib193) 2006; 47
Zhou, Kim (bib238) 2010; 21
Jalem, Nakayama, Kasuga (bib15) 2014; 262
MacGlashan, Andreev, Bruce (bib23) 1999; 398
Ivanov-Shitz, Kireev (bib104) 2003; 48
Mizuno, Hayashi, Tadanaga, Tatsumisago (bib20) 2005; 17
Tominaga, Yamazaki (bib233) 2014; 50
Slane, Salomon (bib262) 1995; 55
Inaguma, Katsumata, Itoh, Morii (bib54) 2002; 166
Levasseur, Calès, Réau, Hagenmuller (bib85) 1978; 13
Hayashi, Ishikawa, Hama, Minami, Tatsumisago (bib186) 2003; 6
Bernstein, Johannes, Hoang (bib79) 2012; 109
Masuda, Nakayama, Wakihara (bib215) 2007; 178
Huang, Xu, Li, Zhou, You, Zhong (bib63) 2016; 8
Aono, Sugimoto, Sadaoka, Imanaka, Adachi (bib47) 1993; 62
Ha, Kwon, Kim, Lee (bib236) 2011; 57
Kamaya, Homma, Yamakawa, Hirayama, Kanno, Yonemura (bib125) 2011; 10
Nakano, Dokko, Sugaya, Yasukawa, Matsue, Kanamura (bib216) 2007; 9
Hayashi, Araki, Komiya, Tadanaga, Tatsumisago, Minami (bib133) 1998; 113
Yang, Du, Hu, Peng, Cao, Wu (bib299) 2018; 289
Hayashi, Hama, Morimoto, Tatsumisago, Minami (bib153) 2001; 84
Kato, Hori, Saito, Suzuki, Hirayama, Mitsui (bib191) 2016; 1
Saccoccio, Yu, Lu, Kwok, Wang, Yeung (bib66) 2017; 365
Chida, Miura, Rosero-Navarro, Higuchi, Phuc, Muto (bib149) 2018; 44
Oh, Vissers, Zhang, West, Tsukamoto, Amine (bib247) 2003; 119
Park, Jung, Kim (bib265) 2018; 315
Ooura, Machida, Naito, Shigematsu (bib173) 2012; 225
Manthiram, Yu, Wang (bib7) 2017; 2
Bashiri, Nazri, Naik, Naik (bib264) 2018
Li, Liu, Liu, Wang (bib34) 2013; 240
Prasanth, Shubha, Hng, Srinivasan (bib277) 2013; 49
Masquelier, Croguennec (bib17) 2013; 113
Kwon, Kim, Shim, Lee, Baik, Lee (bib224) 2014; 55
Khurana, Schaefer, Archer, Coates (bib227) 2014; 136
Yuan, Chen, Yang, Li, Wang (bib219) 2005; 89
Ishmukhametova, Yarmolenko, Bogdanova, Rozenberg, Efimov (bib199) 2009; 45
Charles (bib82) 1963; 46
Rosciano, Pescarmona, Houthoofd, Persoons, Bottke, Wilkening (bib109) 2013; 15
Ha, Kil, Kwon, Kim, Lee, Lee (bib237) 2012; 5
Quartarone, Must
Pradel (10.1016/j.rser.2019.04.035_bib297) 1986; 18
Kondo (10.1016/j.rser.2019.04.035_bib128) 1992; 53
Lalère (10.1016/j.rser.2019.04.035_bib31) 2014; 247
Yang (10.1016/j.rser.2019.04.035_bib289) 2013; 8
Kennedy (10.1016/j.rser.2019.04.035_bib127) 1989; 23
Morimoto (10.1016/j.rser.2019.04.035_bib129) 2000; 108
Lin (10.1016/j.rser.2019.04.035_bib271) 2016; 16
El-Shinawi (10.1016/j.rser.2019.04.035_bib32) 2018; 6
Berthier (10.1016/j.rser.2019.04.035_bib209) 1983; 11
Yubuchi (10.1016/j.rser.2019.04.035_bib175) 2015; 293
Xu (10.1016/j.rser.2019.04.035_bib13) 2017; 29
Seino (10.1016/j.rser.2019.04.035_bib159) 2014; 7
Mindemark (10.1016/j.rser.2019.04.035_bib245) 2015; 63
Li (10.1016/j.rser.2019.04.035_bib34) 2013; 240
Rosciano (10.1016/j.rser.2019.04.035_bib109) 2013; 15
Zhang (10.1016/j.rser.2019.04.035_bib151) 1990; 38
Porcarelli (10.1016/j.rser.2019.04.035_bib256) 2016; 1
Minami (10.1016/j.rser.2019.04.035_bib160) 2011; 94
Bron (10.1016/j.rser.2019.04.035_bib182) 2013; 135
Fu (10.1016/j.rser.2019.04.035_bib46) 2006; 52
Croce (10.1016/j.rser.2019.04.035_bib280) 1989; 59
Bruce (10.1016/j.rser.2019.04.035_bib14) 1982; 44
Inaguma (10.1016/j.rser.2019.04.035_bib114) 1993; 86
Yuan (10.1016/j.rser.2019.04.035_bib219) 2005; 89
Bernstein (10.1016/j.rser.2019.04.035_bib79) 2012; 109
Shin (10.1016/j.rser.2019.04.035_bib67) 2017; 301
Zhang (10.1016/j.rser.2019.04.035_bib248) 2004; 170
Kato (10.1016/j.rser.2019.04.035_bib150) 2018; 9
Adams (10.1016/j.rser.2019.04.035_bib190) 2012; 22
El Shinawi (10.1016/j.rser.2019.04.035_bib76) 2013; 225
Visbal (10.1016/j.rser.2019.04.035_bib148) 2016; 314
Mizuno (10.1016/j.rser.2019.04.035_bib156) 2006; 177
Marmorstein (10.1016/j.rser.2019.04.035_bib194) 2000; 89
Bakenov (10.1016/j.rser.2019.04.035_bib230) 2007; 12
Ren (10.1016/j.rser.2019.04.035_bib24) 2015; 98
Yu (10.1016/j.rser.2019.04.035_bib64) 2016; 306
Hayashi (10.1016/j.rser.2019.04.035_bib19) 2012; 8
Croce (10.1016/j.rser.2019.04.035_bib269) 1998; 394
Prasanth (10.1016/j.rser.2019.04.035_bib277) 2013; 49
Aono (10.1016/j.rser.2019.04.035_bib47) 1993; 62
MacGlashan (10.1016/j.rser.2019.04.035_bib23) 1999; 398
Kobayashi (10.1016/j.rser.2019.04.035_bib121) 2008; 182
Masquelier (10.1016/j.rser.2019.04.035_bib17) 2013; 113
Zhou (10.1016/j.rser.2019.04.035_bib238) 2010; 21
Marceau (10.1016/j.rser.2019.04.035_bib196) 2016; 319
Pradel (10.1016/j.rser.2019.04.035_bib90) 1985; 17
Jiang (10.1016/j.rser.2019.04.035_bib291) 2005; 141
Gromov (10.1016/j.rser.2019.04.035_bib36) 1996; 69
Sun (10.1016/j.rser.2019.04.035_bib274) 1999; 146
Levasseur (10.1016/j.rser.2019.04.035_bib85) 1978; 13
Hartmann (10.1016/j.rser.2019.04.035_bib39) 2013; 117
Kamaya (10.1016/j.rser.2019.04.035_bib21) 2011; 10
Zhang (10.1016/j.rser.2019.04.035_bib305) 2017; 5
Yang (10.1016/j.rser.2019.04.035_bib310) 2015; 98
Kwon (10.1016/j.rser.2019.04.035_bib224) 2014; 55
Sun (10.1016/j.rser.2019.04.035_bib2) 2017; 33
Hayashi (10.1016/j.rser.2019.04.035_bib132) 1998; 39
Wang (10.1016/j.rser.2019.04.035_bib287) 2017; 9
Dudney (10.1016/j.rser.2019.04.035_bib98) 2008; 17
Lin (10.1016/j.rser.2019.04.035_bib290) 2005; 146
Zhou (10.1016/j.rser.2019.04.035_bib251) 2015; 5
Croce (10.1016/j.rser.2019.04.035_bib292) 2000; 135
Yang (10.1016/j.rser.2019.04.035_bib200) 2013; 23
Ratner (10.1016/j.rser.2019.04.035_bib210) 1987
Shimonishi (10.1016/j.rser.2019.04.035_bib73) 2011; 183
Tanaka (10.1016/j.rser.2019.04.035_bib91) 1988; 103
Lin (10.1016/j.rser.2019.04.035_bib235) 2013; 3
Hassoun (10.1016/j.rser.2019.04.035_bib267) 2010; 22
Morata-Orrantia (10.1016/j.rser.2019.04.035_bib296) 2002; 14
Doreau (10.1016/j.rser.2019.04.035_bib86) 1980; 15
Hayashi (10.1016/j.rser.2019.04.035_bib186) 2003; 6
Sebastian (10.1016/j.rser.2019.04.035_bib108) 2002; 12
Okumura (10.1016/j.rser.2019.04.035_bib244) 2014; 267
Kawai (10.1016/j.rser.2019.04.035_bib57) 1994; 141
Cao (10.1016/j.rser.2019.04.035_bib188) 2014; 2
Kobayashi (10.1016/j.rser.2019.04.035_bib179) 2008; 53
Choi (10.1016/j.rser.2019.04.035_bib25) 2015; 274
Noh (10.1016/j.rser.2019.04.035_bib143) 2013; 39
Otto (10.1016/j.rser.2019.04.035_bib88) 1966; 7
Xiong (10.1016/j.rser.2019.04.035_bib214) 2006; 16
Lee (10.1016/j.rser.2019.04.035_bib92) 2004; 175
Jalem (10.1016/j.rser.2019.04.035_bib15) 2014; 262
Kato (10.1016/j.rser.2019.04.035_bib191) 2016; 1
Murugan (10.1016/j.rser.2019.04.035_bib75) 2011; 13
Nagao (10.1016/j.rser.2019.04.035_bib124) 2011; 56
Hao (10.1016/j.rser.2019.04.035_bib42) 2017; 9
Kim (10.1016/j.rser.2019.04.035_bib158) 2011; 196
Nagao (10.1016/j.rser.2019.04.035_bib142) 2013; 15
Ibrahim (10.1016/j.rser.2019.04.035_bib192) 2011; 17
Appetecchi (10.1016/j.rser.2019.04.035_bib197) 2003; 124
Porcarelli (10.1016/j.rser.2019.04.035_bib206) 2016; 8
Whiteley (10.1016/j.rser.2019.04.035_bib181) 2014; 161
Bouchet (10.1016/j.rser.2019.04.035_bib255) 2013; 12
Martin (10.1016/j.rser.2019.04.035_bib83) 1991; 74
Xi (10.1016/j.rser.2019.04.035_bib268) 2004; 393
Latie (10.1016/j.rser.2019.04.035_bib50) 1984; 51
Cao (10.1016/j.rser.2019.04.035_bib254) 2017; 5
Tatsumisago (10.1016/j.rser.2019.04.035_bib120) 2006; 159
Kinoshita (10.1016/j.rser.2019.04.035_bib146) 2014; 269
Ujiie (10.1016/j.rser.2019.04.035_bib174) 2012; 211
Kobayashi (10.1016/j.rser.2019.04.035_bib40) 2010; 12
Otoyama (10.1016/j.rser.2019.04.035_bib147) 2016; 302
Saccoccio (10.1016/j.rser.2019.04.035_bib66) 2017; 365
Tominaga (10.1016/j.rser.2019.04.035_bib233) 2014; 50
Wright (10.1016/j.rser.2019.04.035_bib212) 1998; 43
Tsuchida (10.1016/j.rser.2019.04.035_bib225) 1983; 11
Aono (10.1016/j.rser.2019.04.035_bib48) 1993; 140
Quartarone (10.1016/j.rser.2019.04.035_bib259) 1998; 110
Arbi (10.1016/j.rser.2019.04.035_bib41) 2015; 35
Duan (10.1016/j.rser.2019.04.035_bib231a) 2018; 10
Uno (10.1016/j.rser.2019.04.035_bib223) 2008; 178
Mizuno (10.1016/j.rser.2019.04.035_bib126) 2004; 175
Mindemark (10.1016/j.rser.2019.04.035_bib229) 2018; 81
Yang (10.1016/j.rser.2019.04.035_bib300) 2019; 11
Jalem (10.1016/j.rser.2019.04.035_bib107) 2012; 24
Zhang (10.1016/j.rser.2019.04.035_bib203) 2003; 36
Aono (10.1016/j.rser.2019.04.035_bib61) 1991; 47
Murayama (10.1016/j.rser.2019.04.035_bib118) 2004; 170
Kim (10.1016/j.rser.2019.04.035_bib252) 2014; 2
Vignarooban (10.1016/j.rser.2019.04.035_bib294) 2014; 266
Fu (10.1016/j.rser.2019.04.035_bib43) 2006; 162
Appetecchi (10.1016/j.rser.2019.04.035_bib260) 2000; 45
Tatsumisago (10.1016/j.rser.2019.04.035_bib139) 1993; 101
Hong (10.1016/j.rser.2019.04.035_bib100) 1978; 13
Baek (10.1016/j.rser.2019.04.035_bib273) 2017; 343
Bohnke (10.1016/j.rser.2019.04.035_bib53) 1996; 91
Park (10.1016/j.rser.2019.04.035_bib265) 2018; 315
Morata-Orrantia (10.1016/j.rser.2019.04.035_bib115) 2003; 15
Judez (10.1016/j.rser.2019.04.035_bib226) 2017; 8
Mo (10.1016/j.rser.2019.04.035_bib189) 2011; 24
Chiang (10.1016/j.rser.2019.04.035_bib198) 1986; 18
Zhang (10.1016/j.rser.2019.04.035_bib295) 2015; 21
Okumura (10.1016/j.rser.2019.04.035_bib302) 2011; 21
Kennedy (10.1016/j.rser.2019.04.035_bib152) 1989; 136
Matsumura (10.1016/j.rser.2019.04.035_bib178) 2007; 174
Hayashi (10.1016/j.rser.2019.04.035_bib157) 2003; 5
Matsumi (10.1016/j.rser.2019.04.035_bib243) 2010; 195
Hori (10.1016/j.rser.2019.04.035_bib307) 2016; 4
Bates (10.1016/j.rser.2019.04.035_bib95) 1992; 53
Murugan (10.1016/j.rser.2019.04.035_bib12) 2007; 46
Walls (10.1016/j.rser.2019.04.035_bib283) 2003; 13
Lu (10.1016/j.rser.2019.04.035_bib16) 2018; 11
Kobayashi (10.1016/j.rser.2019.04.035_bib60) 1999; 81
Chowdari (10.1016/j.rser.2019.04.035_bib111) 1989; 108
Choi (10.1016/j.rser.2019.04.035_bib250) 2014; 24
Moreno (10.1016/j.rser.2019.04.035_bib276) 2011; 58
Zhang (10.1016/j.rser.2019.04.035_bib253) 2017; 46
Magistris (10.1016/j.rser.2019.04.035_bib112) 1985; 14
Hakari (10.1016/j.rser.2019.04.035_bib145) 2014; 262
Morimoto (10.1016/j.rser.2019.04.035_bib130) 1999; 82
Thangadurai (10.1016/j.rser.2019.04.035_bib71) 2006; 179
Rao (10.1016/j.rser.2019.04.035_bib309) 2006; 352
Yao (10.1016/j.rser.2019.04.035_bib303) 2017; 7
Kamaya (10.1016/j.rser.2019.04.035_bib125) 2011; 10
Nakayama (10.1016/j.rser.2019.04.035_bib217) 2010; 3
Wang (10.1016/j.rser.2019.04.035_bib270) 2010; 55
Kim (10.1016/j.rser.2019.04.035_bib140) 2013; 244
Meyer (10.1016/j.rser.2019.04.035_bib22) 1998; 10
Aso (10.1016/j.rser.2019.04.035_bib1) 2012; 83
Huang (10.1016/j.rser.2019.04.035_bib63) 2016; 8
Hirai (10.1016/j.rser.2019.04.035_bib135) 1996; 79
Michael (10.1016/j.rser.2019.04.035_bib261) 1997; 98
Aono (10.1016/j.rser.2019.04.035_bib38) 1992; 65
Xu (10.1016/j.rser.2019.04.035_bib161) 2016; 219
Liu (10.1016/j.rser.2019.04.035_bib68) 2018; 6
SuzukiK (10.1016/j.rser.2019.04.035_bib183) 2018; 86
Thangadurai (10.1016/j.rser.2019.04.035_bib10) 2006; 12
Yao (10.1016/j.rser.2019.04.035_bib9) 2016; 25
Cao (10.1016/j.rser.2019.04.035_bib28) 2014; 2
Khurana (10.1016/j.rser.2019.04.035_bib227) 2014; 136
Sakuda (10.1016/j.rser.2019.04.035_bib301) 2010; 22
Hayashi (10.1016/j.rser.2019.04.035_bib5) 2008; 10
Goodenough (10.1016/j.rser.2019.04.035_bib18) 1976; 11
Yu (10.1016/j.rser.2019.04.035_bib99) 1997; 144
Hayashi (10.1016/j.rser.2019.04.035_bib163) 2014; 591
Minami (10.1016/j.rser.2019.04.035_bib164) 2011; 192
Zhang (10.1016/j.rser.2019.04.035_bib220) 2014; 4
Manthiram (10.1016/j.rser.2019.04.035_bib7) 2017; 2
Tanaka (10.1016/j.rser.2019.04.035_bib211) 2001; 46
Xu (10.1016/j.rser.2019.04.035_bib170) 2017; 5
Baba (10.1016/j.rser.2019.04.035_bib4) 2016; 4
Shin (10.1016/j.rser.2019.04.035_bib213) 2006; 156
Manuel Stephan (10.1016/j.rser.2019.04.035_bib193) 2006; 47
Inaguma (10.1016/j.rser.2019.04.035_bib54) 2002; 166
Yuan (10.1016/j.rser.2019.04.035_bib221) 2013; 240
Kim (10.1016/j.rser.2019.04.035_bib308) 2012; 225
Trevey (10.1016/j.rser.2019.04.035_bib165) 2010; 195
Kim (10.1016/j.rser.2019.04.035_bib240) 2009; 50
Harada (10.1016/j.rser.2019.04.035_bib52) 1999; 121
Bashiri (10.1016/j.rser.2019.04.035_bib264) 2018
Chida (10.1016/j.rser.2019.04.035_bib149) 2018; 44
Kuwano (10.1016/j.rser.2019.04.035_bib101) 1980; 15
Ha (10.1016/j.rser.2019.04.035_bib237) 2012; 5
Zhao (10.1016/j.rser.2019.04.035_bib26) 2016; 301
Ohtomo (10.1016/j.rser.2019.04.035_bib119) 2005; 146
Lu (10.1016/j.rser.2019.04.035_bib172) 2017; 356
Tang (10.1016/j.rser.2019.04.035_bib279) 2012; 12
Pye (10.1016
References_xml – volume: 296
  start-page: 13
  year: 2016
  end-page: 17
  ident: bib3
  article-title: All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte
  publication-title: Solid State Ionics
– volume: 11
  start-page: 185
  year: 2018
  end-page: 201
  ident: bib266
  article-title: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries
  publication-title: Energy Environ Sci
– volume: 5
  start-page: 23844
  year: 2017
  end-page: 23852
  ident: bib258
  article-title: Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids
  publication-title: J Mater Chem A
– volume: 262
  start-page: 589
  year: 2014
  end-page: 592
  ident: bib15
  article-title: Lithium ion conduction in tavorite-type LiMXO
  publication-title: Solid State Ionics
– volume: 247
  start-page: 975
  year: 2014
  end-page: 980
  ident: bib31
  article-title: An all-solid state NASICON sodium battery operating at 200 °C
  publication-title: J Power Sources
– volume: 70
  start-page: 144
  year: 1994
  end-page: 146
  ident: bib37
  article-title: Ionic-conductivity and luminescence of Eu
  publication-title: Solid State Ionics
– volume: 136
  start-page: 7395
  year: 2014
  end-page: 7402
  ident: bib227
  article-title: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries
  publication-title: J Am Chem Soc
– volume: 5
  start-page: 6491
  year: 2012
  end-page: 6499
  ident: bib237
  article-title: UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries
  publication-title: Energy Environ Sci
– volume: 8
  start-page: 10350
  year: 2016
  end-page: 10359
  ident: bib206
  article-title: Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries
  publication-title: ACS Appl Mater Interfaces
– volume: 119
  start-page: 442
  year: 2003
  end-page: 447
  ident: bib247
  article-title: New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery
  publication-title: J Power Sources
– volume: 13
  start-page: 509
  year: 2011
  end-page: 512
  ident: bib74
  article-title: High lithium ion conductive Li
  publication-title: Electrochem Commun
– volume: 591
  start-page: 247
  year: 2014
  end-page: 250
  ident: bib163
  article-title: Improved chemical stability and cyclability in Li
  publication-title: J. Alloys Compd.
– volume: 3
  start-page: 10722
  year: 2013
  end-page: 10730
  ident: bib235
  article-title: A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries
  publication-title: RSC Adv
– volume: 103
  start-page: 250
  year: 1988
  end-page: 256
  ident: bib91
  article-title: Structure and ionic conductivity of LiCl∙Li
  publication-title: J Non-Cryst Solids
– volume: 148
  start-page: A742
  year: 2001
  end-page: A746
  ident: bib176
  article-title: Lithium ionic conductor thio-LISICON: the Li
  publication-title: J Electrochem Soc
– volume: 306
  start-page: 623
  year: 2016
  end-page: 629
  ident: bib64
  article-title: Synthesis and characterization of perovskite-type (Li, Sr)(Zr, Nb)O
  publication-title: J Power Sources
– volume: 146
  start-page: 1672
  year: 1999
  end-page: 1676
  ident: bib274
  article-title: Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO
  publication-title: J Electrochem Soc
– volume: 8
  start-page: 10163
  year: 2013
  end-page: 10169
  ident: bib289
  article-title: Electrical properties of composite polymer electrolytes based on PEO-SN-LiCF
  publication-title: Int. J. Electrochem. Sci.
– volume: 17
  start-page: 147
  year: 1985
  end-page: 154
  ident: bib90
  article-title: Effect of rapid quenching on electrical properties of lithium conductive glasses
  publication-title: Solid State Ionics
– volume: 116
  start-page: 140
  year: 2016
  end-page: 162
  ident: bib29
  article-title: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction
  publication-title: Chem Rev
– volume: 11
  start-page: 8556
  year: 2019
  end-page: 8566
  ident: bib300
  article-title: Design and synthesis of double-functional polymer composite layer coating to enhance the electrochemical performance of the Ni-rich cathode at upper cutoff voltage
  publication-title: ACS Appl Mater Interfaces
– volume: 183
  start-page: 48
  year: 2011
  end-page: 53
  ident: bib73
  article-title: Synthesis of garnet-type Li
  publication-title: Solid State Ionics
– volume: 365
  start-page: 43
  year: 2017
  end-page: 52
  ident: bib66
  article-title: Low temperature pulsed laser deposition of garnet Li
  publication-title: J Power Sources
– volume: 219
  start-page: 235
  year: 2016
  end-page: 240
  ident: bib161
  article-title: Preparation of Li
  publication-title: Electrochim Acta
– volume: 11
  start-page: 203
  year: 1976
  end-page: 220
  ident: bib18
  article-title: Fast Na
  publication-title: Mater Res Bull
– volume: 130
  start-page: 97
  year: 2000
  end-page: 104
  ident: bib184
  article-title: Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system
  publication-title: Solid State Ionics
– volume: 196
  start-page: 3655
  year: 2011
  end-page: 3658
  ident: bib218
  article-title: Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery
  publication-title: J Power Sources
– volume: 86
  start-page: 539
  year: 1996
  end-page: 542
  ident: bib137
  article-title: Preparation of Li
  publication-title: Solid State Ionics
– volume: 7
  start-page: 1602923
  year: 2017
  ident: bib303
  article-title: High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 175
  year: 2009
  end-page: 180
  ident: bib72
  article-title: Evaluation of electrochemical characteristics of Li
  publication-title: ECS Transactions
– volume: 394
  start-page: 456
  year: 1998
  ident: bib269
  article-title: Nanocomposite polymer electrolytes for lithium batteries
  publication-title: Nature
– volume: 39
  start-page: 145
  year: 1998
  end-page: 150
  ident: bib132
  article-title: X-ray photoelectron spectroscopy of (100–x)(0·6Li
  publication-title: Phys Chem Glasses
– volume: 178
  start-page: 837
  year: 2007
  end-page: 841
  ident: bib155
  article-title: Lithium ion conductivity of the Li
  publication-title: Solid State Ionics
– volume: 13
  start-page: 117
  year: 1978
  end-page: 124
  ident: bib100
  article-title: Crystal structure and ionic conductivity of Li
  publication-title: Mater Res Bull
– volume: 272
  start-page: 138
  year: 2015
  end-page: 143
  ident: bib44
  article-title: Structural and electrochemical properties of Fe- and Al-doped Li
  publication-title: Solid State Ionics
– volume: 86
  start-page: 689
  year: 1993
  end-page: 693
  ident: bib114
  article-title: High ionic conductivity in lithium lanthanum titanate
  publication-title: Solid State Commun
– volume: 21
  start-page: 797
  year: 2010
  end-page: 801
  ident: bib238
  article-title: All solid polymer electrolytes based on polar side group rotation for rechargeable lithium batteries
  publication-title: Polym Adv Technol
– volume: 110
  start-page: 1
  year: 1998
  end-page: 14
  ident: bib259
  article-title: PEO-based composite polymer electrolytes
  publication-title: Solid State Ionics
– volume: 4
  start-page: 22
  year: 2016
  ident: bib4
  article-title: Structure and ionic conductivity of Li
  publication-title: Frontiers in Energy Research
– volume: 17
  start-page: 44
  year: 2008
  ident: bib98
  article-title: Thin film micro-batteries
  publication-title: Electrochem. Soc. Interface
– volume: 12
  start-page: 452
  year: 2013
  ident: bib255
  article-title: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
  publication-title: Nat Mater
– volume: 10
  start-page: 1568
  year: 2017
  end-page: 1575
  ident: bib65
  article-title: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries
  publication-title: Energy Environ Sci
– volume: 3
  start-page: 1995
  year: 2010
  end-page: 2002
  ident: bib217
  article-title: Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes
  publication-title: Energy Environ Sci
– volume: 393
  start-page: 271
  year: 2004
  end-page: 276
  ident: bib268
  article-title: Nanocomposite polymer electrolyte based on poly(ethylene oxide) and solid super acid for lithium polymer battery
  publication-title: Chem Phys Lett
– volume: 65
  start-page: 2200
  year: 1992
  end-page: 2204
  ident: bib38
  article-title: Electrical properties and sinterability for lithium germanium phosphate Li
  publication-title: Bull Chem Soc Jpn
– volume: 79
  start-page: 349
  year: 1996
  end-page: 352
  ident: bib135
  article-title: Si and
  publication-title: J Am Ceram Soc
– volume: 3
  start-page: 18636
  year: 2015
  end-page: 18648
  ident: bib77
  article-title: A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries
  publication-title: J Mater Chem A
– volume: 53
  start-page: 2310
  year: 2014
  end-page: 2316
  ident: bib110
  article-title: An unnoticed inorganic solid electrolyte: dilithium sodium phosphate with the nalipoite structure
  publication-title: Inorg Chem
– volume: 94
  start-page: 1779
  year: 2011
  end-page: 1783
  ident: bib160
  article-title: Crystallization process for superionic Li
  publication-title: J Am Ceram Soc
– volume: 49
  start-page: 307
  year: 2013
  end-page: 318
  ident: bib277
  article-title: Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries
  publication-title: Eur Polym J
– volume: 284
  start-page: 206
  year: 2015
  end-page: 211
  ident: bib169
  article-title: Li
  publication-title: J Power Sources
– volume: 91
  start-page: 21
  year: 1996
  end-page: 31
  ident: bib53
  article-title: Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate
  publication-title: Solid State Ionics
– volume: 24
  start-page: 1357
  year: 2012
  end-page: 1364
  ident: bib107
  article-title: Multivariate method-assisted Ab initio study of olivine-type LiMXO
  publication-title: Chem Mater
– volume: 146
  start-page: 391
  year: 2005
  end-page: 396
  ident: bib234
  article-title: A new polysiloxane based cross-linker for solid polymer electrolyte
  publication-title: J Power Sources
– volume: 12
  start-page: 295
  year: 2007
  end-page: 302
  ident: bib230
  article-title: Lithium AlPO
  publication-title: J Solid State Electrochem
– volume: 44
  start-page: 354
  year: 1982
  end-page: 365
  ident: bib14
  article-title: Ionic conductivity of LISICON solid solutions, Li
  publication-title: J Solid State Chem
– volume: 44
  start-page: 6614
  year: 2018
  end-page: 6618
  ident: bib81
  article-title: Structure and ionic conductivity of Li
  publication-title: Ceram Int
– volume: 54
  start-page: 3178
  year: 2018
  end-page: 3181
  ident: bib49
  article-title: Single-phase All-solid-state lithium battery based on Li
  publication-title: Chem Commun.
– volume: 136
  start-page: 2441
  year: 1989
  end-page: 2443
  ident: bib152
  article-title: Preparation and electrochemical properties of the SiS
  publication-title: J Electrochem Soc
– volume: 146
  start-page: 707
  year: 2005
  end-page: 710
  ident: bib187
  article-title: Solid electrolyte, thio-LISICON, thin film prepared by pulsed laser deposition
  publication-title: J Power Sources
– volume: 141
  start-page: L78
  year: 1994
  end-page: L79
  ident: bib57
  article-title: Lithium ion conductivity of A‐site deficient perovskite solid solution La
  publication-title: J Electrochem Soc
– volume: 89
  start-page: 219
  year: 2000
  end-page: 226
  ident: bib194
  article-title: Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes
  publication-title: J Power Sources
– volume: 53
  start-page: 647
  year: 1992
  end-page: 654
  ident: bib95
  article-title: Electrical properties of amorphous lithium electrolyte thin films
  publication-title: Solid State Ionics
– volume: 360
  start-page: 328
  year: 2017
  end-page: 335
  ident: bib298
  article-title: Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li
  publication-title: J Power Sources
– volume: 35
  start-page: 1477
  year: 2015
  end-page: 1484
  ident: bib41
  article-title: High lithium ion conducting solid electrolytes based on NASICON Li
  publication-title: J Eur Ceram Soc
– volume: 52
  start-page: 1003
  year: 2006
  end-page: 1008
  ident: bib46
  article-title: Low temperature solid-state synthesis routine and mechanism for Li
  publication-title: Electrochim Acta
– volume: 266
  start-page: 25
  year: 2014
  end-page: 28
  ident: bib294
  article-title: Effect of TiO
  publication-title: Solid State Ionics
– volume: 8
  start-page: 199
  year: 2012
  end-page: 207
  ident: bib19
  article-title: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes
  publication-title: Electron. Mater. Lett.
– volume: 14
  start-page: 58
  year: 2018
  end-page: 74
  ident: bib6
  article-title: Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application
  publication-title: Energ. Storage Mater
– volume: 104
  start-page: 85
  year: 2002
  end-page: 89
  ident: bib207
  article-title: Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide)
  publication-title: J Power Sources
– volume: 98
  start-page: 3831
  year: 2015
  end-page: 3835
  ident: bib310
  article-title: Dual doping: an effective method to enhance the electrochemical properties of Li
  publication-title: J Am Ceram Soc
– volume: 162
  start-page: A704
  year: 2015
  end-page: A710
  ident: bib27
  article-title: All-solid-state lithium batteries assembled with hybrid solid electrolytes
  publication-title: J Electrochem Soc
– volume: 167
  start-page: 263
  year: 2004
  end-page: 272
  ident: bib62
  article-title: Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system
  publication-title: Solid State Ionics
– volume: 262
  start-page: 147
  year: 2014
  end-page: 150
  ident: bib145
  article-title: Preparation of composite electrode with Li
  publication-title: Solid State Ionics
– volume: 174
  start-page: 632
  year: 2007
  end-page: 636
  ident: bib178
  article-title: Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries
  publication-title: J Power Sources
– volume: 17
  start-page: 399
  year: 2011
  end-page: 405
  ident: bib192
  article-title: Effects of various LiPF
  publication-title: Ionics
– volume: 343
  start-page: 22
  year: 2017
  end-page: 29
  ident: bib273
  article-title: Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery
  publication-title: J Power Sources
– volume: 5
  start-page: 6310
  year: 2017
  end-page: 6317
  ident: bib171
  article-title: All-solid-state lithium–sulfur batteries based on a newly designed Li
  publication-title: J Mater Chem A
– volume: 14
  start-page: 2871
  year: 2002
  end-page: 2875
  ident: bib296
  article-title: A new La
  publication-title: Chem Mater
– volume: 86
  start-page: 257
  year: 1996
  end-page: 260
  ident: bib55
  article-title: Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides
  publication-title: Solid State Ionics
– volume: 225
  start-page: 626
  year: 2012
  end-page: 630
  ident: bib308
  article-title: Characterization of amorphous and crystalline Li
  publication-title: Solid State Ionics
– volume: 1
  start-page: 6320
  year: 2013
  end-page: 6326
  ident: bib167
  article-title: Improvement of chemical stability of Li
  publication-title: J Mater Chem A
– volume: 189
  start-page: 672
  year: 2009
  end-page: 675
  ident: bib123
  article-title: Characterization of all-solid-state lithium secondary batteries using Cu
  publication-title: J Power Sources
– volume: 81
  start-page: 114
  year: 2018
  end-page: 143
  ident: bib229
  article-title: Beyond PEO-alternative host materials for Li
  publication-title: Prog Polym Sci
– volume: 108
  start-page: 128
  year: 2000
  end-page: 131
  ident: bib129
  article-title: Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li
  publication-title: J Ceram Soc Jpn
– volume: 2
  start-page: 720
  year: 2014
  end-page: 734
  ident: bib106
  article-title: An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks
  publication-title: J Mater Chem A
– volume: 166
  start-page: A975
  year: 2019
  end-page: A983
  ident: bib263
  article-title: Understanding chemical stability issues between different solid electrolytes in all-solid-state batteries
  publication-title: J. Electrochem. Soc.
– volume: 374
  start-page: 107
  year: 2018
  end-page: 112
  ident: bib8
  article-title: Rational coating of Li
  publication-title: J Power Sources
– volume: 10
  start-page: 439
  year: 1998
  end-page: 448
  ident: bib22
  article-title: Polymer electrolytes for lithium-ion batteries
  publication-title: Adv. Mater.
– volume: 45
  start-page: 558
  year: 2009
  end-page: 563
  ident: bib199
  article-title: New solid polymer electrolytes based on polyester diacrylate for lithium power sources
  publication-title: Russ J Electrochem
– volume: 2
  year: 2014
  ident: bib188
  article-title: Recent advances in inorganic solid electrolytes for lithium batteries
  publication-title: Front. Energy Res.
– volume: 274
  start-page: 458
  year: 2015
  end-page: 463
  ident: bib25
  article-title: Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li
  publication-title: J Power Sources
– volume: 13
  start-page: 1373
  year: 2011
  end-page: 1375
  ident: bib75
  article-title: High conductive yttrium doped Li
  publication-title: Electrochem Commun
– volume: 47
  start-page: 257
  year: 1991
  end-page: 264
  ident: bib61
  article-title: Electrical property and sinterability of LiTi
  publication-title: Solid State Ionics
– volume: 140
  start-page: 1827
  year: 1993
  end-page: 1833
  ident: bib48
  article-title: The electrical properties of ceramic electrolytes for LiM
  publication-title: J Electrochem Soc
– volume: 240
  start-page: 18
  year: 2013
  end-page: 25
  ident: bib80
  article-title: Lithium ion transport properties of high conductive tellurium substituted Li
  publication-title: J Power Sources
– volume: 135
  start-page: 15694
  year: 2013
  end-page: 15697
  ident: bib182
  article-title: Li
  publication-title: J Am Chem Soc
– volume: 9
  start-page: 607
  year: 2018
  end-page: 613
  ident: bib150
  article-title: All-solid-state batteries with thick electrode configurations
  publication-title: J Phys Chem Lett
– volume: 43
  start-page: 1137
  year: 1998
  end-page: 1143
  ident: bib212
  article-title: Polymer electrolytes-the early days
  publication-title: Electrochim Acta
– volume: 11
  start-page: A1
  year: 2008
  end-page: A3
  ident: bib102
  article-title: Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO
  publication-title: Electrochem Solid-State Lett
– volume: 22
  start-page: 949
  year: 2010
  end-page: 956
  ident: bib301
  article-title: Interfacial observation between LiCoO
  publication-title: Chem Mater
– volume: 22
  start-page: 7687
  year: 2012
  end-page: 7691
  ident: bib190
  article-title: Structural requirements for fast lithium ion migration in Li
  publication-title: J Mater Chem
– volume: 18
  start-page: 562
  year: 1986
  end-page: 569
  ident: bib33
  article-title: Lithium ion conductors in the system AB(IV)
  publication-title: Solid State Ionics
– volume: 15
  start-page: 285
  year: 1980
  end-page: 294
  ident: bib86
  article-title: Domaine vitreux, structure et conductivite electrique des verres du systeme LiCl/1bLi
  publication-title: Mater Res Bull
– volume: 182
  start-page: 116
  year: 2011
  end-page: 119
  ident: bib162
  article-title: Structural change of Li
  publication-title: Solid State Ionics
– volume: 38
  start-page: 217
  year: 1990
  end-page: 224
  ident: bib151
  article-title: Synthesis and characterization of the B
  publication-title: Solid State Ionics
– volume: 175
  start-page: 687
  year: 2004
  end-page: 690
  ident: bib92
  article-title: Li-ion conductivity in Li
  publication-title: Solid State Ionics
– volume: 2
  start-page: 9948
  year: 2014
  end-page: 9954
  ident: bib222
  article-title: Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries
  publication-title: J Mater Chem A
– volume: 8
  start-page: 1956
  year: 2017
  end-page: 1960
  ident: bib226
  article-title: Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all-solid-state Li-S cell
  publication-title: J Phys Chem Lett
– volume: 9
  start-page: 13694
  year: 2017
  end-page: 13702
  ident: bib287
  article-title: Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  start-page: 5296
  year: 2018
  end-page: 5303
  ident: bib32
  article-title: NASICON LiM
  publication-title: J Mater Chem A
– volume: 50
  start-page: 3822
  year: 2009
  end-page: 3827
  ident: bib240
  article-title: Transition behavior and ionic conductivity of lithium perchlorate-doped polystyrene-b-poly(2-vinylpyridine)
  publication-title: Polymer
– volume: 162
  start-page: 651
  year: 2006
  end-page: 657
  ident: bib43
  article-title: Synthesis of Li
  publication-title: J Power Sources
– volume: 61
  start-page: 759
  year: 2013
  end-page: 770
  ident: bib59
  article-title: Progress and prospective of solid-state lithium batteries
  publication-title: Acta Mater
– volume: 177
  start-page: 2721
  year: 2006
  end-page: 2725
  ident: bib156
  article-title: High lithium ion conducting glass-ceramics in the system Li
  publication-title: Solid State Ionics
– volume: 11
  start-page: 91
  year: 1983
  end-page: 95
  ident: bib209
  article-title: Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts
  publication-title: Solid State Ionics
– volume: 192
  start-page: 122
  year: 2011
  end-page: 125
  ident: bib164
  article-title: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li
  publication-title: Solid State Ionics
– volume: 301
  start-page: 47
  year: 2016
  end-page: 53
  ident: bib26
  article-title: A new solid polymer electrolyte incorporating Li
  publication-title: J Power Sources
– volume: 4
  start-page: 42
  year: 1998
  end-page: 47
  ident: bib117
  article-title: Lithium ion conductive glass and its application to solid state batteries
  publication-title: Ionics
– volume: 179
  start-page: 974
  year: 2006
  end-page: 984
  ident: bib71
  article-title: Effect of sintering on the ionic conductivity of garnet-related structure Li
  publication-title: J Solid State Chem
– volume: 56
  start-page: 6055
  year: 2011
  end-page: 6059
  ident: bib124
  article-title: Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li
  publication-title: Electrochim Acta
– volume: 146
  start-page: 715
  year: 2005
  end-page: 718
  ident: bib119
  article-title: Electrical and electrochemical properties of Li
  publication-title: J Power Sources
– volume: 356
  start-page: 2670
  year: 2010
  end-page: 2673
  ident: bib154
  article-title: Preparation and ionic conductivity of Li
  publication-title: J Non-Cryst Solids
– volume: 16
  start-page: 1345
  year: 2006
  end-page: 1349
  ident: bib214
  article-title: Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries
  publication-title: J Mater Chem
– volume: 84
  start-page: 477
  year: 2001
  end-page: 479
  ident: bib153
  article-title: Preparation of Li
  publication-title: J Am Ceram Soc
– volume: 195
  start-page: 6182
  year: 2010
  end-page: 6186
  ident: bib243
  article-title: Synthesis of supramolecular solid polymer electrolytes via self-assembly of diborylated ionic liquid
  publication-title: J Power Sources
– volume: 10
  start-page: 375
  year: 2004
  end-page: 379
  ident: bib195
  article-title: Effect of sulfur electrode composition on the electrochemical property of lithium/PEO/sulfur battery
  publication-title: Met Mater Int
– volume: 9
  start-page: 2013
  year: 2007
  end-page: 2017
  ident: bib216
  article-title: All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure
  publication-title: Electrochem Commun
– volume: 98
  start-page: 167
  year: 1997
  end-page: 174
  ident: bib261
  article-title: Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers
  publication-title: Solid State Ionics
– volume: 159
  start-page: 193
  year: 2006
  end-page: 199
  ident: bib120
  article-title: All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes
  publication-title: J Power Sources
– volume: 225
  start-page: 13
  year: 2013
  end-page: 19
  ident: bib76
  article-title: Stabilization of cubic lithium-stuffed garnets of the type “Li
  publication-title: J Power Sources
– volume: 5
  start-page: 2829
  year: 2017
  end-page: 2834
  ident: bib170
  article-title: Tailored Li
  publication-title: J Mater Chem A
– volume: 156
  start-page: A577
  year: 2009
  end-page: A583
  ident: bib241
  article-title: Star-Shaped polymer electrolyte with microphase separation structure for all-solid-state lithium batteries
  publication-title: J Electrochem Soc
– volume: 15
  start-page: 1661
  year: 1980
  end-page: 1667
  ident: bib101
  article-title: New Li
  publication-title: Mater Res Bull
– volume: 122
  start-page: 9852
  year: 2018
  end-page: 9858
  ident: bib202
  article-title: A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery
  publication-title: J Phys Chem C
– volume: 15
  start-page: 6107
  year: 2013
  end-page: 6112
  ident: bib109
  article-title: Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure
  publication-title: Phys Chem Chem Phys
– volume: 262
  start-page: 738
  year: 2014
  end-page: 742
  ident: bib232
  article-title: Polycarbonate-based solid polymer electrolytes for Li-ion batteries
  publication-title: Solid State Ionics
– volume: 46
  start-page: 235
  year: 1963
  end-page: 238
  ident: bib82
  article-title: Some structural and electrical properties of lithium silicate glasses
  publication-title: J Am Ceram Soc
– volume: 44
  start-page: 742
  year: 2018
  end-page: 746
  ident: bib149
  article-title: Liquid-phase synthesis of Li
  publication-title: Ceram Int
– volume: 1
  start-page: 678
  year: 2016
  end-page: 682
  ident: bib256
  article-title: Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature
  publication-title: Acs Energy Lett.
– volume: 108
  start-page: 323
  year: 1989
  end-page: 332
  ident: bib111
  article-title: Ionic conductivity studies of the vitreous Li
  publication-title: J Non-Cryst Solids
– volume: 109
  start-page: 205702
  year: 2012
  ident: bib79
  article-title: Origin of the structural phase transition in Li
  publication-title: Phys Rev Lett
– volume: 57
  start-page: 40
  year: 2011
  end-page: 45
  ident: bib236
  article-title: A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery
  publication-title: Electrochim Acta
– start-page: 173
  year: 1987
  end-page: 236
  ident: bib210
  article-title: Polymer electrolyte reviews
– volume: 22
  start-page: 5198
  year: 2010
  end-page: 5201
  ident: bib267
  article-title: Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications
  publication-title: Adv. Mater.
– volume: 141
  start-page: 143
  year: 2005
  end-page: 148
  ident: bib291
  article-title: All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO
  publication-title: J Power Sources
– volume: 137
  start-page: 1023
  year: 1990
  end-page: 1027
  ident: bib35
  article-title: Ionic conductivity of solid electrolytes based on lithium titanium phosphate
  publication-title: J Electrochem Soc
– volume: 55
  start-page: 7
  year: 1995
  end-page: 10
  ident: bib262
  article-title: Composite gel electrolyte for rechargeable lithium batteries
  publication-title: J Power Sources
– volume: 86
  start-page: 1
  year: 2018
  end-page: 5
  ident: bib183
  article-title: Composite sulfur electrode for all-solid-state lithium–sulfur battery with Li
  publication-title: Electrochemistry
– volume: 55
  start-page: 1895
  year: 2010
  end-page: 1899
  ident: bib270
  article-title: Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries
  publication-title: Electrochim Acta
– volume: 53
  start-page: 430
  year: 1984
  end-page: 434
  ident: bib103
  article-title: Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes
  publication-title: J Solid State Chem
– volume: 36
  start-page: 9176
  year: 2003
  end-page: 9180
  ident: bib203
  article-title: Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: synthesis and conductivity
  publication-title: Macromolecules
– volume: 8
  start-page: 14552
  year: 2016
  end-page: 14557
  ident: bib63
  article-title: Li-ion conduction and stability of perovskite Li
  publication-title: ACS Appl Mater Interfaces
– volume: 70
  start-page: 619
  year: 1994
  end-page: 628
  ident: bib97
  article-title: Rechargeable thin-film lithium batteries
  publication-title: Solid State Ionics
– volume: 150
  start-page: 693
  year: 2010
  end-page: 696
  ident: bib105
  article-title: Ab initio prediction for the ionic conduction of lithium in LiInSiO
  publication-title: Solid State Commun
– volume: 47
  start-page: 5952
  year: 2006
  end-page: 5964
  ident: bib193
  article-title: Review on composite polymer electrolytes for lithium batteries
  publication-title: Polymer
– volume: 5
  start-page: 111
  year: 2003
  end-page: 114
  ident: bib157
  article-title: Formation of superionic crystals from mechanically milled Li
  publication-title: Electrochem Commun
– volume: 49
  start-page: 4808
  year: 1978
  end-page: 4811
  ident: bib113
  article-title: Ionic conductivity of quenched alkali niobate and tantalate glasses
  publication-title: J Appl Phys
– volume: 10
  start-page: 682
  year: 2011
  end-page: 686
  ident: bib125
  article-title: A lithium superionic conductor
  publication-title: Nat Mater
– volume: 23
  start-page: 3353
  year: 2013
  end-page: 3360
  ident: bib200
  article-title: A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications
  publication-title: Adv Funct Mater
– volume: 240
  start-page: 653
  year: 2013
  end-page: 658
  ident: bib221
  article-title: Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework
  publication-title: J Power Sources
– volume: 74
  start-page: 1767
  year: 1991
  end-page: 1784
  ident: bib83
  article-title: Ionic conduction in phosphate glasses
  publication-title: J Am Ceram Soc
– volume: 5
  start-page: 1500353
  year: 2015
  ident: bib251
  article-title: In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 81
  start-page: 1305
  year: 1998
  end-page: 1309
  ident: bib131
  article-title: Structural investigation of 95(0.6Li
  publication-title: J Am Ceram Soc
– volume: 13
  start-page: 710
  year: 2003
  end-page: 717
  ident: bib283
  article-title: Nanocomposite electrolytes with fumed silica and hectorite clay networks: passive versus active fillers
  publication-title: Adv Funct Mater
– volume: 175
  start-page: 699
  year: 2004
  end-page: 702
  ident: bib126
  article-title: All-solid-state lithium secondary batteries using Li
  publication-title: Solid State Ionics
– volume: 31
  start-page: 478
  year: 2017
  end-page: 485
  ident: bib286
  article-title: Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries
  publication-title: Nanomater Energy
– volume: 146
  start-page: 397
  year: 2005
  end-page: 401
  ident: bib290
  article-title: Influence of TiO
  publication-title: J Power Sources
– volume: 53
  start-page: 1183
  year: 1992
  end-page: 1186
  ident: bib128
  article-title: New lithium ion conductors based on Li
  publication-title: Solid State Ionics
– volume: 4
  start-page: 6272
  year: 2014
  ident: bib220
  article-title: Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries
  publication-title: Sci Rep
– volume: 24
  start-page: 44
  year: 2014
  end-page: 52
  ident: bib250
  article-title: Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium‐ion batteries
  publication-title: Adv Funct Mater
– volume: 1
  start-page: 16030
  year: 2016
  ident: bib191
  article-title: High-power all-solid-state batteries using sulfide superionic conductors
  publication-title: Nat. Energy
– volume: 195
  start-page: 4984
  year: 2010
  end-page: 4989
  ident: bib165
  article-title: Preparation of Li
  publication-title: J Power Sources
– volume: 14
  start-page: 87
  year: 1985
  end-page: 91
  ident: bib112
  article-title: Lithium borophosphate vitreous electrolytes
  publication-title: J Power Sources
– volume: 269
  start-page: 727
  year: 2014
  end-page: 734
  ident: bib146
  article-title: Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery
  publication-title: J Power Sources
– volume: 7
  start-page: A455
  year: 2004
  end-page: A458
  ident: bib177
  article-title: A self-assembled breathing interface for all-solid-state ceramic lithium batteries
  publication-title: Electrochem Solid-State Lett
– volume: 15
  start-page: 3991
  year: 2003
  end-page: 3995
  ident: bib115
  article-title: Optimization of lithium conductivity in La/Li titanates
  publication-title: Chem Mater
– volume: 233
  start-page: 231
  year: 2013
  end-page: 235
  ident: bib144
  article-title: All-solid-state lithium secondary batteries using the 75Li
  publication-title: J Power Sources
– volume: 21
  start-page: 381
  year: 2015
  end-page: 385
  ident: bib295
  article-title: Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery
  publication-title: Ionics
– volume: 309
  start-page: 27
  year: 2016
  end-page: 32
  ident: bib304
  article-title: Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films
  publication-title: J Power Sources
– volume: 352
  start-page: 3310
  year: 2006
  end-page: 3314
  ident: bib309
  article-title: Molecular dynamics simulation of ternary glasses Li
  publication-title: J Non-Cryst Solids
– volume: 156
  start-page: 560
  year: 2006
  end-page: 566
  ident: bib213
  article-title: Solid-state Li/LiFePO
  publication-title: J Power Sources
– volume: 89
  start-page: 390
  year: 2005
  end-page: 394
  ident: bib219
  article-title: PAN–PEO solid polymer electrolytes with high ionic conductivity
  publication-title: Mater Chem Phys
– volume: 149
  start-page: 59
  year: 2002
  end-page: 65
  ident: bib94
  article-title: Characterizations of a new lithium ion conducting Li
  publication-title: Solid State Ionics
– volume: 46
  start-page: 7778
  year: 2007
  end-page: 7781
  ident: bib12
  article-title: Fast lithium ion conduction in garnet-type Li
  publication-title: Angew Chem, Int Ed
– volume: 9
  start-page: 33735
  year: 2017
  end-page: 33739
  ident: bib42
  article-title: A design of solid-state Li-S cell with evaporated lithium anode to eliminate shuttle effects
  publication-title: ACS Appl Mater Interfaces
– volume: 225
  start-page: 350
  year: 2012
  end-page: 353
  ident: bib173
  article-title: Electrochemical properties of the amorphous solid electrolytes in the system Li
  publication-title: Solid State Ionics
– volume: 12
  start-page: 1152
  year: 2012
  end-page: 1156
  ident: bib279
  article-title: High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers
  publication-title: Nano Lett
– volume: 82
  start-page: 1352
  year: 1999
  end-page: 1354
  ident: bib130
  article-title: Mechanochemical synthesis of new amorphous materials of 60Li
  publication-title: J Am Ceram Soc
– year: 2012
  ident: bib84
  article-title: Borate glasses: structure, properties, applications
– volume: 23
  start-page: 29
  year: 1989
  end-page: 50
  ident: bib127
  article-title: Ionically conductive glasses based on SiS
  publication-title: Mater Chem Phys
– volume: 117
  start-page: 21064
  year: 2013
  end-page: 21074
  ident: bib39
  article-title: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes
  publication-title: J Phys Chem C
– volume: 319
  start-page: 247
  year: 2016
  end-page: 254
  ident: bib196
  article-title: In operando scanning electron microscopy and ultraviolet–visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte
  publication-title: J Power Sources
– volume: 267
  start-page: 68
  year: 2014
  end-page: 73
  ident: bib244
  article-title: Lithium ion conductive properties of aliphatic polycarbonate
  publication-title: Solid State Ionics
– volume: 113
  start-page: 733
  year: 1998
  end-page: 738
  ident: bib133
  article-title: Thermal and electrical properties of rapidly quenched Li
  publication-title: Solid State Ionics
– volume: 10
  start-page: 85
  year: 2018
  end-page: 91
  ident: bib231
  article-title: In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries
  publication-title: Energ. Storage Mater
– year: 2018
  ident: bib264
  article-title: Conformal solid state Li
  publication-title: Bull Am Phys Soc
– volume: 18
  start-page: 300
  year: 1986
  end-page: 305
  ident: bib198
  article-title: Polymeric electrolyte based on poly (ethylene imine) and lithium salts
  publication-title: Solid State Ionics
– volume: 10
  start-page: 682
  year: 2011
  ident: bib21
  article-title: A lithium superionic conductor
  publication-title: Nat Mater
– volume: 161
  start-page: 171
  year: 2015
  end-page: 176
  ident: bib288
  article-title: Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF
  publication-title: Electrochim Acta
– volume: 289
  start-page: 149
  year: 2018
  end-page: 157
  ident: bib299
  article-title: Graphene@TiO
  publication-title: Electrochim Acta
– volume: 240
  start-page: 50
  year: 2013
  end-page: 53
  ident: bib34
  article-title: High Li
  publication-title: J Power Sources
– volume: 48
  start-page: 112
  year: 2003
  end-page: 115
  ident: bib104
  article-title: Growth and ionic conductivity of Li
  publication-title: Crystallogr Rep
– volume: 144
  start-page: 524
  year: 1997
  end-page: 532
  ident: bib99
  article-title: A stable thin-film lithium electrolyte: lithium phosphorus oxynitride
  publication-title: J Electrochem Soc
– volume: 16
  start-page: 459
  year: 2016
  end-page: 465
  ident: bib271
  article-title: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO
  publication-title: Nano Lett
– volume: 314
  start-page: 85
  year: 2016
  end-page: 92
  ident: bib148
  article-title: The effect of diamond-like carbon coating on LiNi
  publication-title: J Power Sources
– volume: 214
  start-page: 25
  year: 2012
  end-page: 30
  ident: bib166
  article-title: Li
  publication-title: Solid State Ionics
– volume: 69
  start-page: 385
  year: 1996
  end-page: 388
  ident: bib36
  article-title: Ionic conductivity of solid electrolytes based on Li
  publication-title: Russ J Appl Chem
– volume: 46
  start-page: 797
  year: 2017
  end-page: 815
  ident: bib253
  article-title: Single lithium-ion conducting solid polymer electrolytes: advances and perspectives
  publication-title: Chem Soc Rev
– volume: 196
  start-page: 6920
  year: 2011
  end-page: 6923
  ident: bib158
  article-title: Formation of the high lithium ion conducting phase from mechanically milled amorphous Li
  publication-title: J Power Sources
– volume: 244
  start-page: 476
  year: 2013
  end-page: 481
  ident: bib140
  article-title: Effect of mixing method on the properties of composite cathodes for all-solid-state lithium batteries using Li
  publication-title: J Power Sources
– volume: 5
  start-page: 16984
  year: 2017
  end-page: 16993
  ident: bib305
  article-title: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life
  publication-title: J Mater Chem A
– volume: 168
  start-page: 140
  year: 2002
  end-page: 148
  ident: bib185
  article-title: Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system
  publication-title: J Solid State Chem
– volume: 81
  start-page: 853
  year: 1999
  end-page: 858
  ident: bib60
  article-title: Densification of LiTi
  publication-title: J Power Sources
– volume: 357
  start-page: 2863
  year: 2011
  end-page: 2867
  ident: bib93
  article-title: Fabrication of a high lithium ion conducting lithium borosilicate glass
  publication-title: J Non-Cryst Solids
– volume: 62
  start-page: 309
  year: 1993
  end-page: 316
  ident: bib47
  article-title: Electrical properties and crystal structure of solid electrolyte based on lithium hafnium phosphate LiHf
  publication-title: Solid State Ionics
– volume: 398
  start-page: 792
  year: 1999
  ident: bib23
  article-title: Structure of the polymer electrolyte poly (ethylene oxide)
  publication-title: Nature
– volume: 86
  start-page: 437
  year: 2003
  end-page: 440
  ident: bib70
  article-title: Novel fast lithium ion conduction in garnet-type Li
  publication-title: J Am Ceram Soc
– volume: 24
  start-page: 15
  year: 2011
  end-page: 17
  ident: bib189
  article-title: First principles study of the Li
  publication-title: Chem Mater
– volume: 25
  year: 2016
  ident: bib9
  article-title: All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science
  publication-title: Chin Phys B
– volume: 23
  start-page: 470
  year: 1987
  end-page: 472
  ident: bib51
  article-title: Investigation into complex oxides of La
  publication-title: Izv Akad Nauk SSSR, Neorg Mater.
– volume: 55
  start-page: 2799
  year: 2014
  end-page: 2808
  ident: bib224
  article-title: Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures
  publication-title: Polymer
– volume: 59
  start-page: 161
  year: 1989
  end-page: 168
  ident: bib280
  article-title: Properties of mixed polymer and crystalline ionic conductors
  publication-title: Philos Mag B
– volume: 135
  start-page: 47
  year: 2000
  end-page: 52
  ident: bib292
  article-title: Nanocomposite polymer electrolytes and their impact on the lithium battery technology
  publication-title: Solid State Ionics
– volume: 222
  start-page: 237
  year: 2013
  end-page: 242
  ident: bib180
  article-title: All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte
  publication-title: J Power Sources
– volume: 293
  start-page: 941
  year: 2015
  end-page: 945
  ident: bib175
  article-title: Preparation of high lithium-ion conducting Li
  publication-title: J Power Sources
– volume: 22
  start-page: 15357
  year: 2012
  end-page: 15361
  ident: bib116
  article-title: Optimizing Li
  publication-title: J Mater Chem
– volume: 356
  start-page: 163
  year: 2017
  end-page: 171
  ident: bib172
  article-title: Study on (100-x)(70Li
  publication-title: J Power Sources
– volume: 14
  start-page: 589
  year: 1973
  ident: bib208
  article-title: Complexes of alkali metal ions with poly(ethylene oxide)
  publication-title: Polymer
– volume: 3
  start-page: 476
  year: 2004
  end-page: 481
  ident: bib249
  article-title: The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors
  publication-title: Nat Mater
– volume: 5
  start-page: 139
  year: 2016
  end-page: 164
  ident: bib30
  article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries
  publication-title: Energ. Storage Mater
– volume: 98
  start-page: 3603
  year: 2015
  end-page: 3623
  ident: bib24
  article-title: Oxide electrolytes for lithium batteries
  publication-title: J Am Ceram Soc
– volume: 13
  start-page: 205
  year: 1978
  end-page: 209
  ident: bib85
  article-title: Conductivite ionique du lithium dans les verres du systeme B
  publication-title: Mater Res Bull
– volume: 43
  start-page: 103
  year: 1993
  end-page: 110
  ident: bib96
  article-title: Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries
  publication-title: J Power Sources
– volume: 47
  start-page: 3145
  year: 2014
  end-page: 3153
  ident: bib205
  article-title: Influence of solvating plasticizer on ion conduction of polysiloxane single-ion conductors
  publication-title: Macromolecules
– volume: 119
  start-page: 448
  year: 2003
  end-page: 453
  ident: bib246
  article-title: Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo (ethylene oxide): ionic conductivity and electrochemical properties
  publication-title: J Power Sources
– volume: 47
  start-page: 328
  year: 1964
  end-page: 331
  ident: bib87
  article-title: Studies in germanium oxide systems: I, phase equilibria in the system Li
  publication-title: J Am Ceram Soc
– volume: 301
  start-page: 10
  year: 2017
  end-page: 14
  ident: bib67
  article-title: Sintering behavior of garnet-type Li
  publication-title: Solid State Ionics
– volume: 39
  start-page: 2407
  year: 2001
  end-page: 2419
  ident: bib285
  article-title: Interaction mechanism of a novel polymer electrolyte composed of poly (acrylonitrile), lithium triflate, and mineral clay
  publication-title: J Polym Sci, Part B: Polym Phys
– volume: 320
  start-page: 92
  year: 2018
  end-page: 99
  ident: bib228
  article-title: Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO
  publication-title: Solid State Ionics
– volume: 12
  start-page: 374
  year: 2002
  end-page: 377
  ident: bib108
  article-title: Synthesis, crystal structure and lithium ion conductivity of LiMgFSO
  publication-title: J Mater Chem
– volume: 78
  start-page: 269
  year: 1995
  end-page: 273
  ident: bib138
  article-title: Thermal and electrical properties of rapidly quenched glasses in the systems Li
  publication-title: Solid State Ionics
– volume: 51
  start-page: 293
  year: 1984
  end-page: 299
  ident: bib50
  article-title: Ionic conductivity of oxides with general formula Li
  publication-title: J Solid State Chem
– volume: 118
  start-page: 73
  year: 1999
  end-page: 79
  ident: bib293
  article-title: Effects of nanoscale SiO
  publication-title: Solid State Ionics
– volume: 21
  start-page: 10051
  year: 2011
  ident: bib302
  article-title: Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries
  publication-title: J Mater Chem
– volume: 4
  start-page: 38
  year: 2016
  ident: bib307
  article-title: Lithium superionic conductor Li
  publication-title: Frontiers in Energy Research
– volume: 33
  start-page: 363
  year: 2017
  end-page: 386
  ident: bib2
  article-title: Recent advances in all-solid-state rechargeable lithium batteries
  publication-title: Nanomater Energy
– volume: 53
  start-page: 5045
  year: 2008
  end-page: 5050
  ident: bib179
  article-title: Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON
  publication-title: Electrochim Acta
– volume: 315
  start-page: 65
  year: 2018
  end-page: 70
  ident: bib265
  article-title: Hybrid solid electrolytes composed of poly (1, 4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi
  publication-title: Solid State Ionics
– volume: 140
  start-page: 370
  year: 2005
  end-page: 375
  ident: bib45
  article-title: Local structure and redox energies of lithium phosphates with olivine- and Nasicon-like structures
  publication-title: J Power Sources
– volume: 50
  start-page: 4448
  year: 2014
  end-page: 4450
  ident: bib233
  article-title: Fast Li-ion conduction in poly (ethylene carbonate)-based electrolytes and composites filled with TiO
  publication-title: Chem. Commun
– volume: 12
  start-page: 81
  year: 2006
  end-page: 92
  ident: bib10
  article-title: Recent progress in solid oxide and lithium ion conducting electrolytes research
  publication-title: Ionics
– volume: 18
  start-page: 351
  year: 1986
  end-page: 355
  ident: bib297
  article-title: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching
  publication-title: Solid State Ionics
– volume: 5
  start-page: 1501082
  year: 2015
  ident: bib201
  article-title: Safety-reinforced poly (propylene carbonate)-based All-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 12934
  year: 2017
  end-page: 12942
  ident: bib282
  article-title: Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries
  publication-title: J Mater Chem A
– volume: 182
  start-page: 621
  year: 2008
  end-page: 625
  ident: bib121
  article-title: All solid-state battery with sulfur electrode and thio-LISICON electrolyte
  publication-title: J Power Sources
– volume: 39
  start-page: 8453
  year: 2013
  end-page: 8458
  ident: bib143
  article-title: Surface modification of LiCoO
  publication-title: Ceram Int
– volume: 11
  start-page: 2042
  year: 2018
  end-page: 2049
  ident: bib16
  article-title: Effects of fluorine doping on structural and electrochemical properties of Li
  publication-title: ACS Appl Mater Interfaces
– volume: 2
  start-page: 10854
  year: 2014
  end-page: 10861
  ident: bib252
  article-title: A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries
  publication-title: J Mater Chem A
– volume: 113
  start-page: 6552
  year: 2013
  end-page: 6591
  ident: bib17
  article-title: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries
  publication-title: Chem Rev
– volume: 178
  start-page: 981
  year: 2007
  end-page: 986
  ident: bib215
  article-title: Fabrication of all solid-state lithium polymer secondary batteries using PEG-borate/aluminate ester as plasticizer for polymer electrolyte
  publication-title: Solid State Ionics
– volume: 178
  start-page: 716
  year: 2008
  end-page: 722
  ident: bib223
  article-title: Ionic conductivity and thermal property of solid hybrid polymer electrolyte composed of oligo(ethylene oxide) unit and butyrolactone unit
  publication-title: J Power Sources
– volume: 170
  start-page: 233
  year: 2004
  end-page: 238
  ident: bib248
  article-title: Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes
  publication-title: Solid State Ionics
– volume: 121
  start-page: 245
  year: 1999
  end-page: 251
  ident: bib52
  article-title: Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La
  publication-title: Solid State Ionics
– volume: 17
  start-page: 918
  year: 2005
  end-page: 921
  ident: bib20
  article-title: New, highly ion-conductive crystals precipitated from Li
  publication-title: Adv. Mater.
– volume: 11
  start-page: 481
  year: 2009
  end-page: 483
  ident: bib242
  article-title: A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium-ion batteries
  publication-title: Electrochem Commun
– volume: 194
  start-page: 1085
  year: 2009
  end-page: 1088
  ident: bib122
  article-title: All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON
  publication-title: J Power Sources
– volume: 52
  start-page: 261
  year: 1994
  end-page: 268
  ident: bib281
  article-title: Polymer-ceramic composite electrolytes
  publication-title: J Power Sources
– volume: 161
  start-page: A1812
  year: 2014
  end-page: A1817
  ident: bib181
  article-title: Empowering the lithium metal battery through a silicon-based superionic conductor
  publication-title: J Electrochem Soc
– volume: 12
  start-page: 894
  year: 2010
  end-page: 896
  ident: bib40
  article-title: Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes
  publication-title: Electrochem Commun
– volume: 274
  start-page: 100
  year: 2015
  end-page: 105
  ident: bib78
  article-title: Effects of penta-and trivalent dopants on structure and conductivity of Li
  publication-title: Solid State Ionics
– volume: 83
  start-page: 448
  year: 2012
  end-page: 453
  ident: bib1
  article-title: Synthesis of NiS–carbon fiber composites in high-boiling solvent to improve electrochemical performance in all-solid-state lithium secondary batteries
  publication-title: Electrochim Acta
– volume: 6
  start-page: A47
  year: 2003
  end-page: A49
  ident: bib186
  article-title: Fast lithium-ion conducting glass-ceramics in the system Li
  publication-title: Electrochem Solid-State Lett
– volume: 58
  start-page: 112
  year: 2011
  end-page: 118
  ident: bib276
  article-title: Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte
  publication-title: Electrochim Acta
– volume: 10
  start-page: 1860
  year: 2008
  end-page: 1863
  ident: bib5
  article-title: Novel technique to form electrode–electrolyte nanointerface in all-solid-state rechargeable lithium batteries
  publication-title: Electrochem Commun
– volume: 113
  start-page: 109
  year: 1998
  end-page: 115
  ident: bib284
  article-title: Li ion conductors based on laponite/poly(ethylene oxide) composites
  publication-title: Solid State Ionics
– volume: 108
  start-page: 407
  year: 1998
  end-page: 413
  ident: bib11
  article-title: Lithium ion conductivity of polycrystalline perovskite La
  publication-title: Solid State Ionics
– volume: 21
  start-page: 381
  year: 2014
  end-page: 385
  ident: bib278
  article-title: Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery
  publication-title: Ionics
– volume: 86
  start-page: 487
  year: 1996
  end-page: 490
  ident: bib136
  article-title: Structure and properties of lithium ion conducting oxysulfide glasses prepared by rapid quenching
  publication-title: Solid State Ionics
– volume: 1
  start-page: 186
  year: 2013
  end-page: 192
  ident: bib141
  article-title: Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature
  publication-title: Energy Technol
– volume: 54
  start-page: 397
  year: 1995
  end-page: 402
  ident: bib58
  article-title: Oxide cathode with perovskite structure for rechargeable lithium batteries
  publication-title: J Power Sources
– volume: 15
  start-page: 107
  year: 2005
  end-page: 112
  ident: bib69
  article-title: Li
  publication-title: Adv Funct Mater
– volume: 29
  start-page: 7206
  year: 2017
  end-page: 7212
  ident: bib13
  article-title: Y-doped NASICON-type LiZr
  publication-title: Chem Mater
– volume: 302
  start-page: 419
  year: 2016
  end-page: 425
  ident: bib147
  article-title: Raman imaging for LiCoO
  publication-title: J Power Sources
– volume: 63
  start-page: 91
  year: 2015
  end-page: 98
  ident: bib245
  article-title: Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries
  publication-title: Polymer
– volume: 132
  start-page: 181
  year: 2004
  end-page: 186
  ident: bib272
  article-title: All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes
  publication-title: J Power Sources
– volume: 124
  start-page: 246
  year: 2003
  end-page: 253
  ident: bib197
  article-title: Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes
  publication-title: J Power Sources
– volume: 46
  start-page: 1709
  year: 2001
  end-page: 1715
  ident: bib211
  article-title: Lithium ion conductivity in polyoxyethylene/polyethylenimine blends
  publication-title: Electrochim Acta
– volume: 7
  start-page: 627
  year: 2014
  end-page: 631
  ident: bib159
  article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
  publication-title: Energy Environ Sci
– volume: 179
  start-page: 401
  year: 2008
  end-page: 408
  ident: bib239
  article-title: Linear poly(propylenimine)/lithium triflate as a polymer electrolyte system
  publication-title: Solid State Ionics
– volume: 45
  start-page: 2139
  year: 2000
  end-page: 2145
  ident: bib260
  article-title: PEO-carbon composite lithium polymer electrolyte
  publication-title: Electrochim Acta
– volume: 24
  start-page: 2316
  year: 2012
  end-page: 2323
  ident: bib204
  article-title: Synthesis and lithium ion conduction of polysiloxane single-ion conductors containing novel weak-binding borates
  publication-title: Chem Mater
– volume: 14
  start-page: 921
  year: 1979
  end-page: 927
  ident: bib89
  article-title: Etude comparee de la conductivite ionique du lithium dans les halogenoborates vitreux
  publication-title: Mater Res Bull
– volume: 2
  start-page: 25
  year: 2014
  ident: bib28
  article-title: Recent advances in inorganic solid electrolytes for lithium batteries
  publication-title: Frontiers in Energy Research
– volume: 15
  start-page: 18600
  year: 2013
  end-page: 18606
  ident: bib142
  article-title: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li
  publication-title: Phys Chem Chem Phys
– volume: 2
  start-page: 16103
  year: 2017
  ident: bib7
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat. Rev. Mater.
– volume: 79
  start-page: 91
  year: 1995
  end-page: 97
  ident: bib56
  article-title: Lithium ion conductivity in the perovskite-type LiTaO
  publication-title: Solid State Ionics
– volume: 101
  start-page: 1315
  year: 1993
  end-page: 1317
  ident: bib139
  article-title: Superionic conduction in rapidly quenched Li
  publication-title: J Ceram Soc Jpn
– volume: 7
  start-page: 29
  year: 1966
  ident: bib88
  article-title: Electrical conductivity of SiO
  publication-title: Phys Chem Glasses
– volume: 147
  start-page: 2462
  year: 2000
  end-page: 2467
  ident: bib275
  article-title: Ferroelectric materials as a ceramic filler in solid composite polyethylene Oxide-Based electrolytes
  publication-title: J Electrochem Soc
– volume: 170
  start-page: 173
  year: 2004
  end-page: 180
  ident: bib118
  article-title: Material design of new lithium ionic conductor, thio-LISICON, in the Li
  publication-title: Solid State Ionics
– volume: 21
  start-page: 118
  year: 2011
  end-page: 124
  ident: bib306
  article-title: Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes
  publication-title: J Mater Chem
– volume: 11
  start-page: 227
  year: 1983
  end-page: 233
  ident: bib225
  article-title: Lithium ionic conduction in poly(methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate
  publication-title: Solid State Ionics
– volume: 244
  start-page: 707
  year: 2013
  end-page: 710
  ident: bib168
  article-title: Preparation and ionic conductivities of (100−x)(0.75Li
  publication-title: J Power Sources
– volume: 6
  start-page: 4649
  year: 2018
  end-page: 4657
  ident: bib68
  article-title: Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification
  publication-title: J Mater Chem A
– volume: 211
  start-page: 42
  year: 2012
  end-page: 45
  ident: bib174
  article-title: Structure, ionic conductivity and electrochemical stability of Li
  publication-title: Solid State Ionics
– volume: 166
  start-page: 67
  year: 2002
  end-page: 72
  ident: bib54
  article-title: Crystal structure of a lithium ion-conducting perovskite La
  publication-title: J Solid State Chem
– volume: 38
  start-page: 63
  year: 1997
  end-page: 65
  ident: bib134
  article-title: Preparation and characterisation of superionic Li
  publication-title: Phys Chem Glasses
– volume: 5
  start-page: 22519
  year: 2017
  end-page: 22526
  ident: bib254
  article-title: A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries
  publication-title: J Mater Chem A
– volume: 46
  start-page: 1124
  year: 2017
  end-page: 1159
  ident: bib257
  article-title: Frontiers in poly(ionic liquid)s: syntheses and applications
  publication-title: Chem Soc Rev
– volume: 12
  start-page: 1152
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib279
  article-title: High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers
  publication-title: Nano Lett
  doi: 10.1021/nl202692y
– volume: 137
  start-page: 1023
  year: 1990
  ident: 10.1016/j.rser.2019.04.035_bib35
  article-title: Ionic conductivity of solid electrolytes based on lithium titanium phosphate
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2086597
– volume: 24
  start-page: 2316
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib204
  article-title: Synthesis and lithium ion conduction of polysiloxane single-ion conductors containing novel weak-binding borates
  publication-title: Chem Mater
  doi: 10.1021/cm3005387
– volume: 36
  start-page: 9176
  year: 2003
  ident: 10.1016/j.rser.2019.04.035_bib203
  article-title: Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: synthesis and conductivity
  publication-title: Macromolecules
  doi: 10.1021/ma0349276
– volume: 54
  start-page: 397
  year: 1995
  ident: 10.1016/j.rser.2019.04.035_bib58
  article-title: Oxide cathode with perovskite structure for rechargeable lithium batteries
  publication-title: J Power Sources
  doi: 10.1016/0378-7753(94)02110-O
– volume: 21
  start-page: 797
  year: 2010
  ident: 10.1016/j.rser.2019.04.035_bib238
  article-title: All solid polymer electrolytes based on polar side group rotation for rechargeable lithium batteries
  publication-title: Polym Adv Technol
  doi: 10.1002/pat.1503
– volume: 146
  start-page: 707
  year: 2005
  ident: 10.1016/j.rser.2019.04.035_bib187
  article-title: Solid electrolyte, thio-LISICON, thin film prepared by pulsed laser deposition
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.03.062
– volume: 262
  start-page: 738
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib232
  article-title: Polycarbonate-based solid polymer electrolytes for Li-ion batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2013.08.014
– volume: 116
  start-page: 140
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib29
  article-title: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00563
– volume: 179
  start-page: 401
  year: 2008
  ident: 10.1016/j.rser.2019.04.035_bib239
  article-title: Linear poly(propylenimine)/lithium triflate as a polymer electrolyte system
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2008.03.006
– volume: 7
  start-page: 1602923
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib303
  article-title: High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602923
– year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib84
– volume: 14
  start-page: 87
  year: 1985
  ident: 10.1016/j.rser.2019.04.035_bib112
  article-title: Lithium borophosphate vitreous electrolytes
  publication-title: J Power Sources
  doi: 10.1016/0378-7753(85)88016-2
– volume: 240
  start-page: 653
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib221
  article-title: Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.05.030
– volume: 83
  start-page: 448
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib1
  article-title: Synthesis of NiS–carbon fiber composites in high-boiling solvent to improve electrochemical performance in all-solid-state lithium secondary batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.07.088
– volume: 357
  start-page: 2863
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib93
  article-title: Fabrication of a high lithium ion conducting lithium borosilicate glass
  publication-title: J Non-Cryst Solids
  doi: 10.1016/j.jnoncrysol.2011.03.022
– volume: 38
  start-page: 217
  year: 1990
  ident: 10.1016/j.rser.2019.04.035_bib151
  article-title: Synthesis and characterization of the B2S3·Li2S, the P2S5·Li2S and the B2S3·P2S5·Li2S glass systems
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(90)90424-P
– volume: 178
  start-page: 981
  year: 2007
  ident: 10.1016/j.rser.2019.04.035_bib215
  article-title: Fabrication of all solid-state lithium polymer secondary batteries using PEG-borate/aluminate ester as plasticizer for polymer electrolyte
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2007.04.009
– volume: 5
  start-page: 1500353
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib251
  article-title: In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500353
– volume: 156
  start-page: A577
  year: 2009
  ident: 10.1016/j.rser.2019.04.035_bib241
  article-title: Star-Shaped polymer electrolyte with microphase separation structure for all-solid-state lithium batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3129245
– volume: 17
  start-page: 399
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib192
  article-title: Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes
  publication-title: Ionics
  doi: 10.1007/s11581-011-0524-8
– volume: 14
  start-page: 58
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib6
  article-title: Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application
  publication-title: Energ. Storage Mater
  doi: 10.1016/j.ensm.2018.02.020
– volume: 55
  start-page: 7
  year: 1995
  ident: 10.1016/j.rser.2019.04.035_bib262
  article-title: Composite gel electrolyte for rechargeable lithium batteries
  publication-title: J Power Sources
  doi: 10.1016/0378-7753(94)02148-V
– volume: 57
  start-page: 40
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib236
  article-title: A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.03.101
– volume: 50
  start-page: 4448
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib233
  article-title: Fast Li-ion conduction in poly (ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles
  publication-title: Chem. Commun
  doi: 10.1039/C3CC49588D
– volume: 59
  start-page: 161
  year: 1989
  ident: 10.1016/j.rser.2019.04.035_bib280
  article-title: Properties of mixed polymer and crystalline ionic conductors
  publication-title: Philos Mag B
  doi: 10.1080/13642818908208455
– volume: 82
  start-page: 1352
  year: 1999
  ident: 10.1016/j.rser.2019.04.035_bib130
  article-title: Mechanochemical synthesis of new amorphous materials of 60Li2S·40SiS2 with high lithium ion conductivity
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1999.tb01923.x
– volume: 45
  start-page: 2139
  year: 2000
  ident: 10.1016/j.rser.2019.04.035_bib260
  article-title: PEO-carbon composite lithium polymer electrolyte
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(99)00437-5
– volume: 247
  start-page: 975
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib31
  article-title: An all-solid state NASICON sodium battery operating at 200 °C
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.09.051
– volume: 225
  start-page: 626
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib308
  article-title: Characterization of amorphous and crystalline Li2S–P2S5–P2Se5 solid electrolytes for all-solid-state lithium ion batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2012.05.013
– volume: 47
  start-page: 328
  year: 1964
  ident: 10.1016/j.rser.2019.04.035_bib87
  article-title: Studies in germanium oxide systems: I, phase equilibria in the system Li2O-GeO2
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1964.tb12995.x
– volume: 12
  start-page: 81
  year: 2006
  ident: 10.1016/j.rser.2019.04.035_bib10
  article-title: Recent progress in solid oxide and lithium ion conducting electrolytes research
  publication-title: Ionics
  doi: 10.1007/s11581-006-0013-7
– volume: 144
  start-page: 524
  year: 1997
  ident: 10.1016/j.rser.2019.04.035_bib99
  article-title: A stable thin-film lithium electrolyte: lithium phosphorus oxynitride
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1837443
– volume: 1
  start-page: 6320
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib167
  article-title: Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M=Fe, Zn, and Bi) nanoparticles
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta10247e
– volume: 23
  start-page: 29
  year: 1989
  ident: 10.1016/j.rser.2019.04.035_bib127
  article-title: Ionically conductive glasses based on SiS2
  publication-title: Mater Chem Phys
  doi: 10.1016/0254-0584(89)90015-1
– volume: 44
  start-page: 354
  year: 1982
  ident: 10.1016/j.rser.2019.04.035_bib14
  article-title: Ionic conductivity of LISICON solid solutions, Li2+2xZn1-xGeO4
  publication-title: J Solid State Chem
  doi: 10.1016/0022-4596(82)90383-8
– volume: 177
  start-page: 2721
  year: 2006
  ident: 10.1016/j.rser.2019.04.035_bib156
  article-title: High lithium ion conducting glass-ceramics in the system Li2S–P2S5
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2006.04.017
– volume: 52
  start-page: 1003
  year: 2006
  ident: 10.1016/j.rser.2019.04.035_bib46
  article-title: Low temperature solid-state synthesis routine and mechanism for Li3V2(PO4)3 using LiF as lithium precursor
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2006.06.039
– volume: 161
  start-page: A1812
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib181
  article-title: Empowering the lithium metal battery through a silicon-based superionic conductor
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0501412jes
– volume: 4
  start-page: 22
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib4
  article-title: Structure and ionic conductivity of Li2S–P2S5 glass electrolytes simulated with first-principles molecular dynamics
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2016.00022
– volume: 244
  start-page: 707
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib168
  article-title: Preparation and ionic conductivities of (100−x)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.12.001
– volume: 240
  start-page: 18
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib80
  article-title: Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.03.166
– volume: 5
  start-page: 2829
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib170
  article-title: Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA10142A
– volume: 86
  start-page: 689
  year: 1993
  ident: 10.1016/j.rser.2019.04.035_bib114
  article-title: High ionic conductivity in lithium lanthanum titanate
  publication-title: Solid State Commun
  doi: 10.1016/0038-1098(93)90841-A
– volume: 108
  start-page: 128
  year: 2000
  ident: 10.1016/j.rser.2019.04.035_bib129
  article-title: Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4
  publication-title: J Ceram Soc Jpn
  doi: 10.2109/jcersj.108.1254_128
– volume: 84
  start-page: 477
  year: 2001
  ident: 10.1016/j.rser.2019.04.035_bib153
  article-title: Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.2001.tb00685.x
– volume: 274
  start-page: 100
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib78
  article-title: Effects of penta-and trivalent dopants on structure and conductivity of Li7La3Zr2O12
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2015.03.019
– volume: 117
  start-page: 21064
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib39
  article-title: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes
  publication-title: J Phys Chem C
  doi: 10.1021/jp4051275
– volume: 10
  start-page: 682
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib125
  article-title: A lithium superionic conductor
  publication-title: Nat Mater
  doi: 10.1038/nmat3066
– volume: 149
  start-page: 59
  year: 2002
  ident: 10.1016/j.rser.2019.04.035_bib94
  article-title: Characterizations of a new lithium ion conducting Li2O–SeO2–B2O3 glass electrolyte
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00137-6
– volume: 9
  start-page: 13694
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib287
  article-title: Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b00336
– volume: 46
  start-page: 1124
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib257
  article-title: Frontiers in poly(ionic liquid)s: syntheses and applications
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00620E
– volume: 2
  start-page: 25
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib28
  article-title: Recent advances in inorganic solid electrolytes for lithium batteries
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2014.00025
– volume: 24
  start-page: 1357
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib107
  article-title: Multivariate method-assisted Ab initio study of olivine-type LiMXO4 (Main Group M2+–X5+ and M3+–X4+) compositions as potential solid electrolytes
  publication-title: Chem Mater
  doi: 10.1021/cm3000427
– volume: 262
  start-page: 147
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib145
  article-title: Preparation of composite electrode with Li2S–P2S5 glasses as active materials for all-solid-state lithium secondary batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2013.09.023
– volume: 5
  start-page: 22519
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib254
  article-title: A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA05787C
– volume: 141
  start-page: L78
  year: 1994
  ident: 10.1016/j.rser.2019.04.035_bib57
  article-title: Lithium ion conductivity of A‐site deficient perovskite solid solution La0.67−xLi3xTiO3
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2055043
– volume: 10
  start-page: 439
  year: 1998
  ident: 10.1016/j.rser.2019.04.035_bib22
  article-title: Polymer electrolytes for lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
– volume: 194
  start-page: 1085
  year: 2009
  ident: 10.1016/j.rser.2019.04.035_bib122
  article-title: All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.06.100
– volume: 15
  start-page: 18600
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib142
  article-title: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c3cp51059j
– volume: 11
  start-page: 8556
  year: 2019
  ident: 10.1016/j.rser.2019.04.035_bib300
  article-title: Design and synthesis of double-functional polymer composite layer coating to enhance the electrochemical performance of the Ni-rich cathode at upper cutoff voltage
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b21621
– volume: 178
  start-page: 837
  year: 2007
  ident: 10.1016/j.rser.2019.04.035_bib155
  article-title: Lithium ion conductivity of the Li2S–P2S5 glass-based electrolytes prepared by the melt quenching method
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2007.03.001
– volume: 7
  start-page: 627
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib159
  article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
  publication-title: Energy Environ Sci
  doi: 10.1039/C3EE41655K
– volume: 52
  start-page: 261
  year: 1994
  ident: 10.1016/j.rser.2019.04.035_bib281
  article-title: Polymer-ceramic composite electrolytes
  publication-title: J Power Sources
  doi: 10.1016/0378-7753(94)02147-3
– volume: 10
  start-page: 375
  year: 2004
  ident: 10.1016/j.rser.2019.04.035_bib195
  article-title: Effect of sulfur electrode composition on the electrochemical property of lithium/PEO/sulfur battery
  publication-title: Met Mater Int
  doi: 10.1007/BF03185988
– volume: 81
  start-page: 853
  year: 1999
  ident: 10.1016/j.rser.2019.04.035_bib60
  article-title: Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(99)00121-4
– volume: 23
  start-page: 3353
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib200
  article-title: A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201203556
– volume: 2
  start-page: 720
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib106
  article-title: An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks
  publication-title: J Mater Chem A
  doi: 10.1039/C3TA13235H
– volume: 15
  start-page: 6107
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib109
  article-title: Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c3cp50803j
– volume: 170
  start-page: 173
  year: 2004
  ident: 10.1016/j.rser.2019.04.035_bib118
  article-title: Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.02.025
– volume: 18
  start-page: 351
  year: 1986
  ident: 10.1016/j.rser.2019.04.035_bib297
  article-title: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(86)90139-6
– volume: 196
  start-page: 6920
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib158
  article-title: Formation of the high lithium ion conducting phase from mechanically milled amorphous Li2S–P2S5 system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.12.020
– volume: 195
  start-page: 4984
  year: 2010
  ident: 10.1016/j.rser.2019.04.035_bib165
  article-title: Preparation of Li2S–GeSe2–P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.02.042
– volume: 293
  start-page: 941
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib175
  article-title: Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.05.093
– volume: 8
  start-page: 1956
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib226
  article-title: Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all-solid-state Li-S cell
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.7b00593
– volume: 15
  start-page: 285
  year: 1980
  ident: 10.1016/j.rser.2019.04.035_bib86
  article-title: Domaine vitreux, structure et conductivite electrique des verres du systeme LiCl/1bLi2O/1bP2O5
  publication-title: Mater Res Bull
  doi: 10.1016/0025-5408(80)90131-2
– volume: 49
  start-page: 4808
  year: 1978
  ident: 10.1016/j.rser.2019.04.035_bib113
  article-title: Ionic conductivity of quenched alkali niobate and tantalate glasses
  publication-title: J Appl Phys
  doi: 10.1063/1.325509
– volume: 196
  start-page: 3655
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib218
  article-title: Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.12.052
– volume: 17
  start-page: 918
  year: 2005
  ident: 10.1016/j.rser.2019.04.035_bib20
  article-title: New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401286
– volume: 61
  start-page: 759
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib59
  article-title: Progress and prospective of solid-state lithium batteries
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2012.10.034
– volume: 182
  start-page: 116
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib162
  article-title: Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2010.10.013
– volume: 18
  start-page: 300
  year: 1986
  ident: 10.1016/j.rser.2019.04.035_bib198
  article-title: Polymeric electrolyte based on poly (ethylene imine) and lithium salts
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(86)90131-1
– volume: 4
  start-page: 6272
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib220
  article-title: Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries
  publication-title: Sci Rep
  doi: 10.1038/srep06272
– volume: 16
  start-page: 1345
  year: 2006
  ident: 10.1016/j.rser.2019.04.035_bib214
  article-title: Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries
  publication-title: J Mater Chem
  doi: 10.1039/b514346b
– volume: 81
  start-page: 1305
  year: 1998
  ident: 10.1016/j.rser.2019.04.035_bib131
  article-title: Structural investigation of 95(0.6Li2S0.4SiS2)·5Li4SiO4 oxysulfide glass by using X-ray photoelectron spectroscopy
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1998.tb02482.x
– volume: 10
  start-page: 85
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib231a
  article-title: In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries
  publication-title: Energ. Storage Mater
  doi: 10.1016/j.ensm.2017.06.017
– volume: 46
  start-page: 797
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib253
  article-title: Single lithium-ion conducting solid polymer electrolytes: advances and perspectives
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00491A
– volume: 393
  start-page: 271
  year: 2004
  ident: 10.1016/j.rser.2019.04.035_bib268
  article-title: Nanocomposite polymer electrolyte based on poly(ethylene oxide) and solid super acid for lithium polymer battery
  publication-title: Chem Phys Lett
  doi: 10.1016/j.cplett.2004.06.054
– volume: 219
  start-page: 235
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib161
  article-title: Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.09.155
– volume: 343
  start-page: 22
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib273
  article-title: Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.01.030
– volume: 14
  start-page: 921
  year: 1979
  ident: 10.1016/j.rser.2019.04.035_bib89
  article-title: Etude comparee de la conductivite ionique du lithium dans les halogenoborates vitreux
  publication-title: Mater Res Bull
  doi: 10.1016/0025-5408(79)90158-2
– volume: 244
  start-page: 476
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib140
  article-title: Effect of mixing method on the properties of composite cathodes for all-solid-state lithium batteries using Li2S–P2S5 solid electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.11.049
– volume: 113
  start-page: 109
  year: 1998
  ident: 10.1016/j.rser.2019.04.035_bib284
  article-title: Li ion conductors based on laponite/poly(ethylene oxide) composites
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(98)00367-1
– volume: 178
  start-page: 716
  year: 2008
  ident: 10.1016/j.rser.2019.04.035_bib223
  article-title: Ionic conductivity and thermal property of solid hybrid polymer electrolyte composed of oligo(ethylene oxide) unit and butyrolactone unit
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.11.088
– volume: 8
  start-page: 10163
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib289
  article-title: Electrical properties of composite polymer electrolytes based on PEO-SN-LiCF3SO3
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)13102-6
– volume: 4
  start-page: 38
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib307
  article-title: Lithium superionic conductor Li9.42Si1.02P2.1S9.96O2.04 with Li10GeP2S12-type structure in the Li2S–P2S5–SiO2 pseudoternary system: synthesis, electrochemical properties, and structure–composition relationships
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2016.00038
– volume: 146
  start-page: 715
  year: 2005
  ident: 10.1016/j.rser.2019.04.035_bib119
  article-title: Electrical and electrochemical properties of Li2S–P2S5–P2O5 glass–ceramic electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.03.063
– volume: 69
  start-page: 385
  year: 1996
  ident: 10.1016/j.rser.2019.04.035_bib36
  article-title: Ionic conductivity of solid electrolytes based on Li1.3Al0.3Ti1.7(PO4)3
  publication-title: Russ J Appl Chem
– volume: 35
  start-page: 1477
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib41
  article-title: High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5)
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2014.11.023
– volume: 47
  start-page: 3145
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib205
  article-title: Influence of solvating plasticizer on ion conduction of polysiloxane single-ion conductors
  publication-title: Macromolecules
  doi: 10.1021/ma500146v
– volume: 9
  start-page: 607
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib150
  article-title: All-solid-state batteries with thick electrode configurations
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.7b02880
– volume: 3
  start-page: 1995
  year: 2010
  ident: 10.1016/j.rser.2019.04.035_bib217
  article-title: Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes
  publication-title: Energy Environ Sci
  doi: 10.1039/c0ee00266f
– volume: 24
  start-page: 44
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib250
  article-title: Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium‐ion batteries
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201301345
– volume: 301
  start-page: 47
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib26
  article-title: A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.09.111
– volume: 365
  start-page: 43
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib66
  article-title: Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.08.020
– volume: 136
  start-page: 7395
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib227
  article-title: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries
  publication-title: J Am Chem Soc
  doi: 10.1021/ja502133j
– volume: 24
  start-page: 15
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib189
  article-title: First principles study of the Li10GeP2S12 lithium super ionic conductor material
  publication-title: Chem Mater
  doi: 10.1021/cm203303y
– volume: 11
  start-page: 2042
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib16
  article-title: Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b17656
– volume: 302
  start-page: 419
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib147
  article-title: Raman imaging for LiCoO2 composite positive electrodes in all-solid-state lithium batteries using Li2S–P2S5 solid electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.10.040
– volume: 394
  start-page: 456
  year: 1998
  ident: 10.1016/j.rser.2019.04.035_bib269
  article-title: Nanocomposite polymer electrolytes for lithium batteries
  publication-title: Nature
  doi: 10.1038/28818
– volume: 267
  start-page: 68
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib244
  article-title: Lithium ion conductive properties of aliphatic polycarbonate
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2014.09.011
– volume: 13
  start-page: 117
  year: 1978
  ident: 10.1016/j.rser.2019.04.035_bib100
  article-title: Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors
  publication-title: Mater Res Bull
  doi: 10.1016/0025-5408(78)90075-2
– volume: 5
  start-page: 12934
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib282
  article-title: Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA03699J
– volume: 45
  start-page: 558
  year: 2009
  ident: 10.1016/j.rser.2019.04.035_bib199
  article-title: New solid polymer electrolytes based on polyester diacrylate for lithium power sources
  publication-title: Russ J Electrochem
  doi: 10.1134/S1023193509050103
– volume: 141
  start-page: 143
  year: 2005
  ident: 10.1016/j.rser.2019.04.035_bib291
  article-title: All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.09.004
– volume: 55
  start-page: 2799
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib224
  article-title: Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.04.051
– volume: 46
  start-page: 235
  year: 1963
  ident: 10.1016/j.rser.2019.04.035_bib82
  article-title: Some structural and electrical properties of lithium silicate glasses
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1963.tb19779.x
– volume: 306
  start-page: 623
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib64
  article-title: Synthesis and characterization of perovskite-type (Li, Sr)(Zr, Nb)O3 quaternary solid electrolyte for all-solid-state batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.12.065
– volume: 11
  start-page: 185
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib266
  article-title: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE02723K
– volume: 135
  start-page: 47
  year: 2000
  ident: 10.1016/j.rser.2019.04.035_bib292
  article-title: Nanocomposite polymer electrolytes and their impact on the lithium battery technology
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(00)00329-5
– volume: 89
  start-page: 390
  year: 2005
  ident: 10.1016/j.rser.2019.04.035_bib219
  article-title: PAN–PEO solid polymer electrolytes with high ionic conductivity
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2004.09.032
– volume: 54
  start-page: 3178
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib49
  article-title: Single-phase All-solid-state lithium battery based on Li1.5Cr0.5Ti1.5(PO4)3 for high rate capability and low temperature operation
  publication-title: Chem Commun.
  doi: 10.1039/C8CC00734A
– volume: 109
  start-page: 205702
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib79
  article-title: Origin of the structural phase transition in Li7La3Zr2O12
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.109.205702
– volume: 591
  start-page: 247
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib163
  article-title: Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.12.191
– volume: 3
  start-page: 10722
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib235
  article-title: A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries
  publication-title: RSC Adv
  doi: 10.1039/c3ra40306h
– volume: 320
  start-page: 92
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib228
  article-title: Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO4 composite cathode encapsulated by poly (ethylene glycol)(PEG) based polymer electrolyte
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2018.02.040
– volume: 8
  start-page: 14552
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib63
  article-title: Li-ion conduction and stability of perovskite Li3/8Sr7/16Hf1/4Ta3/4O3
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b03070
– volume: 91
  start-page: 21
  year: 1996
  ident: 10.1016/j.rser.2019.04.035_bib53
  article-title: Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(96)00434-1
– volume: 31
  start-page: 478
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib286
  article-title: Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries
  publication-title: Nanomater Energy
  doi: 10.1016/j.nanoen.2016.11.045
– volume: 10
  start-page: 1860
  year: 2008
  ident: 10.1016/j.rser.2019.04.035_bib5
  article-title: Novel technique to form electrode–electrolyte nanointerface in all-solid-state rechargeable lithium batteries
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2008.09.026
– volume: 12
  start-page: 452
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib255
  article-title: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
  publication-title: Nat Mater
  doi: 10.1038/nmat3602
– volume: 104
  start-page: 85
  year: 2002
  ident: 10.1016/j.rser.2019.04.035_bib207
  article-title: Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide)
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(01)00902-8
– volume: 98
  start-page: 3603
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib24
  article-title: Oxide electrolytes for lithium batteries
  publication-title: J Am Ceram Soc
  doi: 10.1111/jace.13844
– volume: 23
  start-page: 470
  year: 1987
  ident: 10.1016/j.rser.2019.04.035_bib51
  article-title: Investigation into complex oxides of La2/3-xLi3xTiO3 composition
  publication-title: Izv Akad Nauk SSSR, Neorg Mater.
– volume: 166
  start-page: 67
  year: 2002
  ident: 10.1016/j.rser.2019.04.035_bib54
  article-title: Crystal structure of a lithium ion-conducting perovskite La2/3−xLi3xTiO3 (x= 0.05)
  publication-title: J Solid State Chem
  doi: 10.1006/jssc.2002.9560
– volume: 2
  start-page: 9948
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib222
  article-title: Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA01856G
– volume: 94
  start-page: 1779
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib160
  article-title: Crystallization process for superionic Li7P3S11 glass–ceramic electrolytes
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1551-2916.2010.04335.x
– volume: 315
  start-page: 65
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib265
  article-title: Hybrid solid electrolytes composed of poly (1, 4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2017.12.007
– volume: 39
  start-page: 145
  year: 1998
  ident: 10.1016/j.rser.2019.04.035_bib132
  article-title: X-ray photoelectron spectroscopy of (100–x)(0·6Li2S·0.4SiS2)·xLi4SiO4 oxysulphide glasses
  publication-title: Phys Chem Glasses
– volume: 192
  start-page: 122
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib164
  article-title: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2010.06.018
– volume: 136
  start-page: 2441
  year: 1989
  ident: 10.1016/j.rser.2019.04.035_bib152
  article-title: Preparation and electrochemical properties of the SiS2-P2S5-Li2S glass coformer system
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2097416
– volume: 10
  start-page: 682
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib21
  article-title: A lithium superionic conductor
  publication-title: Nat Mater
  doi: 10.1038/nmat3066
– volume: 262
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib231b
  article-title: Polycarbonate-based solid polymer electrolytes for Li-ion batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2013.08.014
– volume: 272
  start-page: 138
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib44
  article-title: Structural and electrochemical properties of Fe- and Al-doped Li3V2(PO4)3 for all-solid-state symmetric lithium ion batteries prepared by spray-drying-assisted carbothermal method
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2015.01.006
– volume: 13
  start-page: 710
  year: 2003
  ident: 10.1016/j.rser.2019.04.035_bib283
  article-title: Nanocomposite electrolytes with fumed silica and hectorite clay networks: passive versus active fillers
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200304333
– volume: 183
  start-page: 48
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib73
  article-title: Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2010.12.010
– volume: 262
  start-page: 589
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib15
  article-title: Lithium ion conduction in tavorite-type LiMXO4F (M–X: AlP, MgS) candidate solid electrolyte materials
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2013.10.007
– volume: 86
  start-page: 539
  year: 1996
  ident: 10.1016/j.rser.2019.04.035_bib137
  article-title: Preparation of Li6Si2S7-Li6B4X9 (X=S, O) glasses by rapid quenching and their lithium ion conductivities
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(96)00195-6
– volume: 174
  start-page: 632
  year: 2007
  ident: 10.1016/j.rser.2019.04.035_bib178
  article-title: Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.06.168
– volume: 5
  start-page: 139
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib30
  article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries
  publication-title: Energ. Storage Mater
  doi: 10.1016/j.ensm.2016.07.003
– volume: 74
  start-page: 1767
  year: 1991
  ident: 10.1016/j.rser.2019.04.035_bib83
  article-title: Ionic conduction in phosphate glasses
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1991.tb07788.x
– volume: 79
  start-page: 91
  year: 1995
  ident: 10.1016/j.rser.2019.04.035_bib56
  article-title: Lithium ion conductivity in the perovskite-type LiTaO3-SrTiO3 solid solution
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(95)00036-6
– volume: 166
  start-page: A975
  year: 2019
  ident: 10.1016/j.rser.2019.04.035_bib263
  article-title: Understanding chemical stability issues between different solid electrolytes in all-solid-state batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0351906jes
– volume: 12
  start-page: 295
  year: 2007
  ident: 10.1016/j.rser.2019.04.035_bib230
  article-title: Lithium AlPO4 composite polymer battery with nanostructured LiMn2O4 cathode
  publication-title: J Solid State Electrochem
  doi: 10.1007/s10008-007-0391-4
– volume: 38
  start-page: 63
  year: 1997
  ident: 10.1016/j.rser.2019.04.035_bib134
  article-title: Preparation and characterisation of superionic Li2S- SiS2-Li4GeO4 glasses
  publication-title: Phys Chem Glasses
– volume: 53
  start-page: 430
  year: 1984
  ident: 10.1016/j.rser.2019.04.035_bib103
  article-title: Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes
  publication-title: J Solid State Chem
  doi: 10.1016/0022-4596(84)90122-1
– volume: 7
  start-page: A455
  year: 2004
  ident: 10.1016/j.rser.2019.04.035_bib177
  article-title: A self-assembled breathing interface for all-solid-state ceramic lithium batteries
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.1809553
– volume: 121
  start-page: 245
  year: 1999
  ident: 10.1016/j.rser.2019.04.035_bib52
  article-title: Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67−xLi3xTiO3 (x=0.11)
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(99)00043-0
– volume: 135
  start-page: 15694
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib182
  article-title: Li10SnP2S12: an affordable lithium superionic conductor
  publication-title: J Am Chem Soc
  doi: 10.1021/ja407393y
– volume: 33
  start-page: 363
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib2
  article-title: Recent advances in all-solid-state rechargeable lithium batteries
  publication-title: Nanomater Energy
  doi: 10.1016/j.nanoen.2017.01.028
– volume: 18
  start-page: 562
  year: 1986
  ident: 10.1016/j.rser.2019.04.035_bib33
  article-title: Lithium ion conductors in the system AB(IV)2(PO4)3 (B= Ti, Zr and Hf)
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(86)90179-7
– volume: 124
  start-page: 246
  year: 2003
  ident: 10.1016/j.rser.2019.04.035_bib197
  article-title: Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(03)00611-6
– volume: 13
  start-page: 509
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib74
  article-title: High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2011.02.035
– volume: 175
  start-page: 699
  year: 2004
  ident: 10.1016/j.rser.2019.04.035_bib126
  article-title: All-solid-state lithium secondary batteries using Li2S·SiS2·Li4SiO4 glasses and Li2S·P2S5 glass ceramics as solid electrolytes
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.08.027
– volume: 5
  start-page: 1501082
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib201
  article-title: Safety-reinforced poly (propylene carbonate)-based All-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501082
– volume: 5
  start-page: 6491
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib237
  article-title: UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries
  publication-title: Energy Environ Sci
  doi: 10.1039/c2ee03025j
– volume: 2
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib188
  article-title: Recent advances in inorganic solid electrolytes for lithium batteries
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2014.00025
– volume: 150
  start-page: 693
  year: 2010
  ident: 10.1016/j.rser.2019.04.035_bib105
  article-title: Ab initio prediction for the ionic conduction of lithium in LiInSiO4 and LiInGeO4 olivine materials
  publication-title: Solid State Commun
  doi: 10.1016/j.ssc.2010.01.044
– volume: 167
  start-page: 263
  year: 2004
  ident: 10.1016/j.rser.2019.04.035_bib62
  article-title: Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.01.008
– volume: 16
  start-page: 175
  year: 2009
  ident: 10.1016/j.rser.2019.04.035_bib72
  article-title: Evaluation of electrochemical characteristics of Li7La3Zr2O12 solid electrolyte
  publication-title: ECS Transactions
  doi: 10.1149/1.3109645
– volume: 103
  start-page: 250
  year: 1988
  ident: 10.1016/j.rser.2019.04.035_bib91
  article-title: Structure and ionic conductivity of LiCl∙Li2O∙TeO2 glasses
  publication-title: J Non-Cryst Solids
  doi: 10.1016/0022-3093(88)90203-7
– volume: 5
  start-page: 111
  year: 2003
  ident: 10.1016/j.rser.2019.04.035_bib157
  article-title: Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses
  publication-title: Electrochem Commun
  doi: 10.1016/S1388-2481(02)00555-6
– volume: 162
  start-page: A704
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib27
  article-title: All-solid-state lithium batteries assembled with hybrid solid electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0731504jes
– volume: 53
  start-page: 5045
  year: 2008
  ident: 10.1016/j.rser.2019.04.035_bib179
  article-title: Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2008.01.071
– volume: 211
  start-page: 42
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib174
  article-title: Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–LiI glass and glass–ceramic electrolytes
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2012.01.017
– volume: 14
  start-page: 2871
  year: 2002
  ident: 10.1016/j.rser.2019.04.035_bib296
  article-title: A new La2/3LixTi1-xAlxO3 solid solution: structure, microstructure, and Li+ conductivity
  publication-title: Chem Mater
  doi: 10.1021/cm011149s
– volume: 79
  start-page: 349
  year: 1996
  ident: 10.1016/j.rser.2019.04.035_bib135
  article-title: 29Si and 31P MAS-NMR spectra of Li2S-SiS2-Li3PO4 rapidly quenched glasses
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1996.tb08127.x
– volume: 146
  start-page: 391
  year: 2005
  ident: 10.1016/j.rser.2019.04.035_bib234
  article-title: A new polysiloxane based cross-linker for solid polymer electrolyte
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.03.142
– volume: 29
  start-page: 7206
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib13
  article-title: Y-doped NASICON-type LiZr2(PO4)3 solid electrolytes for lithium-metal batteries
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b01463
– volume: 314
  start-page: 85
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib148
  article-title: The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.02.088
– volume: 16
  start-page: 459
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib271
  article-title: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b04117
– volume: 274
  start-page: 458
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib25
  article-title: Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.10.078
– volume: 296
  start-page: 13
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib3
  article-title: All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2016.08.014
– volume: 8
  start-page: 199
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib19
  article-title: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes
  publication-title: Electron. Mater. Lett.
  doi: 10.1007/s13391-012-2038-6
– volume: 269
  start-page: 727
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib146
  article-title: Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.07.055
– volume: 43
  start-page: 103
  year: 1993
  ident: 10.1016/j.rser.2019.04.035_bib96
  article-title: Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries
  publication-title: J Power Sources
  doi: 10.1016/0378-7753(93)80106-Y
– volume: 25
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib9
  article-title: All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/25/1/018802
– volume: 189
  start-page: 672
  year: 2009
  ident: 10.1016/j.rser.2019.04.035_bib123
  article-title: Characterization of all-solid-state lithium secondary batteries using CuxMo6S8−y electrode and Li2S–P2S5 solid electrolyte
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.09.025
– volume: 132
  start-page: 181
  year: 2004
  ident: 10.1016/j.rser.2019.04.035_bib272
  article-title: All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.01.034
– volume: 51
  start-page: 293
  year: 1984
  ident: 10.1016/j.rser.2019.04.035_bib50
  article-title: Ionic conductivity of oxides with general formula LixLn1/3Nb1−xTixO3 (Ln= La, Nd)
  publication-title: J Solid State Chem
  doi: 10.1016/0022-4596(84)90345-1
– volume: 5
  start-page: 23844
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib258
  article-title: Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA08233A
– volume: 159
  start-page: 193
  year: 2006
  ident: 10.1016/j.rser.2019.04.035_bib120
  article-title: All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.04.037
– volume: 11
  start-page: 227
  year: 1983
  ident: 10.1016/j.rser.2019.04.035_bib225
  article-title: Lithium ionic conduction in poly(methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(83)90028-0
– volume: 6
  start-page: 5296
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib32
  article-title: NASICON LiM2(PO4)3 electrolyte (M=Zr) and electrode (M=Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA08715B
– volume: 17
  start-page: 44
  year: 2008
  ident: 10.1016/j.rser.2019.04.035_bib98
  article-title: Thin film micro-batteries
  publication-title: Electrochem. Soc. Interface
  doi: 10.1149/2.F04083IF
– volume: 21
  start-page: 381
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib278
  article-title: Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery
  publication-title: Ionics
  doi: 10.1007/s11581-014-1176-2
– volume: 118
  start-page: 73
  year: 1999
  ident: 10.1016/j.rser.2019.04.035_bib293
  article-title: Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(98)00457-3
– volume: 46
  start-page: 7778
  year: 2007
  ident: 10.1016/j.rser.2019.04.035_bib12
  article-title: Fast lithium ion conduction in garnet-type Li7La3Zr2O12
  publication-title: Angew Chem, Int Ed
  doi: 10.1002/anie.200701144
– volume: 11
  start-page: 203
  year: 1976
  ident: 10.1016/j.rser.2019.04.035_bib18
  article-title: Fast Na+-ion transport in skeleton structures
  publication-title: Mater Res Bull
  doi: 10.1016/0025-5408(76)90077-5
– volume: 398
  start-page: 792
  year: 1999
  ident: 10.1016/j.rser.2019.04.035_bib23
  article-title: Structure of the polymer electrolyte poly (ethylene oxide)6: LiAsF6
  publication-title: Nature
  doi: 10.1038/19730
– volume: 49
  start-page: 307
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib277
  article-title: Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2012.10.033
– volume: 162
  start-page: 651
  year: 2006
  ident: 10.1016/j.rser.2019.04.035_bib43
  article-title: Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.07.029
– volume: 70
  start-page: 619
  year: 1994
  ident: 10.1016/j.rser.2019.04.035_bib97
  article-title: Rechargeable thin-film lithium batteries
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(94)90383-2
– volume: 10
  start-page: 1568
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib65
  article-title: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE01004D
– volume: 15
  start-page: 3991
  year: 2003
  ident: 10.1016/j.rser.2019.04.035_bib115
  article-title: Optimization of lithium conductivity in La/Li titanates
  publication-title: Chem Mater
  doi: 10.1021/cm0300563
– volume: 21
  start-page: 381
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib295
  article-title: Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery
  publication-title: Ionics
  doi: 10.1007/s11581-014-1176-2
– volume: 146
  start-page: 1672
  year: 1999
  ident: 10.1016/j.rser.2019.04.035_bib274
  article-title: Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO3
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1391824
– volume: 44
  start-page: 6614
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib81
  article-title: Structure and ionic conductivity of Li7La3Zr2−xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2018.01.065
– volume: 81
  start-page: 114
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib229
  article-title: Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2017.12.004
– volume: 62
  start-page: 309
  year: 1993
  ident: 10.1016/j.rser.2019.04.035_bib47
  article-title: Electrical properties and crystal structure of solid electrolyte based on lithium hafnium phosphate LiHf2(PO4)3
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(93)90387-I
– volume: 21
  start-page: 10051
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib302
  article-title: Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries
  publication-title: J Mater Chem
  doi: 10.1039/c0jm04366d
– volume: 3
  start-page: 476
  year: 2004
  ident: 10.1016/j.rser.2019.04.035_bib249
  article-title: The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors
  publication-title: Nat Mater
  doi: 10.1038/nmat1158
– volume: 4
  start-page: 42
  year: 1998
  ident: 10.1016/j.rser.2019.04.035_bib117
  article-title: Lithium ion conductive glass and its application to solid state batteries
  publication-title: Ionics
  doi: 10.1007/BF02375778
– volume: 356
  start-page: 163
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib172
  article-title: Study on (100-x)(70Li2S-30P2S5)-xLi2ZrO3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.04.083
– volume: 122
  start-page: 9852
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib202
  article-title: A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.8b02556
– volume: 22
  start-page: 949
  year: 2010
  ident: 10.1016/j.rser.2019.04.035_bib301
  article-title: Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy†
  publication-title: Chem Mater
  doi: 10.1021/cm901819c
– volume: 86
  start-page: 257
  year: 1996
  ident: 10.1016/j.rser.2019.04.035_bib55
  article-title: Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(96)00100-2
– volume: 179
  start-page: 974
  year: 2006
  ident: 10.1016/j.rser.2019.04.035_bib71
  article-title: Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2005.12.025
– volume: 140
  start-page: 1827
  year: 1993
  ident: 10.1016/j.rser.2019.04.035_bib48
  article-title: The electrical properties of ceramic electrolytes for LiMxTi2−x(PO4)3+yLi2O, M= Ge, Sn, Hf, and Zr systems
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2220723
– volume: 240
  start-page: 50
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib34
  article-title: High Li+ conduction in NASICON-type Li1+xYxZr2−x(PO4)3 at room temperature
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.03.175
– volume: 6
  start-page: 4649
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib68
  article-title: Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA06833F
– volume: 108
  start-page: 407
  year: 1998
  ident: 10.1016/j.rser.2019.04.035_bib11
  article-title: Lithium ion conductivity of polycrystalline perovskite La0.67-xLi3xTiO3 with ordered and disordered arrangements of the A-site ions
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(98)00070-8
– volume: 39
  start-page: 2407
  year: 2001
  ident: 10.1016/j.rser.2019.04.035_bib285
  article-title: Interaction mechanism of a novel polymer electrolyte composed of poly (acrylonitrile), lithium triflate, and mineral clay
  publication-title: J Polym Sci, Part B: Polym Phys
  doi: 10.1002/polb.1212
– volume: 148
  start-page: A742
  year: 2001
  ident: 10.1016/j.rser.2019.04.035_bib176
  article-title: Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1379028
– volume: 284
  start-page: 206
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib169
  article-title: Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.02.160
– volume: 9
  start-page: 2013
  year: 2007
  ident: 10.1016/j.rser.2019.04.035_bib216
  article-title: All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2007.05.020
– volume: 130
  start-page: 97
  year: 2000
  ident: 10.1016/j.rser.2019.04.035_bib184
  article-title: Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(00)00277-0
– volume: 2
  start-page: 16103
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib7
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.103
– volume: 140
  start-page: 370
  year: 2005
  ident: 10.1016/j.rser.2019.04.035_bib45
  article-title: Local structure and redox energies of lithium phosphates with olivine- and Nasicon-like structures
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.08.029
– volume: 98
  start-page: 3831
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib310
  article-title: Dual doping: an effective method to enhance the electrochemical properties of Li10GeP2S12-based solid electrolytes
  publication-title: J Am Ceram Soc
  doi: 10.1111/jace.13800
– volume: 17
  start-page: 147
  year: 1985
  ident: 10.1016/j.rser.2019.04.035_bib90
  article-title: Effect of rapid quenching on electrical properties of lithium conductive glasses
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(85)90064-5
– volume: 39
  start-page: 8453
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib143
  article-title: Surface modification of LiCoO2 with Li3xLa2/3−xTiO3 for all-solid-state lithium ion batteries using Li2S–P2S5 glass–ceramic
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2013.04.027
– volume: 8
  start-page: 10350
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib206
  article-title: Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b01973
– volume: 9
  start-page: 33735
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib42
  article-title: A design of solid-state Li-S cell with evaporated lithium anode to eliminate shuttle effects
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b07057
– volume: 22
  start-page: 7687
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib190
  article-title: Structural requirements for fast lithium ion migration in Li10GeP2S12
  publication-title: J Mater Chem
  doi: 10.1039/c2jm16688g
– volume: 15
  start-page: 1661
  year: 1980
  ident: 10.1016/j.rser.2019.04.035_bib101
  article-title: New Li+ ion conductors in the system, Li4GeO4-Li3VO4
  publication-title: Mater Res Bull
  doi: 10.1016/0025-5408(80)90249-4
– volume: 319
  start-page: 247
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib196
  article-title: In operando scanning electron microscopy and ultraviolet–visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.03.093
– volume: 356
  start-page: 2670
  year: 2010
  ident: 10.1016/j.rser.2019.04.035_bib154
  article-title: Preparation and ionic conductivity of Li7P3S11 glass-ceramic electrolytes
  publication-title: J Non-Cryst Solids
  doi: 10.1016/j.jnoncrysol.2010.04.048
– volume: 113
  start-page: 733
  year: 1998
  ident: 10.1016/j.rser.2019.04.035_bib133
  article-title: Thermal and electrical properties of rapidly quenched Li2S-SiS2-Li2O-P2O5 oxysulfide glasses
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(98)00398-1
– volume: 12
  start-page: 894
  year: 2010
  ident: 10.1016/j.rser.2019.04.035_bib40
  article-title: Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2010.04.014
– volume: 12
  start-page: 374
  year: 2002
  ident: 10.1016/j.rser.2019.04.035_bib108
  article-title: Synthesis, crystal structure and lithium ion conductivity of LiMgFSO4
  publication-title: J Mater Chem
  doi: 10.1039/b108289m
– volume: 53
  start-page: 1183
  year: 1992
  ident: 10.1016/j.rser.2019.04.035_bib128
  article-title: New lithium ion conductors based on Li2S-SiS2 system
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(92)90310-L
– volume: 43
  start-page: 1137
  year: 1998
  ident: 10.1016/j.rser.2019.04.035_bib212
  article-title: Polymer electrolytes-the early days
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(97)10011-1
– volume: 309
  start-page: 27
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib304
  article-title: Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.01.068
– volume: 108
  start-page: 323
  year: 1989
  ident: 10.1016/j.rser.2019.04.035_bib111
  article-title: Ionic conductivity studies of the vitreous Li2O: P2O5: Ta2O5 system
  publication-title: J Non-Cryst Solids
  doi: 10.1016/0022-3093(89)90304-9
– volume: 14
  start-page: 589
  year: 1973
  ident: 10.1016/j.rser.2019.04.035_bib208
  article-title: Complexes of alkali metal ions with poly(ethylene oxide)
  publication-title: Polymer
  doi: 10.1016/0032-3861(73)90146-8
– volume: 11
  start-page: 91
  year: 1983
  ident: 10.1016/j.rser.2019.04.035_bib209
  article-title: Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(83)90068-1
– year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib264
  article-title: Conformal solid state Li7La3Zr2O12–PEO-LiClO4 composite electrolyte for advanced lithium batteries
  publication-title: Bull Am Phys Soc
– volume: 360
  start-page: 328
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib298
  article-title: Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.05.112
– volume: 13
  start-page: 205
  year: 1978
  ident: 10.1016/j.rser.2019.04.035_bib85
  article-title: Conductivite ionique du lithium dans les verres du systeme B2O3∙Li2O∙LiCl
  publication-title: Mater Res Bull
  doi: 10.1016/0025-5408(78)90223-4
– volume: 48
  start-page: 112
  year: 2003
  ident: 10.1016/j.rser.2019.04.035_bib104
  article-title: Growth and ionic conductivity of Li3+xP1−xGexO4 (x=0.34) single crystals
  publication-title: Crystallogr Rep
  doi: 10.1134/1.1541752
– volume: 86
  start-page: 487
  year: 1996
  ident: 10.1016/j.rser.2019.04.035_bib136
  article-title: Structure and properties of lithium ion conducting oxysulfide glasses prepared by rapid quenching
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(96)00179-8
– volume: 225
  start-page: 13
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib76
  article-title: Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.09.111
– volume: 222
  start-page: 237
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib180
  article-title: All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.08.041
– volume: 2
  start-page: 10854
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib252
  article-title: A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA00494A
– volume: 53
  start-page: 2310
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib110
  article-title: An unnoticed inorganic solid electrolyte: dilithium sodium phosphate with the nalipoite structure
  publication-title: Inorg Chem
  doi: 10.1021/ic4030537
– volume: 1
  start-page: 186
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib141
  article-title: Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature
  publication-title: Energy Technol
  doi: 10.1002/ente.201200019
– volume: 1
  start-page: 16030
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib191
  article-title: High-power all-solid-state batteries using sulfide superionic conductors
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.30
– volume: 55
  start-page: 1895
  year: 2010
  ident: 10.1016/j.rser.2019.04.035_bib270
  article-title: Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2009.11.003
– volume: 22
  start-page: 5198
  year: 2010
  ident: 10.1016/j.rser.2019.04.035_bib267
  article-title: Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002584
– volume: 266
  start-page: 25
  year: 2014
  ident: 10.1016/j.rser.2019.04.035_bib294
  article-title: Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2014.08.002
– volume: 214
  start-page: 25
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib166
  article-title: Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2012.02.034
– volume: 156
  start-page: 560
  year: 2006
  ident: 10.1016/j.rser.2019.04.035_bib213
  article-title: Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40°C
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.06.026
– volume: 352
  start-page: 3310
  year: 2006
  ident: 10.1016/j.rser.2019.04.035_bib309
  article-title: Molecular dynamics simulation of ternary glasses Li2S–P2S5–LiI
  publication-title: J Non-Cryst Solids
  doi: 10.1016/j.jnoncrysol.2006.04.018
– volume: 225
  start-page: 350
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib173
  article-title: Electrochemical properties of the amorphous solid electrolytes in the system Li2S–Al2S3–P2S5
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2012.03.003
– volume: 146
  start-page: 397
  year: 2005
  ident: 10.1016/j.rser.2019.04.035_bib290
  article-title: Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.03.028
– volume: 22
  start-page: 15357
  year: 2012
  ident: 10.1016/j.rser.2019.04.035_bib116
  article-title: Optimizing Li+ conductivity in a garnet framework
  publication-title: J Mater Chem
  doi: 10.1039/c2jm31413d
– volume: 63
  start-page: 91
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib245
  article-title: Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.02.052
– volume: 47
  start-page: 257
  year: 1991
  ident: 10.1016/j.rser.2019.04.035_bib61
  article-title: Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3)
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(91)90247-9
– volume: 70
  start-page: 144
  year: 1994
  ident: 10.1016/j.rser.2019.04.035_bib37
  article-title: Ionic-conductivity and luminescence of Eu3+-doped LiTi2(PO4)3
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(94)90299-2
– volume: 161
  start-page: 171
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib288
  article-title: Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.02.074
– volume: 6
  start-page: A47
  year: 2003
  ident: 10.1016/j.rser.2019.04.035_bib186
  article-title: Fast lithium-ion conducting glass-ceramics in the system Li2S-SiS2-P2S5
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.1540792
– volume: 13
  start-page: 1373
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib75
  article-title: High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2011.08.014
– volume: 168
  start-page: 140
  year: 2002
  ident: 10.1016/j.rser.2019.04.035_bib185
  article-title: Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system
  publication-title: J Solid State Chem
  doi: 10.1006/jssc.2002.9701
– volume: 147
  start-page: 2462
  year: 2000
  ident: 10.1016/j.rser.2019.04.035_bib275
  article-title: Ferroelectric materials as a ceramic filler in solid composite polyethylene Oxide-Based electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1393554
– volume: 110
  start-page: 1
  year: 1998
  ident: 10.1016/j.rser.2019.04.035_bib259
  article-title: PEO-based composite polymer electrolytes
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(98)00114-3
– volume: 11
  start-page: A1
  year: 2008
  ident: 10.1016/j.rser.2019.04.035_bib102
  article-title: Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.2795837
– volume: 5
  start-page: 6310
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib171
  article-title: All-solid-state lithium–sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA01147D
– volume: 119
  start-page: 442
  year: 2003
  ident: 10.1016/j.rser.2019.04.035_bib247
  article-title: New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(03)00187-3
– volume: 11
  start-page: 481
  year: 2009
  ident: 10.1016/j.rser.2019.04.035_bib242
  article-title: A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium-ion batteries
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2008.12.030
– volume: 301
  start-page: 10
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib67
  article-title: Sintering behavior of garnet-type Li7La3Zr2O12-Li3BO3 composite solid electrolytes for all-solid-state lithium batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2017.01.005
– volume: 44
  start-page: 742
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib149
  article-title: Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2017.09.241
– volume: 86
  start-page: 437
  year: 2003
  ident: 10.1016/j.rser.2019.04.035_bib70
  article-title: Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M= Nb, Ta)
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.2003.tb03318.x
– volume: 170
  start-page: 233
  year: 2004
  ident: 10.1016/j.rser.2019.04.035_bib248
  article-title: Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.04.007
– volume: 175
  start-page: 687
  year: 2004
  ident: 10.1016/j.rser.2019.04.035_bib92
  article-title: Li-ion conductivity in Li2O–B2O3–V2O5 glass system
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.08.024
– volume: 101
  start-page: 1315
  year: 1993
  ident: 10.1016/j.rser.2019.04.035_bib139
  article-title: Superionic conduction in rapidly quenched Li2S-SiS2-Li3PO4 glasses
  publication-title: J Ceram Soc Jpn
  doi: 10.2109/jcersj.101.1315
– volume: 15
  start-page: 107
  year: 2005
  ident: 10.1016/j.rser.2019.04.035_bib69
  article-title: Li6ALa2Ta2O12 (A= Sr, Ba): novel garnet-like oxides for fast lithium ion conduction
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200400044
– volume: 21
  start-page: 118
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib306
  article-title: Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes
  publication-title: J Mater Chem
  doi: 10.1039/C0JM01090A
– volume: 233
  start-page: 231
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib144
  article-title: All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass–ceramic as solid electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.01.090
– volume: 119
  start-page: 448
  year: 2003
  ident: 10.1016/j.rser.2019.04.035_bib246
  article-title: Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo (ethylene oxide): ionic conductivity and electrochemical properties
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(03)00189-7
– volume: 65
  start-page: 2200
  year: 1992
  ident: 10.1016/j.rser.2019.04.035_bib38
  article-title: Electrical properties and sinterability for lithium germanium phosphate Li1+xMxGe2−x(PO4)3, M=Al, Cr, Ga, Fe, Sc, and in systems
  publication-title: Bull Chem Soc Jpn
  doi: 10.1246/bcsj.65.2200
– volume: 50
  start-page: 3822
  year: 2009
  ident: 10.1016/j.rser.2019.04.035_bib240
  article-title: Transition behavior and ionic conductivity of lithium perchlorate-doped polystyrene-b-poly(2-vinylpyridine)
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.05.022
– volume: 58
  start-page: 112
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib276
  article-title: Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.08.096
– volume: 182
  start-page: 621
  year: 2008
  ident: 10.1016/j.rser.2019.04.035_bib121
  article-title: All solid-state battery with sulfur electrode and thio-LISICON electrolyte
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.03.030
– volume: 98
  start-page: 167
  year: 1997
  ident: 10.1016/j.rser.2019.04.035_bib261
  article-title: Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(97)00117-3
– volume: 3
  start-page: 18636
  year: 2015
  ident: 10.1016/j.rser.2019.04.035_bib77
  article-title: A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA03239C
– volume: 86
  start-page: 1
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib183
  article-title: Composite sulfur electrode for all-solid-state lithium–sulfur battery with Li2S–GeS2–P2S5-based Thio-LISICON solid electrolyte
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.17-00055
– volume: 47
  start-page: 5952
  year: 2006
  ident: 10.1016/j.rser.2019.04.035_bib193
  article-title: Review on composite polymer electrolytes for lithium batteries
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.05.069
– volume: 78
  start-page: 269
  year: 1995
  ident: 10.1016/j.rser.2019.04.035_bib138
  article-title: Thermal and electrical properties of rapidly quenched glasses in the systems Li2S·SiS2·LixMOy (LixMOy=Li4SiO4, Li2SO4)
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(95)00094-M
– volume: 89
  start-page: 219
  year: 2000
  ident: 10.1016/j.rser.2019.04.035_bib194
  article-title: Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(00)00432-8
– volume: 5
  start-page: 16984
  year: 2017
  ident: 10.1016/j.rser.2019.04.035_bib305
  article-title: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA04320A
– volume: 7
  start-page: 29
  year: 1966
  ident: 10.1016/j.rser.2019.04.035_bib88
  article-title: Electrical conductivity of SiO2-B2O3 glasses containing lithium or sodium
  publication-title: Phys Chem Glasses
– volume: 374
  start-page: 107
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib8
  article-title: Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.10.093
– volume: 195
  start-page: 6182
  year: 2010
  ident: 10.1016/j.rser.2019.04.035_bib243
  article-title: Synthesis of supramolecular solid polymer electrolytes via self-assembly of diborylated ionic liquid
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.11.050
– start-page: 173
  year: 1987
  ident: 10.1016/j.rser.2019.04.035_bib210
– volume: 46
  start-page: 1709
  year: 2001
  ident: 10.1016/j.rser.2019.04.035_bib211
  article-title: Lithium ion conductivity in polyoxyethylene/polyethylenimine blends
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(00)00775-1
– volume: 113
  start-page: 6552
  year: 2013
  ident: 10.1016/j.rser.2019.04.035_bib17
  article-title: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries
  publication-title: Chem Rev
  doi: 10.1021/cr3001862
– volume: 53
  start-page: 647
  year: 1992
  ident: 10.1016/j.rser.2019.04.035_bib95
  article-title: Electrical properties of amorphous lithium electrolyte thin films
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(92)90442-R
– volume: 56
  start-page: 6055
  year: 2011
  ident: 10.1016/j.rser.2019.04.035_bib124
  article-title: Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.04.084
– volume: 289
  start-page: 149
  year: 2018
  ident: 10.1016/j.rser.2019.04.035_bib299
  article-title: Graphene@TiO2 co-modified LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced electrochemical performance under harsh conditions
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.08.089
– volume: 1
  start-page: 678
  year: 2016
  ident: 10.1016/j.rser.2019.04.035_bib256
  article-title: Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature
  publication-title: Acs Energy Lett.
  doi: 10.1021/acsenergylett.6b00216
SSID ssj0015873
Score 2.6367505
SecondaryResourceType review_article
Snippet All-solid-state lithium batteries (ASSLBs) with solid electrolytes have attracted great attention for the replacement of traditional lithium batteries with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 367
SubjectTerms Electrochemical performance
Ionic conductivity
Solid electrolyte
Stability
Utmost limit
Title Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review
URI https://dx.doi.org/10.1016/j.rser.2019.04.035
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eJLZpkn14K8VSX0W0hd6WJpviynZb2q3gxd_uJJuVCtKDpyW7M2yYDPMgM98gdBlwqgNfKhKGvibc9zQJgZRQaS6pDJiORed_6nu9Ib8fiVEFdcpeGFNW6Wx_YdOttXZvGk6ajXmSNF4p83iTGYQyBo7GN4ifHH4GOn399VPmQUVgb5kNMTHUrnGmqPFawDGb8q7Qwp3akW9_OKc1h9PdQ7suUsTtYjP7qKKzA7Szhh94iNQwn86WOU5Nl9ISzyb4A1JfyOUxaFQSYzfjJv2EeBInGR6nKbFfiO0jAr78LVlNsbQgm5Az3-A2Vm74AS66Wo7QoHs76PSIm5pAFARfOeETT8k4lj4Llea0JZWmWsAiGEOsxVtUec3YExMqRZMpLiE-iUNfBi3lawOvd4yq2SzTJwgzT2gPfKjwQwVZnJQSgjMmGWXGLChVQ7SUVqQcorgZbJFGZenYe2QkHBkJR00egYRr6OqHZ17gaWykFuUhRL-0IgKDv4Hv9J98Z2jbrIpy3HNUzRcrfQFBRy7rVqvqaKvdeXl8Ns-7h17_Gx142NY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60PagH8Yn1mYM3CW2aZB_eSrG0Vnuxhd5Ck01xZW1Ft4L_3sluWhSkB4-bzMAyCTPfkJlvAK4jwWwUakPjOLRUhIGlMYpSpt0jlSPTKdj5HwdBdyTux3K8Ae1lL4wrq_S-v_Tphbf2K3VvzfpbmtafGA9EgzuGMo6BJuSbUHXsVLIC1Vav3x2sHhNkVDw0O3nqFHzvTFnm9Y4n7Sq84oLxtJj69kd8-hFzOnuw68EiaZX_sw8bdnYAOz8oBA_BjPLX-UdOMteo9EHmU_KJ2S-m8wQvVZoQP-Ym-0JISdIZmWQZLXZo0UqEevlzungluuDZxLT5lrSI8fMPSNnYcgTDzt2w3aV-cAI1iL9yKqaB0UmiQx4bK1hTG8usxI9ognBLNJkJGkkgp0zLBjdCI0RJ4lBHTRNax7B3DJXZfGZPgPBA2gDDqAxjg4mc1hrxGdeccecZjKkBW1pLGU8q7mZbZGpZPfainIWVs7BqCIUWrsHNSuetpNRYKy2Xh6B-XQyFPn-N3uk_9a5gqzt8fFAPvUH_DLbdTlmdew6V_H1hLxCD5PrS37FvyAPZ8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utmost+limits+of+various+solid+electrolytes+in+all-solid-state+lithium+batteries%3A+A+critical+review&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Wu%2C+Zhijun&rft.au=Xie%2C+Zhengkun&rft.au=Yoshida%2C+Akihiro&rft.au=Wang%2C+Zhongde&rft.date=2019-07-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=109&rft.spage=367&rft.epage=385&rft_id=info:doi/10.1016%2Fj.rser.2019.04.035&rft.externalDocID=S1364032119302473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon